251
|
White MJ, DiCaprio MJ, Greenberg DA. Assessment of neuronal viability with Alamar blue in cortical and granule cell cultures. J Neurosci Methods 1996; 70:195-200. [PMID: 9007759 DOI: 10.1016/s0165-0270(96)00118-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alamar blue, a redox indicator of cell viability in nonneuronal systems, was used to assess neuronal viability in cultures prepared from embryonic rat cerebral cortex and neonatal rat cerebellum. Alamar blue fluorescence varied linearly with cell number and was decreased by treating cortical or cerebellar granule cell cultures with excitatory amino acids, exposing cortical cultures to hypoxia and glucose deprivation, or inducing apoptotic death in granule cell cultures by growth in medium containing a low concentration of K+. Alamar blue fluorescence may complement existing methods for measuring neuronal viability and cytotoxicity in culture and thereby contribute to the study of cellular mechanisms of neurologic disease.
Collapse
Affiliation(s)
- M J White
- Department of Neurology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | |
Collapse
|
252
|
Barger SW, Mattson MP. Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer's beta-amyloid precursor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:116-26. [PMID: 8840019 DOI: 10.1016/0169-328x(96)00036-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A significant fraction of the beta-amyloid precursor protein is proteolytically processed to yield large secreted forms (sAPP). These proteins have pleiotropic effects which potentially involve control of gene expression. We have investigated the influence of sAPP on the class of transcription factors which bind kappa B enhancer sequences. Transcription dependent on a kappa B element was enhanced by sAPP in several cell lines, as measured by expression of a transfected chloramphenicol acetyltransferase reporter gene. Secreted APP also induced an increase in kappa B DNA-binding activity in hippocampal neurons treated with sAPP. Both effects were mimicked by an analog of cyclic GMP and inhibited by an antagonist of cyclic GMP-dependent protein kinase. Such activation of kappa B-dependent transcription was correlated in two ways with the ability of sAPP to protect neuronal cells against calcium-mediated damage: (1) tumor necrosis factor beta also protected against calcium-mediated insults and induced kappa B-dependent transcription; (2) antisense oligonucleotide-mediated reduction of an endogenous inhibitor of NF-kappa B activated kappa B-binding activity and attenuated calcium-mediated toxicity in both a neuronal cell line and in primary neurons. These findings suggest that a kappa B-binding transcription factor can act as a coordinator of neuroprotective gene expression in response to cytokines.
Collapse
Affiliation(s)
- S W Barger
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|
253
|
Toborek M, Hennig B. Dietary methionine imbalance, endothelial cell dysfunction and atherosclerosis. Nutr Res 1996. [DOI: 10.1016/0271-5317(96)00128-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
254
|
Kelly JF, Furukawa K, Barger SW, Rengen MR, Mark RJ, Blanc EM, Roth GS, Mattson MP. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci U S A 1996; 93:6753-8. [PMID: 8692890 PMCID: PMC39099 DOI: 10.1073/pnas.93.13.6753] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD.
Collapse
Affiliation(s)
- J F Kelly
- Molecular Physiology and Genetics Section, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Kordower JH, Chen EY, Mufson EJ, Winn SR, Emerich DF. Intrastriatal implants of polymer encapsulated cells genetically modified to secrete human nerve growth factor: trophic effects upon cholinergic and noncholinergic striatal neurons. Neuroscience 1996; 72:63-77. [PMID: 8730706 DOI: 10.1016/0306-4522(95)00543-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nerve growth factor selectively prevents the degeneration of cholinergic neurons following intrastriatal infusion but rescues both cholinergic and noncholinergic striatal neurons if the nerve growth factor is secreted from grafts of genetically modified fibroblasts. The present study evaluated whether grafted fibroblasts genetically modified to secrete human nerve growth factor could provide trophic influences upon intact cholinergic and noncholinergic striatal neurons. Unilateral striatal grafts of polymer-encapsulated cells genetically modified to secrete human nerve growth factor induced hypertrophy and significantly increased the optical density of choline acetyltransferase-immunoreactive striatal neurons one, two, and four weeks post-transplantation relative to rats receiving identical grafts missing only the human nerve growth factor construct. Nerve growth factor secreting grafts also induced a hypertrophy of noncholinergic neuropeptide Y-immunoreactive striatal neurons one, two, and four weeks post-transplantation. Glutamic acid decarboxylase-immunoreactive neurons were unaffected by the human nerve growth factors secreting grafts. The effects upon choline acetyltransferase-immunoreactive and neuropeptide Y-immunoreactive striatal neurons dissipated following retrieval of the implants. Immunocytochemistry for nerve growth factor revealed intense graft-derived immunoreactivity for up to 1000 microns from the capsule extending along the dorsoventral axis of the striatum. Nerve growth factor-immunoreactivity was also observed within a subpopulation of striatal neurons and may represent nerve growth factor consumer neurons which retrogradely transported graft-derived nerve growth factor. When explanted, grafts produced 2-4 ng human nerve growth factor/24 h over the time course of this study indicating that this level of continuous human nerve growth factor secretion was sufficient to mediate the effects presently observed.
Collapse
Affiliation(s)
- J H Kordower
- Department of Neurological Sciences, Rush Presbyterian Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
256
|
Barger SW, Mattson MP. Participation of gene expression in the protection against amyloid beta-peptide toxicity by the beta-amyloid precursor protein. Ann N Y Acad Sci 1996; 777:303-9. [PMID: 8624104 DOI: 10.1111/j.1749-6632.1996.tb34437.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The amyloid beta-peptide (A beta) is a toxic derivative of the beta-amyloid precursor protein. Alternative processing of this precursor also yields large soluble forms (APPSs) which are secreted from many cell types. These APPSs have neuritogenic and neuroprotective activities; indeed, APPSs can protect primary neurons from the toxicity of A beta itself. To begin to explore the regulation of gene expression by APPS, we have focused on the NF-kappa B transcription factor family. NF-kappa B is induced by conditions of stress, including cellular oxidation. We report that NF-kappa B can also be induced by APPS. Furthermore, we effected direct activation of NF-kappa B through disinhibition using antisense oligonucleotide technology. This means of activating NF-kappa B resulted in protection of neuroblastoma cells from the toxicity of a calcium ionophore and protection of primary hippocampal neurons from the toxicity of A beta. Together, these data suggest that NF-kappa B may exist as a common agent inducing a neuroprotective pattern of gene expression in response to either trophic cytokines or stress itself.
Collapse
Affiliation(s)
- S W Barger
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | |
Collapse
|
257
|
Goodman Y, Mattson MP. K+ channel openers protect hippocampal neurons against oxidative injury and amyloid beta-peptide toxicity. Brain Res 1996; 706:328-32. [PMID: 8822377 DOI: 10.1016/0006-8993(95)01367-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Potassium channel openers (KCOs) such as diazoxide and levochromakalim can protect cardiac myocytes against ischemic injury and neurons against excitotoxic injury, presumably because of their ability to hyperpolarize the plasma membrane and reduce calcium influx. We now report that diazoxide, levocromakalim (LCC), and to a lesser extent pinacidil, protect cultured rat hippocampal neurons against oxidative injury induced by exposure to FeSO4 and amyloid beta-peptide (A beta). Imaging studies of intracellular peroxide levels revealed that KCOs suppressed the generation of peroxides induced by FeSO4 and A beta. KCOs were effective in protecting neurons against oxidative insults in the presence of the K+ channel blockers glibenclimide and 4-aminopyridine indicating that their protective mechanism involved actions in addition to activation of K+ channels. The data suggest that KCOs may be of therapeutic value in an array of neurodegenerative disorders that involve oxidative injury.
Collapse
Affiliation(s)
- Y Goodman
- Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | |
Collapse
|
258
|
Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 1996; 379:74-8. [PMID: 8538744 DOI: 10.1038/379074a0] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Alzheimer's beta-amyloid precursor protein (beta-APP) is widely expressed in neural cells, and in neurons secreted forms of beta-APP (sAPPs) are released from membrane-spanning holo-beta APP in an activity-dependent manner. Secreted APPs can modulate neurite outgrowth, synaptogenesis, synaptic plasticity and cell survival; a signal transduction mechanism of sAPPs may involve modulation of intracellular calcium levels ([Ca2+]i). Here we use whole-cell perforated patch and single-channel patch-clamp analysis of hippocampal neurons to demonstrate that sAPPs suppress action potentials and hyperpolarize neurons by activating high-conductance, charybdotoxin-sensitive K+ channels. Activation of K+ channels by sAPPs was mimicked by a cyclic GMP analogue and sodium nitroprusside and blocked by an antagonist of cGMP-dependent kinase and a phosphatase inhibitor, suggesting that the effect is mediated by cGMP and protein dephosphorylation. Calcium imaging studies indicate that activation of K+ channels mediates the ability of sAPPs to decrease [Ca2+]i. Modulation of neuronal excitability may be a major mechanism by which beta-APP regulates developmental and synaptic plasticity in the nervous system.
Collapse
Affiliation(s)
- K Furukawa
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
259
|
Toborek M, Barger SW, Mattson MP, Barve S, McClain CJ, Hennig B. Linoleic acid and TNF-alpha cross-amplify oxidative injury and dysfunction of endothelial cells. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37641-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
260
|
Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A 1995; 92:9328-32. [PMID: 7568127 PMCID: PMC40978 DOI: 10.1073/pnas.92.20.9328] [Citation(s) in RCA: 489] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.
Collapse
Affiliation(s)
- S W Barger
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | | | |
Collapse
|
261
|
Furukawa K, Mattson MP. Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity. Brain Res 1995; 689:141-6. [PMID: 8528698 DOI: 10.1016/0006-8993(95)00537-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevation of intracellular calcium levels [Ca2+]i induces microtubule depolymerization, a process which plays roles in regulation of cell motility and axonal transport. However, excessive Ca2+ influx, as occurs in neurons subjected to excitotoxic conditions, can kill neurons. We now provide evidence that the polymerization state of microtubules influences neuronal [Ca2+]i homeostasis and vulnerability to excitotoxicity. The microtubule-stabilizing agent taxol significantly attenuated glutamate neurotoxicity in cultured rat hippocampal neurons. Experiments in which [Ca2+]i was monitored using the Ca2+ indicator dye fura-2 showed that the elevation of [Ca2+]i induced by glutamate was significantly attenuated in neurons pretreated with taxol. Experiments using selective glutamate receptor agonists suggested that taxol suppressed Ca2+ influx through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, but not through N-methyl-D-aspartate (NMDA) receptors. Taxol attenuated the neurotoxicity of the microtubule-depolymerizing agent colchicine; colchicine neurotoxicity was, in part, dependent on Ca2+ influx. These findings suggest that microtubules play a role in the mechanism of excitotoxicity and suggest that taxol and related compounds may be useful as antiexcitotoxic agents.
Collapse
Affiliation(s)
- K Furukawa
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | |
Collapse
|
262
|
Toborek M, Barger SW, Mattson MP, Espandiari P, Robertson LW, Hennig B. Exposure to polychlorinated biphenyls causes endothelial cell dysfunction. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1995; 10:219-26. [PMID: 8568836 DOI: 10.1002/jbt.2570100406] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Environmental chemicals, such as polychlorinated biphenyls (PCBs), may be atherogenic by disrupting normal functions of the vascular endothelium. To investigate this hypothesis, porcine pulmonary artery-derived endothelial cells were exposed to 3,3',4,4'-tetrachlorobiphenyl (PCB 77), 2,3,4,4',5-pentachlorobiphenyl (PCB 114), or 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) for up to 24 hours. These PCBs were selected for their varying binding avidities with the aryl hydrocarbon (Ah) receptor and differences in their induction of cytochrome P450. PCB 77 and PCB 114 significantly disrupted, in a dose-dependent manner, endothelial barrier function by allowing an increase in albumin transfer across endothelial monolayers. These PCBs also contributed markedly to cellular oxidative stress, as measured by 2,7-dichlorofluorescin (DCF) fluorescence and lipid hydroperoxides, and caused a significant increase in intracellular calcium ([Ca2+]i) levels. Enhanced oxidative stress and [Ca2+]i in PCB 77- and PCB 114-treated cells were accompanied by increased activity and content of cytochrome P450 1A and by a decrease in the vitamin E content in the culture medium. In contrast to the effects of PCB 77 and PCB 114, cell exposure to PCB 153 had no effect on cellular oxidation, [Ca2+]i, or endothelial barrier function. These results suggest that certain PCBs may play a role in the development of atherosclerosis by causing endothelial cell dysfunction and a decrease in the barrier function of the vascular endothelium. It is possible that interaction of PCBs with the Ah receptor and activation of the cytochrome P450 1A subfamily are involved in this pathology.
Collapse
Affiliation(s)
- M Toborek
- Department of Nutrition and Food Science, University of Kentucky, Lexington 40506-0054, USA
| | | | | | | | | | | |
Collapse
|
263
|
Mattson MP, Goodman Y. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res 1995; 676:219-24. [PMID: 7796173 DOI: 10.1016/0006-8993(95)00148-j] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amyloid beta-peptide (A beta) that accumulates as insoluble plaques in the brains of Alzheimer's victims can be neurotoxic, by a mechanism that may involve generation of reactive oxygen species (ROS) and destabilization of cellular calcium homeostasis. We now provide evidence that the mechanism of neurotoxicity of two other amyloidogenic peptides (APs), human amylin and beta 2-microglobulin, also involves induction of ROS and elevation of [Ca2+]i. Human amylin, beta 2-microglobulin and A beta 1-40 all caused significant death of neurons in rat hippocampal cell cultures during 24-48 h exposure periods. Rat amylin, a non-AP, was not neurotoxic. Each AP caused an elevation of rest [Ca2+]i during a 20 h exposure period, and promoted a sustained elevation of [Ca2+]i following exposure to glutamate which was significantly greater than controls. Each AP induced accumulation of ROS in neurons which preceded elevation of [Ca2+]i. Several antioxidants, including propyl gallate, vitamin E and the spin-trapping compound N-tert-butyl-alpha-phenylnitrone attenuated the elevation of [Ca2+]i and neurotoxicity induced by the peptides. The data indicate that different APs share a common mechanism of neurotoxicity involving free radical accumulation and destabilization of [Ca2+]i homeostasis.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | |
Collapse
|
264
|
Mark RJ, Ashford JW, Goodman Y, Mattson MP. Anticonvulsants attenuate amyloid beta-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol Aging 1995; 16:187-98. [PMID: 7777136 DOI: 10.1016/0197-4580(94)00150-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing evidence supports the involvement of amyloid beta-peptide (A beta) and an excitotoxic mechanism of neuronal injury in the pathogenesis of Alzheimer's disease. However, approaches aimed at preventing A beta toxicity and neurofibrillary degeneration are undeveloped. We now report that anticonvulsants (carbamazepine, phenytoin, and valproic acid) can protect cultured rat hippocampal neurons against A beta- and glutamate-induced injury. Each of the anticonvulsants attenuated the elevation of intracellular free calcium levels [(Ca2+)i] elicited by A beta or glutamate suggesting that their neuroprotective mechanism of action involved stabilization of [Ca2+]i. These compounds were effective at clinically relevant concentrations (carbamazepine, 100 nM-10 microM; phenytoin, 100 nM-1 microM; valproic acid, 100 nM-100 microM). The anticonvulsants suppressed glutamate-induced alterations in tau and buiquitin immunoreactivities. Compounds that stabilize [Ca2+]i may afford protection against the kinds of insults believed to underlie neuronal injury in Alzheimer's disease.
Collapse
Affiliation(s)
- R J Mark
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
265
|
Goodman Y, Steiner MR, Steiner SM, Mattson MP. Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res 1994; 654:171-6. [PMID: 7982093 DOI: 10.1016/0006-8993(94)91586-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent findings indicate that amyloid beta-peptide (A beta) can be neurotoxic by a mechanism involving an increase in the concentration of intracellular free Ca2+ ([Ca2+]i) and the generation of free radicals. In the present study, the lipoxygenase inhibitor/antioxidant nordihydroguaiaretic acid (NDGA) protected cultured rat hippocampal neurons against the toxicity of A beta in a concentration-dependent manner. Measurements of cellular oxidation (using the oxidation-sensitive dye 2,7-dichlorofluorescin) and intracellular free Ca2+ levels (using the Ca2+ indicator dye fura-2), showed that NDGA suppressed A beta-induced accumulation of reactive oxygen species (ROS) and Ca2+; Ca2+ responses to glutamate were also suppressed by NDGA. NDGA prevented neuronal injury and accumulation of ROS induced by iron, indicating a role for NDGA as an antioxidant in NDGA-mediated neuroprotection. Another lipoxygenase inhibitor (AA861) also protected against A beta and iron toxicity whereas the the 5-lipoxygenase-activating protein inhibitor L655,238 and the cyclooxygenase inhibitor indomethacin were ineffective. These findings suggest that NDGA can interupt a neurodegenerative pathway relevant to the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Y Goodman
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230
| | | | | | | |
Collapse
|