251
|
Rodrigues RG, Guo N, Zhou L, Sipes JM, Williams SB, Templeton NS, Gralnick HR, Roberts DD. Conformational regulation of the fibronectin binding and alpha 3beta 1 integrin-mediated adhesive activities of thrombospondin-1. J Biol Chem 2001; 276:27913-22. [PMID: 11358957 DOI: 10.1074/jbc.m009518200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recognition of extracellular matrix components can be regulated by conformational changes that alter the activity of cell surface integrins. We now demonstrate that conformational regulation of the matrix glycoprotein thrombospondin-1 (TSP1) can also modulate its binding to an integrin receptor. F18 1G8 is a conformation-sensitive TSP1 antibody that binds weakly to soluble TSP1 in the presence of divalent cations. However, binding of the antibody to melanoma cells was strongly stimulated by adding exogenous TSP1 in the presence of calcium, suggesting that TSP1 undergoes a conformational change following its binding to the cell surface. This conformation was not induced by known cell surface TSP1 receptors, whereas binding of F18 was stimulated when TSP1 bound to fibronectin but not to heparin or fibrinogen. Conversely, binding of F18 to TSP1 enhanced TSP1 binding to fibronectin. Exogenous fibronectin also stimulated TSP1-dependent binding of F18 to melanoma cells. Binding of the fibronectin-TSP1 complex to melanoma cells was mediated by alpha4beta1 and alpha5beta1 integrins. Furthermore, binding to F18 or fibronectin strongly enhanced the adhesive activity of immobilized TSP1 for some cell types. This enhancement of adhesion was mediated by alpha3beta1 integrin and required that the alpha3beta1 integrin be in an active state. Fibronectin also enhanced TSP1 binding to purified alpha3beta1 integrin. Therefore, both fibronectin and the F18 antibody induce conformational changes in TSP1 that enhance the ability of TSP1 to be recognized by alpha3beta1 integrin. The conformational and functional regulation of TSP1 activity by fibronectin represents a novel mechanism for extracellular signal transduction.
Collapse
Affiliation(s)
- R G Rodrigues
- Laboratory of Pathology, NCI, National Institutes of Health and Hematology Service, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Sakaguchi M, Murakami H, Suzaki T. Involvement of a 40-kDa glycoprotein in food recognition, prey capture, and induction of phagocytosis in the protozoon Actinophrys sol. Protist 2001; 152:33-41. [PMID: 11401035 DOI: 10.1078/1434-4610-00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 40-kDa glycoprotein (gp40) was identified as a Con A-binding adhesive substance of the heliozoon Actinophrys sol for immobilizing and ingesting prey flagellates. Isolation and partial characterization of gp40 showed that: 1) gp40 is a major Con A-binding protein of Actinophrys with a molecular weight of 40 kDa, and is stored in secretory granules called extrusomes; 2) gp40 was purified by Con A-affinity chromatography, and the N-terminal amino acid sequence was determined as H2N-KVLK-FEDDFDTFDLQ; 3) prey flagellates became adhered to gp40-immobilized agarose beads; 4) phagocytosis of Actinophrys was induced against gp40-immobilized agarose beads; and 5) solubilized gp40 induced exocytosis of extrusomes and cell fusion of heliozoons. These results indicate that gp40 is a multi-functional secretory protein of Actinophrys, which is required in correct targeting of the heliozoon to food organisms as well as in self-recognition.
Collapse
Affiliation(s)
- M Sakaguchi
- Department of Biology, Faculty of Science, Kobe University, Japan
| | | | | |
Collapse
|
253
|
Kliche S, Nagel W, Kremmer E, Atzler C, Ege A, Knorr T, Koszinowski U, Kolanus W, Haas J. Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell 2001; 7:833-43. [PMID: 11336706 DOI: 10.1016/s1097-2765(01)00227-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The induction of a transformed cellular phenotype by viruses requires the modulation of signaling pathways through viral proteins. We show here that the phenotypic changes induced by the kaposin A protein of human herpesvirus 8 are mediated through its direct interaction with cytohesin-1, a guanine nucleotide exchange factor for ARF GTPases and regulator of integrin-mediated cell adhesion. Focus formation, stress fiber dissolution, and activation of the ERK-1/2 MAP kinase signal cascade were reverted by the cytohesin-1 E157K mutant, which is deficient in catalyzing guanine nucleotide exchange. Furthermore, liposome-embedded kaposin A specifically stimulates cytohesin-1 dependent GTP binding of myristoylated ARF1 in vitro. These results suggest a previously unknown involvement of ARF GTPases in the control of cellular functions by herpesviruses.
Collapse
Affiliation(s)
- S Kliche
- Max-von-Pettenkofer Institut, LMU München, 81377 Münich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Fenczik CA, Zent R, Dellos M, Calderwood DA, Satriano J, Kelly C, Ginsberg MH. Distinct domains of CD98hc regulate integrins and amino acid transport. J Biol Chem 2001; 276:8746-52. [PMID: 11121428 DOI: 10.1074/jbc.m011239200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD98 is a cell surface heterodimer formed by the covalent linkage of CD98 heavy chain (CD98hc) with several different light chains to form amino acid transporters. CD98hc also binds specifically to the integrin beta(1A) cytoplasmic domain and regulates integrin function. In this study, we examined the relationship between the ability of CD98hc to stimulate amino acid transport and to affect integrin function. By constructing chimeras with CD98hc and a type II transmembrane protein (CD69), we found that the cytoplasmic and transmembrane domains of CD98hc are required for its effects on integrin function, while the extracellular domain is required for stimulation of isoleucine transport. Consequently, the capacity to promote amino acid transport is not required for CD98hc's effect on integrin function. Furthermore, a mutant of CD98hc that lacks its integrin binding site can still promote increased isoleucine transport. Thus, these two functions of CD98hc are separable and require distinct domains of the protein.
Collapse
Affiliation(s)
- C A Fenczik
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037 , USA
| | | | | | | | | | | | | |
Collapse
|
255
|
Harris ES, Shigeoka AO, Li W, Adams RH, Prescott SM, McIntyre TM, Zimmerman GA, Lorant DE. A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by beta1 and beta2 integrins. Blood 2001; 97:767-76. [PMID: 11157496 DOI: 10.1182/blood.v97.3.767] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leukocyte adhesion deficiency type I (LAD-1) is a disorder associated with severe and recurrent bacterial infections, impaired extravascular targeting and accumulation of myeloid leukocytes, altered wound healing, and significant morbidity that is caused by absent or greatly diminished surface expression of integrins of the beta2 class. We report clinical features and analysis of functions of cells from a patient with a myelodysplastic syndrome and infectious complications similar to those in the severe form of LAD-1, but whose circulating neutrophils displayed normal levels of beta2 integrins. Analysis of adhesion of these cells to immobilized ligands and to endothelial cells and assays of cell-cell aggregation and chemotaxis demonstrated a profound defect in adhesion mediated by beta2 integrins indicative of a variant form of LAD-1. A novel cell line established from Epstein-Barr virus-transformed lymphoblasts from the subject demonstrated deficient beta2 integrin-dependent adhesive function similar to that of the primary leukocytes. In addition, these cells had markedly impaired beta1 integrin-dependent adhesion. Sequence analysis and electrophoretic mobility of beta1 and beta2 proteins from the cell line demonstrated that the defects were not a result of structural abnormalities in the integrin subunit chains themselves and suggest that the adhesive phenotype of these cells is due to one or more abnormalities of inside-out signaling mechanisms that regulate the activity of integrins of these classes. These features define a unique LAD-1 variant syndrome that may reveal important insights that are generally relevant to inside-out signaling of integrins, a molecular process that is as yet incompletely understood.
Collapse
Affiliation(s)
- E S Harris
- The Huntsman Cancer Institute, and the Program in Human Molecular Biology and Genetics, the University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Houtman R, Ten Broeke R, Blalock JE, Villain M, Koster AS, Nijkamp FP. Attenuation of very late antigen-5-mediated adhesion of bone marrow-derived mast cells to fibronectin by peptides with inverted hydropathy to EF-hands. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:861-7. [PMID: 11145661 DOI: 10.4049/jimmunol.166.2.861] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Release of allergic mediators from mast cells is enhanced by very late Ag (VLA)-5-mediated interaction of these cells with fibronectin. In this report, we show that VLA-5-mediated adhesion of bone marrow-derived mast cells to fibronectin can be induced by two different pathways: first, FcepsilonRI clustering, which depends on calmodulin activation and extracellular Ca(2+), and, second, by Mn(2+) stimulation, which is independent of calmodulin activation and antagonized by Ca(2+). Previous studies have shown the presence of several cation-binding domains in VLA-5 that are homologous to the calcium-binding EF-hands of calmodulin. To show a role for EF-hands of different proteins in VLA-5-mediated adhesion, we used calcium-like peptides (CALP), CALP1 and CALP2, designed to bind to EF-hands based on inverted hydropathy. CALP1 and, more potently, CALP2 inhibited FcepsilonRI-induced adhesion to fibronectin via different mechanisms. The target for the effects of CALP1 and 2 on FcepsilonRI-induced adhesion and degranulation was intracellular and likely involved calmodulin. Interestingly only CALP2 was able to inhibit Mn(2+)-induced calmodulin-independent adhesion by interfering with an extracellular target, which is probably VLA-5. We conclude that CALP1 and 2 can inhibit VLA-5-mediated adhesion of mast cells to fibronectin through binding to EF-hands of multiple proteins, and that these peptides can be used as lead compounds for the development of future therapy against allergy.
Collapse
Affiliation(s)
- R Houtman
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Universiteit Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
257
|
Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q. Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J Cell Biol 2000; 151:1235-46. [PMID: 11121438 PMCID: PMC2190595 DOI: 10.1083/jcb.151.6.1235] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Accepted: 10/05/2000] [Indexed: 01/13/2023] Open
Abstract
During terminal differentiation, epithelia become columnar and develop specialized apical membrane structures (microvilli) and functions (regulated endocytosis and exocytosis). Using a clonal intercalated epithelial cell line, we found that high seeding density induced these characteristics, whereas low density seeding maintained a protoepithelial state. When cells were plated at low density, but on the extracellular matrix of high density cells, they converted to the more differentiated phenotype. The extracellular matrix (ECM) protein responsible for this activity was purified and found to be a large 230-kD protein, which we termed hensin. High density seeding caused hensin to be polymerized and deposited in the extracellular matrix, and only this form of hensin was able to induce terminal differentiation. Antibodies to hensin blocked the change in phenotype. However, its purification to homogeneity resulted in loss of activity, suggesting that an additional protein might be necessary for induction of terminal differentiation. Here, we found that a 29-kD protein specifically associates with hensin in the ECM. Addition of purified p29 restored the activity of homogenously purified hensin. Mass fingerprinting identified p29 as galectin 3. Purified recombinant galectin 3 was able to bind to hensin and to polymerize it in vitro. Seeding cells at high density induced secretion of galectin 3 into the ECM where it bundled hensin. Hence, the high density state causes a secretion of a protein that acts on another ECM protein to allow the new complex to signal the cell to change its phenotype. This is a new mechanism of inside-out signaling.
Collapse
Affiliation(s)
- Chinami Hikita
- Department of Physiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Soundarapandian Vijayakumar
- Department of Physiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Jiro Takito
- Department of Physiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Qais Al-Awqati
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| |
Collapse
|
258
|
Abstract
AbstractShear-induced binding of von Willebrand factor (vWf) to the platelet glycoprotein (GP) Ib/V/IX complex plays a key role in initiating platelet adhesion and aggregation at sites of vascular injury. This study demonstrated that pretreating human platelets with inhibitors of actin polymerization, cytochalasin D or latrunculin B, dramatically enhances platelet aggregation induced by vWf. The effects of these inhibitors were specific to the vWf-GPIbα interaction because they enhanced vWf-induced aggregation of Glanzmann thrombasthenic platelets and Chinese hamster ovary (CHO) cells transfected with GPIb/V/IX. Moreover, cytochalasin D enhanced the extent of platelet aggregation induced by high shear stress (5000 s−1) and also lowered the shear threshold required to induce aggregation from 3000 s−1 to as low as 500 s−1. Studies of CHO cells expressing GPIbα cytoplasmic tail truncation mutants that failed to bind actin-binding protein-280 (deletion of residues 569-610 or 535-568) demonstrated that the linkage between GPIb and actin-binding protein-280 was not required for vWf-induced actin polymerization, but was critical for the enhancing effects of cytochalasin D on vWf-induced cell aggregation. Taken together, these studies suggest a fundamentally important role for the cytoskeleton in regulating the adhesive function of GPIb/V/IX.
Collapse
|
259
|
Abstract
Shear-induced binding of von Willebrand factor (vWf) to the platelet glycoprotein (GP) Ib/V/IX complex plays a key role in initiating platelet adhesion and aggregation at sites of vascular injury. This study demonstrated that pretreating human platelets with inhibitors of actin polymerization, cytochalasin D or latrunculin B, dramatically enhances platelet aggregation induced by vWf. The effects of these inhibitors were specific to the vWf-GPIbα interaction because they enhanced vWf-induced aggregation of Glanzmann thrombasthenic platelets and Chinese hamster ovary (CHO) cells transfected with GPIb/V/IX. Moreover, cytochalasin D enhanced the extent of platelet aggregation induced by high shear stress (5000 s−1) and also lowered the shear threshold required to induce aggregation from 3000 s−1 to as low as 500 s−1. Studies of CHO cells expressing GPIbα cytoplasmic tail truncation mutants that failed to bind actin-binding protein-280 (deletion of residues 569-610 or 535-568) demonstrated that the linkage between GPIb and actin-binding protein-280 was not required for vWf-induced actin polymerization, but was critical for the enhancing effects of cytochalasin D on vWf-induced cell aggregation. Taken together, these studies suggest a fundamentally important role for the cytoskeleton in regulating the adhesive function of GPIb/V/IX.
Collapse
|
260
|
Foy DS, Ley K. Intercellular adhesion molecule-1 is required for chemoattractant-induced leukocyte adhesion in resting, but not inflamed, venules in vivo. Microvasc Res 2000; 60:249-60. [PMID: 11078641 DOI: 10.1006/mvre.2000.2272] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The leukocyte integrins LFA-1 and Mac-1 bind to endothelial intercellular adhesion molecule-1 (ICAM-1). Leukocyte adhesion induced by micropipette injection of formylmethionylleucylphenylalanine (fMLP) or macrophage inflammatory protein 2 (MIP-2) next to a venule in the exteriorized mouse cremaster muscle was almost completely blocked after intravenous injection of the ICAM-1 mAb YN-1. In contrast, after 2-h pretreatment with TNF-alpha, leukocyte adhesion induced in postcapillary venules by fMLP or MIP-2 was not blocked by the ICAM-1 mAb. Leukocyte adhesion was significantly reduced by mAb GAME-46 to CD18 even after TNF-alpha treatment. We conclude that ICAM-1 is necessary for neutrophil adhesion to unstimulated endothelium, but not for adhesion to cytokine-stimulated endothelium. Although ICAM-1 is expressed at high levels after TNF-alpha, ICAM-1 either is not functional or is redundant with other endothelial ligands for beta(2) integrins.
Collapse
Affiliation(s)
- D S Foy
- Department of Biomedical Engineering, University of Virginia Medical School, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
261
|
Kronenwett R, Martin S, Haas R. The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells 2000; 18:320-30. [PMID: 11007916 DOI: 10.1634/stemcells.18-5-320] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD34(+) hematopoietic stem cells from peripheral blood are commonly used for autologous or allogeneic transplantation following high-dose therapy in malignant diseases. The introduction of hematopoietic growth factors such as G-CSF has greatly facilitated the mobilization of CD34(+) cells. The mechanism of stem cell mobilization is not yet clear. It seems to be a multistep process with a crosstalk between cytokines and adhesion molecules. In this review, the role of hematopoietic growth factors, chemokines, and adhesion molecules for mobilization and homing of CD34(+) cells is summarized. In addition, factors influencing the cytokine-induced mobilization in patients and healthy donors are described. The review closes with an overview of new classes of mobilizing drugs such as monoclonal antibodies, specific peptides, or antisense oligonucleotides targeting adhesion molecules.
Collapse
Affiliation(s)
- R Kronenwett
- Klinik für Hämatologie, Onkologie und klinische Immunologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
262
|
Abstract
The ephrins are membrane-tethered ligands for the Eph receptor tyrosine kinases, which play important roles in patterning of the nervous and vascular systems. It is now clear that ephrins are more than just ligands and can also act as signalling-competent receptors, participating in bidirectional signalling. We have recently shown that ephrin-A5 signals within caveola-like domains of the plasma membrane upon engagement with its cognate Eph receptor, leading to increased adhesion of the cells to fibronectin. Here we show that ephrin-A5 controls sequential biological events that are consistent with its role in neuronal guidance. Activation of ephrin-A5 induces an initial change in cell adhesion followed by changes in cell morphology. Both effects are dependent on the activation of beta1 integrin involving members of the Src family of protein tyrosine kinases. The prolonged activation of ERK-1 and ERK-2 is required for the change in cell morphology. Our work suggests a new role for class A ephrins in specifying the affinity of the cells towards various extracellular substrates by regulating integrin function.
Collapse
Affiliation(s)
- A Davy
- Departments of Oncology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
263
|
Holtrich U, Wolf G, Yuan J, Bereiter-Hahn J, Karn T, Weiler M, Kauselmann G, Rehli M, Andreesen R, Kaufmann M, Kuhl D, Strebhardt K. Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages. Oncogene 2000; 19:4832-9. [PMID: 11039900 DOI: 10.1038/sj.onc.1203845] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2000] [Revised: 07/31/2000] [Accepted: 08/07/2000] [Indexed: 11/09/2022]
Abstract
Members of the polo subfamily of protein kinases play crucial roles in cell proliferation. To study the function of this family in more detail, we isolated the cDNA of human Fnk (FGF-inducible kinase) which codes for a serine/threonine kinase of 646 aa. Despite the homology to the proliferation-associated polo-like kinase (Plk), tissue distribution of Fnk transcripts and expression kinetics differed clearly. In contrast to Plk no correlation between cell proliferation and Fnk gene expression was found. Instead high levels of Fnk mRNA were detectable in blood cells undergoing adhesion. The transition of monocytes from peripheral blood to matrix bound macrophages was accompanied by increasing levels of Fnk with time in culture. Neither treatment of monocytes with inducers of differentiation nor withdrawal of serum did influence Fnk mRNA levels significantly, suggesting that cell attachment triggers the onset of Fnk gene transcription. The idea that Fnk is part of the signalling network controlling cellular adhesion was supported by the analysis of the cytoplasmic distribution of the Fnk protein and the influence of its overexpression on the cellular architecture. Fnk as fusion protein with GFP localized at the cellular membrane in COS cells. Dysregulated Fnk gene expression disrupted the cellular f-actin network and induced a spherical morphology. Furthermore, Fnk binds to the Ca2+/integrin-binding protein Cib in two-hybrid-analyses and co-immunoprecipitation in assays. Moreover, both proteins were shown to co-localize in mammalian cells. The homology of Cib with calmodulin and with calcineurin B suggests that Cib might be a regulatory subunit of polo-like kinases.
Collapse
Affiliation(s)
- U Holtrich
- Department of Obstetrics and Gynecology, J.W. Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Abstract
Understanding how immunoglobulin superfamily cell adhesion molecules (IgCAMs) regulate nervous system development has lagged behind studies on integrins and cadherins. The recent characterization of IgCAM structures combined with cell biological studies on protein-protein interactions and membrane targeting/trafficking demonstrate that IgCAMs interact in exceedingly complex ways to regulate axonal growth and pathfinding.
Collapse
Affiliation(s)
- H Kamiguchi
- Developmental Brain Science Group, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Saitama 351-0198, Wako, Japan.
| | | |
Collapse
|
265
|
Abstract
Recent evidence suggests that the biochemical and physical organization of lipid molecules in the plasma membrane can affect integrin-mediated cellular functions. The nature and mechanism of integrin-lipid interactions are unknown, but it is clear that they play specific roles in modulating the properties of integrins and integrin-associated proteins. A better knowledge of integrin functions, especially in the lipid milieu of plasma membranes, is necessary for the understanding of the phenomena that are regulated by integrins.
Collapse
Affiliation(s)
- G Pande
- Centre for Cellular and Molecular Biology, Uppal Road, 500 007, Hyderabad, India.
| |
Collapse
|
266
|
Eid JE, Kung AL, Scully R, Livingston DM. p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell 2000; 102:839-48. [PMID: 11030627 DOI: 10.1016/s0092-8674(00)00072-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Complexes containing p300, but not CBP, and the nuclear proto-oncoprotein SYT were detected in confluent cultures of G1-arrested cells but not in sparse cells or during S or G2. SYT sequences constitute the N-terminal segment of a fusion oncogene product, SYT-SSX, routinely detected in synovial sarcoma, an aggressive human tumor. SYT/p300 complex formation promotes cell adhesion to a fibronectin matrix, as reflected by compromise of this process in cells expressing SYT dl mutants that retain p300 binding activity and in the primary fibroblasts of p300 but not CBP heterozygous null mice. The mechanism linking the action of SYT/p300 complexes to adhesion function is, at least in part, transcription activation-independent and results in proper activation of beta1 integrin, a major adhesion receptor.
Collapse
Affiliation(s)
- J E Eid
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
267
|
Abstract
How does the coagulation protease thrombin regulate cellular behaviour? The protease-activated receptors (PARs) provide one answer. In concert with the coagulation cascade, these receptors provide an elegant mechanism linking mechanical information in the form of tissue injury or vascular leakage to cellular responses. Roles for PARs are beginning to emerge in haemostasis and thrombosis, inflammation, and perhaps even blood vessel development.
Collapse
Affiliation(s)
- S R Coughlin
- Cardiovascular Research Institute and Department of Medicine, University of California at San Francisco, 94143-0130, USA.
| |
Collapse
|
268
|
Steppich B, Dayyani F, Gruber R, Lorenz R, Mack M, Ziegler-Heitbrock HW. Selective mobilization of CD14(+)CD16(+) monocytes by exercise. Am J Physiol Cell Physiol 2000; 279:C578-86. [PMID: 10942707 DOI: 10.1152/ajpcell.2000.279.3.c578] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strenuous, anaerobic exercise leads to an increase of leukocytes that are mobilized from the marginal pool. We have analyzed in human peripheral blood the effect of exercise on the number of CD14(+)CD16(+) monocytes as determined by two-color immunofluorescence and flow cytometry. We show herein that this type of monocyte responds with a dramatic up to 4.8-fold increase. Mobilization does not occur after 1 min at 100 or 200 W but 1 min at 400 W leads to a twofold increase of the CD14(+)CD16(+) monocytes immediately after exercise. The numbers remain high at 5 min and gradually decrease to reach the initial level at 20 min postexercise. After 20 min of rest, the CD14(+)CD16(+) monocytes can be mobilized again by a second exercise. The CD14(+)CD16(+) monocytes appear to be mobilized from the marginal pool where they preferentially home because of a higher expression of adhesion molecules like CD11d and very late antigen-4. Exercise goes along with an increase of catecholamines, and mobilization of the CD14(+)CD16(+) monocytes can be substantially reduced by treatment of donors with the beta-adrenergic receptor blocker propranolol. Mobilization of CD14(+)CD16(+) monocytes by a catecholamine-dependent mechanism may contribute to the increase of these cells in various clinical conditions.
Collapse
Affiliation(s)
- B Steppich
- Institute for Immunology, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
269
|
Caron E, Self AJ, Hall A. The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 2000; 10:974-8. [PMID: 10985384 DOI: 10.1016/s0960-9822(00)00641-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND beta2 integrins mediate many aspects of the inflammatory and immune responses, including adhesion of leukocytes to the endothelium, complement-mediated phagocytosis in macrophages and neutrophils, and antigen-specific conjugate formation between cytotoxic T cells and their targets. A variety of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha), platelet-activating factor (PAF), and lipopolysaccharide (LPS) and other bacterial products induce the functional activation of beta2 integrins, but the signaling events that link membrane receptors to integrin activation are poorly understood. RESULTS We report here that expression of the constitutively active small GTPases Rap1 or R-ras, but not Ras or RalA, is sufficient for functional activation of alphaMbeta2, the complement receptor 3 (CR3), in macrophages, allowing phagocytosis of C3bi-opsonized targets. Inhibition of Rap1, but not other Ras-like or Rho-like small GTPases, abolishes activation of alphaMbeta2 induced by phorbol esters, LPS, TNF-alpha or PAF. Finally, Rap1 activation specifically controls the binding properties of alphaMbeta2 towards its physiological ligand, namely the complement-opsonized phagocytic targets. CONCLUSIONS In macrophages, the Rap1 GTPase regulates activation of the alphaMbeta2 integrin in response to a wide variety of inflammatory mediators.
Collapse
Affiliation(s)
- E Caron
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
270
|
van der Voort R, Taher TE, Derksen PW, Spaargaren M, van der Neut R, Pals ST. The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation. Adv Cancer Res 2000; 79:39-90. [PMID: 10818677 DOI: 10.1016/s0065-230x(00)79002-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article summarizes the structure, signal transduction and physiologic functions of the HGF/Met pathway, as well as its role in tumor growth, invasion, and metastasis. Moreover, it highlights recent studies indicating a role for the HGF/Met pathway in antigen-specific B-cell development and B-cell neoplasia.
Collapse
Affiliation(s)
- R van der Voort
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
271
|
Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 2000; 275:22607-10. [PMID: 10801899 DOI: 10.1074/jbc.r900037199] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- D A Calderwood
- Department of Vascular Biology and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
272
|
Affiliation(s)
- M D Schaller
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
273
|
Lichterfeld M, Martin S, Burkly L, Haas R, Kronenwett R. Mobilization of CD34+ haematopoietic stem cells is associated with a functional inactivation of the integrin very late antigen 4. Br J Haematol 2000; 110:71-81. [PMID: 10930981 DOI: 10.1046/j.1365-2141.2000.02130.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The beta1 integrin very late antigen 4 (VLA-4) plays a central role in mobilization and homing of CD34+ cells. In this study, we examined the activation state of VLA-4 on CD34+ cells from bone marrow (BM) and peripheral blood (PB) by flow cytometry using a vascular cell adhesion molecule I-immunoglobulin (VCAM-I/IgG) fusion protein as soluble ligand. In an intraindividual analysis, we found a significantly reduced affinity and avidity of the VLA-4 receptor on CD34+ cells from PB during granulocyte colony-stimulating factor (G-CSF)-enhanced marrow recovery in comparison with steady-state BM. Moreover, the amount of circulating CD34+ cells during marrow recovery was inversely related to the activation state but not to the expression level of VLA-4, suggesting that a modulation of the functional state of VLA-4 is involved in the mobilization of CD34+ cells. Moreover, VLA-4 function on CD34+ cells from BM was associated with the maturation state of CD34+ cells as high-affinity VLA-4 receptors were observed on the vast majority of more primitive CD34+ cells. In addition, we found that Mg2+ ions as well as co-incubation of CD34+ cells with endothelial cells resulted in an activation of the VLA-4 receptor. In conclusion, modulation of the functional state of VLA-4 appears to be of relevance for the mobilization and homing of CD34+ haematopoietic stem cells.
Collapse
Affiliation(s)
- M Lichterfeld
- Klinische Kooperationseinheit Molekulare Hämatologie/Onkologie, Deutsches Krebsforschungszentrum Heidelberg, Germany
| | | | | | | | | |
Collapse
|
274
|
Gopalakrishna P, Chaubey S, Manogaran P, Pande G. Modulation of ?5?1 integrin functions by the phospholipid and cholesterol contents of cell membranes. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000615)77:4<517::aid-jcb1>3.0.co;2-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
275
|
Zaffran Y, Meyer SC, Negrescu E, Reddy KB, Fox JE. Signaling across the platelet adhesion receptor glycoprotein Ib-IX induces alpha IIbbeta 3 activation both in platelets and a transfected Chinese hamster ovary cell system. J Biol Chem 2000; 275:16779-87. [PMID: 10828063 DOI: 10.1074/jbc.275.22.16779] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In platelets, alpha(IIb)beta(3) exists in a form that cannot bind adhesive proteins in the plasma; although it can interact with immobilized fibrinogen it cannot interact with immobilized von Willebrand factor in the vessel wall. Soluble agonists such as thrombin convert alpha(IIb)beta(3) to a form that recognizes soluble and immobilized ligands. Attempts to reconstitute alpha(IIb)beta(3) activation in a non-hematopoietic, nucleated cell system have been unsuccessful. In the present study, we have developed a transfected Chinese hamster ovary cell model in which alpha(IIb)beta(3) activation is induced by signaling across glycoprotein (GP) Ib-IX by its ligand, von Willebrand factor. GPIb-IX activates not only the transfected alpha(IIb)beta(3) but also endogenous alpha(v)beta(3). Activation of the pathways leading to integrin activation occurred even in cells transfected with GPIb-IX lacking the domain on GPIbalpha that binds 14-3-3 or that which binds actin-binding protein. These studies demonstrate that signals induced by interaction of GPIb-IX with von Willebrand factor lead to alpha(IIb)beta(3) activation and suggest that the signaling pathways by which GPIb-IX induces alpha(IIb)beta(3) activation are different to those used by thrombin. Elucidation of these differences may provide insights into therapeutic ways in which to inhibit integrin activation in selective clinical settings.
Collapse
Affiliation(s)
- Y Zaffran
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
276
|
Abstract
Drug resistance remains a major obstacle to the treatment of many hematopoietic malignancies such as multiple myeloma. Although much research has been focused on acquired resistance phenotypes, we believe that de novo drug resistance mechanisms may be an important component in protecting cells from initial drug exposure. It is now realized that many of the biological processes associated with this disease, including cell survival, may come as a result of the direct interactions of malignant plasma cells with the bone marrow microenvironment. This review examines the role of cell adhesion to one bone marrow component, fibronectin (FN), and the impact it may have on response to cytotoxic drugs. We discuss the influence of the integrin VLA-4 (alpha4beta1) on cell adhesion mediated drug resistance (CAM-DR) as well as the effects of chronic drug exposure on integrin function. Data presented here demonstrates that drug selection can make a non-adherent cell line adherent to FN through inside-out integrin activation and consequently cause a decrease in sensitivity to drug. We also speculate on the possible mediators of this intrinsic mechanism of drug resistance which may, along with the integrins themselves, become promising therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- J S Damiano
- H. Lee. Moffitt Cancer Center, University of South Florida, Tampa 33612, USA
| | | |
Collapse
|
277
|
Geiger C, Nagel W, Boehm T, van Kooyk Y, Figdor CG, Kremmer E, Hogg N, Zeitlmann L, Dierks H, Weber KS, Kolanus W. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J 2000; 19:2525-36. [PMID: 10835351 PMCID: PMC212768 DOI: 10.1093/emboj/19.11.2525] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intracellular signaling pathways, which regulate the interactions of integrins with their ligands, affect a wide variety of biological functions. Here we provide evidence of how cytohesin-1, an integrin-binding protein and guanine-nucleotide exchange factor (GEF) for ARF GTPases, regulates cell adhesion. Mutational analyses of the beta-2 cytoplasmic domain revealed that the adhesive function of LFA-1 depends on its interaction with cytohesin-1, unless the integrin is activated by exogenous divalent cations. Secondly, cytohesin-1 induces expression of an extracellular activation epitope of LFA-1, and the exchange factor function is not essential for this activity. In contrast, LFA-1-mediated cell adhesion and spreading on intercellular cell adhesion molecule 1 is strongly inhibited by a cytohesin-1 mutant, which fails to catalyze ARF GDP-GTP exchange in vitro. Thus, cytohesin-1 is involved in the activation of LFA-1, most probably through direct interaction with the integrin, and induces cell spreading by its ARF-GEF activity. We therefore propose that both direct regulation of the integrin and concomitant changes in the membrane topology of adherent T cells are modulated by dissectable functions of cytohesin-1.
Collapse
Affiliation(s)
- C Geiger
- Laboratorium für Molekulare Biologie, Genzentrum der Universität München, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Basson MD, Yu CF, Herden-Kirchoff O, Ellermeier M, Sanders MA, Merrell RC, Sumpio BE. Effects of increased ambient pressure on colon cancer cell adhesion. J Cell Biochem 2000; 78:47-61. [PMID: 10797565 DOI: 10.1002/(sici)1097-4644(20000701)78:1<47::aid-jcb5>3.0.co;2-m] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Forces such as strain modulate intestinal epithelial biology. Shear and pressure influence other cells. The effects of pressure on human colon cancer cells are poorly understood. Increasing ambient pressure for 30 min by 15 mm Hg over atmospheric stimulated adhesion to matrix proteins of four human colon cancer cell lines and primary cells from three human colon cancers, but not bovine aortic smooth-muscle cells. This effect was energy dependent and cation dependent (blocked by azide and chelation), accompanied by tyrosine phosphorylation of intracellular proteins including focal adhesion kinase, and blocked by tyrosine kinase inhibition (genistein, tyrphostin, and erbstatin) and a functional antibody to the beta1 integrin subunit. Although pressure stimulated adhesion even in a balanced salt solution, baseline and pressure-stimulated adhesion were each substantially diminished in the absence of serum. These data suggest that relatively low levels of increased pressure may stimulate malignant colonocyte adhesion by a cation-dependent beta1-integrin-mediated mechanism, perhaps via focal adhesion kinase-related tyrosine phosphorylation. In addition to elucidating another aspect of physical force regulation of colonocyte biology, these findings may be relevant to the effects of increased pressure engendered by colonic peristalsis, surgical manipulation, or laparoscopic surgery on colon cancer cell adhesion.
Collapse
Affiliation(s)
- M D Basson
- Department of Surgery, Yale University, New Haven, CT 06520-8062, USA.
| | | | | | | | | | | | | |
Collapse
|
279
|
Deryugina EI, Bourdon MA, Jungwirth K, Smith JW, Strongin AY. Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer 2000; 86:15-23. [PMID: 10728589 DOI: 10.1002/(sici)1097-0215(20000401)86:1<15::aid-ijc3>3.0.co;2-b] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix metalloproteinases (MMPs) and integrins have been implicated in a variety of processes involved in tumor progression. To evaluate the individual roles of integrin alphavbeta3 and membrane-type 1 matrix metalloproteinase (MT1-MMP), as well as the effects of their joint expression on tumor cell functions, MCF7 breast carcinoma cells were transfected stably with either the MT1-MMP, the beta3 integrin subunit or both MT1-MMP and beta3 cDNAs. MT1-MMP expression is accompanied by the functional activation of integrin alphaVbeta3, thereby increasing vitronectin-mediated adhesion and migration of MCF7 cells transfected with MT1-MMP and integrin alphaVbeta3. MT1-MMP-dependent functional activation of alphaVbeta3 correlates with modification(s) of the beta3 subunit, including its higher electrophoretic mobility and affected the LM609-binding site. MCF7 cells jointly expressing MT1-MMP and alphaVbeta3 were the most efficient in adhesion to the recombinant C-terminal domain of MMP-2 as well as in generating soluble and cell surface associated mature MMP-2 enzyme. These findings suggest a mechanism of selective docking of MMP-2 at tumor cell surfaces, specifically at the sites that include MT1-MMP and activated integrin alphaVbeta3. These mechanisms may provide a link between spatial regulation of focal proteolysis by the cell surface associated MMPs and the regulation of integrin-mediated motility of tumor cells.
Collapse
Affiliation(s)
- E I Deryugina
- La Jolla Institute for Experimental Medicine, CA, USA
| | | | | | | | | |
Collapse
|
280
|
Bronstein JM, Tiwari-Woodruff S, Buznikov AG, Stevens DB. Involvement of OSP/claudin-11 in oligodendrocyte membrane interactions: role in biology and disease. J Neurosci Res 2000; 59:706-11. [PMID: 10700007 DOI: 10.1002/(sici)1097-4547(20000315)59:6<706::aid-jnr2>3.0.co;2-d] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oligodendrocyte-specific protein (OSP/claudin-11) is a four transmembrane protein concentrated in central nervous system myelin. Recent evidence has emerged suggesting that OSP/claudin-11 is involved in membrane interactions at tight junctions and with the extracellular matrix. OSP/claudin-11 seems to modulate proliferation and migration of oligodendrocytes presumably through these interactions. Furthermore, evidence is presented implicating OSP/claudin-11 as an autoantigen in the development of autoimmune demyelinating disease.
Collapse
Affiliation(s)
- J M Bronstein
- Departments of Neurology and the Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
281
|
Kunkel EJ, Dunne JL, Ley K. Leukocyte arrest during cytokine-dependent inflammation in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3301-8. [PMID: 10706723 DOI: 10.4049/jimmunol.164.6.3301] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukocyte rolling along the walls of inflamed venules precedes their adhesion during inflammation. Rolling leukocytes are thought to arrest by engaging beta2 integrins following cellular activation. In vitro studies suggest that chemoattractants may instantaneously activate and arrest rolling leukocytes. However, how leukocytes stop rolling and become adherent in inflamed venules in vivo has remained rather mysterious. In this paper we use a novel method of tracking individual leukocytes through the microcirculation to show that rolling neutrophils become progressively activated while rolling down the venular tree. On average, leukocytes in wild-type mice roll for 86 s (and cover 270 microm) before becoming adherent with an efficiency around 90%. These rolling leukocytes exhibit a gradual beta2 integrin-dependent decrease in rolling velocity that correlates with an increase in intracellular free calcium concentration before arrest. Similar tracking analyses in gene-targeted mice demonstrate that the arrest of rolling leukocytes is very rare when beta2 integrins are absent or blocked by a mAb. Arrest is approximately 50% less efficient in the absence of E-selectin. These data suggest a model of leukocyte recruitment in which beta2 integrins play a critical role in stabilizing leukocyte rolling during a protracted cellular activation period before arrest and firm adhesion.
Collapse
Affiliation(s)
- E J Kunkel
- Department of Biomedical Engineering, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
282
|
Yan B, Hu DD, Knowles SK, Smith JW. Probing chemical and conformational differences in the resting and active conformers of platelet integrin alpha(IIb)beta(3). J Biol Chem 2000; 275:7249-60. [PMID: 10702295 DOI: 10.1074/jbc.275.10.7249] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Integrin alpha(IIb)beta(3) is the fibrinogen receptor that mediates platelet adhesion and aggregation. The ligand binding function of alpha(IIb)beta(3) is "activated" on the platelet surface by physiologic stimuli. Two forms of alpha(IIb)beta(3) can be purified from platelet lysates. These forms are facsimiles of the resting (Activation State-1 or AS-1) and the active (Activation State-2 or AS-2) conformations of the integrin found on the platelet surface. Here, the differences between purified AS-1 and AS-2 were examined to gain insight into the mechanism of activation. Four major findings are put forth. 1) The association rate (k(1)) between fibrinogen and the integrin is a key difference between AS-1 and AS-2. 2) Although the divalent ion Mn(2+) enhances the ligand binding function of AS-1, this ion is unable to convert AS-1 to AS-2. Therefore, its effect on integrin is unrelated to activation. 3) Peptide mass fingerprints indicate that the chemical structure of AS-1 and AS-2 are virtually identical, calling into question the idea that post-translational modifications are necessary for activation. 4) The two forms of alpha(IIb)beta(3) have significant conformational differences at three positions. These include the junction of the heavy and light chain of alpha(IIb), the divalent ion binding sites on alpha(IIb), and at a disulfide-bonded knot linking the amino terminus of beta(3) to the cysteine-rich domain. These observations indicate that integrin is activated by a series of specific conformational rearrangements in the ectodomain that increase the rate of ligand association.
Collapse
Affiliation(s)
- B Yan
- Program on Cell Adhesion, The Cancer Research Center at The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
283
|
Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO, Skolnik EY. Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol 2000; 20:1537-45. [PMID: 10669731 PMCID: PMC85333 DOI: 10.1128/mcb.20.5.1537-1545.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.
Collapse
Affiliation(s)
- E Becker
- Department of Pharmacology, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
284
|
Endo J, Toyama-Sorimachi N, Taya C, Kuramochi-Miyagawa S, Nagata K, Kuida K, Takashi T, Yonekawa H, Yoshizawa Y, Miyasaka N, Karasuyama H. Deficiency of a STE20/PAK family kinase LOK leads to the acceleration of LFA-1 clustering and cell adhesion of activated lymphocytes. FEBS Lett 2000; 468:234-8. [PMID: 10692593 DOI: 10.1016/s0014-5793(00)01219-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte-oriented kinase (LOK) is a member of the STE20/p21-activated kinase (PAK) family and expressed predominantly in lymphoid organs. Generation of LOK-deficient mice revealed that the leukocyte-function-associated antigen (LFA-1)/intercellular adhesion molecules (ICAM)-mediated aggregation of mitogen-stimulated T cells was greatly enhanced in the absence of LOK. Though levels of total LFA-1 and ICAMs as well as the active form of LFA-1 on T cell blasts were comparable in the presence and absence of LOK, clustering of active LFA-1 detected by binding of soluble ICAM-1 was accelerated in the absence of LOK. These results suggest that LOK is potentially involved in the regulation of LFA-1-mediated lymphocyte adhesion.
Collapse
Affiliation(s)
- J Endo
- Department of Immunology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Miyata S, Koshikawa N, Yasumitsu H, Miyazaki K. Trypsin stimulates integrin alpha(5)beta(1)-dependent adhesion to fibronectin and proliferation of human gastric carcinoma cells through activation of proteinase-activated receptor-2. J Biol Chem 2000; 275:4592-8. [PMID: 10671485 DOI: 10.1074/jbc.275.7.4592] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypsin is widely expressed in various non-pancreatic tissues at low levels and overexpressed in some types of human cancers. In the present study, we found that trypsin stimulates integrin-dependent adhesion and growth of MKN-1 human gastric carcinoma cells. MKN-1 cells expressed both proteinase-activated receptor-1 (PAR-1) and PAR-2, which are activated by thrombin and trypsin, respectively. Both trypsin and the PAR-2 ligand SLIGKV promoted integrin alpha(5)beta(1)-mediated adhesion of MKN-1 cells to fibronectin, and less effectively integrin alpha(v)beta(3)-mediated cell adhesion to vitronectin, but not that to type IV collagen or laminin-1 at all. Thrombin and the PAR-1 ligand SFLLRN promoted the cell adhesion to vitronectin more strongly than trypsin or the PAR-2 ligand, but not the cell adhesion to fibronectin at all. The cell adhesion-stimulating effect of the PAR-2 ligand was significantly reduced by the pre-treatment of cells with trypsin, indicating that the effect of trypsin is mediated by PAR-2 activation. The trypsin-stimulated cell adhesion to vitronectin, but not to fibronectin, was effectively inhibited by the G(i) protein blocker pertussis toxin, and both cell adhesions were completely inhibited by the Src kinase inhibitor herbimycin A. Furthermore, trypsin and the PAR-2 ligand stimulated growth of MKN-1 cells more strongly than thrombin or the PAR-1 ligand. These results show that trypsin regulates cellular adhesion and proliferation by inducing PAR-2/G protein signalings, and that the integrin alpha(5)beta(1)- and integrin alpha(v)beta(3)-dependent cell adhesions are regulated by different PAR/G protein signalings.
Collapse
Affiliation(s)
- S Miyata
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | |
Collapse
|
286
|
Levy L, Broad S, Diekmann D, Evans RD, Watt FM. beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol Biol Cell 2000; 11:453-66. [PMID: 10679006 PMCID: PMC14785 DOI: 10.1091/mbc.11.2.453] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In keratinocytes, the beta1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick beta1 integrin subunits. We examined the ability of adhesion-blocking chick beta1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick beta1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by beta1 integrins in normal keratinocytes was "do not differentiate" (transduced by ligand-occupied receptors) as opposed to "do differentiate" (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the beta1 subunit. We conclude that distinct signaling pathways are involved in beta1 integrin-mediated adhesion and differentiation control in keratinocytes.
Collapse
Affiliation(s)
- L Levy
- Keratinocyte Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
287
|
Barry ST, Ludbrook SB, Murrison E, Horgan CM. A regulated interaction between alpha5beta1 integrin and osteopontin. Biochem Biophys Res Commun 2000; 267:764-9. [PMID: 10673366 DOI: 10.1006/bbrc.1999.2032] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix protein osteopontin (OPN) interacts with a number of integrins, namely alphavbeta1, alphavbeta3, alphavbeta5, alpha9beta1, alpha8beta1, and alpha4beta1. We have investigated the interaction of alpha5beta1 integrin with OPN using K562 cells, which only express alpha5beta1. alpha5beta1 is in a low activation state in this cell line, but can be stimulated to a higher activation state by the phorbol ester TPA. Treating K562 wild-type cells (K562-WT) with TPA stimulated an interaction between alpha5beta1 and OPN. No interaction was seen in the absence of TPA. alpha5beta1 selectively interacted with a GST fusion protein of the N-terminal fragment of OPN (aa17-168), which is generated in vivo by thrombin cleavage of OPN. Expression of the alpha4 integrin in K562 cells (K562-alpha4beta1) stimulated alpha5beta1-dependent binding to aa17-168 in the absence of TPA, suggesting that alpha4beta1 activates alpha5beta1 in K562 cells. Adhesion via alpha5beta1 is mediated by the Arg-Gly-Asp (RGD) motif of OPN, as mutating this sequence to Arg-Ala-Asp (RAD) blocked binding of both cell types. These data demonstrate that thrombin cleavage regulates the adhesive properties of OPN and that alpha5beta1 integrin can interact with thrombin-cleaved osteopontin when in a high activation state.
Collapse
Affiliation(s)
- S T Barry
- Molecular Pharmacology, Glaxo Wellcome Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom.
| | | | | | | |
Collapse
|
288
|
Soluble VCAM-1 binding to α4 integrins is cell-type specific and activation dependent and is disrupted during apoptosis in T cells. Blood 2000. [DOI: 10.1182/blood.v95.2.602] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble vascular cell adhesion molecule-1 (sVCAM-1) is generated during inflammation and can alter lymphocyte functions. The authors report that the binding of sVCAM-1 to 4 integrin-bearing cells is a dynamically regulated, active cellular process. Binding of recombinant sVCAM-1 to 4 integrins on peripheral blood mononuclear cells was cell-type specific. Circulating CD16+ NK cells constitutively bound sVCAM-1 with high affinity, whereas a subpopulation of T-lymphocytes, primarily CD45RO+ (memory), bound sVCAM-1 only after phorbol ester stimulation. sVCAM-1 binding to homogenous stable cell lines was also cell-type specific, and required active cellular processes because it was blocked by the inhibition of ATP synthesis and by Fas-induced apoptosis. Indeed, the loss of high-affinity VCAM-1 binding was an early event in apoptosis. Furthermore, an H-Ras/Raf-initiated signaling pathway also suppressed sVCAM-1 binding to 4β1 integrins. Collectively, these results showed that the capacity of 4 integrins to bind VCAM-1 is actively regulated and that this regulation may control 4 integrin-dependent cellular functions.
Collapse
|
289
|
Abstract
Most cells are adherent and rely on adhesive interactions to regulate their shape, motility and growth. These interactions are critical for tissue integrity and homeostasis but they also contribute to many of the most common diseases in humans. The integrins are a key family of cell-surface receptors that mediate the downstream consequences of cell adhesion and are therefore prime targets for the development of therapeutic agents. In addition to their adhesive activity, integrins also exhibit several other classical features of signalling receptors. Sufficient evidence is now available to pose the question of whether integrins should be classified as true signalling receptors; this article both reviews this evidence and attempts to identify remaining gaps.
Collapse
Affiliation(s)
- M J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, UK M13 9PT.
| |
Collapse
|
290
|
Baudoux B, Castanares-Zapatero D, Leclercq-Smekens M, Berna N, Poumay Y. The tetraspanin CD9 associates with the integrin alpha6beta4 in cultured human epidermal keratinocytes and is involved in cell motility. Eur J Cell Biol 2000; 79:41-51. [PMID: 10711425 DOI: 10.1078/s0171-9335(04)70006-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrins are involved in several ways in keratinocyte physiology, including cell motility. CD9 is a member of the tetraspanin protein family which is found in association with other transmembrane proteins like the integrins. CD9 is expressed in the epidermal tissue, but this expression is not regulated by differentiation. The present work focuses on association of CD9 with the integrin alpha6beta4 in keratinocytes. In vivo, CD9 does not co-localize with alpha6beta4, and is not internalized with the integrin upon basal detachment with dispase. In vitro, CD9 is found partly in co-localization with alpha6beta4 and is internalized with the integrin after keratinocyte detachment with dispase. Using blocking antibodies in a phagokinetic tracks assay, we show that CD9, and to a lesser extent alpha6beta4, but not the tetraspanin CD82, promote motility of subconfluent keratinocytes on collagen I. Our observations also suggest that CD9 is involved in the formation of lamellipodia. We also report that the phorbol ester TPA has no effect on CD9 expression and association with alpha6beta4, but increases keratinocyte motility, possibly through modulation of integrin subunits expression, or through upregulation of collagenase-1 expression. Together, these results confirm that CD9 associates with alpha6beta4 in cultured keratinocytes, possibly in order to regulate the function of the integrin, and that CD9 is involved in keratinocyte motility on collagen. The data suggest that regulation of adhesion characteristics by CD9 in keratinocytes may play a role in epidermal repair.
Collapse
Affiliation(s)
- B Baudoux
- Département Histologie-Embryologie, Facultés Universitaires Notre-Dame de la Paix, Namur/Belgium
| | | | | | | | | |
Collapse
|
291
|
Ibarrondo FJ, Torres M, Coates TD. Periodic formation of nascent lamellae is driven by changes in the stable F-actin pool of polymorphonuclear neutrophils after stimulation with chemotactic peptide and cross-linking of CD18 or CD61. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:234-47. [PMID: 10602253 DOI: 10.1002/(sici)1097-0169(199912)44:4<234::aid-cm2>3.0.co;2-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell motility and changes in cell shape are largely powered by actin polymerization and depolymerization. Eight to ten second periodic changes in human polymorphonuclear neutrophil (PMN) shape were detected by video-image analysis of PMN crawling on a surface and by right angle light scattering (RALS) in suspended PMN. However, sustained RALS oscillations in suspended PMN requires pre-treatment with an inhibitor of phosphatidylinositol 3-kinase or an activator of protein kinase C. Here, we show that cross-linking of the beta(2) (CD18) or beta(3) (CD61), but not beta(1) (CD 29) integrins in the presence of a low dose of formyl-Methionyl-Leucyl-Phenylalanine (fMLP) enables similar 8-s periodic RALS oscillations in suspended PMN in response to stimulation with two consecutive doses of chemoattractants. This effect did not appear to be due to increased surface expression of CD18 or CD61. RALS oscillations occurred in phase with 8-s oscillations in the stable F-actin pool and peaks in F-actin correlated with predominance of cells exhibiting a nascent lamella. Thus, simulation of surface attachment by CD18 and CD61 cross-linking after exposure to fMLP in suspended cells supports shape oscillations that are the result of actin-driven cyclic extension/retraction of nascent lamellae at the same frequency as the shape changes previously observed in crawling PMN.
Collapse
Affiliation(s)
- F J Ibarrondo
- Childrens Hospital Los Angeles Research Institute, Childrens Center for Cancer and Blood Diseases, Department of Pediatrics, University of Southern California, Los Angeles 90025-1752, USA
| | | | | |
Collapse
|
292
|
Sanz-Rodríguez F, Ruiz-Velasco N, Pascual-Salcedo D, Teixidó J. Characterization of VLA-4-dependent myeloma cell adhesion to fibronectin and VCAM-1. Br J Haematol 1999; 107:825-34. [PMID: 10606891 DOI: 10.1046/j.1365-2141.1999.01762.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The integrin VLA-4 mediates attachment of myeloma cells to multiple myeloma (MM) bone marrow stroma. The alternatively-spliced CS-1 region of fibronectin (FN) and VCAM-1 are main ligands for VLA-4 and are both expressed on MM stroma. The H1 region is present in all FN isoforms and represents an additional binding site for VLA-4. We employed FN fragments FN-H89 and FN-H0, that contain either the CS-1 and H1, or only the H1 sites, respectively, as well as soluble VCAM-1 (sVCAM-1), to characterize VLA-4-mediated adhesion pathways used by myeloma cells to attach to MM stroma. CD38highCD45RA- cells from MM bone marrow, and the myeloma-derived cell lines NCI-H929, IM-9 and RPMI 8226, specifically adhered, by different degrees, to FN-H89, FN-H0 and sVCAM-1, and their VLA-4-dependent adhesion was substantially up-regulated by the anti-beta1 antibody TS2/16, which increases the affinity of VLA-beta1 integrins. Furthermore, VLA-4 function on NCI-H929 cells was enhanced by TS2/16 during adhesion to MM stroma. The alpha4beta7 integrin mediated a small portion of myeloma cell line adhesion to FN-H89, mainly upon integrin activation with Mn2+. These results indicate that myeloma cells use VLA-4 to interact with CS-1/FN, H1/FN and VCAM-1 on MM stroma, and that its function can be potentially up-regulated, enabling higher degrees of cell adhesion to these VLA-4 ligands, which might influence myeloma cell localization in the bone marrow.
Collapse
Affiliation(s)
- F Sanz-Rodríguez
- Centro de Investigaciones Biológicas, Departamento de Inmunología
| | | | | | | |
Collapse
|
293
|
Abstract
The removal of degenerating myelin by phagocytosis is central to pathogenesis and repair in traumatized and diseased nervous system. Galectin-3/MAC-2 is a differentiation and activation marker of murine and human monocytes/macrophages/microglia. Galectin-3/MAC-2, along with MAC-1 that mediates myelin phagocytosis, marks an in vivo activation state in macrophages, which are involved in myelin degeneration and phagocytosis in injured mouse peripheral nerves. In contrast, high levels of MAC-1 but extremely low levels of Galectin-3/MAC-2 are expressed in vivo in injured CNS where myelin degeneration and phagocytosis progress extremely slowly. The present study was aimed at testing whether an activation state marked by Galectin-3/MAC-2 is present in vivo in the CNS of EAE mice concomitant with autoimmune induced myelin degeneration and phagocytosis. EAE was inflicted by mouse spinal cord homogenate. Demyelination was assessed by light microscopy and Galectin-3/MAC-2, MAC-1, and F4/80 expression by immunocytochemistry. We presently document that Galectin-3/MAC-2 expression is up regulated, along with MAC-1 and F4/80, in spinal cords and optic nerves of EAE mice in areas of demyelination and myelin degeneration, in myelin phagocytosing microglia and macrophages. Copolymer 1 (Glatiramer acetate) suppresses EAE, demyelination, and Galectin-3/MAC-2 expression. EAE pathogenesis thus involves a state of activation in microglia and macrophages characterized by the expression Galectin-3/MAC-2 along with MAC-1. Furthermore, the in vivo responses to injury and autoimmune challenge in the CNS differ in the activation pattern of microglia and macrophages with regard to Galectin-3/MAC-2 expression and the corresponding occurrence of myelin degeneration and phagocytosis.
Collapse
Affiliation(s)
- F Reichert
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
294
|
Tang S, Gao Y, Ware JA. Enhancement of endothelial cell migration and in vitro tube formation by TAP20, a novel beta 5 integrin-modulating, PKC theta-dependent protein. J Cell Biol 1999; 147:1073-84. [PMID: 10579726 PMCID: PMC2169340 DOI: 10.1083/jcb.147.5.1073] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Migration, proliferation, and tube formation of endothelial cells are regulated by a protein kinase C isoenzyme PKCtheta. A full-length cDNA encoding a novel 20-kD protein, whose expression was PKCtheta-dependent, was identified in endothelial cells, cloned, characterized, and designated as theta-associated protein (TAP) 20. Overexpression of TAP20 decreased cell adhesion and enhanced migration on vitronectin and tube formation in three-dimensional culture. An antiintegrin alphavbeta5 antibody prevented these TAP20 effects. Overexpression of TAP20 also decreased focal adhesion formation in alphavbeta3-deficient cells. The interaction between TAP20 and beta5 integrin cytoplasmic domain was demonstrated by protein coprecipitation and immunoblotting. Thus, the discovery of TAP20, which interacts with integrin beta5 and modulates cell adhesion, migration, and tube formation, further defines a possible pathway to angiogenesis dependent on PKCtheta.
Collapse
Affiliation(s)
- S Tang
- Cardiovascular Division, Department of Medicine, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
295
|
Hayashi M, Suzuki H, Kawashima S, Saido TC, Inomata M. The behavior of calpain-generated N- and C-terminal fragments of talin in integrin-mediated signaling pathways. Arch Biochem Biophys 1999; 371:133-41. [PMID: 10545199 DOI: 10.1006/abbi.1999.1427] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our previous results showed that the binding of an adhesive ligand to integrin alphaIIbbeta(3) on the surface of platelets triggers the activation of calpain and the limited proteolysis of talin by calpain. To explore the physiological significance of the calpain-mediated cleavage of talin, we analyzed the behavior of the calpain-generated fragments of talin (N-terminal 47 kDa and C-terminal 190 kDa) during platelet activation by biochemical and immunoelectron microscopic studies. Intact talin and micro-calpain translocate from the Triton X-100-soluble fraction to the insoluble fraction upon platelet stimulation by thrombin, and the limited proteolysis of talin occurs in the Triton X-100-insoluble fraction, the cytoskeletal fraction. The fully autolyzed 76-kDa micro-calpain (active form) is found predominantly in the Triton X-100-insoluble fraction in stimulated platelets. While the N-terminal 47-kDa fragment remains in the Triton X-100-insoluble fraction, the C-terminal 190-kDa fragment is released into the Triton X-100-soluble fraction in a time-dependent manner. Immunoelectron microscopic observations revealed that the 47-kDa fragment locates on the submembrane zone just beneath the plasma membrane, including the open canalicular systems, while most of the 190-kDa fragment exists diffusely in the cytoplasm in thrombin-stimulated platelets. These findings suggest that calpain may contribute to the reorganization of the cytoskeleton in an integrin-mediated signaling pathway through the redistribution of the functional domain of talin.
Collapse
Affiliation(s)
- M Hayashi
- Department of Protein Biochemistry, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi-ku, 173-0015, Japan
| | | | | | | | | |
Collapse
|
296
|
Abstract
We showed previously that the calcium-dependent protease, calpain, cleaves the cytoplasmic domain of the integrin beta3 subunit. To investigate whether susceptibility to calpain is a common feature of all integrin beta subunits, and to map calpain cleavage sites in different integrin beta tails, we treated recombinant cytoplasmic domains of integrin beta1A, beta1D, beta2, beta3 and beta7 subunits with purified calpain in vitro. We found that the cytoplasmic domains of all these integrin chains were cleaved by calpain. HPLC followed by mass spectrometry was used to identify calpain cleavage sites. These sites were clustered in the C-terminal half of the integrin beta cytoplasmic domains in regions flanking the two NXXY motifs, suggesting the possibility that the structural framework provided by these motifs is recognized by calpain. We used the knowledge of these cleavage sites to develop cleavage site-specific antibodies and to demonstrate cleavage of the beta1A cytoplasmic domain in intact platelets stimulated with calcium ionophore or thrombin. Thus susceptibility to calpain cleavage is common to integrin beta subunits, can be induced in intact cells, and appears to favor regions surrounding two conserved NXXY motifs.
Collapse
Affiliation(s)
- M Pfaff
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
297
|
Wang XQ, Lindberg FP, Frazier WA. Integrin-associated protein stimulates alpha2beta1-dependent chemotaxis via Gi-mediated inhibition of adenylate cyclase and extracellular-regulated kinases. J Cell Biol 1999; 147:389-400. [PMID: 10525543 PMCID: PMC2174227 DOI: 10.1083/jcb.147.2.389] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin-associated protein (IAP/CD47) augments the function of alpha2beta1 integrin in smooth muscle cells (SMC), resulting in enhanced chemotaxis toward soluble collagen (Wang, X-Q., and W.A. Frazier. 1998. Mol. Biol. Cell. 9:865). IAP-deficient SMC derived from IAP(-/-) animals did not migrate in response to 4N1K (KRFYVVMWKK), a peptide agonist of IAP derived from the COOH-terminal domain of thrombospondin-1 (TSP1). When normal SMC were preincubated with 4N1K or an anti-alpha2beta1 function-stimulating antibody, cell migration to soluble collagen was significantly enhanced. 4N1K-induced chemotaxis was blocked by treatment of SMC with pertussis toxin indicating that IAP acts through Gi. In agreement with this, 4N1K evoked a rapid decrease in cAMP levels which was intensified in the presence of collagen, and forskolin and 8-Br-cAMP both inhibited SMC migration stimulated via IAP. 4N1K strongly inhibited extracellular regulated kinase (ERK) activation in SMC attaching to collagen and reduced basal ERK activity in suspended SMC. Pertussis toxin treatment of SMC significantly activated ERK, suggesting that an inhibitory input was alleviated. Inhibition of ERK activity by (a) the MAP kinase kinase (MEK) inhibitor, PD98059, (b) antisense oligonucleotide depletion of ERK, and (c) expression of mitogen-activated protein (MAP) kinase phosphatase-1 in SMC all led to increased migration to collagen, 4N1K, or 4N1K plus collagen. Thus, IAP stimulates alpha2beta1 integrin-mediated SMC migration via Gi-mediated inhibition of ERK activity and suppression of cyclic AMP levels. Both of these signaling pathways could directly modulate the state of the integrin as well as impact downstream components of the cell motility apparatus.
Collapse
Affiliation(s)
- Xue-Qing Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Frederik P. Lindberg
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - William A. Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
298
|
Finnemann SC, Rodriguez-Boulan E. Macrophage and retinal pigment epithelium phagocytosis: apoptotic cells and photoreceptors compete for alphavbeta3 and alphavbeta5 integrins, and protein kinase C regulates alphavbeta5 binding and cytoskeletal linkage. J Exp Med 1999; 190:861-74. [PMID: 10499924 PMCID: PMC2195631 DOI: 10.1084/jem.190.6.861] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1999] [Accepted: 07/26/1999] [Indexed: 11/25/2022] Open
Abstract
Noninflammatory monocyte macrophages use alphavbeta3 integrin to selectively bind apoptotic cells, initiating their phagocytic removal. In a related process, the retinal pigment epithelium (RPE) employs alphavbeta5 integrin to recognize spent photoreceptor outer segment particles (OS). Here, we show that apoptotic cells and OS compete for binding to these receptors, indicating that OS and apoptotic cells expose surface signals recognizable by alphavbeta3 and alphavbeta5. Particle binding to alphavbeta5 required protein kinase C (PKC) activation. In RPE, alphavbeta5 binding was maximally activated even before any phagocytic challenge and was reduced by PKC inhibitors. In macrophages, it was dormant but became activated upon PKC stimulation. PKC-activated alphavbeta5-mediated binding in macrophages differed from constitutive binding to the same integrin receptor in RPE cells in that the former followed much faster kinetics, similar to particle binding mediated by alphavbeta3. Activation of alphavbeta5 for particle binding correlated with its recruitment into a detergent-insoluble fraction, a process sensitive to pharmacological modulation of PKC in both types of phagocytes. Furthermore, alphavbeta5 but not alphavbeta3 particle binding required actin microfilaments. These data constitute the first evidence that noninflammatory phagocytes actively regulate the earliest phase of phagocytic clearance, particle binding, by controlling receptor activity.
Collapse
Affiliation(s)
- S C Finnemann
- Department of Ophthalmology, Margaret M. Dyson Vision Institute, New York, New York 10021, USA.
| | | |
Collapse
|
299
|
Yeh CH, Peng HC, Huang TF. Cytokines modulate integrin alpha(v)beta(3)-mediated human endothelial cell adhesion and calcium signaling. Exp Cell Res 1999; 251:57-66. [PMID: 10438571 DOI: 10.1006/excr.1999.4560] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Angiogenesis is a complex process regulated by the interactions of endothelial cells with cytokines and the adhesive protein matrix. The cytokines basic fibroblast growth factor (bFGF) and tumor necrosis factor-alpha (TNF-alpha) are two of the modulators of angiogenesis. One mechanism by which these cytokines induce their effects may be through the regulation of integrin adhesion receptor activity, in particular, alpha(v)beta(3). In this study, we examined the ability of these angiogenic factors to modulate the adhesion of human umbilical vein endothelial cells (HUVECs) to immobilized disintegrins (i.e., rhodostomin and arietin), which are specific in antagonizing integrin alpha(v)beta(3) in cells. As these disintegrins were immobilized as substrates, they acted as agonists to induce HUVEC adhesion in a dose- and alpha(v)beta(3)-dependent manner. In addition, adhesion also triggered a sustained increase of intracellular free calcium. Furthermore, bFGF-primed HUVECs potentiated, but TNF-alpha primed cells attenuated, about 50% adhesion events and calcium signaling triggered by immobilized disintegrin compared to naive cells, respectively. The mechanisms of modulating alpha(v)beta(3)-dependent HUVEC adhesion by cytokines may be related to changes of integrin alpha(v)beta(3) conformation, as demonstrating the antagonistic effect of Mn(2+) on decreased adhesion by TNF-alpha pretreatment, and confirmed with flow cytometric analysis probed by anti-LIBS1 mAb. However, cytokine pretreatment did not alter the expression of this integrin on the cell surface, as determined by flow cytometry. Phosphoinositide-3 kinase may be one of the signaling molecules involved in the enhanced adhesion of bFGF-primed cells.
Collapse
Affiliation(s)
- C H Yeh
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
300
|
Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP. Selective regulation of integrin--cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1999; 1:200-6. [PMID: 10559917 DOI: 10.1038/12021] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell motility on extracellular-matrix (ECM) substrates depends on the regulated generation of force against the substrate through adhesion receptors known as integrins. Here we show that integrin-mediated traction forces can be selectively modulated by the tyrosine kinase Src. In Src-deficient fibroblasts, cell spreading on the ECM component vitronectin is inhibited, while the strengthening of linkages between integrin vitronectin receptors and the force-generating cytoskeleton in response to substrate rigidity is dramatically increased. In contrast, Src deficiency has no detectable effects on fibronectin-receptor function. Finally, truncated Src (lacking the kinase domain) co-localizes to focal-adhesion sites with alpha v but not with beta 1 integrins. These data are consistent with a selective, functional interaction between Src and the vitronectin receptor that acts at the integrin-cytoskeleton interface to regulate cell spreading and migration.
Collapse
Affiliation(s)
- D P Felsenfeld
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|