251
|
Wang T, Chen B, Luo M, Xie L, Lu M, Lu X, Zhang S, Wei L, Zhou X, Yao B, Wang H, Xu D. Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring. MICROBIOME 2023; 11:245. [PMID: 37932832 PMCID: PMC10629055 DOI: 10.1186/s40168-023-01656-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/23/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) has been associated with intrauterine growth restriction (IUGR), but the underlying mechanisms are unclear. RESULTS We found that the IUGR rat model induced by prenatal caffeine exposure (PCE) showed ASD-like symptoms, accompanied by altered gut microbiota and reduced production of indole 3-propionic acid (IPA), a microbiota-specific metabolite and a ligand of aryl hydrocarbon receptor (AHR). IUGR children also had a reduced serum IPA level consistent with the animal model. We demonstrated that the dysregulated IPA/AHR/NF-κB signaling caused by disturbed gut microbiota mediated the hippocampal microglia hyperactivation and neuronal synapse over-pruning in the PCE-induced IUGR rats. Moreover, postnatal IPA supplementation restored the ASD-like symptoms and the underlying hippocampal lesions in the IUGR rats. CONCLUSIONS This study suggests that the microbiota-IPA-brain axis regulates ASD susceptibility in PCE-induced IUGR offspring, and supplementation of microbiota-derived IPA might be a promising interventional strategy for ASD with a fetal origin. Video Abstract.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Xie
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengxi Lu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liyi Wei
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
252
|
Ying ZH, Mao CL, Xie W, Yu CH. Postbiotics in rheumatoid arthritis: emerging mechanisms and intervention perspectives. Front Microbiol 2023; 14:1290015. [PMID: 38029106 PMCID: PMC10662086 DOI: 10.3389/fmicb.2023.1290015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that affects individuals of all age groups. Recently, the association between RA and the gut microbiome has led to the investigation of postbiotics as potential therapeutic strategies. Postbiotics refer to inactivated microbial cells, cellular components, or their metabolites that are specifically intended for the microbiota. Postbiotics not only profoundly influence the occurrence and development of RA, but they also mediate various inflammatory pathways, immune processes, and bone metabolism. Although they offer a variety of mechanisms and may even be superior to more conventional "biotics" such as probiotics and prebiotics, research on their efficacy and clinical significance in RA with disruptions to the intestinal microbiota remains limited. In this review, we provide an overview of the concept of postbiotics and summarize the current knowledge regarding postbiotics and their potential use in RA therapy. Postbiotics show potential as a viable adjunctive therapy option for RA.
Collapse
Affiliation(s)
- Zhen-Hua Ying
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cheng-Liang Mao
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang University of Technology, Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Chen-Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
253
|
Wojciech L, Png CW, Koh EY, Kioh DYQ, Deng L, Wang Z, Wu L, Hamidinia M, Tung DWH, Zhang W, Pettersson S, Chan ECY, Zhang Y, Tan KSW, Gascoigne NRJ. A tryptophan metabolite made by a gut microbiome eukaryote induces pro-inflammatory T cells. EMBO J 2023; 42:e112963. [PMID: 37743772 PMCID: PMC10620759 DOI: 10.15252/embj.2022112963] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFβ, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.
Collapse
Affiliation(s)
- Lukasz Wojciech
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chin Wen Png
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Eileen Y Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dorinda Yan Qin Kioh
- Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Lei Deng
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Ziteng Wang
- Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Liang‐zhe Wu
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Maryam Hamidinia
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Desmond WH Tung
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Zhang
- ASEAN Microbiome Nutrition CentreNational Neuroscience InstituteSingaporeSingapore
| | - Sven Pettersson
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- ASEAN Microbiome Nutrition CentreNational Neuroscience InstituteSingaporeSingapore
- Faculty of Medical SciencesSunway UniversitySubang JayaMalaysia
- Department of OdontologyKarolinska InstitutetStockholmSweden
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Yongliang Zhang
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Kevin SW Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Nicholas RJ Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- ASEAN Microbiome Nutrition CentreNational Neuroscience InstituteSingaporeSingapore
| |
Collapse
|
254
|
Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol 2023; 183:112319. [PMID: 37898179 DOI: 10.1016/j.exger.2023.112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ian L Duchesne Blanes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ford Berger
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
255
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
256
|
Hui Y, Zhao J, Yu Z, Wang Y, Qin Y, Zhang Y, Xing Y, Han M, Wang A, Guo S, Yuan J, Zhao Y, Ning X, Sun S. The Role of Tryptophan Metabolism in the Occurrence and Progression of Acute and Chronic Kidney Diseases. Mol Nutr Food Res 2023; 67:e2300218. [PMID: 37691068 DOI: 10.1002/mnfr.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.
Collapse
Affiliation(s)
- Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
257
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
258
|
Zheng S, Zhou L, Hoene M, Peter A, Birkenfeld AL, Weigert C, Liu X, Zhao X, Xu G, Lehmann R. A New Biomarker Profiling Strategy for Gut Microbiome Research: Valid Association of Metabolites to Metabolism of Microbiota Detected by Non-Targeted Metabolomics in Human Urine. Metabolites 2023; 13:1061. [PMID: 37887386 PMCID: PMC10608496 DOI: 10.3390/metabo13101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome is of tremendous relevance to human health and disease, so it is a hot topic of omics-driven biomedical research. However, a valid identification of gut microbiota-associated molecules in human blood or urine is difficult to achieve. We hypothesize that bowel evacuation is an easy-to-use approach to reveal such metabolites. A non-targeted and modifying group-assisted metabolomics approach (covering 40 types of modifications) was applied to investigate urine samples collected in two independent experiments at various time points before and after laxative use. Fasting over the same time period served as the control condition. As a result, depletion of the fecal microbiome significantly affected the levels of 331 metabolite ions in urine, including 100 modified metabolites. Dominating modifications were glucuronidations, carboxylations, sulfations, adenine conjugations, butyrylations, malonylations, and acetylations. A total of 32 compounds, including common, but also unexpected fecal microbiota-associated metabolites, were annotated. The applied strategy has potential to generate a microbiome-associated metabolite map (M3) of urine from healthy humans, and presumably also other body fluids. Comparative analyses of M3 vs. disease-related metabolite profiles, or therapy-dependent changes may open promising perspectives for human gut microbiome research and diagnostics beyond analyzing feces.
Collapse
Affiliation(s)
- Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| | - Andreas L. Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
- Internal Medicine 4, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| |
Collapse
|
259
|
Ückert AK, Rütschlin S, Gutbier S, Wörz NC, Miah MR, Martins AC, Hauer I, Holzer AK, Meyburg B, Mix AK, Hauck C, Aschner M, Böttcher T, Leist M. Identification of the bacterial metabolite aerugine as potential trigger of human dopaminergic neurodegeneration. ENVIRONMENT INTERNATIONAL 2023; 180:108229. [PMID: 37797477 PMCID: PMC10666548 DOI: 10.1016/j.envint.2023.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The causes of nigrostriatal cell death in idiopathic Parkinson's disease are unknown, but exposure to toxic chemicals may play some role. We followed up here on suggestions that bacterial secondary metabolites might be selectively cytotoxic to dopaminergic neurons. Extracts from Streptomyces venezuelae were found to kill human dopaminergic neurons (LUHMES cells). Utilizing this model system as a bioassay, we identified a bacterial metabolite known as aerugine (C10H11NO2S; 2-[4-(hydroxymethyl)-4,5-dihydro-1,3-thiazol-2-yl]phenol) and confirmed this finding by chemical re-synthesis. This 2-hydroxyphenyl-thiazoline compound was previously shown to be a product of a wide-spread biosynthetic cluster also found in the human microbiome and in several pathogens. Aerugine triggered half-maximal dopaminergic neurotoxicity at 3-4 µM. It was less toxic for other neurons (10-20 µM), and non-toxic (at <100 µM) for common human cell lines. Neurotoxicity was completely prevented by several iron chelators, by distinct anti-oxidants and by a caspase inhibitor. In the Caenorhabditis elegans model organism, general survival was not affected by aerugine concentrations up to 100 µM. When transgenic worms, expressing green fluorescent protein only in their dopamine neurons, were exposed to aerugine, specific neurodegeneration was observed. The toxicant also exerted functional dopaminergic toxicity in nematodes as determined by the "basal slowing response" assay. Thus, our research has unveiled a bacterial metabolite with a remarkably selective toxicity toward human dopaminergic neurons in vitro and for the dopaminergic nervous system of Caenorhabditis elegans in vivo. These findings suggest that microbe-derived environmental chemicals should be further investigated for their role in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Nathalie Christine Wörz
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria; Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Isa Hauer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Birthe Meyburg
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kathrin Mix
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Christof Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany; Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria.
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
260
|
Wei H, Wu J, Wang H, Huang J, Li C, Zhang Y, Song Y, Zhou Z, Sun Y, Xiao L, Peng L, Chen C, Zhao C, Wang DW. Increased circulating phenylacetylglutamine concentration elevates the predictive value of cardiovascular event risk in heart failure patients. J Intern Med 2023; 294:515-530. [PMID: 37184278 DOI: 10.1111/joim.13653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Phenylacetylglutamine (PAGln)-a newly discovered microbial metabolite produced by phenylalanine metabolism-is reportedly associated with cardiovascular events via adrenergic receptors. Nonetheless, its association with cardiovascular outcomes in heart failure (HF) patients remains unknown. OBJECTIVES This study aimed to prospectively investigate the prognostic value of PAGln for HF. METHODS Plasma PAGln levels were quantified by liquid chromatography-tandem mass spectrometry. We first assessed the association between plasma PAGln levels and the incidence of adverse cardiovascular events in 3152 HF patients (including HF with preserved and reduced ejection fraction) over a median follow-up period of 2 years. The primary endpoint was the composite of cardiovascular death or heart transplantation. We then assessed the prognostic role of PAGln in addition to the classic biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP). The correlation between PAGln levels and β-blocker use was also investigated. RESULTS In total, 520 cardiovascular deaths or heart transplantations occurred in the HF cohort. Elevated PAGln levels were independently associated with a higher risk of the primary endpoint in a dose-response manner, regardless of HF subtype. Concurrent assessment of PAGln and NT-proBNP levels enhanced risk stratification among HF patients. PAGln further showed prognostic value at low NT-proBNP levels. Additionally, the interaction effects between PAGln and β-blocker use were not significant. CONCLUSIONS Plasma PAGln levels are an independent predictor of an increased risk of adverse cardiovascular events in HF. Our work could provide joint and complementary prognostic value to NT-proBNP levels in HF patients.
Collapse
Affiliation(s)
- Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yaonan Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhitong Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Liyuan Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
261
|
Zhao X, Stein KR, Chen V, Griffin ME, Lairson LL, Hang HC. Chemoproteomics reveals microbiota-derived aromatic monoamine agonists for GPRC5A. Nat Chem Biol 2023; 19:1205-1214. [PMID: 37248411 DOI: 10.1038/s41589-023-01328-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The microbiota generates diverse metabolites to modulate host physiology and disease, but their protein targets and mechanisms of action have not been fully elucidated. To address this challenge, we explored microbiota-derived indole metabolites and developed photoaffinity chemical reporters for proteomic studies. We identified many potential indole metabolite-interacting proteins, including metabolic enzymes, transporters, immune sensors and G protein-coupled receptors. Notably, we discovered that aromatic monoamines can bind the orphan receptor GPRC5A and stimulate β-arrestin recruitment. Metabolomic and functional profiling also revealed specific amino acid decarboxylase-expressing microbiota species that produce aromatic monoamine agonists for GPRC5A-β-arrestin recruitment. Our analysis of synthetic aromatic monoamine derivatives identified 7-fluorotryptamine as a more potent agonist of GPRC5A. These results highlight the utility of chemoproteomics to identify microbiota metabolite-interacting proteins and the development of small-molecule agonists for orphan receptors.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kathryn R Stein
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York City, NY, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
262
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
263
|
Tan S, Zhang Q, Pei X, Tan D, Guo C, Chen S, Chen G. Evaluation of milk photooxidation based on peptidomics. Food Res Int 2023; 172:113113. [PMID: 37689842 DOI: 10.1016/j.foodres.2023.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Photooxidation is one of the main causes of the deterioration of milk quality during processing and marketing. This study aimed to investigate the variation in peptides after photooxidation using peptidomic techniques, and how cow species, oxygen content, and light intensity affect photooxidation. The different peptides were identified and quantified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eighteen milk samples were subjected to light treatment. Seven types of peptides were identified as photooxidation markers. Subsequently, the effects of milk variety, oxygen content, and light intensity on photooxidation were studied, and sensory evaluations were performed. Dairy cow breed, oxygen content, and light intensity all affect photooxidation. Sensory evaluation verified that light and oxygen are necessary for the photooxidation of milk. The peptide m/z+ 529.2783 (LLDEIKEVV), both in different varieties of milk and in different brands of commercially available milk, showed a large variation in multiplicity, and its content was closely related to oxygen and light. This peptide was not produced in the absence of oxygen and light, and its relative content increased with the duration of light exposure. These results suggest that the peptidomics method is an effective tool for distinguishing between normal and photooxidized milk.
Collapse
Affiliation(s)
- Sijia Tan
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Qingyang Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Inner Mongolia, 010080, China; Inner Mongolia Yili Industrial Group Co, Ltd, 010080, China
| | - Dongfei Tan
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences6 (TAAS), Tianjin 300192, China
| | - Can Guo
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Sumeng Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Gang Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
264
|
Microbiota metabolites as agonists for the orphan receptor GPRC5A. Nat Chem Biol 2023; 19:1183-1184. [PMID: 37248414 DOI: 10.1038/s41589-023-01342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
265
|
Zuo WF, Pang Q, Yao LP, Zhang Y, Peng C, Huang W, Han B. Gut microbiota: A magical multifunctional target regulated by medicine food homology species. J Adv Res 2023; 52:151-170. [PMID: 37269937 PMCID: PMC10555941 DOI: 10.1016/j.jare.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The relationship between gut microbiota and human health has gradually been recognized. Increasing studies show that the disorder of gut microbiota is related to the occurrence and development of many diseases. Metabolites produced by the gut microbiota are responsible for their extensive regulatory roles. In addition, naturally derived medicine food homology species with low toxicity and high efficiency have been clearly defined owing to their outstanding physiological and pharmacological properties in disease prevention and treatment. AIM OF REVIEW Based on supporting evidence, the current review summarizes the representative work of medicine food homology species targeting the gut microbiota to regulate host pathophysiology and discusses the challenges and prospects in this field. It aims to facilitate the understanding of the relationship among medicine food homology species, gut microbiota, and human health and further stimulate the advancement of more relevant research. KEY SCIENTIFIC CONCEPTS OF REVIEW As this review reveals, from the initial practical application to more mechanism studies, the relationship among medicine food homology species, gut microbiota, and human health has evolved into an irrefutable interaction. On the one hand, through affecting the population structure, metabolism, and function of gut microbiota, medicine food homology species maintain the homeostasis of the intestinal microenvironment and human health by affecting the population structure, metabolism, and function of gut microbiota. On the other hand, the gut microbiota is also involved in the bioconversion of the active ingredients from medicine food homology species and thus influences their physiological and pharmacological properties.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lai-Ping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
266
|
Liu Z, Mu C, Zhu W. Metagenomics-based inference of microbial metabolism towards neuroactive amino acids and the response to antibiotics in piglet colon. Amino Acids 2023; 55:1333-1347. [PMID: 37581868 DOI: 10.1007/s00726-023-03311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
Gut-derived neuroactive metabolites from amino acids perform a broad range of physiological roles in the body. However, the interaction between microbiota and epithelium in the metabolism of amino acids with neuroactive properties remains unclear in the colon of piglets. To investigate the microbial and epithelial metabolism, metagenomics and mucosal metabolomics were performed using colonic samples from 12 ileum-canulated piglets subjected to a 25-day infusion with saline or antibiotics. We categorized 23 metabolites derived from the metabolism of tryptophan, glutamate, and tyrosine, known as precursors of neuroactive metabolites. Microbial enzymes involved in the kynurenine synthesis via arylformamidase, 4-aminobutyric acid (GABA) synthesis via putrescine aminotransferase, and tyramine synthesis via tyrosine decarboxylase were identified in Clostridiales bacterium, uncultured Blautia sp., and Methanobrevibacter wolinii, respectively. Antibiotics significantly affected the microbiota involved in tryptophan-kynurenine and glutamate-GABA metabolism. An increase in the relative abundance of putrescine aminotransferase and Blautia sp. correlated positively with an increase in luminal GABA concentration. Overall, our findings provide new insights into the microbial ability to metabolize key amino acids that are precursors of neuroactive metabolites.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
267
|
Lanuza F, Meroño T, Zamora-Ros R, Bondonno NP, Rostgaard-Hansen AL, Sánchez-Pla A, Miro B, Carmona-Pontaque F, Riccardi G, Tjønneland A, Landberg R, Halkjær J, Andres-Lacueva C. Plasma metabolomic profiles of plant-based dietary indices reveal potential pathways for metabolic syndrome associations. Atherosclerosis 2023; 382:117285. [PMID: 37778133 DOI: 10.1016/j.atherosclerosis.2023.117285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND AND AIMS Plant-based dietary patterns have been associated with improved health outcomes. This study aims to describe the metabolomic fingerprints of plant-based diet indices (PDI) and examine their association with metabolic syndrome (MetS) and its components in a Danish population. METHODS The MAX study comprised 676 participants (55% women, aged 18-67 y) from Copenhagen. Sociodemographic and dietary data were collected using questionnaires and three 24-h dietary recalls over one year (at baseline, and at 6 and 12 months). Mean dietary intakes were computed, as well as overall PDI, healthful (hPDI) and unhealthful (uPDI) scores, according to food groups for each plant-based index. Clinical variables were also collected at the same time points in a health examination that included complete blood tests. MetS was defined according to the International Diabetes Federation criteria. Plasma metabolites were measured using a targeted metabolomics approach. Metabolites associated with PDI were selected using random forest models and their relationships with PDIs and MetS were analyzed using generalized linear mixed models. RESULTS The mean prevalence of MetS was 10.8%. High, compared to low, hPDI and uPDI scores were associated with a lower and higher odd of MetS, respectively [odds ratio (95%CI); hPDI: 0.56 (0.43-0.74); uPDI: 1.61 (1.26-2.05)]. Out of 411 quantified plasma metabolites, machine-learning metabolomics fingerprinting revealed 13 metabolites, including food and food-related microbial metabolites, like hypaphorine, indolepropionic acid and lignan-derived enterolactones. These metabolites were associated with all PDIs and were inversely correlated with MetS components (p < 0.05). Furthermore, they had an explainable contribution of 12% and 14% for the association between hPDI or uPDI, respectively, and MetS only among participants with overweight/obesity. CONCLUSIONS Metabolites associated with PDIs were inversely associated with MetS and its components, and may partially explain the effects of plant-based diets on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Fabian Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Tomas Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Raul Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Nicola P Bondonno
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark; Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | | - Alex Sánchez-Pla
- Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Berta Miro
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Francesc Carmona-Pontaque
- Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
268
|
Zhou Y, Bi Z, Hamilton MJ, Zhang L, Su R, Sadowsky MJ, Roy S, Khoruts A, Chen C. p-Cresol Sulfate Is a Sensitive Urinary Marker of Fecal Microbiota Transplantation and Antibiotics Treatments in Human Patients and Mouse Models. Int J Mol Sci 2023; 24:14621. [PMID: 37834066 PMCID: PMC10572327 DOI: 10.3390/ijms241914621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for recurrent Clostridioides difficile infection (rCDI) and also a potential therapy for other diseases associated with dysbiotic gut microbiota. Monitoring metabolic changes in biofluids and excreta is a noninvasive approach to identify the biomarkers of microbial recolonization and to understand the metabolic influences of FMT on the host. In this study, the pre-FMT and post FMT urine samples from 11 rCDI patients were compared through metabolomic analyses for FMT-induced metabolic changes. The results showed that p-cresol sulfate in urine, a microbial metabolite of tyrosine, was rapidly elevated by FMT and much more responsive than other microbial metabolites of aromatic amino acids (AAAs). Because patients were treated with vancomycin prior to FMT, the influence of vancomycin on the microbial metabolism of AAAs was examined in a mouse feeding trial, in which the decreases in p-cresol sulfate, phenylacetylglycine, and indoxyl sulfate in urine were accompanied with significant increases in their AAA precursors in feces. The inhibitory effects of antibiotics and the recovering effects of FMT on the microbial metabolism of AAAs were further validated in a mouse model of FMT. Overall, urinary p-cresol sulfate may function as a sensitive and convenient therapeutic indicator on the effectiveness of antibiotics and FMT for the desired manipulation of gut microbiota in human patients.
Collapse
Affiliation(s)
- Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Zheting Bi
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Matthew J. Hamilton
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; (M.J.H.); (M.J.S.)
| | - Li Zhang
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (L.Z.); (S.R.)
| | - Rui Su
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Michael J. Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; (M.J.H.); (M.J.S.)
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (L.Z.); (S.R.)
| | - Alexander Khoruts
- Division of Gastroenterology, Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| |
Collapse
|
269
|
Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Comput Struct Biotechnol J 2023; 21:4777-4789. [PMID: 37841334 PMCID: PMC10570628 DOI: 10.1016/j.csbj.2023.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Small molecules derived from gut microbiota have been increasingly investigated to better understand the functional roles of the human gut microbiome. Microbial metabolites of aromatic amino acids (AAA) have been linked to many diseases, such as metabolic disorders, chronic kidney diseases, inflammatory bowel disease, diabetes, and cancer. Important microbial AAA metabolites are often discovered via global metabolite profiling of biological specimens collected from humans or animal models. Subsequent metabolite identity confirmation and absolute quantification using targeted analysis enable comparisons across different studies, which can lead to the establishment of threshold concentrations of potential metabolite biomarkers. Owing to their excellent selectivity and sensitivity, hyphenated mass spectrometry (MS) techniques are often employed to identify and quantify AAA metabolites in various biological matrices. Here, we summarize the developments over the past five years in MS-based methodology for analyzing gut microbiota-derived AAA. Sample preparation, method validation, analytical performance, and statistical methods for correlation analysis are discussed, along with future perspectives.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
270
|
Li S, Dai J, Zhu M, Arroyo-Currás N, Li H, Wang Y, Wang Q, Lou X, Kippin TE, Wang S, Plaxco KW, Li H, Xia F. Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. ACS NANO 2023; 17:18525-18538. [PMID: 37703911 DOI: 10.1021/acsnano.3c06520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations, would improve our understanding of health and our ability to diagnose, treat, and monitor disease. To this end, we are developing electrochemical aptamer-based (EAB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the use of an agarose hydrogel protective layer for EAB sensors significantly improves their signaling stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability and precision when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, our implantable gel-protective EAB sensors achieved good biocompatibility when deployed in vivo in the living rats without causing any severe inflammation.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Man Zhu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongxing Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yuanyuan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Tod E Kippin
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
- The Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Kevin W Plaxco
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
271
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
272
|
McCann JR, Rawls JF. Essential Amino Acid Metabolites as Chemical Mediators of Host-Microbe Interaction in the Gut. Annu Rev Microbiol 2023; 77:479-497. [PMID: 37339735 PMCID: PMC11188676 DOI: 10.1146/annurev-micro-032421-111819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Amino acids are indispensable substrates for protein synthesis in all organisms and incorporated into diverse aspects of metabolic physiology and signaling. However, animals lack the ability to synthesize several of them and must acquire these essential amino acids from their diet or perhaps their associated microbial communities. The essential amino acids therefore occupy a unique position in the health of animals and their relationships with microbes. Here we review recent work connecting microbial production and metabolism of essential amino acids to host biology, and the reciprocal impacts of host metabolism of essential amino acids on their associated microbes. We focus on the roles of the branched-chain amino acids (valine, leucine, and isoleucine) and tryptophan on host-microbe communication in the intestine of humans and other vertebrates. We then conclude by highlighting research questions surrounding the less-understood aspects of microbial essential amino acid synthesis in animal hosts.
Collapse
Affiliation(s)
- Jessica R McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| |
Collapse
|
273
|
Yan J, Duan W, Gao Q, Mao T, Wang M, Duan J, Li J. ENPP2 inhibitor improves proliferation in AOM/DSS-induced colorectal cancer mice via remodeling the gut barrier function and gut microbiota composition. Pharmacol Res 2023; 195:106877. [PMID: 37524154 DOI: 10.1016/j.phrs.2023.106877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In our previous multicenter study, we delineated the inherent metabolic features of colorectal cancer (CRC). Therein, we identified a member of the ectonucleotide pyrophosphatase/ phosphodiesterase family (ENPP2) as a significant differential metabolite of CRC. In this study, the role of ENPP2 in CRC has been demonstrated using established in vitro and in vivo models including ENPP2 gene knockdown, and use of the ENPP2 inhibitor, GLPG1690. We found that CRC proliferation was decreased after either ENPP2 gene knockdown or use of ENPP2 inhibitors. We further evaluated the role of GLPG1690 in AOM/DSS-induced CRC mice via intestinal barrier function, macrophage polarization, inflammatory response and microbial homeostasis. Results of immunofluorescence staining and Western blotting showed that GLPG1690 can restore gut-barrier function by increasing the expression of tight junction proteins, claudin-1, occludin and ZO-1. M2 tumor-associated macrophage polarization and colonic inflammation were attenuated after treatment with GLPG1690 using the Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) model. Moreover, 16 S rDNA pyrosequencing and metagenomic analysis showed that GLPG1690 could alleviate gut dysbiosis in mice. Furthermore, administration of GLPG1690 with antibiotics as well as fecal microbiota transplantation assays demonstrated a close link between the efficacy of GLPG1690 and the gut microbiota composition. Finally, results of metabolomic analysis implicated mainly the gut microbiota-derived metabolites of aromatic amino acids in CRC progression. These findings may provide novel insights into the development of small-molecule ENPP2 inhibitors for the treatment of CRC.
Collapse
Affiliation(s)
- Junling Yan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Wenting Duan
- Department of Cardiology, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, Fenxiang Alley, Xi'an 710002, Shaanxi, China
| | - Qinhan Gao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Tianxiao Mao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Majie Wang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo 315201, Zhejiang, China; Key Laboratory of Addiction Research of Zhejiang Province, Ningbo 315201, Zhejiang, China
| | - Jialin Duan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Jiankang Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
274
|
Zhang Y, Shen J, Cheng W, Roy B, Zhao R, Chai T, Sheng Y, Zhang Z, Chen X, Liang W, Hu W, Liao Q, Pan S, Zhuang W, Zhang Y, Chen R, Mei J, Wei H, Fang X. Microbiota-mediated shaping of mouse spleen structure and immune function characterized by scRNA-seq and Stereo-seq. J Genet Genomics 2023; 50:688-701. [PMID: 37156441 DOI: 10.1016/j.jgg.2023.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Gut microbes exhibit complex interactions with their hosts and shape an organism's immune system throughout its lifespan. As the largest secondary lymphoid organ, the spleen has a wide range of immunological functions. To explore the role of microbiota in regulating and shaping the spleen, we employ scRNA-seq and Stereo-seq technologies based on germ-free (GF) mice to detect differences in tissue size, anatomical structure, cell types, functions, and spatial molecular characteristics. We identify 18 cell types, 9 subtypes of T cells, and 7 subtypes of B cells. Gene differential expression analysis reveals that the absence of microorganisms results in alterations in erythropoiesis within the red pulp region and congenital immune deficiency in the white pulp region. Stereo-seq results demonstrate a clear hierarchy of immune cells in the spleen, including marginal zone (MZ) macrophages, MZ B cells, follicular B cells and T cells, distributed in a well-defined pattern from outside to inside. However, this hierarchical structure is disturbed in GF mice. Ccr7 and Cxcl13 chemokines are specifically expressed in the spatial locations of T cells and B cells, respectively. We speculate that the microbiota may mediate the structural composition or partitioning of spleen immune cells by modulating the expression levels of chemokines.
Collapse
Affiliation(s)
- Yin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bhaskar Roy
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Ruizhen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Tailiang Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yifei Sheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Zhao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xueting Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Weining Hu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Qijun Liao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Wen Zhuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yangrui Zhang
- BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Rouxi Chen
- BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xiaodong Fang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China.
| |
Collapse
|
275
|
Patel D, Murray IA, Dong F, Annalora AJ, Gowda K, Coslo DM, Krzeminski J, Koo I, Hao F, Amin SG, Marcus CB, Patterson AD, Perdew GH. Induction of AHR Signaling in Response to the Indolimine Class of Microbial Stress Metabolites. Metabolites 2023; 13:985. [PMID: 37755265 PMCID: PMC10535990 DOI: 10.3390/metabo13090985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.
Collapse
Affiliation(s)
- Dhwani Patel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Denise M. Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jacek Krzeminski
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Craig B. Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
276
|
Wang Y, Zhou J, Ye J, Sun Z, He Y, Zhao Y, Ren S, Zhang G, Liu M, Zheng P, Wang G, Yang J. Multi-omics reveal microbial determinants impacting the treatment outcome of antidepressants in major depressive disorder. MICROBIOME 2023; 11:195. [PMID: 37641148 PMCID: PMC10464022 DOI: 10.1186/s40168-023-01635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND There is a growing body of evidence suggesting that disturbance of the gut-brain axis may be one of the potential causes of major depressive disorder (MDD). However, the effects of antidepressants on the gut microbiota, and the role of gut microbiota in influencing antidepressant efficacy are still not fully understood. RESULTS To address this knowledge gap, a multi-omics study was undertaken involving 110 MDD patients treated with escitalopram (ESC) for a period of 12 weeks. This study was conducted within a cohort and compared to a reference group of 166 healthy individuals. It was found that ESC ameliorated abnormal blood metabolism by upregulating MDD-depleted amino acids and downregulating MDD-enriched fatty acids. On the other hand, the use of ESC showed a relatively weak inhibitory effect on the gut microbiota, leading to a reduction in microbial richness and functions. Machine learning-based multi-omics integrative analysis revealed that gut microbiota contributed to the changes in plasma metabolites and was associated with several amino acids such as tryptophan and its gut microbiota-derived metabolite, indole-3-propionic acid (I3PA). Notably, a significant correlation was observed between the baseline microbial richness and clinical remission at week 12. Compared to non-remitters, individuals who achieved remission had a higher baseline microbial richness, a lower dysbiosis score, and a more complex and well-organized community structure and bacterial networks within their microbiota. These findings indicate a more resilient microbiota community in remitters. Furthermore, we also demonstrated that it was not the composition of the gut microbiota itself, but rather the presence of sporulation genes at baseline that could predict the likelihood of clinical remission following ESC treatment. The predictive model based on these genes revealed an area under the curve (AUC) performance metric of 0.71. CONCLUSION This study provides valuable insights into the role of the gut microbiota in the mechanism of ESC treatment efficacy for patients with MDD. The findings represent a significant advancement in understanding the intricate relationship among antidepressants, gut microbiota, and the blood metabolome. Additionally, this study offers a microbiota-centered perspective that can potentially improve antidepressant efficacy in clinical practice. By shedding light on the interplay between these factors, this research contributes to our broader understanding of the complex mechanisms underlying the treatment of MDD and opens new avenues for optimizing therapeutic approaches. Video Abstract.
Collapse
Affiliation(s)
- Yaping Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Junbin Ye
- Beijing WeGenome Paradigm Co., Ltd, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yingxin Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Siyu Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
277
|
Choy CT, Siu PLK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Lo CJY, Loo SKF, Tsui SKW. Improvements in Gut Microbiome Composition Predict the Clinical Efficacy of a Novel Synbiotics Formula in Children with Mild to Moderate Atopic Dermatitis. Microorganisms 2023; 11:2175. [PMID: 37764019 PMCID: PMC10536305 DOI: 10.3390/microorganisms11092175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a significant association with various type-2 inflammation-related comorbidities. Ongoing research suggests the crucial involvement of gut microbiome, especially in childhood onset AD, and hence, probiotics have emerged as a potential non-steroid-based therapeutics option to complement existing AD management plans. In order to delineate the impact of probiotics in the gut microbiome of pediatric AD patients from southern China, targeted 16S rRNA sequencing and thorough bioinformatic analysis were performed to analyze the gut microbiome profiles of 24 AD children after taking an orally administered novel synbiotics formula with triple prebiotics for 8 weeks. A notable improvement in Eczema Area and Severity Index (EASI) (p = 0.008) was observed after taking an 8-week course of probiotics, with no adverse effects observed. The relative abundances of key microbial drivers including Bacteroides fragilis and Lactobacillus acidophilus were significantly increased at week 8. We also found that the positive responsiveness towards an 8-week course of probiotics was associated with improvements in the gut microbiome profile with a higher relative abundance of probiotic species. Over-represented functional abundance pathways related to vitamin B synthesis and peptidoglycan recycling may imply the underlying mechanism. In summary, our study suggests how the gut microbial landscape shifts upon probiotic supplementation in AD children, and provides preliminary evidence to support targeted probiotic supplementation for the management of childhood AD.
Collapse
Affiliation(s)
- Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | | | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
278
|
Lan J, Greter G, Streckenbach B, Wanner B, Arnoldini M, Zenobi R, Slack E. Non-invasive monitoring of microbiota and host metabolism using secondary electrospray ionization-mass spectrometry. CELL REPORTS METHODS 2023; 3:100539. [PMID: 37671025 PMCID: PMC10475793 DOI: 10.1016/j.crmeth.2023.100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.
Collapse
Affiliation(s)
- Jiayi Lan
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgia Greter
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Markus Arnoldini
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
279
|
Wu X, Lin D, Li Q, Cai J, Huang H, Xiang T, Tan H. Investigating causal associations among gut microbiota, gut microbiota-derived metabolites, and gestational diabetes mellitus: a bidirectional Mendelian randomization study. Aging (Albany NY) 2023; 15:8345-8366. [PMID: 37616057 PMCID: PMC10497006 DOI: 10.18632/aging.204973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Previous studies have shown that gut microbiota (GM) and gut microbiota-derived metabolites are associated with gestational diabetes mellitus (GDM). However, the causal associations need to be treated with caution due to confounding factors and reverse causation. METHODS This study obtained genetic variants from genome-wide association study including GM (N = 18,340), GM-derived metabolites (N = 7,824), and GDM (5,687 cases and 117,89 controls). To examine the causal association, several methods were utilized, including inverse variance weighted, maximum likelihood, weighted median, MR-Egger, and MR.RAPS. Additionally, reverse Mendelian Randomization (MR) analysis and multivariable MR were conducted to confirm the causal direction and account for potential confounders, respectively. Furthermore, sensitivity analyses were performed to identify any potential heterogeneity and horizontal pleiotropy. RESULTS Greater abundance of Collinsella was detected to increase the risk of GDM. Our study also found suggestive associations among Coprobacter, Olsenella, Lachnoclostridium, Prevotella9, Ruminococcus2, Oscillibacte, and Methanobrevibacter with GDM. Besides, eight GM-derived metabolites were found to be causally associated with GDM. For the phenylalanine metabolism pathway, phenylacetic acid was found to be related to the risk of GDM. CONCLUSIONS The study first used the MR approach to explore the causal associations among GM, GM-derived metabolites, and GDM. Our findings may contribute to the prevention and treatment strategies for GDM by targeting GM and metabolites, and offer novel insights into the underlying mechanism of the disease.
Collapse
Affiliation(s)
- Xinrui Wu
- School of Medicine, Jishou University, Jishou, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Dihui Lin
- School of Medicine, Jishou University, Jishou, China
| | - Qi Li
- Xiangxi Center for Disease Control and Prevention, Jishou, China
| | - Jiawang Cai
- School of Medicine, Jishou University, Jishou, China
| | | | - Tianyu Xiang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Hongzhuan Tan
- Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
280
|
Nemet I, Li XS, Haghikia A, Li L, Wilcox J, Romano KA, Buffa JA, Witkowski M, Demuth I, König M, Steinhagen-Thiessen E, Bäckhed F, Fischbach MA, Tang WHW, Landmesser U, Hazen SL. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur Heart J 2023; 44:3085-3096. [PMID: 37342006 PMCID: PMC10481777 DOI: 10.1093/eurheartj/ehad333] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
AIMS Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin 10785, Germany
- Biomedical Innovation Academy, Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jennifer Wilcox
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Kymberleigh A Romano
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Ilja Demuth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Center for Regenerative Therapies, Berlin Institute of Health (BIH), Berlin 13353, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | | | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg SE-413 45, Sweden
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin 10785, Germany
- Biomedical Innovation Academy, Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
281
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
282
|
Zhai L, Xiao H, Lin C, Wong HLX, Lam YY, Gong M, Wu G, Ning Z, Huang C, Zhang Y, Yang C, Luo J, Zhang L, Zhao L, Zhang C, Lau JYN, Lu A, Lau LT, Jia W, Zhao L, Bian ZX. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome. Nat Commun 2023; 14:4986. [PMID: 37591886 PMCID: PMC10435514 DOI: 10.1038/s41467-023-40552-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ziwan Ning
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jingyuan Luo
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Johnson Yiu-Nam Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lok-Ting Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Jia
- Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
283
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
284
|
Macpherson AJ, Pachnis V, Prinz M. Boundaries and integration between microbiota, the nervous system, and immunity. Immunity 2023; 56:1712-1726. [PMID: 37557080 DOI: 10.1016/j.immuni.2023.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The enteric nervous system is largely autonomous, and the central nervous system is compartmentalized behind the blood-brain barrier. Yet the intestinal microbiota shapes gut function, local and systemic immune responses, and central nervous system functions including cognition and mood. In this review, we address how the gut microbiota can profoundly influence neural and immune networks. Although many of the interactions between these three systems originate in the intestinal mucosa, intestinal function and immunity are modulated by neural pathways that connect the gut and brain. Furthermore, a subset of microbe-derived penetrant molecules enters the brain and regulates central nervous system function. Understanding how these seemingly isolated entities communicate has the potential to open up new avenues for therapies and interventions.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
285
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
286
|
Liu Y, Jarman JB, Low YS, Augustijn HE, Huang S, Chen H, DeFeo ME, Sekiba K, Hou BH, Meng X, Weakley AM, Cabrera AV, Zhou Z, van Wezel G, Medema MH, Ganesan C, Pao AC, Gombar S, Dodd D. A widely distributed gene cluster compensates for uricase loss in hominids. Cell 2023; 186:3400-3413.e20. [PMID: 37541197 PMCID: PMC10421625 DOI: 10.1016/j.cell.2023.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 08/06/2023]
Abstract
Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Bryce Jarman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands; Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Steven Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haoqing Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mary E DeFeo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuma Sekiba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bi-Huei Hou
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiandong Meng
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | - Zhiwei Zhou
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gilles van Wezel
- Institute of Biology, Leiden University, Leiden, the Netherlands; Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands; Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Calyani Ganesan
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Saurabh Gombar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Atropos Health, Palo Alto, CA, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
287
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
288
|
Ismael S, Rodrigues C, Santos GM, Castela I, Barreiros-Mota I, Almeida MJ, Calhau C, Faria A, Araújo JR. IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells. Nutr Res Pract 2023; 17:616-630. [PMID: 37529264 PMCID: PMC10375328 DOI: 10.4162/nrp.2023.17.4.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Shámila Ismael
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Rodrigues
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Gilberto Maia Santos
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Castela
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Barreiros-Mota
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria João Almeida
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Ana Faria
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - João Ricardo Araújo
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
289
|
Boulangé CL, Pedersen HK, Martin FP, Siegwald L, Pallejà Caro A, Eklund AC, Jia W, Zhang H, Berger B, Sprenger N, Heine RG, Cinnamon Study Investigator Group. An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:11422. [PMID: 37511184 PMCID: PMC10379726 DOI: 10.3390/ijms241411422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is a prevalent food allergy among infants and young children. We conducted a randomized, multicenter intervention study involving 194 non-breastfed infants with CMPA until 12 months of age (clinical trial registration: NCT03085134). One exploratory objective was to assess the effects of a whey-based extensively hydrolyzed formula (EHF) supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) on the fecal microbiome and metabolome in this population. Thus, fecal samples were collected at baseline, 1 and 3 months from enrollment, as well as at 12 months of age. Human milk oligosaccharides (HMO) supplementation led to the enrichment of bifidobacteria in the gut microbiome and delayed the shift of the microbiome composition toward an adult-like pattern. We identified specific HMO-mediated changes in fecal amino acid degradation and bile acid conjugation, particularly in infants commencing the HMO-supplemented formula before the age of three months. Thus, HMO supplementation partially corrected the dysbiosis commonly observed in infants with CMPA. Further investigation is necessary to determine the clinical significance of these findings in terms of a reduced incidence of respiratory infections and other potential health benefits.
Collapse
Affiliation(s)
- Claire L Boulangé
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | - Francois-Pierre Martin
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | - Léa Siegwald
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | | | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Huizhen Zhang
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1000 Lausanne, Switzerland
| | | | | |
Collapse
|
290
|
Shang H, Huang C, Xiao Z, Yang P, Zhang S, Hou X, Zhang L. Gut microbiota-derived tryptophan metabolites alleviate liver injury via AhR/Nrf2 activation in pyrrolizidine alkaloids-induced sinusoidal obstruction syndrome. Cell Biosci 2023; 13:127. [PMID: 37422682 DOI: 10.1186/s13578-023-01078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND AND AIMS Hepatic sinusoidal obstruction syndrome (HSOS) is caused by toxic injury, such as pyrrolizidine alkaloids, to the liver sinusoidal endothelial cells, and the gut microbiota may be involved. However, the specific role and underlying mechanism of gut microbiota in HSOS is unknown. METHODS HSOS model was established by gavage of monocrotaline (MCT) in rats. Fecal microbiota transplantation (FMT) with HSOS-derived or healthy gut flora was also conducted to validate the role of gut microflora in MCT-induced liver injury. The microbial 16 s rRNA analysis and untargeted metabolomics analysis in the faeces were performed to identify HSOS-related flora and metabolites. Finally, by supplementation with specific tryptophan metabolites, such as indole-3-acetaldehyde (IAAld) and indole acetic acid (IAA), we further confirmed the role of tryptophan metabolism in HSOS and the role of the AhR/Nrf2 pathway in MCT-induced liver injury. RESULTS MCT induced HSOS-like liver injury in rats with significantly altered gut microbiota. Particularly, some tryptophan-metabolizing bacteria reduced in MCT-treated rats, such as Bacteroides, Bifidobacterium, Lactobacillus and Clostridium, and accompanied by a decrease in microbial tryptophan metabolic activity and a series of tryptophan derivatives. Restoring the gut microbiota via FMT improved MCT-induced liver damage, while HSOS-derived gut microbiota aggravated the liver injury induced by MCT. Supplementation with microbial tryptophan derivatives (IAAld or IAA), or 6-formylindolo(3,2-b)carbazole (Ficz, an AhR agonist) could activate the AhR/Nrf2 signaling pathway, thereby attenuating the MCT-induced liver oxidative stress and liver sinusoidal endothelial cells injury. CONCLUSIONS Gut microbiota plays a critical role in MCT-induced HSOS, with inadequate microbial tryptophan metabolism in the gut and consequently a lower activity of the AhR/Nrf2 signaling pathway in the liver, which should be a potential target for the management of HSOS.
Collapse
Affiliation(s)
- Haitao Shang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastroenterology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Chao Huang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuanglong Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengyan Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
291
|
Morgan EW, Dong F, Annalora AJ, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus CB, Walk ST, Patterson AD, Perdew GH. Contribution of Circulating Host and Microbial Tryptophan Metabolites Toward Ah Receptor Activation. Int J Tryptophan Res 2023; 16:11786469231182510. [PMID: 37441265 PMCID: PMC10334013 DOI: 10.1177/11786469231182510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Trenton Wolfe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Reece Erickson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Krishne Gowda
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Shantu G Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| |
Collapse
|
292
|
Chen H, Rosen CE, González-Hernández JA, Song D, Potempa J, Ring AM, Palm NW. Highly multiplexed bioactivity screening reveals human and microbiota metabolome-GPCRome interactions. Cell 2023; 186:3095-3110.e19. [PMID: 37321219 PMCID: PMC10330796 DOI: 10.1016/j.cell.2023.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 02/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
The human body contains thousands of metabolites derived from mammalian cells, the microbiota, food, and medical drugs. Many bioactive metabolites act through the engagement of G-protein-coupled receptors (GPCRs); however, technological limitations constrain current explorations of metabolite-GPCR interactions. Here, we developed a highly multiplexed screening technology called PRESTO-Salsa that enables simultaneous assessment of nearly all conventional GPCRs (>300 receptors) in a single well of a 96-well plate. Using PRESTO-Salsa, we screened 1,041 human-associated metabolites against the GPCRome and uncovered previously unreported endogenous, exogenous, and microbial GPCR agonists. Next, we leveraged PRESTO-Salsa to generate an atlas of microbiome-GPCR interactions across 435 human microbiome strains from multiple body sites, revealing conserved patterns of cross-tissue GPCR engagement and activation of CD97/ADGRE5 by the Porphyromonas gingivalis protease gingipain K. These studies thus establish a highly multiplexed bioactivity screening technology and expose a diverse landscape of human, diet, drug, and microbiota metabolome-GPCRome interactions.
Collapse
Affiliation(s)
- Haiwei Chen
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Connor E Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
293
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
294
|
Nordin E, Hellström PM, Dicksved J, Pelve E, Landberg R, Brunius C. Effects of FODMAPs and Gluten on Gut Microbiota and Their Association with the Metabolome in Irritable Bowel Syndrome: A Double-Blind, Randomized, Cross-Over Intervention Study. Nutrients 2023; 15:3045. [PMID: 37447371 DOI: 10.3390/nu15133045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the effects of dietary treatment in irritable bowel syndrome (IBS) is lacking. Our aim was therefore to investigate how fermentable oligo- di-, monosaccharides, and polyols (FODMAPs) and gluten affected gut microbiota and circulating metabolite profiles, as well as to investigate potential links between gut microbiota, metabolites, and IBS symptoms. METHODS We used data from a double-blind, randomized, crossover study with week-long provocations of FODMAPs, gluten, and placebo in participants with IBS. To study the effects of the provocations on fecal microbiota, fecal and plasma short-chain fatty acids, the untargeted plasma metabolome, and IBS symptoms, we used Random Forest, linear mixed model and Spearman correlation analysis. RESULTS FODMAPs increased fecal saccharolytic bacteria, plasma phenolic-derived metabolites, 3-indolepropionate, and decreased isobutyrate and bile acids. Gluten decreased fecal isovalerate and altered carnitine derivatives, CoA, and fatty acids in plasma. For FODMAPs, modest correlations were observed between microbiota and phenolic-derived metabolites and 3-indolepropionate, previously associated with improved metabolic health, and reduced inflammation. Correlations between molecular data and IBS symptoms were weak. CONCLUSIONS FODMAPs, but not gluten, altered microbiota composition and correlated with phenolic-derived metabolites and 3-indolepropionate, with only weak associations with IBS symptoms. Thus, the minor effect of FODMAPs on IBS symptoms must be weighed against the effect on microbiota and metabolites related to positive health factors.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Carl Brunius
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
295
|
Ament Z, Patki A, Bhave VM, Chaudhary NS, Garcia Guarniz AL, Kijpaisalratana N, Judd SE, Cushman M, Long DL, Irvin MR, Kimberly WT. Gut microbiota-associated metabolites and risk of ischemic stroke in REGARDS. J Cereb Blood Flow Metab 2023; 43:1089-1098. [PMID: 36883380 PMCID: PMC10291458 DOI: 10.1177/0271678x231162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Several metabolite markers are independently associated with incident ischemic stroke. However, prior studies have not accounted for intercorrelated metabolite networks. We used exploratory factor analysis (EFA) to determine if metabolite factors were associated with incident ischemic stroke. Metabolites (n = 162) were measured in a case-control cohort nested in the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, which included 1,075 ischemic stroke cases and 968 random cohort participants. Cox models were adjusted for age, gender, race, and age-race interaction (base model) and further adjusted for the Framingham stroke risk factors (fully adjusted model). EFA identified fifteen metabolite factors, each representing a well-defined metabolic pathway. Of these, factor 3, a gut microbiome metabolism factor, was associated with an increased risk of stroke in the base (hazard ratio per one-unit standard deviation, HR = 1.23; 95%CI = 1.15-1.31; P = 1.98 × 10-10) and fully adjusted models (HR = 1.13; 95%CI = 1.06-1.21; P = 4.49 × 10-4). The highest tertile had a 45% increased risk relative to the lowest (HR = 1.45; 95%CI = 1.25-1.70; P = 2.24 × 10-6). Factor 3 was also associated with the Southern diet pattern, a dietary pattern previously linked to increased stroke risk in REGARDS (β = 0.11; 95%CI = 0.03-0.18; P = 8.75 × 10-3). These findings highlight the role of diet and gut microbial metabolism in relation to incident ischemic stroke.
Collapse
Affiliation(s)
- Zsuzsanna Ament
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Amit Patki
- Department of Epidemiology, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ninad S Chaudhary
- Department of Epidemiology, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Naruchorn Kijpaisalratana
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine and Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Ryan Irvin
- Department of Epidemiology, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
296
|
Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, Massey WJ, Varadharajan V, Horak A, Banerjee R, Allende DS, Chan ER, Hajjar AM, Wang Z, Dimas A, Zhao A, Nagashima K, Cheng AG, Higginbottom S, Hazen SL, Brown JM, Fischbach MA. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 2023; 186:2839-2852.e21. [PMID: 37352836 PMCID: PMC10299816 DOI: 10.1016/j.cell.2023.05.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.
Collapse
Affiliation(s)
- Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunit Jain
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiandong Meng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Allison Weakley
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adeline M Hajjar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alejandra Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice G Cheng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
297
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
298
|
Guiducci L, Nicolini G, Forini F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023; 13:760. [PMID: 37367916 DOI: 10.3390/metabo13060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | | | - Francesca Forini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
299
|
Wang Q, Chen C, Zuo S, Cao K, Li H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J Transl Med 2023; 21:395. [PMID: 37330571 PMCID: PMC10276405 DOI: 10.1186/s12967-023-04262-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to describe the changes in the gut microbiome of patients with cirrhosis and hepatic encephalopathy (HE), as well as quantify the variations in short-chain fatty acid (SCFA) and tryptophan metabolite levels in serum and faeces. METHODS Fresh faeces and serum were collected from 20 healthy volunteers (NC group), 30 cirrhosis patients (Cir group), and 30 HE patients (HE group). Then, 16S rRNA sequencing and metabolite measurements were performed using the faeces. Gas chromatography‒mass spectrometry and ultrahigh-performance liquid chromatography-tandem mass spectrometry were used to measure SCFA and tryptophan levels, respectively. The results were analysed by SIMCA16.0.2 software. Differences in species were identified using MetaStat and t tests. The correlations among the levels of gut microbes and metabolites and clinical parameters were determined using Spearman correlation analysis. RESULTS Patients with cirrhosis and HE had lower microbial species richness and diversity in faeces than healthy volunteers; these patients also had altered β-diversity. Serum valeric acid levels were significantly higher in the HE group than in the Cir group. Serum SCFA levels did not differ between the Cir and NC groups. Serum melatonin and 5-HTOL levels were significantly higher in the HE group than in the Cir group. The Cir and NC groups had significant differences in the levels of eight serum tryptophan metabolites. Furthermore, the levels of faecal SCFAs did not differ between the HE and Cir groups. Faecal IAA-Ala levels were significantly lower in the HE group than in the Cir group. There were significant differences in the levels of 6 faecal SCFAs and 7 faecal tryptophan metabolites between the Cir and NC groups. Certain gut microbes were associated with serum and faecal metabolites, and some metabolites were associated with certain clinical parameters. CONCLUSION Reduced microbial species richness and diversity were observed in patients with HE and cirrhosis. In both serum and faeces, the levels of different SCFAs and tryptophan metabolites showed varying patterns of change. In HE patients, the levels of some serum tryptophan metabolites, and not SCFAs, were correlated with liver function and systemic inflammation. Systemic inflammation in patients with cirrhosis was correlated with faecal acetic acid levels. In summary, this study identified metabolites important for HE and cirrhosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chengxin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
300
|
Chen Q, Fan Y, Zhang B, Yan C, Zhang Q, Ke Y, Chen Z, Wang L, Shi H, Hu Y, Huang Q, Su J, Xie C, Zhang X, Zhou L, Ren J, Xu H. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol Spectr 2023; 11:e0415222. [PMID: 37093057 PMCID: PMC10269780 DOI: 10.1128/spectrum.04152-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhao Ke
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lixiang Zhou
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|