251
|
Saçma M, Pospiech J, Bogeska R, de Back W, Mallm JP, Sakk V, Soller K, Marka G, Vollmer A, Karns R, Cabezas-Wallscheid N, Trumpp A, Méndez-Ferrer S, Milsom MD, Mulaw MA, Geiger H, Florian MC. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat Cell Biol 2019; 21:1309-1320. [PMID: 31685996 DOI: 10.1038/s41556-019-0418-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
With ageing, intrinsic haematopoietic stem cell (HSC) activity decreases, resulting in impaired tissue homeostasis, reduced engraftment following transplantation and increased susceptibility to diseases. However, whether ageing also affects the HSC niche, and thereby impairs its capacity to support HSC function, is still widely debated. Here, by using in-vivo long-term label-retention assays we demonstrate that aged label-retaining HSCs, which are, in old mice, the most quiescent HSC subpopulation with the highest regenerative capacity and cellular polarity, reside predominantly in perisinusoidal niches. Furthermore, we demonstrate that sinusoidal niches are uniquely preserved in shape, morphology and number on ageing. Finally, we show that myeloablative chemotherapy can selectively disrupt aged sinusoidal niches in the long term, which is linked to the lack of recovery of endothelial Jag2 at sinusoids. Overall, our data characterize the functional alterations of the aged HSC niche and unveil that perisinusoidal niches are uniquely preserved and thereby protect HSCs from ageing.
Collapse
Affiliation(s)
- Mehmet Saçma
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Johannes Pospiech
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Ruzhica Bogeska
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Deutsches Krebsforschungszentrum, Division of Experimental Hematology, Heidelberg, Germany
| | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan-Philipp Mallm
- Deutsches Krebsforschungszentrum, Division of Chromatin Network, Heidelberg, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | | | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Deutsches Krebsforschungszentrum, Division of Experimental Hematology, Heidelberg, Germany
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood & Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Deutsches Krebsforschungszentrum, Division of Experimental Hematology, Heidelberg, Germany
| | - Medhanie A Mulaw
- Molecular Oncology Institute of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany.
- Center for Regenerative Medicine in Barcelona, Bellvitge Institute for Biomedical Research, Barcelona, Spain.
| |
Collapse
|
252
|
Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Ann N Y Acad Sci 2019; 1466:59-72. [PMID: 31621095 DOI: 10.1111/nyas.14246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
253
|
Salzmann M, Schrottmaier WC, Kral-Pointner JB, Mussbacher M, Volz J, Hoesel B, Moser B, Bleichert S, Morava S, Nieswandt B, Schmid JA, Assinger A. Genetic platelet depletion is superior in platelet transfusion compared to current models. Haematologica 2019; 105:1738-1749. [PMID: 31537686 PMCID: PMC7271594 DOI: 10.3324/haematol.2019.222448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Genetically modified mice have advanced our knowledge on platelets in hemostasis and beyond tremendously. However, mouse models harbor certain limitations, including availability of platelet specific transgenic strains, and off-target effects on other cell types. Transfusion of genetically modified platelets into thrombocytopenic mice circumvents these problems. Additionally, ex vivo treatment of platelets prior to transfusion eliminates putative side effects on other cell types. Thrombocytopenia is commonly induced by administration of anti-platelet antibodies, which opsonize platelets to cause rapid clearance. However, antibodies do not differentiate between endogenous or exogenous platelets, impeding transfusion efficacy. In contrast, genetic depletion with the inducible diphtheria toxin receptor (iDTR) system induces thrombocytopenia via megakaryocyte ablation without direct effects on circulating platelets. We compared the iDTR system with antibody-based depletion methods regarding their utility in platelet transfusion experiments, outlining advantages and disadvantages of both approaches. Antibodies led to thrombocytopenia within two hours and allowed the dose-dependent adjustment of the platelet count. The iDTR model caused complete thrombocytopenia within four days, which could be sustained for up to 11 days. Neither platelet depletion approach caused platelet activation. Only the iDTR model allowed efficient platelet transfusion by keeping endogenous platelet levels low and maintaining exogenous platelet levels over longer time periods, thus providing clear advantages over antibody-based methods. Transfused platelets were fully functional in vivo, and our model allowed examination of transgenic platelets. Using donor platelets from already available genetically modified mice or ex vivo treated platelets, may decrease the necessity of platelet-specific mouse strains, diminishing off-target effects and thereby reducing animal numbers.
Collapse
Affiliation(s)
- Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia Volz
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Moser
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Bleichert
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.,Department of Surgery, General Hospital, Medical University Vienna, Vienna, Austria
| | - Susanne Morava
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
254
|
Alvarez MB, Xu L, Childress PJ, Maupin KA, Mohamad SF, Chitteti BR, Himes E, Olivos DJ, Cheng YH, Conway SJ, Srour EF, Kacena MA. Megakaryocyte and Osteoblast Interactions Modulate Bone Mass and Hematopoiesis. Stem Cells Dev 2019; 27:671-682. [PMID: 29631496 DOI: 10.1089/scd.2017.0178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence demonstrates that megakaryocytes (MK) play key roles in regulating skeletal homeostasis and hematopoiesis. To test if the loss of MK negatively impacts osteoblastogenesis and hematopoiesis, we generated conditional knockout mice where Mpl, the receptor for the main MK growth factor, thrombopoietin, was deleted specifically in MK (Mplf/f;PF4cre). Unexpectedly, at 12 weeks of age, these mice exhibited a 10-fold increase in platelets, a significant expansion of hematopoietic/mesenchymal precursors, and a remarkable 20-fold increase in femoral midshaft bone volume. We then investigated whether MK support hematopoietic stem cell (HSC) function through the interaction of MK with osteoblasts (OB). LSK cells (Lin-Sca1+CD117+, enriched HSC population) were co-cultured with OB+MK for 1 week (1wk OB+MK+LSK) or OB alone (1wk OB+LSK). A significant increase in colony-forming units was observed with cells from 1wk OB+MK cultures. Competitive repopulation studies demonstrated significantly higher engraftment in mice transplanted with cells from 1wk OB+MK+LSK cultures compared to 1wk OB+LSK or LSK cultured alone for 1 week. Furthermore, single-cell expression analysis of OB cultured±MK revealed adiponectin as the most significantly upregulated MK-induced gene, which is required for optimal long-term hematopoietic reconstitution. Understanding the interactions between MK, OB, and HSC can inform the development of novel treatments to enhance both HSC recovery following myelosuppressive injuries, as well as bone loss diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Marta B Alvarez
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - LinLin Xu
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Paul J Childress
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kevin A Maupin
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Safa F Mohamad
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | | | - Evan Himes
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - David J Olivos
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Ying-Hua Cheng
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Simon J Conway
- 3 Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Edward F Srour
- 2 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Melissa A Kacena
- 1 Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
255
|
Chattapadhyaya S, Haldar S, Banerjee S. Microvesicles promote megakaryopoiesis by regulating DNA methyltransferase and methylation of Notch1 promoter. J Cell Physiol 2019; 235:2619-2630. [PMID: 31502256 DOI: 10.1002/jcp.29166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/26/2019] [Indexed: 01/03/2023]
Abstract
Megakaryopoiesis is the process of formation of mature megakaryocytes that takes place in the bone marrow niche resulting in the release of platelets into the peripheral blood. It has been suggested that cell to cell communication in this dense bone marrow niche may influence the fate of the cells. Numerous studies point to the role of exosomes and microvesicles not only as a messenger of the cellular crosstalk but also in growth and developmental process of various cell types. In the current study, we explored the effects of megakaryocyte-derived microvesicles in hematopoietic cell lines in the context of differentiation. Our study demonstrated that microvesicles isolated from the induced megakaryocytic cell lines have the ability to stimulate noninduced cells specifically into that particular lineage. We showed that this lineage commencement comes from the change in the methylation status of Notch1 promoter, which is regulated by DNA methyltransferases.
Collapse
Affiliation(s)
- Saran Chattapadhyaya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | - Srijan Haldar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | - Subrata Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| |
Collapse
|
256
|
Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, Macías D, González-Gómez C, Del Monte A, Wittner M, Waller AK, Foster HR, López-Otín C, Johnson RS, Nerlov C, Ghevaert C, Vainchenker W, Louache F, Andrés V, Méndez-Ferrer S. Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell 2019; 25:407-418.e6. [PMID: 31303548 PMCID: PMC6739444 DOI: 10.1016/j.stem.2019.06.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) residing in the bone marrow (BM) accumulate during aging but are functionally impaired. However, the role of HSC-intrinsic and -extrinsic aging mechanisms remains debated. Megakaryocytes promote quiescence of neighboring HSCs. Nonetheless, whether megakaryocyte-HSC interactions change during pathological/natural aging is unclear. Premature aging in Hutchinson-Gilford progeria syndrome recapitulates physiological aging features, but whether these arise from altered stem or niche cells is unknown. Here, we show that the BM microenvironment promotes myelopoiesis in premature/physiological aging. During physiological aging, HSC-supporting niches decrease near bone but expand further from bone. Increased BM noradrenergic innervation promotes β2-adrenergic-receptor(AR)-interleukin-6-dependent megakaryopoiesis. Reduced β3-AR-Nos1 activity correlates with decreased endosteal niches and megakaryocyte apposition to sinusoids. However, chronic treatment of progeroid mice with β3-AR agonist decreases premature myeloid and HSC expansion and restores the proximal association of HSCs to megakaryocytes. Therefore, normal/premature aging of BM niches promotes myeloid expansion and can be improved by targeting the microenvironment.
Collapse
Affiliation(s)
- Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Raquel Del Toro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - José Rivera-Torres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - Justyna Rak
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Claudia Korn
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Andrés García-García
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - David Macías
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - Alberto Del Monte
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - Monika Wittner
- INSERM (Institut National de la Santé et de la Recherche Médicale), Université Paris-Saclay, UMR1170, Gustave Roussy, 94805 Villejuif, France; Université Paris-Saclay and CNRS GDR 3697 MicroNiT, Villejuif, France
| | - Amie K Waller
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Holly R Foster
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Randall S Johnson
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Cedric Ghevaert
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - William Vainchenker
- INSERM (Institut National de la Santé et de la Recherche Médicale), Université Paris-Saclay, UMR1170, Gustave Roussy, 94805 Villejuif, France
| | - Fawzia Louache
- INSERM (Institut National de la Santé et de la Recherche Médicale), Université Paris-Saclay, UMR1170, Gustave Roussy, 94805 Villejuif, France; Université Paris-Saclay and CNRS GDR 3697 MicroNiT, Villejuif, France
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
257
|
Haas S, Trumpp A, Milsom MD. Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell 2019; 22:627-638. [PMID: 29727678 DOI: 10.1016/j.stem.2018.04.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood and immune cells derive from multipotent hematopoietic stem cells (HSCs). Classically, stem and progenitor populations have been considered discrete homogeneous populations. However, recent technological advances have revealed significant HSC heterogeneity, with evidence for early HSC lineage segregation and the presence of lineage-biased HSCs and lineage-restricted progenitors within the HSC compartment. These and other findings challenge many aspects of the classical view of HSC biology. We review the most recent findings regarding the causes and consequences of HSC heterogeneity, discuss their far-reaching implications, and suggest that so-called continuum-based models may help consolidate apparently divergent experimental observations in this field.
Collapse
Affiliation(s)
- Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Experimental Hematology, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
258
|
Khalil S, Ariel Gru A, Saavedra AP. Cutaneous extramedullary haematopoiesis: Implications in human disease and treatment. Exp Dermatol 2019; 28:1201-1209. [DOI: 10.1111/exd.14013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Shadi Khalil
- Department of Dermatology University of Virginia School of Medicine Charlottesville Virginia
| | - Alejandro Ariel Gru
- Department of Pathology University of Virginia School of Medicine Charlottesville Virginia
| | - Arturo P. Saavedra
- Department of Dermatology University of Virginia School of Medicine Charlottesville Virginia
| |
Collapse
|
259
|
Hematopoietic stem cell response to acute thrombocytopenia requires signaling through distinct receptor tyrosine kinases. Blood 2019; 134:1046-1058. [PMID: 31434705 DOI: 10.1182/blood.2019000721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Although bone marrow niche cells are essential for hematopoietic stem cell (HSC) maintenance, their interaction in response to stress is not well defined. Here, we used a mouse model of acute thrombocytopenia to investigate the cross talk between HSCs and niche cells during restoration of the thrombocyte pool. This process required membrane-localized stem cell factor (m-SCF) in megakaryocytes, which was regulated, in turn, by vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB). HSCs and multipotent progenitors type 2 (MPP2), but not MPP3/4, were subsequently activated by a dual-receptor tyrosine kinase (RTK)-dependent signaling event, m-SCF/c-Kit and VEGF-A/vascular endothelial growth factor receptor 2 (VEGFR-2), contributing to their selective and early proliferation. Our findings describe a dynamic network of signals in response to the acute loss of a single blood cell type and reveal the important role of 3 RTKs and their ligands in orchestrating the selective activation of hematopoietic stem and progenitor cells (HSPCs) in thrombocytopenia.
Collapse
|
260
|
Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019; 19:747-760. [DOI: 10.1038/s41577-019-0202-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
|
261
|
Rossari F, Zucchinetti C, Buda G, Orciuolo E. Tumor dormancy as an alternative step in the development of chemoresistance and metastasis - clinical implications. Cell Oncol (Dordr) 2019; 43:155-176. [PMID: 31392521 DOI: 10.1007/s13402-019-00467-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The ability of a tumor to become dormant in response to suboptimal conditions has recently been recognized as a key step in tumor progression. Tumor dormancy has been found to be implicated in several tumor types as the culprit of therapy resistance and metastasis development, the deadliest features of a cancer. Several lines of evidence indicate that the development of these traits may rely on the de-differentiation of committed tumor cells that regain stem-like properties during a dormant state. Presently, dormancy is classified into cell- and population-level, according to the preponderance of cellular mechanisms that keep tumor cells quiescent or to a balance between overall cell division and death, respectively. Cellular dormancy is characterized by autophagy, stress-tolerance signaling, microenvironmental cues and, of prime relevance, epigenetic modifications. It has been found that the epigenome alters during cellular quiescence, thus representing the driving force for short-term cancer progression. Population-level dormancy is characterized by processes that counteract proliferation, such as inappropriate blood supply and intense immune responses. The latter two mechanisms are not mutually exclusive and may affect tumor masses both simultaneously and subsequently. CONCLUSIONS Overall, tumor dormancy may represent an additional step in the acquisition of cancer characteristics, and its comprehension may clarify both theoretical and practical aspects of cancer development. Clinically, only a deep understanding of dormancy may explain the course of tumor development in different patients, thus representing a process that may be targeted to prevent and/or treat advanced-stage cancers. That is especially the case for breast cancer, against which the mTOR inhibitor everolimus displays potent antitumor activity in patients with metastatic disease by impeding autophagy and tumor dormancy onset. Here we will also discuss other targeted therapies directed towards tumor dormancy onset, e.g. specific inhibitors of SFK and MEK, or aimed at keeping tumor cells dormant, e.g. prosaposin derivatives, that may shortly enter clinical assessment in breast, and possibly other cancer types.
Collapse
Affiliation(s)
- Federico Rossari
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy. .,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy.
| | - Cristina Zucchinetti
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126, Pisa, Italy
| | - Enrico Orciuolo
- Hematology Unit, Azienda Ospedaliera Universitaria Pisana, 56126, Pisa, Italy
| |
Collapse
|
262
|
Gomariz A, Isringhausen S, Helbling PM, Nombela-Arrieta C. Imaging and spatial analysis of hematopoietic stem cell niches. Ann N Y Acad Sci 2019; 1466:5-16. [PMID: 31368140 DOI: 10.1111/nyas.14184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
Hematopoietic stem cells (HSCs) have been long proposed to reside in defined anatomical locations within bone marrow (BM) tissues in direct contact or close proximity to nurturing cell types. Imaging techniques that allow the simultaneous mapping of HSCs and interacting cell types have been central to the discovery of basic principles of these so-called HSC niches. Despite major progress in the field, a quantitative and comprehensive model of the cellular and molecular components that define these specialized microenvironments is lacking to date, and uncertainties remain on the preferential localization of HSCs in the context of complex BM tissue landscapes. Recent technological breakthroughs currently allow for the quantitative spatial analysis of BM cellular components with extraordinary precision. Here, we critically discuss essential technical aspects related to imaging approaches, image processing tools, and spatial statistics, which constitute the three basic elements of rigorous quantitative spatial analyses of HSC niches in the BM microenvironment.
Collapse
Affiliation(s)
- Alvaro Gomariz
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Stephan Isringhausen
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick M Helbling
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
263
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
264
|
Gorelashvili MG, Angay O, Hemmen K, Klaus V, Stegner D, Heinze KG. Megakaryocyte volume modulates bone marrow niche properties and cell migration dynamics. Haematologica 2019; 105:895-904. [PMID: 31248970 PMCID: PMC7109717 DOI: 10.3324/haematol.2018.202010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
All hematopoietic cells that develop in the bone marrow must cross the endothelial barrier to enter the blood circulation. Blood platelets, however, are released by bigger protrusions of huge progenitor cells, named megakaryocytes, and enter the blood stream as so-called proplatelets before fragmenting into mature platelets. Recently, a second function of megakaryocytes has been identified, as they modulate the quiescence of hematopoietic stem cells, mostly via different soluble factors. We know from light sheet fluorescence microscopy images that megakaryocytes are distributed throughout the bone marrow facing a dense vascular network. Here, we used such three-dimensional images to provide a realistic simulation template reflecting the in vivo cell-vessel distributions resulting in reliable whole-bone analysis in silico Combining this approach with an automated image analysis pipeline, we found that megakaryocytes influence migration of neutrophils and hematopoietic stem cells, and thus act as biomechanical restrainers modulating cell mobility and extravasation. Indeed, as a consequence of increased megakaryocyte volumes in platelet-depleted mice neutrophil mobility was reduced in these animals.
Collapse
Affiliation(s)
| | - Oğuzhan Angay
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Klaus
- Institute of Experimental Biomedicine, University Hospital Würzburg
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg .,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
265
|
Woods B, Chen W, Chiu S, Marinaccio C, Fu C, Gu L, Bulic M, Yang Q, Zouak A, Jia S, Suraneni PK, Xu K, Levine RL, Crispino JD, Wen QJ. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation In Vivo. Clin Cancer Res 2019; 25:5901-5912. [PMID: 31217200 DOI: 10.1158/1078-0432.ccr-18-4089] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/26/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE The myeloproliferative neoplasms (MPN), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are characterized by the expansion of the erythroid, megakaryocytic, and granulocytic lineages. A common feature of these disorders is the presence of abnormal megakaryocytes, which have been implicated as causative agents in the development of bone marrow fibrosis. However, the specific contributions of megakaryocytes to MPN pathogenesis remain unclear. EXPERIMENTAL DESIGN We used Pf4-Cre transgenic mice to drive expression of JAK2V617F in megakaryocyte lineage-committed hematopoietic cells. We also assessed the critical role of mutant megakaryocytes in MPN maintenance through cell ablation studies in JAK2V617F and MPLW515L BMT models of MPN. RESULTS JAK2V617F -mutant presence in megakaryocytes was sufficient to induce enhanced erythropoiesis and promote fibrosis, which leads to a myeloproliferative state with expansion of mutant and nonmutant hematopoietic cells. The increased erythropoiesis was associated with elevated IL6 level, which was also required for aberrant erythropoiesis in vivo. Furthermore, depletion of megakaryocytes in the JAK2V617F and MPLW515L BMT models ameliorated polycythemia and leukocytosis in addition to expected effects on megakaryopoiesis. CONCLUSIONS Our observations reveal that JAK/STAT pathway activation in megakaryocytes induces myeloproliferation and is necessary for MPN maintenance in vivo. These observations indicate that MPN clone can influence the behavior of the wild-type hematopoietic milieu, at least, in part, via altered production of proinflammatory cytokines and chemokines. Our findings resonate with patients who present with a clinical MPN and a low JAK2V617F allele burden, and support the development of MPN therapies aimed at targeting megakaryocytes.
Collapse
Affiliation(s)
- Brittany Woods
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wei Chen
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
| | - Sophia Chiu
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Chunling Fu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
| | - Lilly Gu
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinka Bulic
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shengxian Jia
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | | | - Kailin Xu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Center for Hematologic Malignancies and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Qiang Jeremy Wen
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
266
|
Chavakis T, Mitroulis I, Hajishengallis G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol 2019; 20:802-811. [PMID: 31213716 DOI: 10.1038/s41590-019-0402-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Recent advances have highlighted the ability of hematopoietic stem and progenitor cells in the bone marrow to sense peripheral inflammation or infection and adapt through increased proliferation and skewing toward the myeloid lineage. Such adaptations can meet the increased demand for innate immune cells and can be beneficial in response to infection or myeloablation. However, the inflammation-induced adaptation of hematopoietic and myeloid progenitor cells toward enhanced myelopoiesis might also perpetuate inflammation in chronic inflammatory or cardio-metabolic diseases by generating a feed-forward loop between inflammation-adapted hematopoietic progenitor cells and the inflammatory disorder. Sustained adaptive responses of progenitor cells in the bone marrow can also contribute to trained immunity, a non-specific memory of earlier encounters that in turn facilitates the heightened response of these cells, as well as that of their progeny, to future challenges. Here we discuss the mechanisms that govern the adaptation of hematopoietic progenitor cells to inflammation and its sequelae in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden, of the German Cancer Research Center, Heidelberg and of the Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, and of the Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
267
|
Abstract
Ever since hematopoietic stem cells (HSCs) were first identified half a century ago, their differentiation roadmap has been extensively studied. The classical model of hematopoiesis has long held as a dogma that HSCs reside at the top of a hierarchy in which HSCs possess self-renewal capacity and can progressively give rise to all blood lineage cells. However, over the past several years, with advances in single cell technologies, this developmental scheme has been challenged. In this review, we discuss the evidence supporting heterogeneity within HSC and progenitor populations as well as the hierarchical models revised by novel approaches mainly in mouse system. These evolving views provide further understanding of hematopoiesis and highlight the complexity of hematopoietic differentiation.
Collapse
|
268
|
Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep 2019; 9:8262. [PMID: 31164666 PMCID: PMC6547667 DOI: 10.1038/s41598-019-44720-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications of core histones participate in controlling the expression of genes. Methylation of lysine 4 of histone H3 (H3K4), together with acetylation of H3K27, is closely associated with open chromatin and gene transcription. H3K4 methylation is catalyzed by KMT2 lysine methyltransferases that include the mixed-lineage leukemia 1–4 (MLL1-4) and SET1A and B enzymes. For efficient catalysis, all six require a core complex of four proteins, WDR5, RBBP5, ASH2L, and DPY30. We report that targeted disruption of Ash2l in the murine hematopoietic system results in the death of the mice due to a rapid loss of mature hematopoietic cells. However, lin−Sca1+Kit+ (LSK) cells, which are highly enriched in hematopoietic stem and multi-potent progenitor cells, accumulated in the bone marrow. The loss of Ash2l resulted in global reduction of H3K4 methylation and deregulated gene expression, including down-regulation of many mitosis-associated genes. As a consequence, LSK cells accumulated in the G2-phase of the cell cycle and were unable to proliferate and differentiate. In conclusion, Ash2l is essential for balanced gene expression and for hematopoietic stem and multi-potent progenitor cell physiology.
Collapse
|
269
|
Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, Sampson L, Wellendorf AM, Chetal K, Choi K, Salomonis N, Choi Y, Zheng Y, Cancelas JA, Levine RL, Starczynowski DT. TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Rep 2019; 22:1250-1262. [PMID: 29386112 PMCID: PMC5971064 DOI: 10.1016/j.celrep.2018.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 11/03/2022] Open
Abstract
Basal nuclear factor κB (NF-κB) activation is required for hematopoietic stem cell (HSC) homeostasis in the absence of inflammation; however, the upstream mediators of basal NF-κB signaling are less well understood. Here, we describe TRAF6 as an essential regulator of HSC homeostasis through basal activation of NF-κB. Hematopoietic-specific deletion of Traf6 resulted in impaired HSC self-renewal and fitness. Gene expression, RNA splicing, and molecular analyses of Traf6-deficient hematopoietic stem/progenitor cells (HSPCs) revealed changes in adaptive immune signaling, innate immune signaling, and NF-κB signaling, indicating that signaling via TRAF6 in the absence of cytokine stimulation and/or infection is required for HSC function. In addition, we established that loss of IκB kinase beta (IKKβ)-mediated NF-κB activation is responsible for the major hematopoietic defects observed in Traf6-deficient HSPC as deletion of IKKβ similarly resulted in impaired HSC self-renewal and fitness. Taken together, TRAF6 is required for HSC homeostasis by maintaining a minimal threshold level of IKKβ/NF-κB signaling.
Collapse
Affiliation(s)
- Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Leesa Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
270
|
Verovskaya EV, Dellorusso PV, Passegué E. Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends Mol Med 2019; 25:494-515. [PMID: 31109796 DOI: 10.1016/j.molmed.2019.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging leads to functional decline of the hematopoietic system, manifested by an increased incidence of hematological disease in the elderly. Deterioration of hematopoietic integrity with age originates in part from the degraded functionality of hematopoietic stem cells (HSCs). Here, we review recent findings identifying changes in metabolic programs and loss of epigenetic identity as major drivers of old HSC dysfunction and their role in promoting leukemia onset in the context of age-related clonal hematopoiesis (ARCH). We discuss how inflammatory and growth signals from the aged bone marrow (BM) microenvironment contribute to cell-intrinsic HSC aging phenotypes and favor leukemia development. Finally, we address how metabolic, epigenetic, and inflammatory pathways could be targeted to enhance old HSC fitness and prevent leukemic transformation.
Collapse
Affiliation(s)
- Evgenia V Verovskaya
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
271
|
Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood 2019; 133:2140-2148. [PMID: 30898859 PMCID: PMC6524561 DOI: 10.1182/blood-2018-10-844571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
The niche that supports hematopoietic stem and progenitor cells (HSPCs) in the bone marrow is a highly dynamic structure. It maintains core properties of HSPCs in the steady state, and modulates their proliferation and differentiation in response to changing physiological demands or pathological insults. The dynamic and environment-sensing properties of the niche are shared by the innate immune system. Thus, it is not surprising that innate immune cells, including macrophages and neutrophils, are now recognized as important regulators of the hematopoietic niche and, ultimately, of the stem cells from which they derive. This review synthesizes emerging concepts on niche regulation by immune cells, with a particular emphasis on neutrophils. We argue that the unique developmental, circadian, and migratory properties of neutrophils underlie their critical contributions as regulators of the hematopoietic niche.
Collapse
Affiliation(s)
- Itziar Cossío
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität, Munich, Germany
| |
Collapse
|
272
|
Agarwal P, Isringhausen S, Li H, Paterson AJ, He J, Gomariz Á, Nagasawa T, Nombela-Arrieta C, Bhatia R. Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant Leukemia Stem Cells. Cell Stem Cell 2019; 24:769-784.e6. [PMID: 30905620 PMCID: PMC6499704 DOI: 10.1016/j.stem.2019.02.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 10/01/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Chronic myeloid leukemia (CML) originates in a hematopoietic stem cell (HSC) transformed by the breakpoint cluster region (BCR)-abelson (ABL) oncogene and is effectively treated with tyrosine kinase inhibitors (TKIs). TKIs do not eliminate disease-propagating leukemic stem cells (LSCs), suggesting a deeper understanding of niche-dependent regulation of CML LSCs is required to eradicate disease. Cxcl12 is expressed in bone marrow niches and controls HSC maintenance, and here, we show that targeted deletion of Cxcl12 from mesenchymal stromal cells (MSCs) reduces normal HSC numbers but promotes LSC expansion by increasing self-renewing cell divisions, possibly through enhanced Ezh2 activity. In contrast, endothelial cell-specific Cxcl12 deletion decreases LSC proliferation, suggesting niche-specific effects. During CML development, abnormal clusters of colocalized MSCs and LSCs form but disappear upon Cxcl12 deletion. Moreover, MSC-specific deletion of Cxcl12 increases LSC elimination by TKI treatment. These findings highlight a critical role of niche-specific effects of Cxcl12 expression in maintaining quiescence of TKI-resistant LSC populations.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line, Tumor
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Drug Resistance, Neoplasm
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoietic Stem Cells/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mesenchymal Stem Cells/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/physiology
- Organ Specificity
- Protein Kinase Inhibitors/therapeutic use
- Stem Cell Niche/physiology
Collapse
Affiliation(s)
- Puneet Agarwal
- Division of Hematology & Oncology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Stephan Isringhausen
- Department of Hematology and Oncology, Division of Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hui Li
- Division of Hematology & Oncology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Andrew J Paterson
- Division of Hematology & Oncology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jianbo He
- Division of Hematology & Oncology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Álvaro Gomariz
- Department of Hematology and Oncology, Division of Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology & Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - César Nombela-Arrieta
- Department of Hematology and Oncology, Division of Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ravi Bhatia
- Division of Hematology & Oncology, University of Alabama, Birmingham, Birmingham, AL, USA.
| |
Collapse
|
273
|
Cunin P, Bouslama R, Machlus KR, Martínez-Bonet M, Lee PY, Wactor A, Nelson-Maney N, Morris A, Guo L, Weyrich A, Sola-Visner M, Boilard E, Italiano JE, Nigrovic PA. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. eLife 2019; 8:e44031. [PMID: 31042146 PMCID: PMC6494422 DOI: 10.7554/elife.44031] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Bone marrow megakaryocytes engulf neutrophils in a phenomenon termed emperipolesis. We show here that emperipolesis is a dynamic process mediated actively by both lineages, in part through the β2-integrin/ICAM-1/ezrin pathway. Tethered neutrophils enter in membrane-bound vesicles before penetrating into the megakaryocyte cytoplasm. Intracytoplasmic neutrophils develop membrane contiguity with the demarcation membrane system, thereby transferring membrane to the megakaryocyte and to daughter platelets. This phenomenon occurs in otherwise unmanipulated murine marrow in vivo, resulting in circulating platelets that bear membrane from non-megakaryocytic hematopoietic donors. Transit through megakaryocytes can be completed as rapidly as minutes, after which neutrophils egress intact. Emperipolesis is amplified in models of murine inflammation associated with platelet overproduction, contributing to platelet production in vitro and in vivo. These findings identify emperipolesis as a new cell-in-cell interaction that enables neutrophils and potentially other cells passing through the megakaryocyte cytoplasm to modulate the production and membrane content of platelets.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Rim Bouslama
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Kellie R Machlus
- Department of Medicine, Hematology DivisionBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Marta Martínez-Bonet
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Pui Y Lee
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alexandra Wactor
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Nathan Nelson-Maney
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Allyn Morris
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Li Guo
- Program in Molecular Medicine and Department of Internal MedicineUniversity of UtahSalt Lake CityUnited States
| | - Andrew Weyrich
- Program in Molecular Medicine and Department of Internal MedicineUniversity of UtahSalt Lake CityUnited States
| | - Martha Sola-Visner
- Department of NeonatologyBoston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et ImmunologieCentre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université LavalQuébecCanada
| | - Joseph E Italiano
- Department of Medicine, Hematology DivisionBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
- Vascular Biology Program, Department of SurgeryBoston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
274
|
de Kruijf EJFM, Fibbe WE, van Pel M. Cytokine-induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Ann N Y Acad Sci 2019; 1466:24-38. [PMID: 31006885 PMCID: PMC7217176 DOI: 10.1111/nyas.14059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Peripheral blood hematopoietic stem and progenitor cells (HSPCs), mobilized by granulocyte colony‐stimulating factor, are widely used as a source for both autologous and allogeneic stem cell transplantation. The use of mobilized HSPCs has several advantages over traditional bone marrow–derived HSPCs, including a less invasive harvesting process for the donor, higher HSPC yields, and faster hematopoietic reconstitution in the recipient. For years, the mechanisms by which cytokines and other agents mobilize HSPCs from the bone marrow were not fully understood. The field of stem cell mobilization research has advanced significantly over the past decade, with major breakthroughs in the elucidation of the complex mechanisms that underlie stem cell mobilization. In this review, we provide an overview of the events that underlie HSPC mobilization and address the relevant cellular and molecular components of the bone marrow niche. Furthermore, current and future mobilizing agents will be discussed.
Collapse
Affiliation(s)
- Evert-Jan F M de Kruijf
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Fibbe
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Melissa van Pel
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
275
|
Nakahara F, Borger DK, Wei Q, Pinho S, Maryanovich M, Zahalka AH, Suzuki M, Cruz CD, Wang Z, Xu C, Boulais PE, Ma'ayan A, Greally JM, Frenette PS. Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat Cell Biol 2019; 21:560-567. [PMID: 30988422 PMCID: PMC6499646 DOI: 10.1038/s41556-019-0308-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
Abstract
Haematopoietic stem cells (HSCs) are maintained by bone marrow (BM) niches in vivo1,2, but the ability of niche cells to maintain HSCs ex vivo is markedly diminished. Expression of niche factors by Nestin-GFP+ mesenchymal-derived stromal cells (MSCs) is downregulated upon culture, suggesting that transcriptional rewiring may contribute to this reduced HSC maintenance potential. Using an RNA sequencing screen, we identified 5 transcription factors (Klf7, Ostf1, Xbp1, Irf3, Irf7) that restored HSC niche function in cultured BM-derived MSCs. These revitalized MSCs (rMSCs) exhibited enhanced synthesis of HSC niche factors while retaining their mesenchymal differentiation capacity. In contrast to HSCs co-cultured with control MSCs, HSCs expanded with rMSCs showed higher repopulation capacity and protected lethally irradiated recipient mice. Competitive reconstitution assays revealed ~7-fold expansion of functional HSCs by rMSCs. rMSCs prevented the accumulation of DNA damage in cultured HSCs, a hallmark of ageing and replication stress. Analysis of the reprogramming mechanisms uncovered a role for myocyte enhancer factor 2c (Mef2c) in the revitalization of MSCs. These results provide insight in the transcriptional regulation of the niche with implications for stem cell-based therapies.
Collapse
Affiliation(s)
- Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel K Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristian D Cruz
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philip E Boulais
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Greally
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
276
|
Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, Pinho S, Akhmetzyanova I, Gao J, Witkowski M, Guillamot M, Gutkin MC, Zhang Y, Marier C, Diefenbach C, Kousteni S, Heguy A, Zhong H, Fooksman DR, Butler JM, Economides A, Frenette PS, Adams RH, Satija R, Tsirigos A, Aifantis I. The bone marrow microenvironment at single-cell resolution. Nature 2019; 569:222-228. [PMID: 30971824 DOI: 10.1038/s41586-019-1104-8] [Citation(s) in RCA: 622] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands. Our studies demonstrate a considerable transcriptional remodelling of niche elements under stress conditions, including an adipocytic skewing of perivascular cells. Among the stress-induced changes, we observed that vascular Notch delta-like ligands (encoded by Dll1 and Dll4) were downregulated. In the absence of vascular Dll4, haematopoietic stem cells prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the bone marrow niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress and illustrate the utility of single-cell transcriptomic data in evaluating the regulation of haematopoiesis by discrete niche populations.
Collapse
Affiliation(s)
- Anastasia N Tikhonova
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | - Edlira Hoxha
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Álvaro Cuesta-Domínguez
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Jie Gao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Matthew Witkowski
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Maria Guillamot
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Michael C Gutkin
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Yutong Zhang
- Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Catherine Diefenbach
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adriana Heguy
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.,Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | | | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
277
|
Leiter O, Seidemann S, Overall RW, Ramasz B, Rund N, Schallenberg S, Grinenko T, Wielockx B, Kempermann G, Walker TL. Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation. Stem Cell Reports 2019; 12:667-679. [PMID: 30905740 PMCID: PMC6450435 DOI: 10.1016/j.stemcr.2019.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity is a strong positive physiological modulator of adult neurogenesis in the hippocampal dentate gyrus. Although the underlying regulatory mechanisms are still unknown, systemic processes must be involved. Here we show that platelets are activated after acute periods of running, and that activated platelets promote neurogenesis, an effect that is likely mediated by platelet factor 4. Ex vivo, the beneficial effects of activated platelets and platelet factor 4 on neural precursor cells were dentate gyrus specific and not observed in the subventricular zone. Moreover, the depletion of circulating platelets in mice abolished the running-induced increase in precursor cell proliferation in the dentate gyrus following exercise. These findings demonstrate that platelets and their released factors can modulate adult neural precursor cells under physiological conditions and provide an intriguing link between running-induced platelet activation and the modulation of neurogenesis after exercise.
Collapse
Affiliation(s)
- Odette Leiter
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany; Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia
| | - Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Rupert W Overall
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Beáta Ramasz
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nicole Rund
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Sonja Schallenberg
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gerd Kempermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Tara L Walker
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany; Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
278
|
Yurova KA, Khaziakhmatova OG, Melashchenko ES, Malashchenko VV, Shunkin EO, Shupletsova VV, Ivanov PA, Khlusov IA, Litvinova LS. Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views). Curr Pharm Des 2019; 25:663-669. [PMID: 30931856 DOI: 10.2174/1381612825666190329153626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
Abstract
In evolutionary processes, human bone marrow has formed as an organ depot of various types of cells that arise from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Vital HSC activity is controlled through molecular interactions with the niche microenvironment. The review describes current views on the formation of key molecular and cellular components of the HSC niche, which ensure maintenance of home ostasis in stem cell niches, obtained from studies of their role in regulating the proliferation and differentiation of HSCs, including the physiological, reparative and pathological remodeling of bone tissue. Due to rapid developments in biotechnology, tissue bioengineering, and regenerative medicine, information can be useful for developing biomimetic and bioinspired materials and implants that provide an effective bone/bone marrow recovery process after injuries and, to a greater extent, diseases of various etiologies.
Collapse
Affiliation(s)
- Kristina A Yurova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Olga G Khaziakhmatova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Elena S Melashchenko
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Vladimir V Malashchenko
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Egor O Shunkin
- Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Valeria V Shupletsova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation.,Center for Medical Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Pavel A Ivanov
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Igor A Khlusov
- Morphology and General Pathology Department, Siberian State Medical University, Tomsk, Russian Federation.,Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Tomskaya oblast, Russian Federation
| | - Larisa S Litvinova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
279
|
Wang D, Zhang Z, Cui S, Zhao Y, Craft S, Fikrig E, You F. ELF4 facilitates innate host defenses against Plasmodium by activating transcription of Pf4 and Ppbp. J Biol Chem 2019; 294:7787-7796. [PMID: 30898878 DOI: 10.1074/jbc.ra118.006321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/08/2019] [Indexed: 12/12/2022] Open
Abstract
Platelet factor 4 (PF4) is an anti-Plasmodium component of platelets. It is expressed in megakaryocytes and released from platelets following infection with Plasmodium Innate immunity is crucial for the host anti-Plasmodium response, in which type I interferon plays an important role. Whether there is cross-talk between innate immune signaling and the production of anti-Plasmodium defense peptides is unknown. Here we demonstrate that E74, like ETS transcription factor 4 (ELF4), a type I interferon activator, can help protect the host from Plasmodium yoelii infection. Mechanically, ELF4 binds to the promoter of genes of two C-X-C chemokines, Pf4 and pro-platelet basic protein (Ppbp), initiating the transcription of these two genes, thereby enhancing PF4-mediated killing of parasites from infected erythrocytes. Elf4 -/- mice are much more susceptible to Plasmodium infection than WT littermates. The expression level of Pf4 and Ppbp in megakaryocytes from Elf4 -/- mice is much lower than in those from control animals, resulting in increased parasitemia. In conclusion, our study uncovered a distinct role of ELF4, an innate immune molecule, in host defense against malaria.
Collapse
Affiliation(s)
- Dandan Wang
- From the Institute of Systems Biomedicine, Department of Immunology, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China 100191
| | - Zeming Zhang
- From the Institute of Systems Biomedicine, Department of Immunology, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China 100191
| | - Shuang Cui
- the Key Laboratory for Neuroscience, Neuroscience Research Institute, Peking University, Beijing, China 100191.,the National Health and Family Planning Commission of the People's Republic of China, Ministry of Education, Beijing, China 100083, and
| | - Yingchi Zhao
- From the Institute of Systems Biomedicine, Department of Immunology, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China 100191
| | - Samuel Craft
- the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Erol Fikrig
- the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Fuping You
- From the Institute of Systems Biomedicine, Department of Immunology, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China 100191,
| |
Collapse
|
280
|
Ni F, Yu WM, Wang X, Fay ME, Young KM, Qiu Y, Lam WA, Sulchek TA, Cheng T, Scadden DT, Qu CK. Ptpn21 Controls Hematopoietic Stem Cell Homeostasis and Biomechanics. Cell Stem Cell 2019; 24:608-620.e6. [PMID: 30880025 DOI: 10.1016/j.stem.2019.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/11/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell (HSC) quiescence is a tightly regulated process crucial for hematopoietic regeneration, which requires a healthy and supportive microenvironmental niche within the bone marrow (BM). Here, we show that deletion of Ptpn21, a protein tyrosine phosphatase highly expressed in HSCs, induces stem cell egress from the niche due to impaired retention within the BM. Ptpn21-/- HSCs exhibit enhanced mobility, decreased quiescence, increased apoptosis, and defective reconstitution capacity. Ptpn21 deletion also decreased HSC stiffness and increased physical deformability, in part by dephosphorylating Spetin1 (Tyr246), a poorly described component of the cytoskeleton. Elevated phosphorylation of Spetin1 in Ptpn21-/- cells impaired cytoskeletal remodeling, contributed to cortical instability, and decreased cell rigidity. Collectively, these findings show that Ptpn21 maintains cellular mechanics, which is correlated with its important functions in HSC niche retention and preservation of hematopoietic regeneration capacity.
Collapse
Affiliation(s)
- Fang Ni
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Wen-Mei Yu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Xinyi Wang
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Fay
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine M Young
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongzhi Qiu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wilbur A Lam
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd A Sulchek
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA
| | - Cheng-Kui Qu
- Division of Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
281
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) reside in specific microenvironments also called niches that regulate HSC functions. Understanding the molecular and cellular mechanisms involved in the crosstalk between HSCs and niche cells is a major issue in stem cell biology and regenerative medicine. The purpose of this review is to discuss recent advances in this field with particular emphasis on the transcriptional landscape of HSC niche cells and the roles of extracellular vesicles (EVs) in the dialog between HSCs and their microenvironments. RECENT FINDINGS The development of high-throughput technologies combined with computational methods has considerably improved our knowledge on the molecular identity of HSC niche cells. Accumulating evidence strongly suggest that the dialog between HSCs and their niches is bidirectional and that EVs play an important role in this process. SUMMARY These advances bring a unique conceptual and methodological framework for understanding the molecular complexity of the HSC niche and identifying novel HSC regulators. They are also promising for exploring the reciprocal influence of HSCs on niche cells and delivering specific molecules to HSCs in regenerative medicine.
Collapse
|
282
|
Kheifetz Y, Scholz M. Modeling individual time courses of thrombopoiesis during multi-cyclic chemotherapy. PLoS Comput Biol 2019; 15:e1006775. [PMID: 30840616 PMCID: PMC6422316 DOI: 10.1371/journal.pcbi.1006775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/18/2019] [Accepted: 01/10/2019] [Indexed: 02/02/2023] Open
Abstract
Background Thrombocytopenia is a major side-effect of cytotoxic cancer therapies. The aim of precision medicine is to develop therapy modifications accounting for the individual’s risk. Methodology/Principle findings To solve this task, we develop an individualized bio-mechanistic model of the dynamics of bone marrow thrombopoiesis, circulating platelets and therapy effects thereon. Comprehensive biological knowledge regarding cell differentiation, amplification, apoptosis rates, transition times and corresponding regulations are translated into ordinary differential equations. A model of osteoblast/osteoclast interactions was incorporated to mechanistically describe bone marrow support of quiescent cell stages. Thrombopoietin (TPO) as a major regulator is explicitly modelled including pharmacokinetics and–dynamics of TPO injections. Effects of cytotoxic drugs are modelled by transient depletions of proliferating cells. To calibrate the model, we used population data from the literature and close-meshed individual data of N = 135 high-grade non-Hodgkin’s lymphoma patients treated with CHOP-like chemotherapies. To limit the number of free parameters, several parsimony assumptions were derived from biological data and tested via Likelihood methods. Heterogeneity of patients was explained by a few model parameters. The over-fitting issue of individual parameter estimation was successfully dealt with a virtual participation of each patient in population-based experiments. The model qualitatively and quantitatively explains a number of biological observations such as the role of osteoblasts in explaining long-term toxic effects, megakaryocyte-mediated feedback on stem cells, bi-phasic stimulation of thrombopoiesis by TPO, dynamics of megakaryocyte ploidies and non-exponential platelet degradation. Almost all individual time series could be described with high precision. We demonstrated how the model can be used to provide predictions regarding individual therapy adaptations. Conclusions We propose a mechanistic thrombopoiesis model of unprecedented comprehensiveness in both, biological mechanisms considered and experimental data sets explained. Our innovative method of parameter estimation allows robust determinations of individual parameter settings facilitating the development of individual treatment adaptations during chemotherapy. Chemotherapy is ubiquitously used to treat cancer diseases. Due to general toxicity of the drugs, chemotherapy results in a number of side effects especially with respect to blood formation. Here we study the loss of platelets during chemotherapy which is dose limiting in many situations. However, this side-effect greatly varies between patients with respect to both, severity and necessity of clinical countermeasures.We therefore developed a mathematical model to predict the time course of platelets of patients under chemotherapy and to propose possible treatment adaptations in cases of intolerable toxicity. The model is based on available biological knowledge and data of platelet formation and therapeutic effects thereon. As a major result, we could describe individual time series data of 135 patients under chemotherapy. Conversely, the model can be used to make predictions regarding alternative therapy schedules such as postponement of therapy or chemotherapy dose reductions. Our model is intended to support clinical decision making on an individual patient level.
Collapse
Affiliation(s)
- Yuri Kheifetz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
283
|
Lucas D. Leukocyte Trafficking and Regulation of Murine Hematopoietic Stem Cells and Their Niches. Front Immunol 2019; 10:387. [PMID: 30891044 PMCID: PMC6412148 DOI: 10.3389/fimmu.2019.00387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSC) are the most powerful type of adult stem cell found in the body. Hematopoietic stem cells are multipotent and capable of giving rise to all other types of hematopoietic cells found in the organism. A single HSC is capable of regenerating a functional hematopoietic system when transplanted into a recipient. Hematopoietic stem cells reside in the bone marrow in specific multicellular structures called niches. These niches are indispensable for maintaining and regulating HSC numbers and function. It has become increasingly clearer that HSC and their niches can also be regulated by migrating leukocytes. Here we will discuss the composition of murine bone marrow niches and how HSC and their niches are regulated by different types of leukocytes that traffic between the periphery and the niche. Unless otherwise indicated all the studies discussed below were performed in mouse models.
Collapse
Affiliation(s)
- Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
284
|
|
285
|
Olson TS. Translating HSC Niche Biology for Clinical Applications. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
286
|
2-O, 3-O desulfated heparin mitigates murine chemotherapy- and radiation-induced thrombocytopenia. Blood Adv 2019; 2:754-761. [PMID: 29599195 DOI: 10.1182/bloodadvances.2017013672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
Thrombocytopenia is a significant complication of chemotherapy and radiation therapy. Platelet factor 4 (PF4; CXCL4) is a negative paracrine of megakaryopoiesis. We have shown that PF4 levels are inversely related to steady-state platelet counts, and to the duration and severity of chemotherapy- and radiation-induced thrombocytopenia (CIT and RIT, respectively). Murine studies suggest that blocking the effect of PF4 improves megakaryopoiesis, raising nadir platelet counts and shortening the time to platelet count recovery. We examined the ability of 2-O, 3-O desulfated heparin (ODSH), a heparin variant with little anticoagulant effects, to neutralize PF4's effects on megakaryopoiesis. Using megakaryocyte colony assays and liquid cultures, we show that ODSH restored megakaryocyte proliferation in PF4-treated Cxcl4-/- murine and human CD34+-derived megakaryocyte cultures (17.4% megakaryocyte colonies, P < .01 compared with PF4). In murine CIT and RIT models, ODSH, started 24 hours after injury, was examined for the effect on hematopoietic recovery demonstrating higher platelet count nadirs (9% ± 5% treated vs 4% ± 4% control) and significantly improved survival in treated animals (73% treated vs 36% control survival). Treatment with ODSH was able to reduce intramedullary free PF4 concentrations by immunohistochemical analysis. In summary, ODSH mitigated CIT and RIT in mice by neutralizing the intramedullary negative paracrine PF4. ODSH, already in clinical trials in humans as an adjuvant to chemotherapy, may be an important, clinically relevant therapeutic for CIT and RIT.
Collapse
|
287
|
Stephenson S, Care MA, Fan I, Zougman A, Westhead DR, Doody GM, Tooze RM. Growth Factor-like Gene Regulation Is Separable from Survival and Maturation in Antibody-Secreting Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1287-1300. [PMID: 30642980 PMCID: PMC6360259 DOI: 10.4049/jimmunol.1801407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor-like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model. Applying time course expression data and parsimonious gene correlation network analysis (PGCNA), a new approach established by our group, we map expression changes that occur during the maturation of proliferating plasmablast to quiescent plasma cell under survival conditions including the potential niche signal TGF-β3. This analysis demonstrates a convergent pattern of differentiation, linking unfolded protein response/endoplasmic reticulum stress to secretory optimization, coordinated with cell cycle exit. TGF-β3 supports ASC survival while having a limited effect on gene expression including upregulation of CXCR4. This is associated with a significant shift in response to SDF1 in ASCs with amplified ERK1/2 activation, growth factor-like immediate early gene regulation and EGR1 protein expression. Similarly, ASCs responding to survival conditions initially induce partially overlapping sets of immediate early genes without sustaining the response. Thus, in human ASCs growth factor-like gene regulation is transiently imposed by niche signals but is not sustained during subsequent survival and maturation.
Collapse
Affiliation(s)
- Sophie Stephenson
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Matthew A Care
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Im Fan
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; and
| | - Alexandre Zougman
- Section of Biomarkers and Therapy, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - David R Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gina M Doody
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom;
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; and
| |
Collapse
|
288
|
Kaushansky K, Zhan H. The marrow stem cell niche in normal and malignant hematopoiesis. Ann N Y Acad Sci 2019; 1466:17-23. [PMID: 30767234 DOI: 10.1111/nyas.14028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
The hematopoietic niche is composed of endothelial cells, mesenchymal stromal cells of several types, and megakaryocytes, and functions to support the survival, proliferation, and differentiation of normal hematopoietic stem cells (HSCs). An abundance of evidence from a range of hematological malignancies supports the concept that the niche also participates in the pathogenesis of malignant hematopoiesis, differentially supporting malignant stem or progenitor cells over that of normal blood cell development. In 2005, patients with myeloproliferative neoplasms were reported to harbor an acquired, activating, missense V617F mutation of the cytokine-signaling Janus kinase (JAK)-2, JAK2V617F , present in virtually all patients with polycythemia vera and half of patients with essential thrombocythemia and primary myelofibrosis. Using both in vitro and in vivo methods, several investigators have shown that in addition to driving cytokine-independent proliferation in HSCs, JAK2V617F contributes to these neoplasms by altering the hematopoietic niche. The role of both endothelial cells and megakaryocytes bearing JAK2V617F will be presented, which involves altering cytokine production within the niche, resulting in their differential support of mutant kinase-bearing stem cells over their normal counterparts, and imparting relative radiation resistance to stem cells. The clinical correlates of these findings will be discussed, as will their therapeutic implications.
Collapse
Affiliation(s)
| | - Huichun Zhan
- Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
289
|
Wielockx B, Grinenko T, Mirtschink P, Chavakis T. Hypoxia Pathway Proteins in Normal and Malignant Hematopoiesis. Cells 2019; 8:cells8020155. [PMID: 30781787 PMCID: PMC6406588 DOI: 10.3390/cells8020155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
The regulation of oxygen (O₂) levels is crucial in embryogenesis and adult life, as O₂ controls a multitude of key cellular functions. Low oxygen levels (hypoxia) are relevant for tissue physiology as they are integral to adequate metabolism regulation and cell fate. Hence, the hypoxia response is of utmost importance for cell, organ and organism function and is dependent on the hypoxia-inducible factor (HIF) pathway. HIF pathway activity is strictly regulated by the family of oxygen-sensitive HIF prolyl hydroxylase domain (PHD) proteins. Physiologic hypoxia is a hallmark of the hematopoietic stem cell (HSC) niche in the bone marrow. This niche facilitates HSC quiescence and survival. The present review focuses on current knowledge and the many open questions regarding the impact of PHDs/HIFs and other proteins of the hypoxia pathway on the HSC niche and on normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
290
|
Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv 2019; 2:381-389. [PMID: 29467192 DOI: 10.1182/bloodadvances.2017013391] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022] Open
Abstract
Relapses in acute myelogenous leukemia (AML) are a result of quiescent leukemic stem cells (LSCs) in marrow stromal niches, where they resist chemotherapy. LSCs employ CXCL12/CXCR4 to home toward protective marrow niches. Heparin disrupts CXCL12-mediated sequestration of cells in the marrow. CX-01 is a low-anticoagulant heparin derivative. In this pilot study, we combined CX-01 with chemotherapy for the treatment of AML. Induction consisted of cytarabine and idarubicin (7 + 3) with CX-01. Twelve patients were enrolled (median age, 56 years; 3 women). Three, 5, and 4 patients had good-, intermediate-, and poor-risk disease, respectively. Day 14 bone marrows were available on 11 patients and were aplastic in all without detectable leukemia. Eleven patients (92%) had morphologic complete remission after 1 induction (CR1). Eight patients were alive at a median follow-up of 24 months (4 patients in CR1). Three patients received an allogeneic stem cell transplant in CR1. Median disease-free survival was 14.8 months. Median overall survival was not attained at the maximum follow-up time of 29.4 months. No CX-01-associated serious adverse events occurred. Median day to an untransfused platelet count of at least 20 × 109/L was 21. CX-01 is well tolerated when combined with intensive therapy for AML and appears associated with enhanced count recovery and treatment efficacy.
Collapse
|
291
|
Hoffman CM, Han J, Calvi LM. Impact of aging on bone, marrow and their interactions. Bone 2019; 119:1-7. [PMID: 30010082 DOI: 10.1016/j.bone.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Hematopoiesis in land dwelling vertebrates and marine mammals occurs within the bone marrow, continually providing mature progeny over the course of an organism's lifetime. This conserved dependency highlights the critical relationship between these two organs, yet the skeletal and hematopoietic systems are often thought of as separate. In fact, data are beginning to show that skeletal disease pathogenesis influences hematopoiesis and viceversa, offering novel opportunities to approach disease affecting bone and blood. With a growing global population of aged individuals, interest has focused on cell autonomous changes in hematopoietic and skeletal systems that result in dysfunction. The purpose of this review is to summarize the literature on aging effects in both fields, and provide critical examples of organ cross-talk in the aging process.
Collapse
Affiliation(s)
- Corey M Hoffman
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jimin Han
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Laura M Calvi
- University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
292
|
Carlson P, Dasgupta A, Grzelak CA, Kim J, Barrett A, Coleman IM, Shor RE, Goddard ET, Dai J, Schweitzer EM, Lim AR, Crist SB, Cheresh DA, Nelson PS, Hansen KC, Ghajar CM. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 2019; 21:238-250. [PMID: 30664790 DOI: 10.1038/s41556-018-0267-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
The presence of disseminated tumour cells (DTCs) in bone marrow is predictive of poor metastasis-free survival of patients with breast cancer with localized disease. DTCs persist in distant tissues despite systemic administration of adjuvant chemotherapy. Many assume that this is because the majority of DTCs are quiescent. Here, we challenge this notion and provide evidence that the microenvironment of DTCs protects them from chemotherapy, independent of cell cycle status. We show that chemoresistant DTCs occupy the perivascular niche (PVN) of distant tissues, where they are protected from therapy by vascular endothelium. Inhibiting integrin-mediated interactions between DTCs and the PVN, driven partly by endothelial-derived von Willebrand factor and vascular cell adhesion molecule 1, sensitizes DTCs to chemotherapy. Importantly, chemosensitization is achieved without inducing DTC proliferation or exacerbating chemotherapy-associated toxicities, and ultimately results in prevention of bone metastasis. This suggests that prefacing adjuvant therapy with integrin inhibitors is a viable clinical strategy to eradicate DTCs and prevent metastasis.
Collapse
Affiliation(s)
- Patrick Carlson
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arko Dasgupta
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Candice A Grzelak
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeanna Kim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ilsa M Coleman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ryann E Shor
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Erica T Goddard
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emma M Schweitzer
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Sarah B Crist
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - David A Cheresh
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Urology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
293
|
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105:1111-1121. [PMID: 30645026 DOI: 10.1002/jlb.mr0718-261rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play well-recognized roles in inflammation, but their cell of origin-the megakaryocyte-is not typically considered an immune lineage. Megakaryocytes are large polyploid cells most commonly identified in bone marrow. Egress via sinusoids enables migration to the pulmonary capillary bed, where elaboration of platelets can continue. Beyond receptors involved in hemostasis and thrombosis, megakaryocytes express receptors that confer immune sensing capacity, including TLRs and Fc-γ receptors. They control the proliferation of hematopoietic cells, facilitate neutrophil egress from marrow, possess the capacity to cross-present antigen, and can promote systemic inflammation through microparticles rich in IL-1. Megakaryocytes internalize other hematopoietic lineages, especially neutrophils, in an intriguing cell-in-cell interaction termed emperipolesis. Together, these observations implicate megakaryocytes as direct participants in inflammation and immunity.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
294
|
Metabolic Regulations in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:59-74. [PMID: 31338815 DOI: 10.1007/978-981-13-7342-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the bottlenecks of the treatments for malignant hematopoietic disorders is the unavailability of sufficient amount of hematopoietic stem cells (HSCs). HSCs are considered to be originated from the aorta-gonad-mesonephros and gradually migrates into fetal liver and resides in a unique microenvironment/niche of bone marrow. Although many intrinsic and extrinsic factors (niche components) are reported to be involved in the origination, maturation, migration, and localization of HSCs at different developmental stages, the detailed molecular mechanisms still remain largely unknown. Previous studies have shown that intrinsic metabolic networks may be critical for the cell fate determinations of HSCs. For example, HSCs mainly utilize glycolysis as the main energy sources; oxidative phosphorylation is required for the homeostasis of HSCs; lipid or amino acid metabolisms may also sustain HSC stemness. Mechanistically, lots of regulatory pathways, such as MEIS1/HIF1A and PI3K/AKT/mTOR signaling, are found to fine-tune the different nutrient metabolisms and cell fate commitments of HSCs. However, more efforts are required for the optimization and establishment of precise metabolic techniques specific for the HSCs with relatively rare cell frequency and understanding of the basic metabolic properties and their underlying regulatory mechanisms of different nutrients (such as glucose) during the different developmental stages of HSCs.
Collapse
|
295
|
Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI. Foxp3 + Regulatory T Cells in Bone and Hematopoietic Homeostasis. Front Endocrinol (Lausanne) 2019; 10:578. [PMID: 31551927 PMCID: PMC6746882 DOI: 10.3389/fendo.2019.00578] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
The bone represents surprisingly dynamic structures that are subject to constant remodeling by the concerted action of bone-forming osteoblasts and bone-resorbing osteoclasts - two cell subsets of distinct developmental origin that are key in maintaining skeletal integrity throughout life. In general, abnormal bone remodeling due to dysregulated bone resorption and formation is an early event in the manifestation of various human bone diseases, such as osteopetrosis/osteoporosis and arthritis. But bone remodeling is also closely interrelated with lympho-hematopoietic homeostasis, as the bone marrow niche is formed by solid and trabecular bone structures that provide a framework for the long-term maintenance and differentiation of HSCs (>blood lineage cells and osteoclasts) and MSCs (>osteoblasts). Numerous studies in mice and humans have implicated innate and adaptive immune cells in the dynamic regulation of bone homeostasis, but despite considerable clinical relevance, the exact mechanisms of such immuno-bone interplay have remained incompletely understood. This holds particularly true for CD4+ regulatory T (Treg) cells expressing the lineage specification factor Foxp3: Foxp3+ Treg cells have been shown to play an indispensable role in maintaining immune homeostasis, but may also exert critical non-immune functions, which includes the control of metabolic and regenerative processes, as well as the differentiation of HSCs and function of osteoclasts. Here, we summarize our current knowledge on the T cell/bone interplay, with a particular emphasis on our own efforts to dissect the role of Foxp3+ Treg cells in bone and hematopoietic homeostasis, employing experimental settings of gain- and loss-of-Treg cell function. These data make a strong case that Foxp3+ Treg cells impinge on lympho-hematopoiesis through indirect mechanisms, i.e., by acting on osteoclast development and function, which translates into changes in niche size. Furthermore, we propose that, besides disorders that involve inflammatory bone loss, the modulation of Foxp3+ Treg cell function in vivo may represent a suitable approach to reinstate bone homeostasis in non-autoimmune settings of aberrant bone remodeling.
Collapse
Affiliation(s)
- Luise Fischer
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Caroline Herkner
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Reni Kitte
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dohnke
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe
| |
Collapse
|
296
|
Morrell CN, Pariser DN, Hilt ZT, Vega Ocasio D. The Platelet Napoleon Complex-Small Cells, but Big Immune Regulatory Functions. Annu Rev Immunol 2018; 37:125-144. [PMID: 30485751 DOI: 10.1146/annurev-immunol-042718-041607] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.
Collapse
Affiliation(s)
- Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Daphne N Pariser
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Zachary T Hilt
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Denisse Vega Ocasio
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| |
Collapse
|
297
|
Megakaryocyte Contribution to Bone Marrow Fibrosis: many Arrows in the Quiver. Mediterr J Hematol Infect Dis 2018; 10:e2018068. [PMID: 30416700 PMCID: PMC6223581 DOI: 10.4084/mjhid.2018.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
In Primary Myelofibrosis (PMF), megakaryocyte dysplasia/hyperplasia determines the release of inflammatory cytokines that, in turn, stimulate stromal cells and induce bone marrow fibrosis. The pathogenic mechanism and the cells responsible for progression to bone marrow fibrosis in PMF are not completely understood. This review article aims to provide an overview of the crucial role of megakaryocytes in myelofibrosis by discussing the role and the altered secretion of megakaryocyte-derived soluble factors, enzymes and extracellular matrices that are known to induce bone marrow fibrosis.
Collapse
|
298
|
Artuz CM, Knights AJ, Funnell APW, Gonda TJ, Ravid K, Pearson RCM, Quinlan KGR, Crossley M. Partial reprogramming of heterologous cells by defined factors to generate megakaryocyte lineage-restricted biomolecules. ACTA ACUST UNITED AC 2018; 20:e00285. [PMID: 30364711 PMCID: PMC6197760 DOI: 10.1016/j.btre.2018.e00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/30/2018] [Accepted: 09/29/2018] [Indexed: 11/17/2022]
Abstract
The ability of transcriptional regulators to drive lineage conversion of somatic cells offers great potential for the treatment of human disease. To explore the concept of switching on specific target genes in heterologous cells, we developed a model system to screen candidate factors for their ability to activate the archetypal megakaryocyte-specific chemokine platelet factor 4 (PF4) in fibroblasts. We found that co-expression of the transcriptional regulators GATA1 and FLI1 resulted in a significant increase in levels of PF4, which became magnified over time. This finding demonstrates that such combinations can be used to produce potentially beneficial chemokines in readily available heterologous cell types.
Collapse
Affiliation(s)
- Crisbel M Artuz
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales, 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales, 2052, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales, 2052, Australia
| | - Thomas J Gonda
- School of Pharmacy, The University of Queensland, Queensland, 4102, Australia
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Massachusetts, 02118, United States
| | - Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales, 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales, 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales, 2052, Australia
| |
Collapse
|
299
|
Ruytinx P, Proost P, Struyf S. CXCL4 and CXCL4L1 in cancer. Cytokine 2018; 109:65-71. [PMID: 29903575 DOI: 10.1016/j.cyto.2018.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
|
300
|
Niches for hematopoietic stem cells and immune cell progenitors. Int Immunol 2018; 31:5-11. [DOI: 10.1093/intimm/dxy058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
|