251
|
Sheng WH, Lin PH, Cheng YC, Wu YY, Hsieh MJ, Yang HC, Chang SY, Chang SC. Immunogenicity and safety of heterologous booster with protein-based COVID-19 vaccine (NVX-CoV2373) in healthy adults: A comparative analysis with mRNA vaccines. J Formos Med Assoc 2024; 123:340-346. [PMID: 37996322 DOI: 10.1016/j.jfma.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Information on the protein-based severe acute respiratory syndrome (SARS-CoV-2) vaccine-NVX-CoV2373 (Novavax), as a heterologous booster remains limited. We investigated the immunogenicity and adverse events of NVX-CoV2373 as a second booster and compared them with those of mRNA vaccines in healthy adults. METHODS Healthcare workers who had received an mRNA vaccine (mRNA-1273 or BNT-162b2) as the first booster (third dose) 12 weeks prior were recruited. Participants voluntarily received either NVX-CoV2373 or an mRNA vaccine as a second booster. Participants with a history of SARS-CoV-2 infection were excluded. The primary outcomes included serum anti-SARS-CoV-2 spike protein (SP) and neutralizing antibody titers against B.1.1.7 (Alpha), B.1.1.529 (Omicron) BA2, and BA5 variants on the 28th day after the boost. Secondary outcomes included new SARS-CoV-2 infections and adverse events reported during the study period. RESULTS A total of 160 participants were enrolled in this study. Compared with the mRNA vaccination group (n = 59), the NVX-CoV2373 vaccination group (n = 101) had significantly lower anti-SARS-CoV-2 SP antibody titers and neutralizing antibody titers against all variants tested after the boost. During the study period, higher rates of new SARS-CoV-2 infections and a lower incidence of adverse events were observed in the NVX-CoV2373 vaccination group. No significant differences in cellular immune responses were observed between the two groups. CONCLUSION Compared to a homologous mRNA booster vaccination, heterologous boosters with NVX-CoV2373 showed lower antibody responses, a higher incidence of new SARS-CoV-2 infections, and fewer adverse events.
Collapse
Affiliation(s)
- Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Pin-Hung Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yun Wu
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Ju Hsieh
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan; Occupational Safety and Health Office, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Chih Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan; Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
252
|
Hedberg P, Parczewski M, Serwin K, Marchetti G, Bai F, Ole Jensen BE, Pereira JP, Drobniewski F, Reschreiter H, Naumovas D, Ceccherini-Silberstein F, Rubio Quintanares GH, Mwau M, Toscano C, König F, Pfeifer N, Zazzi M, Fanti I, Incardona F, Cozzi-Lepri A, Sönnerborg A, Nauclér P. In-hospital mortality during the wild-type, alpha, delta, and omicron SARS-CoV-2 waves: a multinational cohort study in the EuCARE project. THE LANCET REGIONAL HEALTH. EUROPE 2024; 38:100855. [PMID: 38476753 PMCID: PMC10928271 DOI: 10.1016/j.lanepe.2024.100855] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Background Investigating outcomes of hospitalised COVID-19 patients throughout the pandemic is crucial to understand the impact of different SARS-CoV-2 variants. We compared 28-day in-hospital mortality of Wild-type, Alpha, Delta, and Omicron variant infections. Whether the difference in risk by variant varied by age was also evaluated. Methods We conducted a cohort study including patients ≥18 years, hospitalised between 2020 and 02-01 and 2022-10-15 with a SARS-CoV-2 positive test, from nine countries. Variant was classified based on sequenced viruses or from national public metadata. Mortality was compared using the cumulative incidence function and subdistribution hazard ratios (SHR) adjusted for age, sex, calendar time, and comorbidities. Results were shown age-stratified due to effect measure modification (P < 0.0001 for interaction between age and variant). Findings We included 38,585 participants: 19,763 Wild-type, 6387 Alpha, 3640 Delta, and 8795 Omicron. The cumulative incidence of mortality decreased throughout the study period. Among participants ≥70 years, the adjusted SHR (95% confidence interval) for Delta vs. Omicron was 1.66 (1.29-2.13). This estimate was 1.66 (1.17-2.36) for Alpha vs. Omicron, and 1.34 (0.92-1.95) for Wild-type vs. Omicron. These were 1.21 (0.81-1.82), 1.21 (0.68-2.17), and 0.98 (0.53-1.82) among unvaccinated participants. When comparing Omicron sublineages, the aSHR for BA.1 was 1.92 (1.43-2.58) compared to BA.2 and 1.52 (1.11-2.08) compared to BA.5. Interpretation The herein observed decrease in in-hospital mortality seems to reflect a combined effect of immunity from vaccinations and previous infections, although differences in virulence between SARS-CoV-2 variants may also have contributed. Funding European Union's Horizon Europe Research and Innovation Programme.
Collapse
Affiliation(s)
- Pontus Hedberg
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Milosz Parczewski
- Department of Tropical Infectious Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karol Serwin
- Department of Tropical Infectious Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo E Carlo, University of Milan, Milan, Italy
| | - Francesca Bai
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo E Carlo, University of Milan, Milan, Italy
| | - Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Joana P.V. Pereira
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Francis Drobniewski
- Department of Infectious Disease, Imperial College, London, W12 0NN, UK
- University Hospital Dorset, Poole Hospital, Poole, Dorset, UK
| | | | - Daniel Naumovas
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Gibran Horemheb Rubio Quintanares
- Virus Security Department, Paul Ehrlich Institute, Langen, Germany
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Cristina Toscano
- Microbiology Laboratory, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Florian König
- Institute for Bioinformatics and Medical Informatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Methods in Medical Informatics Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Nico Pfeifer
- Institute for Bioinformatics and Medical Informatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Methods in Medical Informatics Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Iuri Fanti
- EuResist Network GEIE, Via Guido Guinizelli, 98/100, 00152, Roma, Italy
| | - Francesca Incardona
- EuResist Network GEIE, Via Guido Guinizelli, 98/100, 00152, Roma, Italy
- InformaPRO s.r.l., Via Guido Guinizelli, 98/100, 00152, Roma, Italy
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME) Institute for Global Health UCL, Rowland Hill St, London, NW3 2PF, UK
| | - Anders Sönnerborg
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Nauclér
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
253
|
Noormahomed EV, Reid MJA, Mubuuke AG, Gachuno O, Sewankambo NK, Tsegaye A, Celentano J, Kiguli-Malwadde E, Ismail M, Odaibo G, Phaladze N, Nachega JB. Prioritizing post-COVID-19 health research in sub-Saharan Africa: A modified Delphi study for future pandemic. SCIENTIFIC AFRICAN 2024; 23:e02103. [PMID: 39822262 PMCID: PMC11737301 DOI: 10.1016/j.sciaf.2024.e02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Background The COVID-19 pandemic exposed weaknesses in healthcare systems and disparities in healthcare access across sub-Saharan Africa (SSA). The insights of frontline healthcare professionals (HCPs), and healthcare researchers involved with the response to COVID in SSA are crucial to ensuring that health systems are optimally prepared for the next pandemic threat. Nonetheless, there is limited consensus as to what are the clinical and public health research priorities necessary to ensure that SSA is optimally prepared and responsive to future pandemics. The aim of this Delphi consensus process was to collate the insights of leading HCPs engaged in research and clinical practice across SSA and prioritize a set of post-COVID-19 pandemic research priorities and determine the investment agenda necessary to address those priorities. Methods A modified Delphi process was designed to prioritize a shared agenda. A group of researchers from the African Forum for Research and Education in Health (AFREhealth) were asked to first list potential research topics. Then, members of the broader AFREhealth community were invited to rate the importance of each topic on a 4-point Likert scale, through two rounds of consensus-seeking. Consensus for inclusion was predefined as ≥70 % of respondents' rating. Results Health professionals, academics, and scientists representing a variety of professions from twenty SSA countries responded to the survey rounds, delivered electronically. An initial subset of researchers suggested 11 initial topics; subsequently, 53 respondents completed round one, and 64 completed round two of the modified Delphi. A final list of 20 topics that met predetermined consensus was grouped into four technical domains: [1] Health workforce and health professions education research; [2] Epidemiology and surveillance; [3] Clinical and health systems research; and [4] and other cross-cutting topics. Across these four domains, the highest-ranking priorities included [1] leveraging digital tools to enhance the health workforce, [2] strengthening genomic surveillance, [3] assessing health system resiliency, and [4] conducting ethical research. Conclusions Post-pandemic research priorities for pandemic preparedness and response included strategies to determine to leverage digital tools to enhance workforce training and impact, leveraging genomic surveillance capacity to close epidemiologic gaps, and developing strategies to enhance health system resiliency. The priorities outlined in this analysis underscore the need for capacity-building and context-specific research in sub-Saharan Africa to ensure an effective and equitable response to future pandemics.
Collapse
Affiliation(s)
| | | | | | | | | | - Aster Tsegaye
- Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Jean B. Nachega
- University of Pittsburgh, Pittsburgh, PA, USA
- Stellenbosch University, Cape Town, South Africa
- Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
254
|
Aguilar Ticona JP, Nery N, Hitchings M, Belitardo EMMA, Fofana MO, Dorión M, Victoriano R, Cruz JS, Oliveira Santana J, de Moraes LEP, Cardoso CW, Ribeiro GS, Reis MG, Khouri R, Costa F, Ko AI, Cummings DAT. Overestimation of Severe Acute Respiratory Syndrome Coronavirus 2 Household Transmission in Settings of High Community Transmission: Insights From an Informal Settlement Community in Salvador, Brazil. Open Forum Infect Dis 2024; 11:ofae065. [PMID: 38516384 PMCID: PMC10957159 DOI: 10.1093/ofid/ofae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear. Methods Between November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)-related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset. Results In 61 households, we detected a total of 94 RT-PCR-positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%-63.0%). Women (relative risk [RR], 1.6 [95% CI, .9-2.7]), older individuals (median difference, 15 [95% CI, 2-21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0-3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%-40.9%). Conclusions These findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19.
Collapse
Affiliation(s)
- Juan P Aguilar Ticona
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nivison Nery
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matt Hitchings
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | | | - Mariam O Fofana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Murilo Dorión
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Renato Victoriano
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Jaqueline S Cruz
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Juliet Oliveira Santana
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | | | - Cristiane W Cardoso
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Centro de Informações Estratégicas de Vigilância em Saúde (CIEVS), Secretaria Municipal de Saúde de Salvador, Salvador, Brazil
| | - Guilherme S Ribeiro
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Mitermayer G Reis
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Federico Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Albert I Ko
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Derek A T Cummings
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
255
|
Chen L, He Y, Liu H, Shang Y, Guo G. Potential immune evasion of the severe acute respiratory syndrome coronavirus 2 Omicron variants. Front Immunol 2024; 15:1339660. [PMID: 38464527 PMCID: PMC10924305 DOI: 10.3389/fimmu.2024.1339660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. The Omicron variant (B.1.1.529) was first discovered in November 2021 in specimens collected from Botswana, South Africa. Omicron has become the dominant variant worldwide, and several sublineages or subvariants have been identified recently. Compared to those of other mutants, the Omicron variant has the most highly expressed amino acid mutations, with almost 60 mutations throughout the genome, most of which are in the spike (S) protein, especially in the receptor-binding domain (RBD). These mutations increase the binding affinity of Omicron variants for the ACE2 receptor, and Omicron variants may also lead to immune escape. Despite causing milder symptoms, epidemiological evidence suggests that Omicron variants have exceptionally higher transmissibility, higher rates of reinfection and greater spread than the prototype strain as well as other preceding variants. Additionally, overwhelming amounts of data suggest that the levels of specific neutralization antibodies against Omicron variants decrease in most vaccinated populations, although CD4+ and CD8+ T-cell responses are maintained. Therefore, the mechanisms underlying Omicron variant evasion are still unclear. In this review, we surveyed the current epidemic status and potential immune escape mechanisms of Omicron variants. Especially, we focused on the potential roles of viral epitope mutations, antigenic drift, hybrid immunity, and "original antigenic sin" in mediating immune evasion. These insights might supply more valuable concise information for us to understand the spreading of Omicron variants.
Collapse
Affiliation(s)
- Luyi Chen
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ying He
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Hongye Liu
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Yongjun Shang
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Guoning Guo
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
256
|
Sussman F, Villaverde DS. The Diverse Nature of the Molecular Interactions That Govern the COV-2 Variants' Cell Receptor Affinity Ranking and Its Experimental Variability. Int J Mol Sci 2024; 25:2585. [PMID: 38473831 DOI: 10.3390/ijms25052585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
A critical determinant of infectivity and virulence of the most infectious and or lethal variants of concern (VOCs): Wild Type, Delta and Omicron is related to the binding interactions between the receptor-binding domain of the spike and its host receptor, the initial step in cell infection. It is of the utmost importance to understand how mutations of a viral strain, especially those that are in the viral spike, affect the resulting infectivity of the emerging VOC, knowledge that could help us understand the variant virulence and inform the therapies applied or the vaccines developed. For this sake, we have applied a battery of computational protocols of increasing complexity to the calculation of the spike binding affinity for three variants of concern to the ACE2 cell receptor. The results clearly illustrate that the attachment of the spikes of the Delta and Omicron variants to the receptor originates through different molecular interaction mechanisms. All our protocols unanimously predict that the Delta variant has the highest receptor-binding affinity, while the Omicron variant displays a substantial variability in the binding affinity of the spike that relates to the structural plasticity of the Omicron spike-receptor complex. We suggest that the latter result could explain (at least in part) the variability of the in vitro binding results for this VOC and has led us to suggest a reason for the lower virulence of the Omicron variant as compared to earlier strains. Several hypotheses have been developed around this subject.
Collapse
Affiliation(s)
- Fredy Sussman
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Santiago de Compostela, 15784 Santiago de Compostela, Spain
| | - Daniel S Villaverde
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Santiago de Compostela, 15784 Santiago de Compostela, Spain
| |
Collapse
|
257
|
Choi H, Hwang M, Cornelius L, Navarathna DH, Chatterjee P, Jinadatha C. Evolution of a Distinct SARS-CoV-2 Lineage Identified during an Investigation of a Hospital Outbreak. Viruses 2024; 16:337. [PMID: 38543703 PMCID: PMC10974601 DOI: 10.3390/v16030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 05/23/2024] Open
Abstract
The SARS-CoV-2 virus steadily evolves, and numerous antigenically distinct variants have emerged over the past three years. Tracking the evolution of the virus would help us understand the process that generates the diverse variants and predict the future evolutionary trajectory of SARS-CoV-2. Here, we report the evolutionary trajectory of a unique Omicron lineage identified during an outbreak investigation that occurred in a residence unit in the healthcare system. The new lineage had four distinct non-synonymous and two distinct synonymous mutations apart from its parental lineage. Since this lineage of virus was exclusively found during the outbreak, we were able to track the detailed evolutionary history of the entire lineage along the transmission path. Furthermore, we estimated the evolutionary rate of the SARS-CoV-2 Omicron variant from the analysis of the evolution of the lineage. This new Omicron sub-lineage acquired 3 mutations in a 12-day period, and the evolutionary rate was estimated as 3.05 × 10-3 subs/site/year. This study provides more insight into an ever-evolving virus.
Collapse
Affiliation(s)
- Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (M.H.); (P.C.)
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (M.H.); (P.C.)
| | - Lisa Cornelius
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (L.C.); (C.J.)
| | - Dhammika H. Navarathna
- Department of Pathology and Laboratory Medicine Services, Central Texas Veterans Health Care System, Temple, TX 76504, USA;
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (M.H.); (P.C.)
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX 76504, USA; (L.C.); (C.J.)
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| |
Collapse
|
258
|
Planas D, Staropoli I, Michel V, Lemoine F, Donati F, Prot M, Porrot F, Guivel-Benhassine F, Jeyarajah B, Brisebarre A, Dehan O, Avon L, Boland WH, Hubert M, Buchrieser J, Vanhoucke T, Rosenbaum P, Veyer D, Péré H, Lina B, Trouillet-Assant S, on behalf of COVID-SER study group, Hocqueloux L, Prazuck T, Simon-Loriere E, Schwartz O. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567873. [PMID: 38045308 PMCID: PMC10690205 DOI: 10.1101/2023.11.20.567873] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.
Collapse
Affiliation(s)
- Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Vincent Michel
- Pathogenesis of Vascular Infections Unit, Institut Pasteur, INSERM, Paris, France
| | - Frederic Lemoine
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Paris, France
| | - Flora Donati
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Francoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Banujaa Jeyarajah
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Angela Brisebarre
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Océane Dehan
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Léa Avon
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - William Henry Boland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Thibault Vanhoucke
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Pierre Rosenbaum
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sophie Trouillet-Assant
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | | | - Thierry Prazuck
- CHU d’Orléans, Service de Maladies Infectieuses, Orléans, France
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| |
Collapse
|
259
|
Tang J, Xu Q, Zhu C, Xuan K, Li T, Li Q, Pang X, Zha Z, Li J, Qiao L, Xu H, Wu G, Tian Y, Han J, Gao C, Yi J, Qian G, Tian X, Xie L. Immunogenicity of Tetravalent Protein Vaccine SCTV01E-2 against SARS-CoV-2 EG.5 Subvaraint: A Phase 2 Trial. Vaccines (Basel) 2024; 12:175. [PMID: 38400158 PMCID: PMC10893468 DOI: 10.3390/vaccines12020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The Omicron EG.5 lineage of SARS-CoV-2 is currently on a trajectory to become the dominant strain. This phase 2 study aims to evaluate the immunogenicity of SCTV01E-2, a tetravalent protein vaccine, with a specific emphasis on its immunogenicity against Omicron EG.5, comparing it with its progenitor vaccine, SCTV01E (NCT05933512). As of 12 September 2023, 429 participants aged ≥18 years were randomized into the groups SCTV01E (N = 215) and SCTV01E-2 (N = 214). Both vaccines showed increases in neutralizing antibody (nAb) against Omicron EG.5, with a 5.7-fold increase and a 9.0-fold increase in the SCTV01E and SCTV01E-2 groups 14 days post-vaccination, respectively. The predetermined statistical endpoints were achieved, showing that the geometric mean titer (GMT) of nAb and the seroresponse rate (SRR) against Omicron EG.5 were significantly higher in the SCTV01E-2 group than in the SCTV01E group. Additionally, SCTV01E and SCTV01E-2 induced a 5.5-fold and a 5.9-fold increase in nAb against XBB.1, respectively. Reactogenicity was generally mild and transient. No vaccine-related serious adverse events (SAEs), adverse events of special interest (AESIs), or deaths were reported. In summary, SCTV01E-2 elicited robust neutralizing responses against Omicron EG.5 and XBB.1 without raising safety concerns, highlighting its potential as a versatile COVID-19 vaccine against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jihai Tang
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Chaoyin Zhu
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Kun Xuan
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Tao Li
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Qingru Li
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Xingya Pang
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Zhenqiu Zha
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Jinwei Li
- Fuyang Center for Disease Control and Prevention, Fuyang 236030, China; (J.L.); (H.X.)
| | - Liyang Qiao
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Haiyang Xu
- Fuyang Center for Disease Control and Prevention, Fuyang 236030, China; (J.L.); (H.X.)
| | - Gang Wu
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Yan Tian
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Jun Han
- State Key Laboratory of Infectious, Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Cuige Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Jiang Yi
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Gui Qian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Xuxin Tian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
260
|
Cheng MQ, Li R, Weng ZY, Song G. Relative effectiveness of bivalent COVID-19 vaccine: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 10:1322396. [PMID: 38384317 PMCID: PMC10879625 DOI: 10.3389/fmed.2023.1322396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 02/23/2024] Open
Abstract
Objective The rapid development of COVID-19 bivalent vaccines (BVs) has encompassed both the original virus strains and the variant strain. However, the effectiveness of BVs is largely unknown. Therefore, we conducted a systematic review and meta-analysis of the effectiveness of BVs. Methods Literature research was conducted through PubMed, Cochrane Library, Embase, and Web of Science up until November 4, 2023. Both randomized control trials and observational studies were considered for inclusion. Pooled estimates were calculated using a random effects model. The Newcastle-Ottawa Scale (NOS) was used to assess the risk of bias in cohort and case-control studies. Results A total of 1,174 articles were reviewed and 22 eligible studies were included. All included studies were observational (15 cohort studies, 7 case-control studies). The total number of participants was 39,673,160, and the number of people vaccinated with BVs as an intervention group was 11,585,182. Two mRNA BVs were mainly involved, including the ancestral strain and the BA.1 or BA.4-5 variants. Meta-analysis results showed, compared with the monovalent vaccines (MVs), the relative effectiveness (rVE) of the BVs in COVID-19-associated infections/symptomatic infections, illnesses, hospitalizations, and deaths was 30.90% [95% confidence interval (CI), 8.43-53.37], 39.83% (95% CI, 27.34-52.32), 59.70% (95% CI, 44.08-75.32), and 72.23% (95% CI, 62.08-82.38), respectively. For those aged 50 years and older, BVs provided an additional 49.69% (95% CI, 41.44-57.94) effective protection compared with MVs. During the dominance period of the omicron XBB variant strain, BVs provided an additional 47.63% (95% CI, 27.45-67.82) effective protection compared with MVs. Conclusion Our findings show that the rVE of BVs in preventing COVID-19-associated infections, symptomatic infections, illnesses, hospitalizations, and deaths is higher compared to MVs. Particularly for people over 50 years of age and during the Omicron variant XBB dominance phase, BVs provided superior protection. Therefore, BVs may have a broader application in the prevention and control of coronaviruses variant.
Collapse
Affiliation(s)
- Meng-qun Cheng
- Department of Reproductive Medicine, The Puer People's Hospital, Pu’er, China
| | - Rong Li
- Department of Pharmacy, The Puer People's Hospital, Pu’er, China
| | - Zhi-ying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Gao Song
- Department of Pharmacy, The Puer People's Hospital, Pu’er, China
| |
Collapse
|
261
|
Lan PD, Nissley DA, O’Brien EP, Nguyen TT, Li MS. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. J Chem Phys 2024; 160:055101. [PMID: 38310477 PMCID: PMC11223169 DOI: 10.1063/5.0188053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu. Here, using a coarse-grained model and replica-exchange umbrella sampling, we studied the free energy landscape of both the wild type and Omicron subvariants BA.1 and XBB.1.5 interacting with ACE2. In agreement with experiment, we find that the wild type and Omicron subvariants have similar xu values, but Omicron binds ACE2 more strongly than the wild type, having a lower dissociation constant KD.
Collapse
Affiliation(s)
| | - Daniel A. Nissley
- Department of Statistics, University of Oxford, Oxford Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | | | - Toan T. Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems and Department of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University - Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi 11400, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
262
|
Borroto-Esoda K, Wilfret D, Tong X, Plummer A, Kearney B, Kwong AD. SARS-CoV-2 viral dynamics in a placebo-controlled phase 2 study of patients infected with the SARS-CoV-2 Omicron variant and treated with pomotrelvir. Microbiol Spectr 2024; 12:e0298023. [PMID: 38197702 PMCID: PMC10845961 DOI: 10.1128/spectrum.02980-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Current guidelines recommend that individuals with moderate COVID-19 disease isolate for 5 days after the first appearance of symptoms or a positive SARS-CoV-2 test. It would be useful to understand the time course of infectious virus production and its correlation with virus detection using a rapid antigen test (RAT) or quantitative reverse transcriptase (qRT)-PCR. In a phase 2 study, 242 vaccinated patients with COVID-19 and at low risk for progression to severe disease initiated 5 days of treatment with pomotrelvir (PBI-0451, a SARS-CoV-2 main protease inhibitor) or placebo within 5 days after symptom onset. The primary endpoint, the proportion of subjects with SARS-CoV-2 viral titers below the limit of detection on Day 3 of treatment in the pomotrelvir versus placebo groups, was not met. No between-group differences in SARS-CoV-2 clearance or symptom resolution or alleviation were observed. Additional analyses evaluated the dynamics of SARS-CoV-2 replication in mid-turbinate nasal swabs and saliva samples using infectious virus assay (IVA), RAT, and qRT-PCR. SARS-CoV-2 cleared rapidly, with negative results first determined by IVA (TCID50 below the limit of detection), followed by the RAT (negative for SARS-CoV-2 N antigen), and qRT-PCR (RNA below the limit of detection), which suggests that delayed initiation of treatment (up to 5 days after symptom onset) may have contributed to the lack of treatment response. Symptom resolution lagged behind viral clearance assessed by IVA and RAT. These data support reliance on a negative RAT to determine when an individual is no longer producing infectious virus and may end isolation.IMPORTANCEA phase 2 double-blind, placebo-controlled study was performed evaluating pomotrelvir, a SARS-CoV-2 Mpro inhibitor, compared with placebo in 242 non-hospitalized, vaccinated, symptomatic adults with COVID-19 (Omicron). No improvement in the decrease of viral replication or relief of symptoms was observed between the two groups when treatment was initiated ≥3 days after symptom onset. These results suggest that future COVID-19 antiviral studies using a similar patient population may need to initiate treatment earlier, like influenza studies. This is the first study to prospectively evaluate SARS-CoV-2 viral dynamics and the time to viral clearance in a significant number of patients using concurrently obtained results from an infectious virus assay, a rapid antigen test (RAT), and a qRT-PCR assay over a 15-day time course. These results suggest that a negative RAT assay is a good indicator of loss of infectious virus and the ability to return to normal activities.
Collapse
Affiliation(s)
| | | | - Xiao Tong
- Pardes BioSciences Inc., Carlsbad, California, USA
| | | | | | - Ann D. Kwong
- Pardes BioSciences Inc., Carlsbad, California, USA
| |
Collapse
|
263
|
Zhao X, Qiu T, Huang X, Mao Q, Wang Y, Qiao R, Li J, Mao T, Wang Y, Cun Y, Wang C, Luo C, Yoon C, Wang X, Li C, Cui Y, Zhao C, Li M, Chen Y, Cai G, Geng W, Hu Z, Cao J, Zhang W, Cao Z, Chu H, Sun L, Wang P. Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination. Cell Discov 2024; 10:14. [PMID: 38320990 PMCID: PMC10847457 DOI: 10.1038/s41421-024-00648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum-neutralizing activity against diverse coronaviruses. Through single B-cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences. Among them, PW5-570 potently neutralized all SARS-CoV-2 variants that arose prior to Omicron BA.5, and the other three could broadly neutralize all current SARS-CoV-2 variants of concern, SARS-CoV and their related sarbecoviruses (Pangolin-GD, RaTG13, WIV-1, and SHC014). Cryo-EM analysis demonstrates that these antibodies have diverse neutralization mechanisms, such as disassembling spike trimers, or binding to RBM or SD1 to affect ACE2 binding. In addition, prophylactic administration of these antibodies significantly protects nasal turbinate and lung infections against BA.1, XBB.1, and SARS-CoV viral challenge in golden Syrian hamsters, respectively. Importantly, post-exposure treatment with PW5-5 and PW5-535 also markedly protects against XBB.1 challenge in these models. This study reveals the potential utility of computational process to assist screening cross-reactive antibodies, as well as the potency of vaccine-induced broadly neutralizing antibodies against current SARS-CoV-2 variants and related sarbecoviruses, offering promising avenues for the development of broad therapeutic antibody drugs.
Collapse
Grants
- We thank Center of Cryo-Electron Microscopy, Fudan University for the supports on cryo-EM data collection. This study was supported by funding from the National Key Research and Development Program of China (No. 2023YFC3404000 to Z.C.), National Natural Science Foundation of China (32270142 to P.W.; 32300121 to X.Z; 31900483 and 32370697 to T.Q.; 32070657 to Z.C.), National Key R&D Program of China (2019YFA0905900 to Z.C.), the Ministry of Science and Technology of China (2021YFC2302500 to L.S.), Shanghai Rising-Star Program (22QA1408800 to P.W.), Shanghai Pujiang Programme (23PJD007 to X.Z.), Shanghai Sailing Program (19YF1441100 to T.Q.), the Program of Science and Technology Cooperation with Hong Kong, Macao and Taiwan (23410760500 to P.W.), AI for Science project of Fudan University (XM06231724 to T.Q. & P.W.), and R&D Program of Guangzhou Laboratory (SRPG22-003 to L.S.). This study was also supported by Collaborative Research Fund (HKU C7103-22G to H.C.), Theme-Based Research Scheme (T11-709/21-N to H.C.), the Research Grants Council of the HKSAR; the Health and Medical Research Fund (COVID1903010-Project 14 to H.C.), the Food and Health Bureau, the Government of the HKSAR; and Emergency COVID-19 grant (2021YFC0866100 to H.C.) from Major Projects on Public Security under the National Key Research and Development Program of China. Pengfei Wang acknowledges support from Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2304) and Xiaomi Young Talents Program. Xiaoyu Zhao acknowledges support from International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program, YJ20220079).
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Institute of Clinical Science, ZhongShan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xiner Huang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qiyu Mao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yajie Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Tiantian Mao
- School of Life Sciences, Fudan University, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yewei Cun
- School of Life Sciences, Fudan University, Shanghai, China
| | - Caicui Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cuiting Luo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chaemin Yoon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Minghui Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Wenye Geng
- Fudan Zhangjiang Institute, Shanghai Medical College of Fudan University, Fudan University, Shanghai, China
| | - Zixin Hu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China
| | - Jinglei Cao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, China.
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Lei Sun
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China.
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China.
| |
Collapse
|
264
|
Uddbäck I, Michalets SE, Saha A, Mattingly C, Kost KN, Williams ME, Lawrence LA, Hicks SL, Lowen AC, Ahmed H, Thomsen AR, Russell CJ, Scharer CD, Boss JM, Koelle K, Antia R, Christensen JP, Kohlmeier JE. Prevention of respiratory virus transmission by resident memory CD8 + T cells. Nature 2024; 626:392-400. [PMID: 38086420 PMCID: PMC11040656 DOI: 10.1038/s41586-023-06937-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.
Collapse
Affiliation(s)
- Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah E Michalets
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ananya Saha
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsten N Kost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
265
|
Liu P, Xing Z, Peng X, Zhang M, Shu C, Wang C, Li R, Tang L, Wei H, Ran X, Qiu S, Gao N, Yeo YH, Liu X, Ji F. Machine learning versus multivariate logistic regression for predicting severe COVID-19 in hospitalized children with Omicron variant infection. J Med Virol 2024; 96:e29447. [PMID: 38305064 DOI: 10.1002/jmv.29447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
With the emergence of the Omicron variant, the number of pediatric Coronavirus Disease 2019 (COVID-19) cases requiring hospitalization and developing severe or critical illness has significantly increased. Machine learning and multivariate logistic regression analysis were used to predict risk factors and develop prognostic models for severe COVID-19 in hospitalized children with the Omicron variant in this study. Of the 544 hospitalized children including 243 and 301 in the mild and severe groups, respectively. Fever (92.3%) was the most common symptom, followed by cough (79.4%), convulsions (36.8%), and vomiting (23.2%). The multivariate logistic regression analysis showed that age (1-3 years old, odds ratio (OR): 3.193, 95% confidence interval (CI): 1.778-5.733], comorbidity (OR: 1.993, 95% CI:1.154-3.443), cough (OR: 0.409, 95% CI:0.236-0.709), and baseline neutrophil-to-lymphocyte ratio (OR: 1.108, 95% CI: 1.023-1.200), lactate dehydrogenase (OR: 1.993, 95% CI: 1.154-3.443), blood urea nitrogen (OR: 1.002, 95% CI: 1.000-1.003) and total bilirubin (OR: 1.178, 95% CI: 1.005-3.381) were independent risk factors for severe COVID-19. The area under the curve (AUC) of the prediction models constructed by multivariate logistic regression analysis and machine learning (RandomForest + TomekLinks) were 0.7770 and 0.8590, respectively. The top 10 most important variables of random forest variables were selected to build a prediction model, with an AUC of 0.8210. Compared with multivariate logistic regression, machine learning models could more accurately predict severe COVID-19 in children with Omicron variant infection.
Collapse
Affiliation(s)
- Pan Liu
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Zixuan Xing
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaokang Peng
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Mengyi Zhang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Chang Shu
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Ce Wang
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Ruina Li
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Li Tang
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Huijing Wei
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Xiaoshan Ran
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Sikai Qiu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoguai Liu
- Department of Infectious Diseases, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
266
|
Huang L, Zhao F, He M, Fang Y, Ma X, Lu S, Li E, Xiao H, Zhu H, Wang X, Tang S, Yu B, Wang J, Zhao D, Wang C, Li H, Gao Y, Peng X, Shen H. An inoculation site-retained mRNA vaccine induces robust immune responses against SARS-CoV-2 variants. J Control Release 2024; 366:479-493. [PMID: 38184234 DOI: 10.1016/j.jconrel.2024.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
mRNA-based vaccines and therapeutic agents hold great promise in prevention and treatment of human diseases, yet high percentage of systemic adverse effect in clinic remains a big safety concern. One major potential cause is a high level of leakage of the locally inoculated mRNA vaccine nanoparticles into circulation. We have screened and optimized a core-shell structured lipopolyplex (LPP) formulation for mRNA with a tissue-retention property. Upon intramuscular inoculation, the mRNA-encapsulated LPP nanoparticles were preferentially taken up by the phagocytic antigen-presentation cells, and potently promoted dendritic cell maturation. We applied the new formulation to prepare a prophylactic vaccine for SARS-CoV-2, and observed potent humoral and cellular immune responses from the vaccine in both murine models and non-human primates. More importantly, the vaccine demonstrated a benign safety profile in non-human primates, with limited side effects after repeated treatment with high dosages of LPP/mRNA. Taken together, the inoculation site-retained vaccine formulation serves as a promising vehicle for mRNA vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Lei Huang
- Stemirna Therapeutics, Shanghai 201206, China; Department of Material Science, Fudan University, Shanghai 200433, China
| | - Fanfan Zhao
- Stemirna Therapeutics, Shanghai 201206, China
| | - Muye He
- Stemirna Therapeutics, Shanghai 201206, China
| | - Yi Fang
- Stemirna Therapeutics, Shanghai 201206, China
| | - Xiaoping Ma
- Stemirna Therapeutics, Shanghai 201206, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hui Xiao
- Stemirna Therapeutics, Shanghai 201206, China
| | - Hanfei Zhu
- Stemirna Therapeutics, Shanghai 201206, China
| | - Xueli Wang
- Stemirna Therapeutics, Shanghai 201206, China
| | - Siyuan Tang
- Stemirna Therapeutics, Shanghai 201206, China
| | - Bo Yu
- Stemirna Therapeutics, Shanghai 201206, China
| | - Jie Wang
- Stemirna Therapeutics, Shanghai 201206, China
| | - Dong Zhao
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Chao Wang
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Hangwen Li
- Stemirna Therapeutics, Shanghai 201206, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China.
| | - Haifa Shen
- Stemirna Therapeutics, Shanghai 201206, China.
| |
Collapse
|
267
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
268
|
Krutikov M, Stirrup O, Fuller C, Adams N, Azmi B, Irwin-Singer A, Sethu N, Hayward A, Altamirano H, Copas A, Shallcross L. Built Environment and SARS-CoV-2 Transmission in Long-Term Care Facilities: Cross-Sectional Survey and Data Linkage. J Am Med Dir Assoc 2024; 25:304-313.e11. [PMID: 38065220 PMCID: PMC11139658 DOI: 10.1016/j.jamda.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVES To describe the built environment in long-term care facilities (LTCF) and its association with introduction and transmission of SARS-CoV-2 infection. DESIGN Cross-sectional survey with linkage to routine surveillance data. SETTING AND PARTICIPANTS LTCFs in England caring for adults ≥65 years old, participating in the VIVALDI study (ISRCTN14447421) were eligible. Data were included from residents and staff. METHODS Cross-sectional survey of the LTCF built environment with linkage to routinely collected asymptomatic and symptomatic SARS-CoV-2 testing and vaccination data between September 1, 2020, and March 31, 2022. We used individual and LTCF level Poisson and Negative Binomial regression models to identify risk factors for 4 outcomes: incidence rate of resident infections and outbreaks, outbreak size, and duration. We considered interactions with variant transmissibility (pre vs post Omicron dominance). RESULTS A total of 134 of 151 (88.7%) LTCFs participated in the survey, contributing data for 13,010 residents and 17,766 staff. After adjustment and stratification, outbreak incidence (measuring infection introduction) was only associated with SARS-CoV-2 incidence in the community [incidence rate ratio (IRR) for high vs low incidence, 2.84; 95% CI, 1.85-4.36]. Characteristics of the built environment were associated with transmission outcomes and differed by variant transmissibility. For resident infection incidence, factors included number of storeys (0.64; 0.43-0.97) and bedrooms (1.04; 1.02-1.06), and purpose-built vs converted buildings (1.99; 1.08-3.69). Air quality was associated with outbreak size (dry vs just right 1.46; 1.00-2.13). Funding model (0.99; 0.99-1.00), crowding (0.98; 0.96-0.99), and bedroom temperature (1.15; 1.01-1.32) were associated with outbreak duration. CONCLUSIONS AND IMPLICATIONS We describe previously undocumented diversity in LTCF built environments. LTCFs have limited opportunities to prevent SARS-CoV-2 introduction, which was only driven by community incidence. However, adjusting the built environment, for example by isolating infected residents or improving airflow, may reduce transmission, although data quality was limited by subjectivity. Identifying LTCF built environment modifications that prevent infection transmission should be a research priority.
Collapse
Affiliation(s)
- Maria Krutikov
- Institute of Health Informatics, University College London, London, UK.
| | - Oliver Stirrup
- Institute for Global Health, University College London, London, UK
| | - Chris Fuller
- Institute of Health Informatics, University College London, London, UK
| | - Natalie Adams
- Institute of Health Informatics, University College London, London, UK
| | - Borscha Azmi
- Institute of Health Informatics, University College London, London, UK
| | - Aidan Irwin-Singer
- Surveillance Testing and Immunity, UK Health Security Agency, London, UK
| | - Niyathi Sethu
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Andrew Hayward
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Hector Altamirano
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Andrew Copas
- Institute for Global Health, University College London, London, UK
| | - Laura Shallcross
- Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
269
|
Hao X, Bao Z, Dai R, Wu X, Li X, Zhang M, Li H, Xu L, Qiao P, Liu X, Hu W, Zhang Z, Fang J, Zhou M, Wang W, Qu J. A pilot study on Paxlovid therapy for hemodialysis patients with severe acute respiratory syndrome coronavirus 2 infections. Front Med 2024; 18:169-179. [PMID: 37978164 DOI: 10.1007/s11684-023-1011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/19/2023] [Indexed: 11/19/2023]
Abstract
We aimed to investigate the safety and efficacy of nirmatrelvir/ritonavir (Paxlovid) therapy for hemodialysis-dependent patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Thirteen hemodialysis patients infected with the Omicron variant of SARS-CoV-2 from April 3 to May 30, 2022, were recruited. Laboratory parameters and chest CT (computed tomography) imaging were analyzed. The treatment group included six patients who received 150 mg/100 mg of Paxlovid orally once daily for 5 days, whereas the control group included seven patients who received basic treatment. No serious adverse reactions or safety events were recorded. Four control patients progressed to moderate disease, and none in the treatment group showed progression of chest CT findings (P < 0.05). Paxlovid therapy tended toward early viral clearance and low viral load on Day 8. Moreover, 83.3% of the patients in the treatment group and 57.1% of the patients in the control group turned negative within 22 days. In the Paxlovid treatment group, we found significantly increased levels of lymphocytes (P=0.03) and eosinophils (P=0.02) and decreased levels of D-dimer on Day 8 compared with those on Day 1. Paxlovid therapy showed a potential therapeutic effect with good tolerance in hemodialysis patients. The optimal dose and effectiveness evaluation must be further investigated in a largeer cohort.
Collapse
Affiliation(s)
- Xu Hao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiyao Bao
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojing Wu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Muyin Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lili Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Panpan Qiao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuefei Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiting Hu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ze Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Fang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
270
|
Zhang W, Xu X, Qi L, Liu M, Zhao X, Kong L, Wang Y, Chen F, Zhang C, Cheng J, Zheng W. Clinical evaluation of a new COVID-19 antigen rapid test kit for detection of SARS-CoV-2. Diagn Microbiol Infect Dis 2024; 108:116136. [PMID: 38041889 DOI: 10.1016/j.diagmicrobio.2023.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Abstract
The antigen rapid diagnostic test (Ag-RDT) is an assay kit for detecting the SARS-COV-2 nucleocapsid proteins, based on the colloidal gold method.Accurate diagnosis has an important role in limiting the transmission of SARS-COV-2, and also helps patients to receive earlier treatment .The object of this study was to perform the clinical evaluation of a novel Ag-RDTs with samples collected from two different swabs.DEEPBLUE®COVID-19 antigen detection kit used for the examination of the subjects in the experiment.For antigen testing on samples collected with nasal swabs, sensitivity was 91.7 % (95 % CI 83.6-96.6 %) and specificity was 100 %(95 %CI 98.1-100 %).For nasopharyngeal swabs, the sensitivity was 96.8 % (95 % CI 93.6-98.7 %) and the specificity was 100 % (95 % CI 98.2-100 %).Fisher Precision test showed a significant correlation between nasopharyngeal swab Ag-RDTs and nasal swab Ag-RDTs and RT-qPCR test (p-value <0.001).The results showed that the patients use the kit for testing were comparable to the RT-qPCR.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xiaoliang Xu
- School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Liangshuai Qi
- School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Mingkai Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Shihezi University, Shihezi 832008, Xinjiang, China
| | - Xiaoying Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital, Shihezi University, Shihezi 832008, Xinjiang, China
| | - Lingshang Kong
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yingji Wang
- Department of Geriatric Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Fengling Chen
- Anhui DeepBlue Medical Technology Co. Ltd., Hefei, 230088, Anhui, China
| | - Chao Zhang
- Anhui DeepBlue Medical Technology Co. Ltd., Hefei, 230088, Anhui, China.
| | - Jianghua Cheng
- Institute of Agricultural Products Processing, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China.
| | - Weiwei Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| |
Collapse
|
271
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
272
|
Chen CY, Zhang W, Xu XR, Pu YT, Tu YD, Peng W, Yao X, Zhou S, Fang BJ. Efficacy and Safety of Huashi Baidu Granules in Treating Patients with SARS-CoV-2 Omicron Variant: A Single-Center Retrospective Cohort Study. Chin J Integr Med 2024; 30:107-114. [PMID: 37222827 PMCID: PMC10206345 DOI: 10.1007/s11655-023-3549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of Huashi Baidu Granules (HSBD) in treating patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. METHODS A single-center retrospective cohort study was conducted during COVID-19 Omicron epidemic in the Mobile Cabin Hospital of Shanghai New International Expo Center from April 1st to May 23rd, 2022. All COVID-19 patients with asymptomatic or mild infection were assigned to the treatment group (HSBD users) and the control group (non-HSBD users). After propensity score matching in a 1:1 ratio, 496 HSBD users of treatment group were matched by propensity score to 496 non-HSBD users. Patients in the treatment group were administrated HSBD (5 g/bag) orally for 1 bag twice a day for 7 consecutive days. Patients in the control group received standard care and routine treatment. The primary outcomes were the negative conversion time of nucleic acid and negative conversion rate at day 7. Secondary outcomes included the hospitalized days, the time of the first nucleic acid negative conversion, and new-onset symptoms in asymptomatic patients. Adverse events (AEs) that occurred during the study were recorded. Further subgroup analysis was conducted in vaccinated (378 HSBD users and 390 non-HSBD users) and unvaccinated patients (118 HSBD users and 106 non-HSBD users). RESULTS The median negative conversion time of nucleic acid in the treatment group was significantly shortened than the control group [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The negative conversion rate of nucleic acid in the treatment group were significantly higher than those in the control group at day 7 (91.73% vs. 86.90%, P=0.014). Compared with the control group, the hospitalized days in the treatment group were significantly reduced [10 days (IQR: 8-11 days) vs. 11 days (IQR: 10.25-12 days); P<0.01]. The time of the first nucleic acid negative conversion had significant differences between the treatment and control groups [3 days (IQR: 2-4 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The incidence of new-onset symptoms including cough, pharyngalgia, expectoration and fever in the treatment group were lower than the control group (P<0.05 or P<0.01). In the vaccinated patients, the median negative conversion time and hospitalized days were significantly shorter than the control group after HSDB treatment [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days), P<0.01; 10 days (IQR: 8-11 days) vs. 11 days (IQR: 10-12 days), P<0.01]. In the unvaccinated patients, HSBD treatment efficiently shorten the median negative conversion time and hospitalized days [4 days (IQR: 2-6 days) vs. 5 days (IQR: 4-7 days), P<0.01; 10.5 days (IQR: 8.75-11 days) vs. 11.0 days (IQR: 10.75-13 days); P<0.01]. No serious AEs were reported during the study. CONCLUSION HSBD treatment significantly shortened the negative conversion time of nuclear acid, the length of hospitalization, and the time of the first nucleic acid negative conversion in patients infected with SARS-COV-2 Omicron variant (Trial registry No. ChiCTR2200060472).
Collapse
Affiliation(s)
- Cai-Yu Chen
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiang-Ru Xu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yu-Ting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ya-Dan Tu
- Department of Classical Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuan Yao
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shuang Zhou
- Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bang-Jiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
273
|
Reuschl AK, Thorne LG, Whelan MVX, Ragazzini R, Furnon W, Cowton VM, De Lorenzo G, Mesner D, Turner JLE, Dowgier G, Bogoda N, Bonfanti P, Palmarini M, Patel AH, Jolly C, Towers GJ. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat Microbiol 2024; 9:451-463. [PMID: 38228858 PMCID: PMC10847042 DOI: 10.1038/s41564-023-01588-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.
Collapse
Affiliation(s)
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, St Mary's Medical School, Imperial College London, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L E Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Giulia Dowgier
- Division of Infection and Immunity, University College London, London, UK
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Nathasha Bogoda
- Division of Infection and Immunity, University College London, London, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | | | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK.
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
274
|
Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024; 16:184. [PMID: 38399960 PMCID: PMC10893260 DOI: 10.3390/v16020184] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Over the last three years, the pandemic of COVID-19 has had a significant impact on people's lives and the global economy. The incessant emergence of variant strains has compounded the challenges associated with the management of COVID-19. As the predominant variant from late 2021 to the present, Omicron and its sublineages, through continuous evolution, have demonstrated iterative viral fitness. The comprehensive elucidation of the biological implications that catalyzed this evolution remains incomplete. In accordance with extant research evidence, we provide a comprehensive review of subvariants of Omicron, delineating alterations in immune evasion, cellular infectivity, and the cross-species transmission potential. This review seeks to clarify the underpinnings of biology within the evolution of SARS-CoV-2, thereby providing a foundation for strategic considerations in the post-pandemic era of COVID-19.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
275
|
Cianfarini C, Hassler L, Wysocki J, Hassan A, Nicolaescu V, Elli D, Gula H, Ibrahim AM, Randall G, Henkin J, Batlle D. Soluble Angiotensin-Converting Enzyme 2 Protein Improves Survival and Lowers Viral Titers in Lethal Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection with the Delta Variant. Cells 2024; 13:203. [PMID: 38334597 PMCID: PMC10854654 DOI: 10.3390/cells13030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
- Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Abdelsabour Hassan
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Vlad Nicolaescu
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Derek Elli
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Haley Gula
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Glenn Randall
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| |
Collapse
|
276
|
Banho CA, de Carvalho Marques B, Sacchetto L, Sepedro Lima AK, Pereira Parra MC, Jeronimo Lima AR, Ribeiro G, Jorge Martins A, dos Santos Barros CR, Carolina Elias M, Coccuzzo Sampaio S, Nanev Slavov S, Strazza Rodrigues E, Vieira Santos E, Tadeu Covas D, Kashima S, Augusto Brassaloti R, Petry B, Gaspar Clemente L, Lehmann Coutinho L, Akemi Assato P, da Silva da Costa FA, Souza-Neto JA, Maria Tommasini Grotto R, Daiana Poleti M, Cristina Chagas Lesbon J, Chicaroni Mattos E, Fukumasu H, Giovanetti M, Carlos Junior Alcantara L, Rahal P, Pessoa Araújo JF, Althouse BM, Vasilakis N, Lacerda Nogueira M. Dynamic clade transitions and the influence of vaccine rollout on the spatiotemporal circulation of SARS-CoV-2 variants in São Paulo, Brazil. RESEARCH SQUARE 2024:rs.3.rs-3788142. [PMID: 38343798 PMCID: PMC10854302 DOI: 10.21203/rs.3.rs-3788142/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Jayme A. Souza-Neto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Brazil, Americas
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Brazil, Americas
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Fernando Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM
- Information School, University of Washington, Seattle, WA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
277
|
Hakim MS, Gunadi, Rahayu A, Wibawa H, Eryvinka LS, Supriyati E, Vujira KA, Iskandar K, Afiahayati, Daniwijaya EW, Oktoviani FN, Annisa L, Utami FDT, Amadeus VC, Nurhidayah SS, Leksono TP, Halim FV, Arguni E, Nuryastuti T, Wibawa T. Sequence analysis of the Spike, RNA-dependent RNA polymerase, and protease genes reveals a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia. Virus Genes 2024:10.1007/s11262-023-02048-1. [PMID: 38244104 DOI: 10.1007/s11262-023-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024]
Abstract
During the Covid-19 pandemic, the resurgence of SARS-CoV-2 was due to the development of novel variants of concern (VOC). Thus, genomic surveillance is essential to monitor continuing evolution of SARS-CoV-2 and to track the emergence of novel variants. In this study, we performed phylogenetic, mutation, and selection pressure analyses of the Spike, nsp12, nsp3, and nsp5 genes of SARS-CoV-2 isolates circulating in Yogyakarta and Central Java provinces, Indonesia from May 2021 to February 2022. Various bioinformatics tools were employed to investigate the evolutionary dynamics of distinct SARS-CoV-2 isolates. During the study period, 213 and 139 isolates of Omicron and Delta variants were identified, respectively. Particularly in the Spike gene, mutations were significantly more abundant in Omicron than in Delta variants. Consistently, in all of four genes studied, the substitution rates of Omicron were higher than that of Delta variants, especially in the Spike and nsp12 genes. In addition, selective pressure analysis revealed several sites that were positively selected in particular genes, implying that these sites were functionally essential for virus evolution. In conclusion, our study demonstrated a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ayu Rahayu
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Directorate General of Livestok Services, Ministry of Agriculture, Yogyakarta, Indonesia
| | - Laudria Stella Eryvinka
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Khanza Adzkia Vujira
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kristy Iskandar
- Department of Child Health and Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Afiahayati
- Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edwin Widyanto Daniwijaya
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fadila Dyah Trie Utami
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Verrell Christopher Amadeus
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Setiani Silvy Nurhidayah
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tiara Putri Leksono
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fiqih Vidiantoro Halim
- Pediatric Surgery Division, Department of Surgery and Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
278
|
Marcotte H, Cao Y, Zuo F, Simonelli L, Sammartino JC, Pedotti M, Sun R, Cassaniti I, Hagbom M, Piralla A, Yang J, Du L, Percivalle E, Bertoglio F, Schubert M, Abolhassani H, Sherina N, Guerra C, Borte S, Rezaei N, Kumagai-Braesch M, Xue Y, Su C, Yan Q, He P, Grönwall C, Klareskog L, Calzolai L, Cavalli A, Wang Q, Robbiani DF, Hust M, Shi Z, Feng L, Svensson L, Chen L, Bao L, Baldanti F, Xiao J, Qin C, Hammarström L, Yang X, Varani L, Xie XS, Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc Natl Acad Sci U S A 2024; 121:e2315354120. [PMID: 38194459 PMCID: PMC10801922 DOI: 10.1073/pnas.2315354120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Yunlong Cao
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Maren Schubert
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Natalia Sherina
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig04129, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig04129, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran14194, Iran
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm14186, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
- Rheumatology Unit, Karolinska University Hospital, Stockholm17176, Sweden
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra21027, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 200032 Shanghai200032, People’s Republic of China
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Michael Hust
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Zhengli Shi
- State Key laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei430071, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm17177, Sweden
| | - Ling Chen
- Guangzhou Laboratory, Guangzhou510005, People’s Republic of China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia27100, Italy
| | - Junyu Xiao
- Changping Laboratory, Beijing102206, People’s Republic of China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Xiaoliang Sunney Xie
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| |
Collapse
|
279
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
280
|
Zhang W, Wu H, Guo Q, Xu X, Pu Y, Chen C, Cao M, Sun D, Lu W, Yi H, Zhou S, Fang B. Association of clinical characteristics and vaccines with risk of persistently viral clearance in patients infected with SARS-CoV-2 Omicron variant in Shanghai, China. Heliyon 2024; 10:e23256. [PMID: 38192786 PMCID: PMC10772582 DOI: 10.1016/j.heliyon.2023.e23256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Importance The global COVID-19 pandemic does not appear to end in the near future. Currently, limited data are available on the risk factors for delayed viral clearance in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection. Objective This study aimed to investigate the association of clinical characteristics and vaccination with prolonged viral clearance. Methods This retrospective cohort included 16,985 patients who had contracted the SARS-CoV-2 Omicron variant between April 5 and May 30, 2022, in Shanghai, China, and had mild or no symptoms. The patients were admitted to the quarantine venue at the Shanghai New International Expo Center. Results Of the 16,985 participants, the occurrence of viral clearance was ≤8 and > 8 days in 11,009 (64.8 %) and 5976 (35.2 %) participants, respectively. Risk factors related to patients who remained persistently polymerase chain reaction (PCR)-positive were sex (Male, odds ratio [OR] 1.221, p < 0.001), older age (35-49, OR 1.389, p < 0.001; 50-64, OR 1.659, p < 0.001; ≥65, OR 2.139, p < 0.001), presence of symptoms (OR 1.093, p = 0.030), number of vaccinations (two doses, OR 0.753, p < 0.001; three doses, OR 0.797, p < 0.001; four doses, OR 0.543, p < 0.001), and cycle threshold (Ct) value for ORF1ab gene at diagnosis (25-35, OR 0.235, p < 0.001; >35, OR 0.079, p < 0.001). The lower rates of increase in Ct values were observed in the later viral shedding group than in the early viral shedding group for ORF1ab (β = -0.791, p < 0.001) and N genes (β = -0.825, p < 0.001). Conclusion Prolonged SARS-CoV-2 RNA detection and higher viral concentrations were associated with factors such as male sex, older age, symptomatic status, and fewer doses of vaccination in patients admitted to Shanghai Makeshift Hospital between April 5 and May 30, 2022.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Hongze Wu
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, 332005, Jiangxi, PR China
| | - Quan Guo
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiangru Xu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Yuting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Caiyu Chen
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Min Cao
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Ding Sun
- Department of Rheumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Wei Lu
- Department of Nursing, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Hui Yi
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, 332005, Jiangxi, PR China
| | - Shuang Zhou
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi Tech Park, Pudong New Area, Shanghai 201203, PR China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
- Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| |
Collapse
|
281
|
Irvine EB, Reddy ST. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:235-243. [PMID: 38166249 DOI: 10.4049/jimmunol.2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
Abs are versatile molecules with the potential to achieve exceptional binding to target Ags, while also possessing biophysical properties suitable for therapeutic drug development. Protein display and directed evolution systems have transformed synthetic Ab discovery, engineering, and optimization, vastly expanding the number of Ab clones able to be experimentally screened for binding. Moreover, the burgeoning integration of high-throughput screening, deep sequencing, and machine learning has further augmented in vitro Ab optimization, promising to accelerate the design process and massively expand the Ab sequence space interrogated. In this Brief Review, we discuss the experimental and computational tools employed in synthetic Ab engineering and optimization. We also explore the therapeutic challenges posed by developing Abs for infectious diseases, and the prospects for leveraging machine learning-guided protein engineering to prospectively design Abs resistant to viral escape.
Collapse
Affiliation(s)
- Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
282
|
Ravi V, Shamim U, Khan MA, Swaminathan A, Mishra P, Singh R, Bharali P, Chauhan NS, Pandey R. Unraveling the genetic evolution of SARS-CoV-2 Recombinants using mutational dynamics across the different lineages. Front Med (Lausanne) 2024; 10:1294699. [PMID: 38288302 PMCID: PMC10823376 DOI: 10.3389/fmed.2023.1294699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Recombination serves as a common strategy employed by RNA viruses for their genetic evolution. Extensive genomic surveillance during the COVID-19 pandemic has reported SARS-CoV-2 Recombinant strains indicating recombination events during the viral evolution. This study introspects the phenomenon of genome recombination by tracing the footprint of prominent lineages of SARS-CoV-2 at different time points in the context of on-going evolution and emergence of Recombinants. Method Whole genome sequencing was carried out for 2,516 SARS-CoV-2 (discovery cohort) and 1,126 (validation cohort) using nasopharyngeal samples collected between the time period of March 2020 to August 2022, as part of the genomic surveillance program. The sequences were classified according to the different lineages of SARS-CoV-2 prevailing in India at respective time points. Results Mutational diversity and abundance evaluation across the 12 lineages identified 58 Recombinant sequences as harboring the least number of mutations (n = 111), with 14 low-frequency unique mutations with major chunk of mutations coming from the BA.2. The spontaneously/dynamically increasing and decreasing trends of mutations highlight the loss of mutations in the Recombinants that were associated with the SARS-CoV-2 replication efficiency, infectivity, and disease severity, rendering them functionally with low infectivity and pathogenicity. Linkage disequilibrium (LD) analysis revealed that mutations comprising the LD blocks of BA.1, BA.2, and Recombinants were found as minor alleles or as low-frequency alleles in the LD blocks from the previous SARS-CoV-2 variant samples, especially Pre-VOC. Moreover, a dissipation in the size of LD blocks as well as LD decay along with a high negative regression coefficient (R squared) value was demonstrated in the Omicron and BA.1 and BA.2 lineages, which corroborated with the breakpoint analysis. Conclusion Together, the findings help to understand the evolution and emergence of Recombinants after the Omicron lineages, for sustenance and adaptability, to maintain the epidemic spread of SARS-CoV-2 in the host population already high in immunity levels.
Collapse
Affiliation(s)
- Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Md Abuzar Khan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajender Singh
- CSIR-Central Drug Research Institute, (CSIR-CDRI), Lucknow, Lucknow, India
| | - Pankaj Bharali
- CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
283
|
Assawakosri S, Kanokudom S, Suntronwong N, Chansaenroj J, Auphimai C, Nilyanimit P, Vichaiwattana P, Thongmee T, Duangchinda T, Chantima W, Pakchotanon P, Srimuan D, Thatsanathorn T, Klinfueng S, Sudhinaraset N, Wanlapakorn N, Mongkolsapaya J, Honsawek S, Poovorawan Y. Immunogenicity and durability against Omicron BA.1, BA.2 and BA.4/5 variants at 3-4 months after a heterologous COVID-19 booster vaccine in healthy adults with a two-doses CoronaVac vaccination. Heliyon 2024; 10:e23892. [PMID: 38226248 PMCID: PMC10788509 DOI: 10.1016/j.heliyon.2023.e23892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Several countries have authorized a booster vaccine campaign to combat the spread of COVID-19. Data on persistence of booster vaccine-induced immunity against new Omicron subvariants are still limited. Therefore, our study aimed to determine the serological immune response of COVID-19 booster after CoronaVac-priming. METHODS A total of 187 CoronaVac-primed participants were enrolled and received an inactivated (BBIBP), viral vector (AZD1222) or mRNA vaccine (full-/half-dose BNT162B2, full-/half-dose mRNA-1273) as a booster dose. The persistence of humoral immunity both binding and neutralizing antibodies against wild-type and Omicron was determined on day 90-120 after booster. RESULTS A waning of total RBD immunoglobulin (Ig) levels, anti-RBD IgG, and neutralizing antibodies against Omicron BA.1, BA.2, and BA.4/5 variants was observed 90-120 days after booster vaccination. Participants who received mRNA-1273 had the highest persistence of the immunogenicity response, followed by BNT162b2, AZD1222, and BBIBP-CorV. The responses between full and half doses of mRNA-1273 were comparable. The percentage reduction of binding antibody ranged from 50 % to 75 % among all booster vaccine. CONCLUSIONS The antibody response substantially waned after 90-120 days post-booster dose. The heterologous mRNA and the viral vector booster demonstrated higher detectable rate of humoral immune responses against the Omicron variant compared to the inactivated BBIBP booster. Nevertheless, an additional fourth dose is recommended to maintain immune response against infection.
Collapse
Affiliation(s)
- Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sittisak Honsawek
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- FRS(T), the Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
284
|
Anand A, Long C, Chandran K. NYC metropolitan wastewater reveals links between SARS-CoV-2 amino acid mutations and disease outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167971. [PMID: 37914132 DOI: 10.1016/j.scitotenv.2023.167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Since late 2020, diverse SARS-CoV-2 variants with enhanced infectivity and transmissibility have emerged. In contrast to the focus on amino acid mutations in the spike protein, mutations in non-spike proteins and their associated impacts remain relatively understudied. New York City metropolitan wastewater revealed over 60 % of the most frequently occurring amino acid mutations in regions outside the spike protein. Strikingly, ~50 % of the mutations detected herein remain uncharacterized for functional impacts. Our results suggest that there are several understudied mutations within non-spike proteins N, ORF1a, ORF1b, ORF9b, and ORF9c, that could increase transmissibility, and infectivity among human populations. We also demonstrate significant correlations of P314L, D614G, T95I, G50E, G50R, G204R, R203K, G662S, P10S, and P13L with documented mortality rates, hospitalization rates, and percent positivity suggesting that amino acid mutations are likely to be indicators of COVID-19 infection outcomes.
Collapse
Affiliation(s)
- Archana Anand
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Chenghua Long
- Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, United States of America
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, United States of America.
| |
Collapse
|
285
|
Li H, Zhao X, Peng S, Li Y, Li J, Zheng H, Zhang Y, Zhao Y, Tian Y, Yang J, Wang Y, Zhang X, Liu L. The Abundant Distribution and Duplication of SARS-CoV-2 in the Cerebrum and Lungs Promote a High Mortality Rate in Transgenic hACE2-C57 Mice. Int J Mol Sci 2024; 25:997. [PMID: 38256071 PMCID: PMC10815841 DOI: 10.3390/ijms25020997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1β and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1β but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (H.L.); (X.Z.); (S.P.); (Y.L.); (J.L.); (H.Z.); (Y.Z.); (Y.Z.); (Y.T.); (J.Y.); (Y.W.); (X.Z.)
| |
Collapse
|
286
|
Wang X, Jiang S, Ma W, Li X, Wei K, Xie F, Zhao C, Zhao X, Wang S, Li C, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Li J, Hu Z, Zhang W, Jiang S, Li M, Zhang Y, Wang P. Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster. Cell Host Microbe 2024; 32:25-34.e5. [PMID: 38029742 DOI: 10.1016/j.chom.2023.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Emerging SARS-CoV-2 sub-lineages like XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3 and the variant BA.2.86 have recently been identified. Understanding the efficacy of current vaccines on these emerging variants is critical. We evaluate the serum neutralization activities of participants who received COVID-19 inactivated vaccine (CoronaVac), those who received the recently approved tetravalent protein vaccine (SCTV01E), or those who had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Neutralization profiles against a broad panel of 30 sub-lineages reveal that BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibit heightened resistance to neutralization compared to previous variants. However, despite their extra mutations, BA.2.86 and the emerging XBB sub-lineages do not demonstrate significantly increased resistance to neutralization over XBB.1.5. Encouragingly, the SCTV01E booster consistently induces higher neutralizing titers against all these variants than breakthrough infection does. Cellular immunity assays also show that the SCTV01E booster elicits a higher frequency of virus-specific memory B cells. Our findings support the development of multivalent vaccines to combat future variants.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiangnan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Kaifeng Wei
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shidi Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zixin Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
287
|
Zahmatkesh A, Salmasi E, Gholizadeh R. Interaction of toll-like receptors and ACE-2 with different variants of SARS-CoV-2: A computational analysis. BIOIMPACTS : BI 2024; 14:30150. [PMID: 39104618 PMCID: PMC11298020 DOI: 10.34172/bi.2024.30150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 08/07/2024]
Abstract
Introduction Computational studies were performed to investigate the unknown status of endosomal and cell surface receptors in SARS-CoV-2 infection. The interactions between Toll-like receptors (TLRs)- 4/7/8/9 or ACE2 receptor and different SARS-CoV-2 variants were investigated. Methods The RNA motifs for TLR7, TLR8 and a CpG motif for TLR9 were analyzed in different variants. Molecular docking and molecular dynamics (MD) simulations were performed to investigate receptor-ligand interactions. Results The number of motifs recognized by TLR7/8/9 in the Alpha, Delta and Iranian variants was lower than in the wild type (WT). Docking analysis revealed that the Alpha, Delta and some Iranian spike variants had a higher affinity for ACE2 and TLR4 than the WT, which may account for their higher transmission rate. The MD simulation also showed differences in stability and structure size between the variants and the WT, indicating potential variations in viral load. Conclusion It appears that Alpha and some Iranian isolates are the variants of concern due to their higher transmissibility and rapid spread. The Delta mutant is also a variant of concern, not only because of its closer interaction with ACE2, but also with TLR4. Our results emphasize the importance of ACE2 and TLR4, rather than endosomal TLRs, in mediating the effects of different viral mutations and suggest their potential therapeutic applications.
Collapse
Affiliation(s)
- Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Elham Salmasi
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | - Reza Gholizadeh
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
288
|
Pérez-Massón B, Quintana-Pérez Y, Tundidor Y, Pérez-Martínez D, Castro-Martínez C, Pupo-Meriño M, Orosa I, Relova-Hernández E, Villegas R, Guirola O, Rojas G. Studying SARS-CoV-2 interactions using phage-displayed receptor binding domain as a model protein. Sci Rep 2024; 14:712. [PMID: 38184672 PMCID: PMC10771503 DOI: 10.1038/s41598-023-50450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
SARS-CoV-2 receptor binding domain (RBD) mediates viral entry into human cells through its interaction with angiotensin converting enzyme 2 (ACE2). Most neutralizing antibodies elicited by infection or vaccination target this domain. Such a functional relevance, together with large RBD sequence variability arising during viral spreading, point to the need of exploring the complex landscape of interactions between RBD-derived variants, ACE2 and antibodies. The current work was aimed at developing a simple platform to do so. Biologically active and antigenic Wuhan-Hu-1 RBD, as well as mutated RBD variants found in nature, were successfully displayed on filamentous phages. Mutational scanning confirmed the global plasticity of the receptor binding motif within RBD, highlighted residues playing a critical role in receptor binding, and identified mutations strengthening the interaction. The ability of vaccine-induced antibodies to inhibit ACE2 binding of many mutated RBD variants, albeit at different extents, was shown. Amino acid replacements which could compromise such inhibitory potential were underscored. The expansion of our approach could be the starting point for a large-scale phage-based exploration of diversity within RBD of SARS-CoV-2 and related coronaviruses, useful to understand structure-function relationships, to engineer RBD proteins, and to anticipate changes to watch during viral evolution.
Collapse
Affiliation(s)
- Beatriz Pérez-Massón
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Yazmina Quintana-Pérez
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Yaima Tundidor
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Dayana Pérez-Martínez
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Camila Castro-Martínez
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Mario Pupo-Meriño
- Universidad de Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 1/2, Torrens, Boyeros, CP 19370, Havana, Cuba
| | - Ivette Orosa
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Ernesto Relova-Hernández
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba
| | - Rosmery Villegas
- Universidad de Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 1/2, Torrens, Boyeros, CP 19370, Havana, Cuba
| | - Osmany Guirola
- Center for Genetic Engineering and Biotechnology, Ave 31 E/158 y 190, Cubanacán, Playa, CP 11300, Havana, Cuba
| | - Gertrudis Rojas
- Center of Molecular Immunology, Calle 216 esq 15, apartado 16040, Atabey, Playa, CP 11300, Havana, Cuba.
| |
Collapse
|
289
|
Sadeghi Mofrad S, Boozarjomehri Amnieh S, Pakzad MR, Zardadi M, Ghazanfari Jajin M, Anvari E, Moghaddam S, Fateh A. The death rate of COVID-19 infection in different SARS-CoV-2 variants was related to C-reactive protein gene polymorphisms. Sci Rep 2024; 14:703. [PMID: 38184750 PMCID: PMC10771501 DOI: 10.1038/s41598-024-51422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
The serum level of C-reactive protein (CRP) is a significant independent risk factor for Coronavirus disease 2019 (COVID-19). A link was found between serum CRP and genetic diversity within the CRP gene in earlier research. This study examined whether CRP rs1205 and rs1800947 polymorphisms were associated with COVID-19 mortality among various severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) variants. We genotyped CRP rs1205 and rs1800947 polymorphisms in 2023 deceased and 2307 recovered patients using the polymerase chain reaction-restriction fragment length polymorphism method. There was a significant difference between the recovered and the deceased patients in terms of the minor allele frequency of CRP rs1205 T and rs1800947 G. In all three variants, COVID-19 mortality rates were associated with CRP rs1800947 GG genotype. Furthermore, CRP rs1205 CC and rs1800947 GG genotypes showed higher CRP levels. It was found that the G-T haplotype was prevalent in all SARS-CoV-2 variants. The C-C and C-T haplotypes were statistically significant in Delta and Omicron BA.5 variants, respectively. In conclusion, polymorphisms within the CRP gene may relate to serum CRP levels and mortality among COVID-19 patients. In order to verify the utility of CRP polymorphism correlation in predicting COVID-19 mortality, a replication of these results is needed.
Collapse
Affiliation(s)
- Sahar Sadeghi Mofrad
- Department of Microbiology, Islamic Azad University of Central Tehran Branch, Tehran, Iran
| | | | - Mohammad Reza Pakzad
- Faculty of Veterinary Medicine, Tabriz Medical Science Branch, Islamic Azad University, Tabriz, Iran
| | - Mina Zardadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Enayat Anvari
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Science, Ilam, Iran
| | - Sina Moghaddam
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
290
|
Kassianos G, MacDonald P, Aloysius I, Pather S. Responses to Common Misconceptions Relating to COVID-19 Variant-Adapted mRNA Vaccines. Vaccines (Basel) 2024; 12:57. [PMID: 38250870 PMCID: PMC10819631 DOI: 10.3390/vaccines12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waning of immunity over time has necessitated the use of booster doses of original coronavirus disease 2019 (COVID-19) vaccines. This has also led to the development and implementation of variant-adapted messenger RNA (mRNA) vaccines that include an Omicron sub-lineage component in addition to the antigen based on the wild-type virus spike protein. Subsequent emergence of the recombinant XBB sub-lineages triggered the development of monovalent XBB-based variant-adapted mRNA vaccines, which are available for vaccination campaigns in late 2023. Misconceptions about new variant-adapted vaccines may exacerbate vaccine fatigue and drive the lack of vaccine acceptance. This article aims to address common concerns about the development and use of COVID-19 variant-adapted mRNA vaccines that have emerged as SARS-CoV-2 has continued to evolve.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London NW1 2FB, UK;
- British Global and Travel Health Association, London NW1 2FB, UK
| | | | | | | |
Collapse
|
291
|
Zaidi AK, Singh RB. SARS-CoV-2 variant biology and immune evasion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 202:45-66. [PMID: 38237990 DOI: 10.1016/bs.pmbts.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter discusses the SARS-CoV-2 variants and their immune evasion strategies, shedding light on the dynamic nature of the COVID-19 pandemic. The ecological dynamics and viral evolution of SARS-CoV-2 are explored, considering carriers of infection, individual immunity profiles, and human movement as key factors in the emergence and dissemination of variants. The chapter discusses SARS-CoV-2 mutation, including mutation rate, substitution rate, and recombination, influencing genetic diversity and evolution. Transmission bottlenecks are highlighted as determinants of dominant variants during viral spread. The evolution phases of the pandemic are outlined, from limited early evolution to the emergence of notable changes like the D614G substitution and variants with heavy mutations. Variants of Concern (VOCs), including Alpha, Beta, Gamma, and the recent Omicron variant, are examined, with insights into inter-lineage and intra-lineage dynamics. The origin of VOCs and the Omicron variant is explored, alongside the role of the furin cleavage site (FCS) in variant emergence. The impact of structural and non-structural proteins on viral infectivity is assessed, as well as innate immunity evasion strategies employed by SARS-CoV-2 variants. The chapter concludes by considering future possibilities, including ongoing virus evolution, the need for surveillance, vaccine development, and public health measures.
Collapse
Affiliation(s)
| | - Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States; Department of Population, Policy and Practice, Greater Ormond Street Institute of Child Health, University College London, United Kingdom; Discipline of Ophthalmology and Visual Sciences, Adelaide Medical School, University of Adelaide, Australia.
| |
Collapse
|
292
|
Zaidi AK, Singh RB. Epidemiology of COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 202:25-38. [PMID: 38237988 DOI: 10.1016/bs.pmbts.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a detailed exploration of the epidemiology of COVID-19, focusing on several key aspects that offer valuable insights into the disease progression. A comprehensive comparison is made between the three related coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2, elucidating their similarities and differences in terms of transmission dynamics, clinical presentation, laboratory and radiological findings, infection mechanisms, and mortality rates. The concept of herd immunity is then discussed, exploring its relevance and potential implications for controlling the spread of COVID-19. Next, the chapter delves into the changing epidemiology of the disease, examining how various factors such as human behavior, public health interventions, and viral mutations have influenced its transmission patterns and severity over time. Finally, the timelines and evolution of COVID-19 are outlined, tracing the origins of the virus, its rapid global spread, and the emergence of new variants.
Collapse
Affiliation(s)
| | - Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United State; Department of Population, Policy and Practice, Greater Ormond Street Institute of Child Health, University College London, United Kingdom; Discipline of Ophthalmology and Visual Sciences, Adelaide Medical School, University of Adelaide, Australia
| |
Collapse
|
293
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
294
|
Razafimahatratra SL, Andriatefy OH, Mioramalala DJN, Tsatoromila FAM, Randrianarisaona F, Dussart P, Schoenhals M. Multiple SARS-CoV-2 immunizations of an unvaccinated population lead to complex immunity. A T cell reactivity study of blood donors in Antananarivo. J Infect Public Health 2024; 17:175-181. [PMID: 38039861 DOI: 10.1016/j.jiph.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Madagascar has undergone multiple and robust COVID-19 waves. The resulting immune background developed by its poorly vaccinated population has however not been described. METHODS In this study, serological analysis and specific T cell response descriptions were used to describe the history of exposures of the capital's blood donors to SARS-CoV-2 and its VOCs. Samples were collected early 2022, and pools of multiple immunogenic peptides of SARS-CoV-2 were used in an IFN-γ secretion ELISPOT assay to characterize the specific T-cell immunity developed against these potential epitopes. RESULTS Multiple epidemic waves have led to 92.1% of donors having detectable antibodies, and 94.8% having developed T-cells against SARS-CoV-2. Heterogeneous reactivities to different strain-derived peptides suggested multiple immunological backgrounds in the population including 16.1% of individuals exposed at least once to a unique strain, 27.1% to two strains, 28.5% to three strains, and 23.1% to four distinct strains. CONCLUSIONS Cross-reactivity increased with multiple exposures but did not decrease the risk of re-infection. These results describe the extremely complex immunological background developed following multiple natural immunizations.
Collapse
Affiliation(s)
| | | | | | | | | | - Philippe Dussart
- Direction, Institut Pasteur of Madagascar, 101 Antananarivo, Madagascar
| | - Matthieu Schoenhals
- Immunology of Infectious Diseases Unit, Institut Pasteur of Madagascar, 101 Antananarivo, Madagascar.
| |
Collapse
|
295
|
Gupta DL, Meher J, Giri AK, Shukla AK, Mohapatra E, Ruikar MM, Rao DN. RBD mutations at the residues K417, E484, N501 reduced immunoreactivity with antisera from vaccinated and COVID-19 recovered patients. Drug Target Insights 2024; 18:20-26. [PMID: 38860262 PMCID: PMC11163369 DOI: 10.33393/dti.2024.3059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction It is unclear whether induced spike protein-specific antibodies due to infections with SARS-CoV-2 or to the prototypic Wuhan isolate-based vaccination can immune-react with the emerging variants of SARS-CoV-2. Aim/objectives The main objective of the study was to measure the immunoreactivity of induced antibodies postvaccination with Covishield™ (ChAdOx1 nCoV-19 coronavirus vaccines) or infections with SARS-CoV-2 by using selected peptides of the spike protein of wild type and variants of SARS-CoV-2. Methodology Thirty patients who had recovered from SARS-CoV-2 infections and 30 individuals vaccinated with both doses of Covishield™ were recruited for the study. Venous blood samples (5 mL) were collected at a single time point from patients within 3-4 weeks of recovery from SARS-CoV-2 infections or receiving both doses of Covishield™ vaccines. The serum levels of total immunoglobulin were measured in both study groups. A total of 12 peptides of 10 to 24 amino acids length spanning to the receptor-binding domain (RBD) of wild type of SARS-CoV-2 and their variants were synthesized. The serum levels of immune-reactive antibodies were measured using these peptides. Results The serum levels of total antibodies were found to be significantly (p<0.001) higher in the vaccinated individuals as compared to COVID-19 recovered patients. Our study reported that the mutations in the RBD at the residues K417, E484, and N501 have been associated with reduced immunoreactivity with anti-sera of vaccinated people and COVID-19 recovered patients. Conclusion The amino acid substitutions at the RBD of SARS-CoV-2 have been associated with a higher potential to escape the humoral immune response.
Collapse
Affiliation(s)
- Dablu Lal Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh - India
| | - Jhasketan Meher
- Department of General Medicine, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh - India
| | - Anjan Kumar Giri
- Department of Community and Family Medicine, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh - India
| | - Arvind K Shukla
- Department of Community Medicine, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh - India
| | - Eli Mohapatra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh - India
| | - Manisha M Ruikar
- Department of Community Medicine, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh - India
| | - DN Rao
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi - India
| |
Collapse
|
296
|
Peng S, Huang H, Chen J, Ding X, Zhu X, Liu Y, Chen L, Lu Z. Impact of Anti-angiogenic Drugs on Severity of COVID-19 in Patients with Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2024; 23:15330338241248573. [PMID: 38656242 PMCID: PMC11044805 DOI: 10.1177/15330338241248573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction: The 2019 coronavirus disease (COVID-19) pandemic has reshaped oncology practice, but the impact of anti-angiogenic drugs on the severity of COVID-19 in patients with non-small cell lung cancer (NSCLC) remains unclear. Patients and Methods: We carried out a retrospective study involving 166 consecutive patients with NSCLC who were positive for COVID-19, aiming to determine the effects of anti-angiogenic drugs on disease severity, as defined by severe/critical symptoms, intensive care unit (ICU) admission/intubation, and mortality outcomes. Risk factors were identified using univariate and multivariate logistic regression models. Results: Of the participants, 73 had been administered anti-angiogenic drugs (termed the anti-angiogenic therapy (AT) group), while 93 had not (non-AT group). Comparative analyses showed no significant disparity in the rates of severe/critical symptoms (21.9% vs 35.5%, P = 0.057), ICU admission/intubation (6.8% vs 7.5%, P = 0.867), or death (11.0% vs 9.7%, P = 0.787) between these two groups. However, elevated risk factors for worse outcomes included age ≥ 60 (odds ratio (OR): 2.52, 95% confidence interval (CI): 1.07-5.92), Eastern Cooperative Oncology Group performance status of 2 or higher (OR: 21.29, 95% CI: 4.98-91.01), chronic obstructive pulmonary disease (OR: 7.25, 95% CI: 1.65-31.81), hypertension (OR: 2.98, 95% CI: 1.20-7.39), and use of immunoglobulin (OR: 5.26, 95% CI: 1.06-26.25). Conclusion: Our data suggests that the use of anti-angiogenic drugs may not exacerbate COVID-19 severity in NSCLC patients, indicating their potential safe application even during the pandemic period.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yangyang Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
297
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
298
|
Wang M, Lkhagva E, Kim S, Zhai C, Islam MM, Kim HJ, Hong ST. The gut microbe pair of Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270 confers complete protection against SARS-CoV-2 infection by activating CD8+ T cell-mediated immunity. Gut Microbes 2024; 16:2342497. [PMID: 38635321 PMCID: PMC11028030 DOI: 10.1080/19490976.2024.2342497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite the potential protective role of the gut microbiome against COVID-19, specific microbes conferring resistance to COVID-19 have not yet been identified. In this work, we aimed to identify and validate gut microbes at the species level that provide protection against SARS-CoV-2 infection. To identify gut microbes conferring protection against COVID-19, we conducted a fecal microbiota transplantation (FMT) from an individual with no history of COVID-19 infection or immunization into a lethal COVID-19 hamster model. FMT from this COVID-19-resistant donor resulted in significant phenotypic changes related to COVID-19 sensitivity in the hamsters. Metagenomic analysis revealed distinct differences in the gut microbiome composition among the hamster groups, leading to the identification of two previously unknown bacterial species: Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, both associated with COVID-19 resistance. Subsequently, we conducted a proof-of-concept confirmation animal experiment adhering to Koch's postulates. Oral administration of this gut microbe pair, Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, to the hamsters provided complete protection against SARS-CoV-2 infection through the activation of CD8+ T cell mediated immunity. The prophylactic efficacy of the gut microbe pair against SARS-CoV-2 infection was comparable to, or even superior to, current mRNA vaccines. This strong prophylactic efficacy suggests that the gut microbe pair could be developed as a host-directed universal vaccine for all betacoronaviruses, including potential future emerging viruses.
Collapse
Affiliation(s)
- Mingda Wang
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China
| | - Enkhchimeg Lkhagva
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Sura Kim
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Chongkai Zhai
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
- College of Food and Drugs, Luoyang Polytechnic, Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, Henan Province, China
| | - Md Minarul Islam
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Hyeon J. Kim
- BioLabs-LA at the Lundquist Institute for Bio Medical Innovation at Harbor UCLA, SNJ Pharma Inc, Torrance, CA, USA
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| |
Collapse
|
299
|
Wang E, Yang QJ, Xu XX, Zou QC, Long Y, Ma G, Deng ZH, Zhao JB, Li MH, Zeng J. Differential pathogenic and molecular features in neurological infection of SARS-CoV-2 Omicron BA.5.2 and BA.2.75 and Delta. J Med Virol 2024; 96:e29357. [PMID: 38235532 DOI: 10.1002/jmv.29357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global threat, exacerbated by the emergence of viral variants. Two variants of SARS-CoV-2, Omicron BA.2.75 and BA.5, led to global infection peaks between May 2022 and May 2023, yet their precise characteristics in pathogenesis are not well understood. In this study, we compared these two Omicron sublineages with the previously dominant Delta variant using a human angiotensin-converting enzyme 2 knock-in mouse model. As expected, Delta exhibited higher viral replication in the lung and brain than both Omicron sublineages which induced less severe lung damage and immune activation. In contrast, the Omicron variants especially BA.5.2 showed a propensity for cellular proliferation and developmental pathways. Both Delta and BA.5.2 variants, but not BA.2.75, led to decreased pulmonary lymphocytes, indicating differential adaptive immune response. Neuroinvasiveness was shared with all strains, accompanied by vascular abnormalities, synaptic injury, and loss of astrocytes. However, Immunostaining assays and transcriptomic analysis showed that BA.5.2 displayed stronger immune suppression and neurodegeneration, while BA.2.75 exhibited more similar characteristics to Delta in the cortex. Such differentially infectious features could be partially attributed to the weakened interaction between Omicron Spike protein and host proteomes decoded via co-immunoprecipitation followed by mass spectrometry in neuronal cells. Our present study supports attenuated replication and pathogenicity of Omicron variants but also highlights their newly infectious characteristics in the lung and brain, especially with BA.5.2 demonstrating enhanced immune evasion and neural damage that could exacerbate neurological sequelae.
Collapse
Affiliation(s)
- Erlin Wang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiao-Jiang Yang
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiang-Xiong Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qing-Cui Zou
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanghaopeng Long
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guanqin Ma
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhong-Hua Deng
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie-Bin Zhao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming-Hua Li
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianxiong Zeng
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming, Yunnan, China
| |
Collapse
|
300
|
Feng Y, Fan Y, Luo X, Ge J. A Wells-Riley based COVID-19 infectious risk assessment model combining both short range and room scale effects. BUILDING SIMULATION 2024; 17:93-111. [DOI: 10.1007/s12273-023-1060-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 01/05/2025]
|