251
|
Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells 2009; 27:503-13. [PMID: 19466598 PMCID: PMC6712562 DOI: 10.1007/s10059-009-0069-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 04/25/2009] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more "active configuration" to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical for the evolution of the tumor microenvironment. This review will focus on the functional roles of the major heparan sulfate proteoglycans from basement membrane zones: perlecan, agrin and collagen XVIII, and on their roles in modulating cancer growth and angiogenesis.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
252
|
Zoeller JJ, Whitelock JM, Iozzo RV. Perlecan regulates developmental angiogenesis by modulating the VEGF-VEGFR2 axis. Matrix Biol 2009; 28:284-91. [PMID: 19422911 DOI: 10.1016/j.matbio.2009.04.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Using the zebrafish, we previously identified a central function for perlecan during angiogenic blood vessel development. Here, we explored the nature of perlecan function during developmental angiogenesis. A close examination of individual endothelial cell behavior revealed that perlecan is required for proper endothelial cell migration and proliferation. Because these events are largely mediated by VEGF-VEGFR2 signaling, we investigated the relationship between perlecan and the VEGF pathway. We discovered that perlecan knockdown caused an abnormal increase and redistribution of total VEGF-A protein suggesting that perlecan is required for the appropriate localization of VEGF-A. Importantly, we linked perlecan function to the VEGF pathway by efficiently rescuing the perlecan morphant phenotype by microinjecting VEGF-A(165) protein or mRNA. Combining the strategic localization of perlecan throughout the vascular basement membrane along with its growth factor-binding ability, we hypothesized a major role for perlecan during the establishment of the VEGF gradient which provides the instructive cues to endothelial cells during angiogenesis. In support of this hypothesis we demonstrated that human perlecan bound in a heparan sulfate-dependent fashion to VEGF-A(165). Moreover, perlecan enhanced VEGF mediated VEGFR2 activation of human endothelial cells. Collectively, our results indicate that perlecan coordinates developmental angiogenesis through modulation of VEGF-VEGFR2 signaling events. The identification of angiogenic factors, such as perlecan, and their role in vertebrate development will not only enhance overall understanding of the molecular basis of angiogenesis, but may also provide new insight into angiogenesis-based therapeutic approaches.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
253
|
Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol 2009; 132:1-10. [DOI: 10.1007/s00418-009-0586-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 01/23/2023]
|
254
|
Kosodo Y, Huttner WB. Basal process and cell divisions of neural progenitors in the developing brain. Dev Growth Differ 2009; 51:251-61. [DOI: 10.1111/j.1440-169x.2009.01101.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
255
|
Egea J, Erlacher C, Montanez E, Burtscher I, Yamagishi S, Hess M, Hampel F, Sanchez R, Rodriguez-Manzaneque MT, Bösl MR, Fässler R, Lickert H, Klein R. Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. Genes Dev 2009; 22:3349-62. [PMID: 19056886 DOI: 10.1101/gad.486708] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During early mouse development, the anterior visceral endoderm (AVE) secretes inhibitor and activator signals that are essential for establishing the anterior-posterior (AP) axis of the embryo and for restricting mesoderm formation to the posterior epiblast in the primitive streak (PS) region. Here we show that AVE cells have an additional morphogenetic function. These cells express the transmembrane protein FLRT3. Genetic ablation of FLRT3 did not affect the signaling functions of the AVE according to the normal expression pattern of Nodal and Wnt and the establishment of a proper AP patterning in the epiblast. However, FLRT3(-/-) embryos showed a highly disorganized basement membrane (BM) in the AVE region. Subsequently, adjacent anterior epiblast cells displayed an epithelial-to-mesenchymal transition (EMT)-like process characterized by the loss of cell polarity, cell ingression, and the up-regulation of the EMT and the mesodermal marker genes Eomes, Brachyury/T, and FGF8. These results suggest that the AVE acts as a morphogenetic boundary to prevent EMT and mesoderm induction in the anterior epiblast by maintaining the integrity of the BM. We propose that this novel function cooperates with the signaling activities of the AVE to restrict EMT and mesoderm induction to the posterior epiblast.
Collapse
Affiliation(s)
- Joaquim Egea
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Zoeller JJ, Pimtong W, Corby H, Goldoni S, Iozzo AE, Owens RT, Ho SY, Iozzo RV. A central role for decorin during vertebrate convergent extension. J Biol Chem 2009; 284:11728-37. [PMID: 19211552 DOI: 10.1074/jbc.m808991200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decorin, an archetypal member of the small leucine-rich proteoglycan gene family, regulates collagen fibrillogenesis and cell growth. To further explore its biological function, we examined the role of Decorin during zebrafish development. Zebrafish Decorin is a chondroitin sulfate proteoglycan that exhibits a high degree of conservation with its mammalian counterpart and displays a unique spatiotemporal expression pattern. Morpholino-mediated knockdown of zebrafish decorin identified a developmental role during medial-lateral convergence and anterior-posterior extension of the body plan, as well as in craniofacial cartilage formation. decorin morphants displayed a pronounced shortening of the head-to-tail axis as well as compression, flattening, and extension of the jaw cartilages. The morphant phenotype was efficiently rescued by zebrafish decorin mRNA. Unexpectedly, microinjection of excess zebrafish decorin mRNA or proteoglycan/protein core into one-cell stage embryos caused cyclopia. The morphant and overexpression phenotype represent a convergent extension defect. Our results indicate a central function for Decorin during early embryogenesis.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Xiong Q, Jiao Y, Hasty KA, Canale ST, Stuart JM, Beamer WG, Deng HW, Baylink D, Gu W. Quantitative trait loci, genes, and polymorphisms that regulate bone mineral density in mouse. Genomics 2009; 93:401-14. [PMID: 19150398 DOI: 10.1016/j.ygeno.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
This is an in silico analysis of data available from genome-wide scans. Through analysis of QTL, genes and polymorphisms that regulate BMD, we identified 82 BMD QTL, 191 BMD-associated (BMDA) genes, and 83 genes containing known BMD-associated polymorphisms (BMDAP). The catalogue of all BMDA/BMDAP genes and relevant literatures are provided. In total, there are substantially more BMDA/BMDAP genes in regions of the genome where QTL have been identified than in non-QTL regions. Among 191 BMDA genes and 83 BMDAP genes, 133 and 58 are localized in QTL regions, respectively. The difference was still noticeable for the chromosome distribution of these genes between QTL and non-QTL regions. These results have allowed us to generate an integrative profile of QTL, genes, polymorphisms that determine BMD. These data could facilitate more rapid and comprehensive identification of causal genes underlying the determination of BMD in mouse and provide new insights into how BMD is regulated in humans.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Goldberg S, Harvey SJ, Cunningham J, Tryggvason K, Miner JH. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant 2009; 24:2044-51. [PMID: 19144998 DOI: 10.1093/ndt/gfn758] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND For several decades, it has been thought that the glomerular basement membrane (GBM) provides a charge-selective barrier for glomerular filtration. However, recent evidence has presented challenges to this concept: selective removal of heparan sulfate (HS) moieties that impart a negative charge to the GBM causes little if any increase in proteinuria. Removal of agrin, the major GBM HS-proteoglycan (HSPG), from the GBM causes a profound reduction in the glomerular anionic charge without changing the excretion of a negatively charged tracer. Perlecan is another HSPG present in the GBM, as well as in the mesangium and Bowman's capsule, that could potentially contribute to a charge barrier in the absence of agrin. METHODS Here we studied the nature of the glomerular filtration barrier to albumin in mice lacking the HS chains of perlecan either alone or in combination with podocyte-specific loss of agrin. RESULTS The results show significant reductions in anionic sites within the GBM in perlecan-HS and in perlecan-HS/agrin double mutants. Podocyte and overall glomerular architecture were normal, and renal function was normal up to 15 months of age with no measurable proteinuria. Moreover, excretion of a negatively charged Ficoll tracer was unchanged as compared to control mice. CONCLUSIONS These findings cast further doubt upon a critical role for the GBM in charge selectivity.
Collapse
Affiliation(s)
- Seth Goldberg
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
259
|
Abstract
Basement membranes are sheet-like cell-adherent extracellular matrices that serve as cell substrata and solid-phase agonists, contributing to tissue organization, stability and differentiation. These matrices are assembled as polymers of laminins and type IV collagens that are tethered to nidogens and proteoglycans. They bind to cell surface molecules that include signal-transducing receptors such as the integrins and dystroglycan and form attachments to adjacent connective tissues. The cell receptors, in turn, provide links between the matrix and underlying cytoskeleton. Genetic diseases of basement membrane and associated components, collectively the basement membrane zone, disrupt the extracellular matrix and/or its linkages to affect nerve, muscle, skin, kidney and other tissues. These diseases can arise due to a loss of matrix integrity, adhesion strength and/or receptor-mediated signaling. An understanding of the mechanisms of basement membrane zone assembly and resulting structure can provide insights into the development of normal tissues and the pathogenic mechanisms that underlie diverse disorders.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
260
|
Chen ZL, Haegeli V, Yu H, Strickland S. Cortical deficiency of laminin gamma1 impairs the AKT/GSK-3beta signaling pathway and leads to defects in neurite outgrowth and neuronal migration. Dev Biol 2008; 327:158-68. [PMID: 19118544 DOI: 10.1016/j.ydbio.2008.12.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/25/2022]
Abstract
Laminins have dramatic and varied actions on neurons in vitro. However, their in vivo function in brain development is not clear. Here we show that knockout of laminin gamma1 in the cerebral cortex leads to defects in neuritogenesis and neuronal migration. In the mutant mice, cortical layer structures were disrupted, and axonal pathfinding was impaired. During development, loss of laminin expression impaired phosphorylation of FAK and paxillin, indicating defects in integrin signaling pathways. Moreover, both phosphorylation and protein levels of GSK-3beta were significantly decreased, but only phosphorylation of AKT was affected in the mutant cortex. Knockout of laminin gamma1 expression in vitro, dramatically inhibited neurite growth. These results indicate that laminin regulates neurite growth and neuronal migration via integrin signaling through the AKT/GSK-3beta pathway, and thus reveal a novel mechanism of laminin function in brain development.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
261
|
Shay EL, Greer CA, Treloar HB. Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway. Dev Dyn 2008; 237:1837-50. [PMID: 18570250 DOI: 10.1002/dvdy.21595] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C, and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses.
Collapse
Affiliation(s)
- Elaine L Shay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | |
Collapse
|
262
|
Rodgers KD, San Antonio JD, Jacenko O. Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 2008; 237:2622-42. [PMID: 18629873 DOI: 10.1002/dvdy.21593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current understanding of the presence and function of heparan sulfate proteoglycans (HSPGs) in skeletal development and hematopoiesis. Although proteoglycans (PGs) comprise a large and diverse group of cell surface and matrix molecules, we chose to focus on HSPGs owing to their many proposed functions in skeletogenesis and hematopoiesis. Specifically, we discuss how HSPGs play predominant roles in establishing and regulating niches during skeleto-hematopoietic development by participating in distinct developmental processes such as patterning, compartmentalization, growth, differentiation, and maintenance of tissues. Special emphasis is placed on our novel hypothesis that mechanistically links endochondral skeletogenesis to the establishment of the hematopoietic stem cell (HSC) niche in the marrow. HSPGs may contribute to these developmental processes through their unique abilities to establish and mediate morphogen, growth factor, and cytokine gradients; facilitate signaling; provide structural stability to tissues; and act as molecular filters and barriers.
Collapse
Affiliation(s)
- Kathryn D Rodgers
- Department of Animal Biology, Division of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA.
| | | | | |
Collapse
|
263
|
Humoral responses directed against non-human leukocyte antigens in solid-organ transplantation. Transplantation 2008; 86:1019-25. [PMID: 18946337 DOI: 10.1097/tp.0b013e3181889748] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antibody-mediated mechanisms have a major impact on allograft function and survival. During the last decade, improved immunohistochemical and serologic diagnostic procedures have been developed to monitor antibody responses against human leukocyte antigens (HLA). Acute and chronic allograft rejection can occur in HLA-identical sibling transplants implicating the importance of immune response against non-HLA targets. Non-HLA, complement and noncomplement-fixing antibodies may be responsible for a variety of allograft injuries, reflecting the complexity of their acute and chronic actions. Non-HLA antibodies may occur as alloantibodies or autoantibodies. Their antigenic targets described, thus, far include various minor histocompatibility antigens, vascular receptors, adhesion molecules, and intermediate filaments. An analysis of the subtle mechanistic differences in the individual antibody responses directed against non-HLA may help to identify patients at particular risk for irreversible acute or chronic allograft injuries and improve overall outcomes. This review summarizes the current state of research, development in diagnostic and therapeutic strategies, discusses some emerging problems, and provides perspectives in the area of humoral response against non-HLA in solid-organ transplantation.
Collapse
|
264
|
Abstract
PURPOSE OF REVIEW The glomerular filtration barrier consists of fenestrated glomerular endothelium, podocyte foot processes/slit diaphragms, and intervening glomerular basement membrane. Its characterization as both a size and charge-selective barrier emerged from studies conducted decades ago. The charge selectivity phenomenon is receiving renewed attention now that the identities and mechanisms of synthesis of relevant molecules are known. Here we summarize studies employing genetic or other in-vivo strategies to investigate glomerular charge. RECENT FINDINGS Attention has focused on glomerular basement membrane heparan sulfate proteoglycans, long considered primary charge barrier components. Agrin contributes significantly to glomerular basement membrane charge but, like perlecan and collagen XVIII, is dispensable for glomerular structure and function. Disruption of glomerular heparan sulfate through transgenic methods or administration of heparanase in vivo provides further evidence against a role for heparan sulfate in glomerular function. Disruption of glomerular sialoproteins, however, causes proteinuria and indicates a critical role for these cell-associated glycoproteins in glomerular filtration. SUMMARY Recent in-vivo manipulations of glomerular heparan sulfate proteoglycans fail to reveal a crucial role for either them or their anionic charge in glomerular filtration. In contrast, cell-associated sialoproteins are clearly important, but whether their functions actually involve contributions to the charge barrier is unknown.
Collapse
|
265
|
Brown AJ, Alicknavitch M, D’Souza S, Daikoku T, Kirn-Safran C, Marchetti D, Carson DD, Farach-Carson M. Heparanase expression and activity influences chondrogenic and osteogenic processes during endochondral bone formation. Bone 2008; 43:689-99. [PMID: 18589009 PMCID: PMC2621444 DOI: 10.1016/j.bone.2008.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/28/2008] [Accepted: 05/20/2008] [Indexed: 11/30/2022]
Abstract
Endochondral bone formation is a highly orchestrated process involving coordination among cell-cell, cell-matrix and growth factor signaling that eventually results in the production of mineralized bone from a cartilage template. Chondrogenic and osteogenic differentiation occur in sequence during this process, and the temporospatial patterning clearly requires the activities of heparin binding growth factors and their receptors. Heparanase (HPSE) plays a role in osteogenesis, but the mechanism by which it does so is incompletely understood. We used a combination of ex vivo and in vitro approaches and a well described HPSE inhibitor, PI-88 to study HPSE in endochondral bone formation. In situ hybridization and immunolocalization with HPSE antibodies revealed that HPSE is expressed in the peri-chondrium, peri-osteum, and at the chondro-osseous junction, all sites of key signaling events and tissue morphogenesis. Transcripts encoding Hpse also were observed in the pre-hypertrophic zone. Addition of PI-88 to metatarsals in organ culture reduced growth and suggested that HPSE activity aids the transition from chondrogenic to osteogenic processes in growth of long bones. To study this, we used high density cultures of ATDC5 pre-chondrogenic cells grown under conditions favoring chondrogenesis or osteogenesis. Under chondrogenic conditions, HPSE/Hpse was expressed at high levels during the mid-culture period, at the onset of terminal chondrogenesis. PI-88 addition reduced chondrogenesis and accelerated osteogenesis, including a dramatic up-regulation of osteocalcin levels. In normal growth medium, addition of PI-88 reduced migration of ATDC-5 cells, suggesting that HPSE facilitates cartilage replacement by bone at the chondro-osseous junction by removing the HS component of proteoglycans, such as perlecan/HSPG2, that otherwise prevent osteogenic cells from remodeling hypertrophic cartilage.
Collapse
Affiliation(s)
- A. J. Brown
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | | | - S.S. D’Souza
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - T. Daikoku
- Division of Reproductive and Developmental Biology, Vanderbilt Medical Center, Nashville, TN 37232
| | - C.B. Kirn-Safran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - D. Marchetti
- Department of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - D. D. Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - M.C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
- Department of Material Sciences, University of Delaware, Newark, DE 19716
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716
- Corresponding Author: Department of Biological Sciences, University of Delaware, 326 Wolf Hall, Newark, DE 19716 Tel. 302 831-4296; FAX 302 831-2281; E-Mail:
| |
Collapse
|
266
|
Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan. Biochemistry 2008; 47:11174-83. [PMID: 18826258 DOI: 10.1021/bi8013938] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perlecan is a ubiquitous pericellular proteoglycan ideally placed to mediate cell signaling events controlling migration, proliferation, and differentiation. Its control of growth factor signaling usually involves interactions with the heparan sulfate chains covalently coupled to the protein core's N-terminus. However, this modular protein core also binds with relatively high affinity to a number of growth factors and surface receptors, thereby stabilizing cell-matrix links. This review will focus on perlecan-growth factor interactions and describe recent advances in our understanding of this highly conserved proteoglycan during development, cancer growth, and angiogenesis. The pro-angiogenic capacities of perlecan that involve proliferative and migratory signals in response to bound growth factors will be explored, as well as the anti-angiogenic signals resulting from interactions between the C-terminal domain known as endorepellin and integrins that control adhesion of cells to the extracellular matrix. These two somewhat diametrically opposed roles will be discussed in light of new data emerging from various fields which converge on perlecan as a key regulator of cell growth and angiogenesis.
Collapse
Affiliation(s)
- John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
267
|
Sasse P, Malan D, Fleischmann M, Roell W, Gustafsson E, Bostani T, Fan Y, Kolbe T, Breitbach M, Addicks K, Welz A, Brem G, Hescheler J, Aszodi A, Costell M, Bloch W, Fleischmann BK. Perlecan is critical for heart stability. Cardiovasc Res 2008; 80:435-44. [PMID: 18694874 DOI: 10.1093/cvr/cvn225] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Perlecan is a heparansulfate proteoglycan found in basement membranes, cartilage, and several mesenchymal tissues that form during development, tumour growth, and tissue repair. Loss-of-function mutations in the perlecan gene in mice are associated with embryonic lethality caused primarily by cardiac abnormalities probably due to hemopericards. The aim of the present study was to investigate the mechanism underlying the early embryonic lethality and the pathophysiological relevance of perlecan for heart function. METHODS AND RESULTS Perlecan-deficient murine embryonic stem cells were used to investigate the myofibrillar network and the electrophysiological properties of single cardiomyocytes. The mechanical stability of the developing perlecan-deficient mouse hearts was analysed by microinjecting fluorescent-labelled dextran. Maturation and formation of basement membranes and cell-cell contacts were investigated by electron microscopy, immunohistochemistry, and western blotting. Sarcomere formation and cellular functional properties were unaffected in perlecan-deficient cardiomyocytes. However, the intraventricular dye injection experiments revealed mechanical instability of the early embryonic mouse heart muscle wall before embryonic day 10.5 (E10.5). Accordingly, perlecan-null embryonic hearts contained lower amounts of the critical basement membrane components, collagen IV and laminins. Furthermore, basement membranes were absent in perlecan-null cardiomoycytes whereas adherens junctions formed and matured around E9.5. Infarcted hearts from perlecan heterozygous mice displayed reduced heart function when compared with wild-type hearts. CONCLUSION We propose that perlecan plays an important role in maintaining the integrity during cardiac development and is important for heart function in the adult heart after injury.
Collapse
Affiliation(s)
- Philipp Sasse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
Cell migration is an evolutionarily conserved mechanism that underlies the development and functioning of uni- and multicellular organisms and takes place in normal and pathogenic processes, including various events of embryogenesis, wound healing, immune response, cancer metastases, and angiogenesis. Despite the differences in the cell types that take part in different migratory events, it is believed that all of these migrations occur by similar molecular mechanisms, whose major components have been functionally conserved in evolution and whose perturbation leads to severe developmental defects. These mechanisms involve intricate cytoskeleton-based molecular machines that can sense the environment, respond to signals, and modulate the entire cell behavior. A big question that has concerned the researchers for decades relates to the coordination of cell migration in situ and its relation to the intracellular aspects of the cell migratory mechanisms. Traditionally, this question has been addressed by researchers that considered the intra- and extracellular mechanisms driving migration in separate sets of studies. As more data accumulate researchers are now able to integrate all of the available information and consider the intracellular mechanisms of cell migration in the context of the developing organisms that contain additional levels of complexity provided by extracellular regulation. This review provides a broad summary of the existing and emerging data in the cell and developmental biology fields regarding cell migration during development.
Collapse
Affiliation(s)
- Satoshi Kurosaka
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
269
|
Stum M, Girard E, Bangratz M, Bernard V, Herbin M, Vignaud A, Ferry A, Davoine CS, Echaniz-Laguna A, René F, Marcel C, Molgó J, Fontaine B, Krejci E, Nicole S. Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz-Jampel syndrome neuromyotonia. Hum Mol Genet 2008; 17:3166-79. [PMID: 18647752 DOI: 10.1093/hmg/ddn213] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Schwartz-Jampel syndrome (SJS) is a recessive neuromyotonia with chondrodysplasia. It results from hypomorphic mutations of the gene encoding perlecan, leading to a decrease in the levels of this heparan sulphate proteoglycan in basement membranes (BMs). It has been suggested that SJS neuromyotonia may result from endplate acetylcholinesterase (AChE) deficiency, but this hypothesis has never been investigated in vivo due to the lack of an animal model for neuromyotonia. We used homologous recombination to generate a knock-in mouse strain with one missense substitution, corresponding to a human familial SJS mutation (p.C1532Y), in the perlecan gene. We derived two lines, one with the p.C1532Y substitution alone and one with p.C1532Y and the selectable marker Neo, to down-regulate perlecan gene activity and to test for a dosage effect of perlecan in mammals. These two lines mimicked SJS neuromyotonia with spontaneous activity on electromyogramm (EMG). An inverse correlation between disease severity and perlecan secretion in the BMs was observed at the macroscopic and microscopic levels, consistent with a dosage effect. Endplate AChE levels were low in both lines, due to synaptic perlecan deficiency rather than major myofibre or neuromuscular junction disorganization. Studies of muscle contractile properties showed muscle fatigability at low frequencies of nerve stimulation and suggested that partial endplate AChE deficiency might contribute to SJS muscle stiffness by potentiating muscle force. However, physiological endplate AChE deficiency was not associated with spontaneous activity at rest on EMG in the diaphragm, suggesting that additional changes are required to generate such activity characteristic of SJS.
Collapse
|
270
|
Bix G, Iozzo RV. Novel interactions of perlecan: unraveling perlecan's role in angiogenesis. Microsc Res Tech 2008; 71:339-48. [PMID: 18300285 DOI: 10.1002/jemt.20562] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Perlecan, a highly conserved and ubiquitous basement membrane heparan sulfate proteoglycan, is essential for life, inasmuch as its absence results in embryonic lethality in mice and C. elegans, and neonatal lethality in humans. Perlecan plays an essential role in vasculogenesis and chondrogenesis, as well as in pathological states where these processes are maladapted. Although a large body of evidence supports a pro-angiogenic role for perlecan, recent findings suggests that portions of the perlecan protein core can be antiangiogenic, requiring a further evaluation of the functioning of this complex molecule. This review is focused on the genetics of mammalian and nonmammalian perlecan, the elucidation of its novel interacting partners and its role in angiogenesis. By more fully understanding perlecan's functioning in angiogenesis, we may gain invaluable insight that could lead to therapeutic interventions in cancer and other pathologic states.
Collapse
Affiliation(s)
- Gregory Bix
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
271
|
Abstract
GPR56 is a member of the family of adhesion G-protein-coupled receptors that have a large extracellular region containing a GPS (G-protein proteolytic site) domain. Loss-of-function mutations in the GPR56 gene cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). BFPP is a radiological diagnosis and its histopathology remains unclear. This study demonstrates that loss of the mouse Gpr56 gene leads to neuronal ectopia in the cerebral cortex, a cobblestone-like cortical malformation. There are four crucial events in the development of cobblestone cortex, namely defective pial basement membrane (BM), abnormal anchorage of radial glial endfeet, mislocalized Cajal-Retzius cells, and neuronal overmigration. By detailed time course analysis, we reveal that the leading causal events are likely the breaches in the pial BM. We show further that GPR56 is present in abundance in radial glial endfeet. Furthermore, a putative ligand of GPR56 is localized in the marginal zone or overlying extracellular matrix. These observations provide compelling evidence that GPR56 functions in regulating pial BM integrity during cortical development.
Collapse
|
272
|
Yu J, Mcleans S, Yanagisawa H, Winlove CP, Roberts S, Mecham RP, Urban J. The importance of elastin and fibulin-5 on spine development: a study of elastin KO and fibulin-5 KO on the development of vertebral body and intervertebral disc. Int J Exp Pathol 2008. [DOI: 10.1111/j.0959-9673.2004.369am.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
273
|
Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:1131-48. [PMID: 18584218 DOI: 10.1007/s00586-008-0712-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 12/14/2022]
Abstract
The objective of this study was to assess the impact of a landmark annular lesion model on our understanding of the etiopathogenesis of IVD degeneration and to appraise current IVD repairative strategies. A number of studies have utilised the Osti sheep model since its development in 1990. The experimental questions posed at that time are covered in this review, as are significant recent advances in annular repair strategies. The ovine model has provided important spatial and temporal insights into the longitudinal development of annular lesions and how they impact on other discal and paradiscal components such as the NP, cartilaginous end plates, zygapophyseal joints and vertebral bone and blood vessels. Important recent advances have been made in biomatrix design for IVD repair and in the oriented and dynamic culture of annular fibrochondrocytes into planar, spatially relevant, annular type structures. The development of hyaluronan hydrogels capable of rapid in situ gelation offer the possibility of supplementation of matrices with cells and other biomimetics and represent a significant advance in biopolymer design. New generation biological glues and self-curing acrylic formulations which may be augmented with slow delivery biomimetics in microcarriers may also find application in the non-surgical repair of annular defects. Despite major advances, significant technical challenges still have to be overcome before the biological repair of this intractable connective tissue becomes a realistic alternative to conventional surgical intervention for the treatment of chronic degenerate IVDs.
Collapse
|
274
|
Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly. J Neurosci 2008; 28:4712-25. [PMID: 18448648 DOI: 10.1523/jneurosci.5735-07.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonstrated that Zic1, Zic2, and Zic3 were expressed by the progenitor cells in the septum and cortical hem, the sites of generation of the Cajal-Retzius (CR) cells. Immunohistochemical studies have revealed that Zic proteins were abundantly expressed in the meningeal cells and that the majority of the CR cells distributed in the medial and dorsal cortex also expressed Zic proteins in the mid-late embryonic and postnatal cortical marginal zones. During embryonic cortical development, Zic1/Zic3 double-mutant and hypomorphic Zic2 mutant mice showed a reduction in the number of CR cells in the rostral cortex, whereas the cell number remained unaffected in the caudal cortex. These mutants also showed mislocalization of the CR cells and cortical lamination defects, resembling the changes noted in type II (cobblestone) lissencephaly, throughout the brain. In the Zic1/3 mutant, reduced proliferation of the meningeal cells was observed before the thinner and disrupted organization of the pial basement membrane (BM) with reduced expression of the BM components and the meningeal cell-derived secretory factor. These defects correlated with the changes in the end feet morphology of the radial glial cells. These findings indicate that the Zic genes play critical roles in cortical development through regulating the proliferation of meningeal cells and the pial BM assembly.
Collapse
|
275
|
Zoeller JJ, McQuillan A, Whitelock J, Ho SY, Iozzo RV. A central function for perlecan in skeletal muscle and cardiovascular development. ACTA ACUST UNITED AC 2008; 181:381-94. [PMID: 18426981 PMCID: PMC2315682 DOI: 10.1083/jcb.200708022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perlecan's developmental functions are difficult to dissect in placental animals because perlecan disruption is embryonic lethal. In contrast to mammals, cardiovascular function is not essential for early zebrafish development because the embryos obtain adequate oxygen by diffusion. In this study, we use targeted protein depletion coupled with protein-based rescue experiments to investigate the involvement of perlecan and its C-terminal domain V/endorepellin in zebrafish development. The perlecan morphants show a severe myopathy characterized by abnormal actin filament orientation and disorganized sarcomeres, suggesting an involvement of perlecan in myopathies. In the perlecan morphants, primary intersegmental vessel sprouts, which develop through angiogenesis, fail to extend and show reduced protrusive activity. Live videomicroscopy confirms the abnormal swimming pattern caused by the myopathy and anomalous head and trunk vessel circulation. The phenotype is partially rescued by microinjection of human perlecan or endorepellin. These findings indicate that perlecan is essential for the integrity of somitic muscle and developmental angiogenesis and that endorepellin mediates most of these biological activities.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Pathology, Anatomy, and Cell, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
276
|
Kimber SJ. Blastocyst implantation:the adhesion cascade. REPRODUCTIVE MEDICINE AND ASSISTED REPRODUCTIVE TECHNIQUES 2008. [DOI: 10.3109/9780203091500.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
277
|
Heparan Sulfate Proteoglycans in the Basement Membranes of the Human Placenta and Decidua. Placenta 2008; 29:309-16. [DOI: 10.1016/j.placenta.2008.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/17/2007] [Accepted: 01/10/2008] [Indexed: 01/15/2023]
|
278
|
Zoeller JJ, Iozzo RV. Proteomic profiling of endorepellin angiostatic activity on human endothelial cells. Proteome Sci 2008; 6:7. [PMID: 18269764 PMCID: PMC2275231 DOI: 10.1186/1477-5956-6-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/12/2008] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells. RESULTS Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (beta-actin, calreticulin, and chaperonin/Hsp60) were down-regulated and two of which (vimentin and the beta subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase) were up-regulated in response to endorepellin treatment-and associated with a fold change (endorepellin/control) = 0.75 and >/= 2.00, and a statistically significant p-value as determined by Student's t test. CONCLUSION The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Center, 1020 Locust Street, Room 249 JAH, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Center, 1020 Locust Street, Room 249 JAH, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
279
|
Wilson R, Bateman JF. Cartilage proteomics: Challenges, solutions and recent advances. Proteomics Clin Appl 2008; 2:251-63. [DOI: 10.1002/prca.200780007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
280
|
Abstract
Has a large-scale screen turned up a potential gene-of-interest that you know nothing about? Your computer is a portal to a wealth of information that can save you valuable time and resources. Freely available data can help to determine whether a particular gene is worthy of further research, and what direction that research should take. Presented here are approaches to mining the Internet, including searching popular model organism databases. The primer covers two typical scenarios: the gene of interest is well characterized, or mostly uncharacterized. Also featured are interviews with Monte Westerfield, PhD, Director of the Zebrafish Information Network (ZFIN) online database, and Principal Investigator of the Human Protein Reference Database (HPRD) project, Akhilesh Pandey, MD, PhD.
Collapse
Affiliation(s)
- Julie C Kiefer
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
281
|
Kwiatkowski AV, Rubinson DA, Dent EW, Edward van Veen J, Leslie JD, Zhang J, Mebane LM, Philippar U, Pinheiro EM, Burds AA, Bronson RT, Mori S, Fässler R, Gertler FB. Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron 2008; 56:441-55. [PMID: 17988629 DOI: 10.1016/j.neuron.2007.09.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 07/24/2007] [Accepted: 09/10/2007] [Indexed: 11/15/2022]
Abstract
Mammalian cortical development involves neuronal migration and neuritogenesis; this latter process forms the structural precursors to axons and dendrites. Elucidating the pathways that regulate the cytoskeleton to drive these processes is fundamental to our understanding of cortical development. Here we show that loss of all three murine Ena/VASP proteins, a family of actin regulatory proteins, causes neuronal ectopias, alters intralayer positioning in the cortical plate, and, surprisingly, blocks axon fiber tract formation during corticogenesis. Cortical fiber tract defects in the absence of Ena/VASP arise from a failure in neurite initiation, a prerequisite for axon formation. Neurite initiation defects in Ena/VASP-deficient neurons are preceded by a failure to form bundled actin filaments and filopodia. These findings provide insight into the regulation of neurite formation and the role of the actin cytoskeleton during cortical development.
Collapse
Affiliation(s)
- Adam V Kwiatkowski
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Kruegel J, Sadowski B, Miosge N. Nidogen-1 and nidogen-2 in healthy human cartilage and in late-stage osteoarthritis cartilage. ACTA ACUST UNITED AC 2008; 58:1422-32. [DOI: 10.1002/art.23480] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
283
|
Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30:457-69. [DOI: 10.1002/bies.20748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
284
|
|
285
|
Smith SML, West LA, Hassell JR. The core protein of growth plate perlecan binds FGF-18 and alters its mitogenic effect on chondrocytes. Arch Biochem Biophys 2007; 468:244-51. [PMID: 17971291 PMCID: PMC2696159 DOI: 10.1016/j.abb.2007.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/11/2007] [Accepted: 10/13/2007] [Indexed: 02/04/2023]
Abstract
Fibroblast growth factor-18 (FGF-18) has been shown to regulate the growth plate chondrocyte proliferation, hypertrophy and cartilage vascularization necessary for endochondral ossification. The heparan sulfate proteoglycan perlecan is also critical for growth plate chondrocyte proliferation. FGF-18 null mice exhibit a skeletal dwarfism similar to that of perlecan null mice. Growth plate perlecan contains chondroitin sulfate (CS) and heparan sulfate (HS) chains and FGF-18 is known to bind to heparin and to heparan sulfate from some sources. We used cationic filtration and immunoprecipitation assays to investigate the binding of FGF-18 to perlecan purified from the growth plate and to recombinant perlecan domains expressed in COS-7 cells. FGF-18 bound to perlecan with a K(d) of 145 nM. Near saturation, approximately 103 molecules of FGF-18 bound per molecule of perlecan. At the lower concentrations used, FGF-18 bound with a K(d) of 27.8 nM. This binding was not significantly altered by chondroitinase nor heparitinase digestion of perlecan, but was substantially and significantly reduced by reduction and alkylation of the perlecan core protein. This indicates that the perlecan core protein (and not the CS nor HS chains) is involved in FGF-18 binding. FGF-18 bound equally to full-length perlecan purified from the growth plate and to recombinant domains I-III and III of perlecan. These data indicate that low affinity binding sites for FGF-18 are present in cysteine-rich regions of domain III of perlecan. FGF-18 stimulated 3H-thymidine incorporation in growth plate chondrocyte cultures derived from the lower and upper proliferating zones by 9- and 14-fold, respectively. The addition of perlecan reversed this increased incorporation in the lower proliferating chondrocytes by 74% and in the upper proliferating cells by 37%. These results suggest that perlecan can bind FGF-18 and alter the mitogenic effect of FGF-18 on growth plate chondrocytes.
Collapse
Affiliation(s)
- Simone M-L Smith
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA
| | | | | |
Collapse
|
286
|
Belvindrah R, Graus-Porta D, Goebbels S, Nave KA, Müller U. Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex. J Neurosci 2007; 27:13854-65. [PMID: 18077697 PMCID: PMC6673609 DOI: 10.1523/jneurosci.4494-07.2007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/25/2007] [Indexed: 01/08/2023] Open
Abstract
Radial glial cells in the cerebral cortex serve as progenitors for neurons and glia and guide the migration of cortical neurons. The integrin alpha3beta1 is thought to mediate interactions of migrating neurons with radial glial cells and to function as a receptor for the reelin signaling molecule. Here, we challenge this view and demonstrate that beta1 integrins in migrating neurons are not essential for the formation of cell layers in the cerebral cortex. Cortical cell layers also form normally in mice deficient in the integrin alpha3beta1. However, we provide evidence that beta1 integrins in radial glia control the morphological differentiation of both glia and neurons. We conclude that beta1 integrins in radial glia are required for the proper development of the cerebral cortex, whereas beta1 integrins in migrating neurons are not essential for glial-guided migration and reelin signaling.
Collapse
Affiliation(s)
- Richard Belvindrah
- Department of Cell Biology, Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, California 92037
| | - Diana Graus-Porta
- Novartis Pharma Services, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland, and
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Ulrich Müller
- Department of Cell Biology, Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
287
|
Lindner JR, Hillman PR, Barrett AL, Jackson MC, Perry TL, Park Y, Datta S. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts. BMC DEVELOPMENTAL BIOLOGY 2007; 7:121. [PMID: 17980035 PMCID: PMC2174950 DOI: 10.1186/1471-213x-7-121] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 11/02/2007] [Indexed: 11/30/2022]
Abstract
Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs), Vascular Endothelial Growth Factor (VEGF) and Platelet Derived Growth Factor (PDGF), among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog) to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member), Wingless (a Wnt growth factor) and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and signaling contexts. These studies also highlight the fact that Trol function is not dedicated to a single molecular mechanism, but is capable of regulating different growth factor pathways depending on the cell-type and event underway.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, 77843-2128, USA.
| | | | | | | | | | | | | |
Collapse
|
288
|
Abstract
The extracellular matrix (ECM) is a substrate upon which cells migrate, proliferate and differentiate. It is involved in the maintenance of cytoarchitecture, regulation of homeostasis, and it influences interactions between cells and molecules via specific receptors. Although a substantial body of knowledge has accumulated concerning the role of the ECM in peripheral tissues, little is known of the structure and function of the ECM in the CNS. However, marked changes in the expression of ECM constituents have been documented in various neurological disorders, including multiple sclerosis. This review focuses on the structure and function of the ECM in the CNS and in particular on the occurrence and involvement of ECM changes in the pathology of multiple sclerosis. Increased knowledge of the expression and functional role of ECM proteins in the CNS can lead to a better understanding of complex neurobiological processes both under normal as well as pathological conditions.
Collapse
Affiliation(s)
- Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
289
|
Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 2007; 134:4177-86. [PMID: 17959718 DOI: 10.1242/dev.011171] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Heparan sulfate proteoglycans are essential for biological processes regulated by fibroblast growth factors (FGFs). Heparan sulfate (HS) regulates the activity of FGFs by acting as a coreceptor at the cell surface, enhancing FGF-FGFR affinity, and being a storage reservoir for FGFs in the extracellular matrix (ECM). Here we demonstrate a critical role for heparanase during mouse submandibular gland (SMG) branching morphogenesis. Heparanase, an endoglycosidase, colocalized with perlecan in the basement membrane and in epithelial clefts of SMGs. Inhibition of heparanase activity in organ culture decreased branching morphogenesis, and this inhibition was rescued specifically by FGF10 and not by other FGFs. By contrast, exogenous heparanase increased SMG branching and MAPK signaling and, surprisingly, when isolated epithelia were cultured in a three-dimensional ECM with FGF10, it increased the number of lateral branches and end buds. In a solid-phase binding assay, an FGF10-FGFR2b complex was released from the ECM by heparanase. In addition, surface plasmon resonance (SPR) analysis showed that FGF10 and the FGF10-FGFR2b complex bound to purified perlecan HS and could be released by heparanase. We used the FGF10-FGFR2b complex as a probe for HS in SMGs, and it colocalized with perlecan in the basement membrane and partly colocalized with syndecan 1 in the epithelium, and binding was reduced by treatment with heparanase. In summary, our results show heparanase releases FGF10 from perlecan HS in the basement membrane, increasing MAPK signaling, epithelial clefting, and lateral branch formation, which results in increased branching morphogenesis.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Unit, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Lamoureux F, Baud'huin M, Duplomb L, Heymann D, Rédini F. Proteoglycans: key partners in bone cell biology. Bioessays 2007; 29:758-71. [PMID: 17621645 DOI: 10.1002/bies.20612] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The diversity of bone proteoglycan (PG) structure and localisation (pericellular, extracellular in the organic bone matrix) reflects a broad spectrum of biological functions within a unique tissue. PGs play important roles in organizing the bone extracellular matrix, taking part in the structuring of the tissue itself as active regulators of collagen fibrillogenesis. PGs also display selective patterns of reactivity with several constituents including cytokines and growth factors, such as transforming growth factor-beta or osteoprotegerin thereby modulating their bio-availability and biological activity in the bone tissue. In this review, the complex PG composition in bone will be addressed together with the specific role played by PGs (or their GAGs chains) in bone biology, as regulatory molecules for bone resorption and their involvement in bone tumor development. These roles have been determined after modulation of PG expression or mutations in their corresponding genes, which revealed specific roles for these compounds in bone pathologies (e.g. perlecan or glypican-3 mutations observed respectively in chondrodysplasia or dysmorphic syndrome). Finally, the potential therapeutic interest of PGs is discussed based on recent data, more particularly on bone tumor-associated osteolysis as these molecules are involved both in bone resorption and tumor development.
Collapse
Affiliation(s)
- François Lamoureux
- EA3822-INSERM ERI7, Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex 1, France
| | | | | | | | | |
Collapse
|
291
|
Farach-Carson MC, Brown AJ, Lynam M, Safran JB, Carson DD. A novel peptide sequence in perlecan domain IV supports cell adhesion, spreading and FAK activation. Matrix Biol 2007; 27:150-60. [PMID: 17997086 DOI: 10.1016/j.matbio.2007.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/31/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022]
Abstract
Perlecan/HSPG2 is a large, multi-domain, multifunctional heparan sulfate proteoglycan with a wide tissue distribution. With the exception of its unique domain I, each of perlecan's other four domains shares sequence similarity to other protein families including low density lipoprotein (LDL) receptor, laminin alpha chain, neural cell adhesion molecule (NCAM), immunoglobulin (Ig) superfamily members, and epidermal growth factor (EGF). Previous studies demonstrated that glycosaminoglycan-bearing perlecan domain I supports early chondrogenesis and growth factor delivery. Other sites in the core protein interact with other matrix molecules and support cell adhesion, although the peptide sequences involved remain unidentified. To identify novel functional motifs within perlecan, we used a bioinformatics approach to predict regions likely to be on the exterior of the folded protein. Unique hydrophilic sequences of about 18 amino acids were selected for testing in cell adhesion assays. A novel peptide sequence (TWSKVGGHLRPGIVQSG) from an immunoglobulin (Ig) repeat in domain IV supported rapid cell adhesion, spreading and focal adhesion kinase (FAK) activation when compared to other peptides, a randomly scrambled sequence of the domain IV peptide or a negative control protein. MG-63 human osteosarcoma cells, epithelial cells and multipotent C(3)H10T1/2 cells, but not bone marrow cells, rapidly, i.e., within 30 min, formed focal adhesions and assembled an actin cytoskeleton on domain IV peptide. Cell lines differentially adhered to the domain IV peptide, suggesting adhesion is receptor specific. Adhesion was divalent cation independent and heparin sensitive, a finding that may explain some previously poorly understood observations obtained with intact perlecan. Collectively, these studies demonstrate the feasibility of using bioinformatics-based strategies to identify novel functional motifs in matrix proteins such as perlecan.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
292
|
Malikova MA, Van Stry M, Symes K. Apoptosis regulates notochord development in Xenopus. Dev Biol 2007; 311:434-48. [PMID: 17920580 DOI: 10.1016/j.ydbio.2007.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/22/2007] [Accepted: 08/27/2007] [Indexed: 11/25/2022]
Abstract
The notochord is the defining characteristic of the chordate embryo and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos, however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that, by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirrors that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed.
Collapse
Affiliation(s)
- Marina A Malikova
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
293
|
Terentiev AA, Moldogazieva NT. Cell adhesion proteins and α-fetoprotein. Similar structural motifs as prerequisites for common functions. BIOCHEMISTRY (MOSCOW) 2007; 72:920-35. [DOI: 10.1134/s0006297907090027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
294
|
Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, Jucker M, Arber S, Caroni P, Sanes JR, Bettler B, Ruegg MA. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 2007; 27:7183-95. [PMID: 17611272 PMCID: PMC6794585 DOI: 10.1523/jneurosci.1609-07.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Agrin-deficient mice die at birth because of aberrant development of the neuromuscular junctions. Here, we examined the role of agrin at brain synapses. We show that agrin is associated with excitatory but not inhibitory synapses in the cerebral cortex. Most importantly, we examined the brains of agrin-deficient mice whose perinatal death was prevented by the selective expression of agrin in motor neurons. We find that the number of presynaptic and postsynaptic specializations is strongly reduced in the cortex of 5- to 7-week-old mice. Consistent with a reduction in the number of synapses, the frequency of miniature postsynaptic currents was greatly decreased. In accordance with the synaptic localization of agrin to excitatory synapses, changes in the frequency were only detected for excitatory but not inhibitory synapses. Moreover, we find that the muscle-specific receptor tyrosine kinase MuSK, which is known to be an essential component of agrin-induced signaling at the neuromuscular junction, is also localized to a subset of excitatory synapses. Finally, some components of the mitogen-activated protein (MAP) kinase pathway, which has been shown to be activated by agrin in cultured neurons, are deregulated in agrin-deficient mice. In summary, our results provide strong evidence that agrin plays an important role in the formation and/or the maintenance of excitatory synapses in the brain, and we provide evidence that this function involves MAP kinase signaling.
Collapse
Affiliation(s)
| | | | | | - Riad Seddik
- Institute of Physiology, Department of Clinical-Biological Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie-Institute of Clinical Brain Research, D-72076 Tübingen, Germany
| | - Silvia Arber
- Biozentrum and
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland, and
| | - Pico Caroni
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland, and
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| | - Bernhard Bettler
- Institute of Physiology, Department of Clinical-Biological Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
295
|
Andrade RP, Palmeirim I, Bajanca F. Molecular clocks underlying vertebrate embryo segmentation: A 10-year-old hairy-go-round. ACTA ACUST UNITED AC 2007; 81:65-83. [PMID: 17600780 DOI: 10.1002/bdrc.20094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers.
Collapse
Affiliation(s)
- Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
296
|
Kirn-Safran CB, D'Souza SS, Carson DD. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation. Semin Cell Dev Biol 2007; 19:187-93. [PMID: 17766150 PMCID: PMC2275896 DOI: 10.1016/j.semcdb.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation.
Collapse
|
297
|
Celie JWAM, Rutjes NWP, Keuning ED, Soininen R, Heljasvaara R, Pihlajaniemi T, Dräger AM, Zweegman S, Kessler FL, Beelen RHJ, Florquin S, Aten J, van den Born J. Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1865-78. [PMID: 17525255 PMCID: PMC1899444 DOI: 10.2353/ajpath.2007.070061] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leukocyte infiltration into inflamed tissues is considered to involve sequential steps of rolling over the endothelium, adhesion, and transmigration. In this model, the leukocyte adhesion molecule L-selectin and its ligands expressed on inflamed endothelial cells are involved in leukocyte rolling. We show that upon experimental and human renal ischemia/reperfusion, associated with severe endothelial damage, microvascular basement membrane (BM) heparan sulfate proteoglycans (HSPGs) are modified to bind L-selectin and monocyte chemoattractant protein-1. In an in vitro rolling and adhesion assay, L-selectin-binding HSPGs in artificial BM induced monocytic cell adhesion under reduced flow. We examined the in vivo relevance of BM HSPGs in renal ischemia/reperfusion using mice mutated for BM HSPGs perlecan (Hspg2(Delta3/Delta3)), collagen type XVIII (Col18a1(-/-)), or both (cross-bred Hspg2(Delta3/Delta3)xCol18a1(-/-)) and found that early monocyte/macrophage influx was impaired in Hspg2(Delta3/Delta3)xCol18a1(-/-) mice. Finally, we confirmed our observations in human renal allograft biopsies, showing that loss of endothelial expression of the extracellular endosulfatase HSulf-1 may be a likely mechanism underlying the induction of L-selectin- and monocyte chemoattractant protein-1-binding HSPGs associated with peritubular capillaries in human renal allograft rejection. Our results provide evidence for the concept that not only endothelial but also (microvascular) BM HSPGs can influence inflammatory responses.
Collapse
Affiliation(s)
- Johanna W A M Celie
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Abstract
The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation.
Collapse
Affiliation(s)
- John M Rhodes
- *Correspondence to: Michael SIMONS Section of Cardiology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.; Tel.: 603 650 3540; E-mail:
| | - Michael Simons
- *Correspondence to: Michael SIMONS Section of Cardiology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.; Tel.: 603 650 3540; E-mail:
| |
Collapse
|
299
|
Lu J, Lian G, Lenkinski R, De Grand A, Vaid RR, Bryce T, Stasenko M, Boskey A, Walsh C, Sheen V. Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet 2007; 16:1661-75. [PMID: 17510210 DOI: 10.1093/hmg/ddm114] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamin B (FLNB) is a cytoplasmic protein that regulates the cytoskeletal network by cross-linking actin, linking cell membrane to the cytoskeleton and regulating intracellular signaling pathways responsible for skeletal development (Stossel, T.P., Condeelis, J., Cooley, L., Hartwig, J.H., Noegel, A., Schleicher, M. and Shapiro, S.S. (2001) Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol., 2, 138-145). Mutations in FLNB cause human skeletal disorders [boomerang dysplasia, spondylocarpotarsal (SCT), Larsen, and atelosteogenesis I/III syndromes], which are characterized by disrupted vertebral segmentation, joint formation and endochondral ossification [Krakow, D., Robertson, S.P., King, L.M., Morgan, T., Sebald, E.T., Bertolotto, C., Wachsmann-Hogiu, S., Acuna, D., Shapiro, S.S., Takafuta, T. et al. (2004) Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat. Genet., 36, 405-410; Bicknell, L.S., Morgan, T., Bonafe, L., Wessels, M.W., Bialer, M.G., Willems, P.J., Cohn, D.H., Krakow, D. and Robertson, S.P. (2005) Mutations in FLNB cause boomerang dysplasia. J. Med. Genet., 42, e43]. Here we show that Flnb deficient mice have shortened distal limbs with small body size, and develop fusion of the ribs and vertebrae, abnormal spinal curvatures, and dysmorphic facial/calvarial bones, similar to the human phenotype. Characterization of the mutant mice demonstrated increased apoptosis along the bone periphery of the distal appendages, consistent with reduced bone width. No changes in the initial proliferative rate of chondrocytes were observed, but the progressive differentiation of chondrocyte precursors was impaired, consistent with reduced bone length. The extracellular matrix appeared disrupted and phosphorylated beta1-integrin (a collagen receptor and Flnb binding partner) expression was diminished in the mutant growth plate. Like integrin-deficient chondrocytes, adhesion to the ECM was decreased in Flnb(-/-) chondrocytes, and inhibition of beta1-integrin in these cells led to further impairments in cell spreading. These data suggest that disruption of the ECM-beta1-integrin-Flnb pathway contributes to defects in vertebral and distal limb development, similar to those seen in the human autosomal recessive SCT due to Flnb mutations.
Collapse
Affiliation(s)
- Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Candiello J, Balasubramani M, Schreiber EM, Cole GJ, Mayer U, Halfter W, Lin H. Biomechanical properties of native basement membranes. FEBS J 2007; 274:2897-908. [PMID: 17488283 DOI: 10.1111/j.1742-4658.2007.05823.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy. The inner limiting membrane is located at the retinal-vitreal junction and its weakening due to basement membrane protein mutations leads to inner limiting membrane rupture and the invasion of retinal cells into the vitreous. Transmission electron microscopy and western blotting has shown that the inner limiting membrane has an ultrastructure and a protein composition typical for most other basement membranes and, thus, provides a suitable model for determining their biophysical properties. Atomic force microscopy measurements of native chick basement membranes revealed an increase in thickness from 137 nm at embryonic day 4 to 402 nm at embryonic day 9, several times thicker that previously determined by transmission electron microscopy. The change in basement membrane thickness was accompanied by a large increase in apparent Young's modulus from 0.95 MPa to 3.30 MPa. The apparent Young's modulus of the neonatal and adult mouse retinal basement membranes was in a similar range, with 3.81 MPa versus 4.07 MPa, respectively. These results revealed that native basement membranes are much thicker than previously determined. Their high mechanical strength explains why basement membranes are essential in stabilizing blood vessels, muscle fibers and the pial border of the central nervous system.
Collapse
Affiliation(s)
- Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, PA 15262, USA
| | | | | | | | | | | | | |
Collapse
|