251
|
Anastasiadou S, Liebenehm S, Sinske D, Meyer zu Reckendorf C, Moepps B, Nordheim A, Knöll B. Neuronal expression of the transcription factor serum response factor modulates myelination in a mouse multiple sclerosis model. Glia 2015; 63:958-76. [PMID: 25639799 DOI: 10.1002/glia.22794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/14/2022]
Abstract
In multiple sclerosis (MS), neurons in addition to inflammatory cells are now considered to mediate disease origin and progression. So far, molecular and cellular mechanisms of neuronal MS contributions are poorly understood. Herein we analyzed whether neuron-restricted signaling by the neuroprotective transcription factor serum response factor (SRF) modulates de- and remyelination in a rodent MS model. In the mouse cuprizone model, neuron- (Srf (flox/flox;CaMKCreERT2)) but not glia-specific (Srf (flox/flox;PlpCreERT2)) SRF depletion impaired demyelination suggesting impaired debris clearance by astrocytes and microglia. This supports an important role of SRF expression in neurons but not oligodendrocytes in de- and remyelination. During remyelination, NG2- and OLIG2-positive cells of the oligodendrocyte lineage as well as de novo mRNA synthesis of myelin genes were also reduced in neuron-specific Srf mutants. Using the stripe assay, we demonstrate that cortices of cuprizone-fed wild-type mice elicited astrocyte and microglia activation whereas this was abrogated in cuprizone-fed neuron-specific Srf mutants. We identified CCL chemokines (e.g. CCL2) as neuron-derived SRF-regulated paracrine signals rescuing immune cell activation upon neuronal SRF deletion. In summary, we uncovered important roles of neurons and neuronally expressed SRF in MS associated de- and remyelination.
Collapse
Affiliation(s)
- Sofia Anastasiadou
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
252
|
KhorshidAhmad T, Acosta C, Cortes C, Lakowski TM, Gangadaran S, Namaka M. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS). Mol Neurobiol 2015; 53:1092-1107. [PMID: 25579386 DOI: 10.1007/s12035-014-9074-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.
Collapse
Affiliation(s)
- Tina KhorshidAhmad
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Crystal Acosta
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Claudia Cortes
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Surendiran Gangadaran
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Michael Namaka
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada. .,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada. .,College of Medicine, University of Manitoba, Winnipeg, Canada. .,School of Medical Rehabilitation, College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
253
|
Anastasiadou S, Knöll B. Neuronal gene transcription modulates demyelination and remyelination in a mouse model of multiple sclerosis. Neural Regen Res 2015; 10:1401-2. [PMID: 26604895 PMCID: PMC4625500 DOI: 10.4103/1673-5374.165507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
254
|
Williams A. Remyelination in multiple sclerosis: what do we know and where are we going? Neurodegener Dis Manag 2015; 5:49-59. [PMID: 25711454 DOI: 10.2217/nmt.14.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) patients today have more hope of a good disease outcome with an ever-increasing choice of immunomodulatory therapies to reduce disease relapses, thought to be caused by inflammation within the CNS, leading to axonal demyelination. However, although there has been much progress in this disease phase, there has been little impact on the progressive phase of MS, when neurodegeneration dominates and patients accumulate disability over years. This failure of prevention of progressive disease has led to a frame-shift in research thinking, focusing on neuroprotective strategies such as promotion of remyelination, to be used alongside immunomodulatory therapies. This review discusses this unmet need in MS, in terms of pathology and current knowledge of remyelination and proremyelinating therapies.
Collapse
|
255
|
Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, Salinas Tejedor L, Jörg S, Hammer A, Voss E, Vulinovic F, Degen D, Wolf R, Lee DH, Pul R, Moharregh-Khiabani D, Baumgärtner W, Gold R, Linker RA, Stangel M. Pivotal role of choline metabolites in remyelination. ACTA ACUST UNITED AC 2014; 138:398-413. [PMID: 25524711 DOI: 10.1093/brain/awu358] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroprotective approaches for central nervous system regeneration have not been successful in clinical practice so far and compounds that enhance remyelination are still not available for patients with multiple sclerosis. The objective of this study was to determine potential regenerative effects of the substance cytidine-5'-diphospho (CDP)-choline in two different murine animal models of multiple sclerosis. The effects of exogenously applied CDP-choline were tested in murine myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. In addition, the cuprizone-induced mouse model of de- and remyelination was used to specifically test the hypothesis that CDP-choline directly increases remyelination. We found that CDP-choline ameliorated the disease course of experimental autoimmune encephalomyelitis and exerted beneficial effects on myelin, oligodendrocytes and axons. After cuprizone-induced demyelination, CDP-choline effectively enhanced myelin regeneration and reversed motor coordination deficits. The increased remyelination arose from an increase in the numbers of proliferating oligodendrocyte precursor cells and oligodendrocytes. Further in vitro studies suggest that this process is regulated by protein kinase C. We thus identified a new mechanism to enhance central nervous system remyelination via the choline pathway. Due to its regenerative action combined with an excellent safety profile, CDP-choline could become a promising substance for patients with multiple sclerosis as an add-on therapy.
Collapse
Affiliation(s)
- Thomas Skripuletz
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Arndt Manzel
- 2 Ruhr-University Bochum, International Graduate School of Neuroscience, 44801 Bochum, Germany 3 Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | - Nora Schäfer
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Viktoria Gudi
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Vikramjeet Singh
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany 4 Centre for Systems Neuroscience, 30559 Hannover, Germany
| | - Laura Salinas Tejedor
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany 4 Centre for Systems Neuroscience, 30559 Hannover, Germany
| | - Stefanie Jörg
- 3 Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Anna Hammer
- 3 Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Elke Voss
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Franca Vulinovic
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Diane Degen
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Rebecca Wolf
- 3 Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - De-Hyung Lee
- 3 Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Refik Pul
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Wolfgang Baumgärtner
- 4 Centre for Systems Neuroscience, 30559 Hannover, Germany 5 Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Ralf Gold
- 6 Department of Neurology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ralf A Linker
- 3 Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Martin Stangel
- 1 Department of Neurology, Hannover Medical School, 30625 Hannover, Germany 4 Centre for Systems Neuroscience, 30559 Hannover, Germany
| |
Collapse
|
256
|
Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol 2014; 172:80-92. [PMID: 25220526 DOI: 10.1111/bph.12938] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes within the lymph nodes. Here, we evaluated the potential of an agonist at this receptor, FTY720 (fingolimod), to activate the promyelinating pathways within the brain to encourage remyelination and neuroprotection. EXPERIMENTAL APPROACH In this study, we used the cuprizone model in male C57BL/6 mice and tested the promyelinating and neuroprotective effects of FTY720 after acute and chronic toxin-induced experimental demyelination. We used histological, immunohistochemical and gene expression methods. KEY RESULTS The midline of the corpus callosum was severely demyelinated after acute and chronic cuprizone-induced demyelination. Robust endogenous remyelination was evident after acute, but impaired after chronic, demyelination. FTY720 treatment modestly accelerated myelin recovery after acute but not chronic cuprizone exposure. Markers of gliosis (astrocyte and microglia activation) were not affected by FTY720 treatment. Remarkably, the accumulation of amyloid precursor protein-positive spheroids in axons was less distinct in FTY720-treated animals, indicating that this compound alleviated ongoing axonal damage. CONCLUSIONS AND IMPLICATIONS We show that even during endogenous remyelination, axonal degeneration continued at a low level, accumulating over time. This continuous neurodegenerative process was ameliorated by FTY720 treatment. FTY720 preserved CNS integrity by direct interaction with brain resident cells, the actions of which are still to be defined.
Collapse
Affiliation(s)
- A Slowik
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
257
|
Spitzbarth I, Cana A, Hahn K, Hansmann F, Baumgärtner W. Associated occurrence of p75 neurotrophin receptor expressing aldynoglia and microglia/macrophages in long term organotypic murine brain slice cultures. Brain Res 2014; 1595:29-42. [PMID: 25446435 DOI: 10.1016/j.brainres.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
Abstract
Growth-promoting aldynoglia, characterized by the expression of the prototype immature Schwann cell marker p75 neurotrophin receptor (NTR) have been shown to occur in some demyelinating diseases. However, the mechanisms determining the emergence and fate of such cells are largely unknown. This study aimed at the identification of such cells and potential triggering factors using an in vitro slice culture approach. Organotypic cerebrum and brain stem slices of adult mice were cultivated for up to 18 days in vitro. Immunohistochemistry for the detection of p75(NTR), CD107b, periaxin, growth associated protein (GAP)-43, and glial fibrillary acidic protein (GFAP) was performed. The results for p75(NTR) were substantiated by the use of in situ hybridization. Cultivation was associated with a progressively increasing spontaneous occurrence of bi- to multipolar p75(NTR)-positive, but periaxin-negative glia, indicative of aldynoglial Schwann cell like cells. Similar cells stained intensely positive for GAP-43, a marker for non-myelinating Schwann cells. The number of p75(NTR) positive glia did not correlate with GFAP expression, but showed a strong correlation with a remarkable spontaneous response of CD107b positive phagocytic microglia/macrophages. Moreover, aldynoglial p75(NTR) immunoreactivity negatively correlated to neuronal p75(NTR) expression, which was lost during culturing. The present results demonstrate that the cultivation of organotypic murine brain slices is accompanied by a spontaneous response of both microglia/macrophages and p75(NTR) positive cells, suggestive of Schwann cell like aldynoglia. The findings highlights the role of microglia/macrophages, which seem to be an important triggering factor, facilitating the occurrence of this unique type of macroglia.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - A Cana
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - K Hahn
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
258
|
Iwasa K, Yamamoto S, Takahashi M, Suzuki S, Yagishita S, Awaji T, Maruyama K, Yoshikawa K. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model. Prostaglandins Leukot Essent Fatty Acids 2014; 91:175-82. [PMID: 25224839 DOI: 10.1016/j.plefa.2014.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
Abstract
Previously, we have demonstrated that prostamide/PGF synthase, which catalyzes the reduction of prostaglandin (PG) H2 to PGF2α, is constitutively expressed in myelin sheaths and cultured oligodendrocytes, suggesting that PGF2α has functional significance in myelin-forming oligodendrocytes. To investigate the effects of PGF2α/FP receptor signaling on demyelination, we administrated FP receptor agonist and antagonist to cuprizone-exposed mice, a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, glial activation, proinflammatory cytokine expression, and motor dysfunction. Administration of the FP receptor antagonist AL-8810 attenuated cuprizone-induced demyelination, glial activation, and TNFα expression in the corpus callosum, and also improved the motor function. These data suggest that during cuprizone-induced demyelination, PGF2α/FP receptor signaling contributes to glial activation, neuroinflammation, and demyelination, resulting in motor dysfunction. Thus, FP receptor inhibition may be a useful symptomatic treatment in multiple sclerosis.
Collapse
Affiliation(s)
- K Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - S Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - M Takahashi
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - S Suzuki
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - S Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - T Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - K Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - K Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| |
Collapse
|
259
|
Sachs HH, Bercury KK, Popescu DC, Narayanan SP, Macklin WB. A new model of cuprizone-mediated demyelination/remyelination. ASN Neuro 2014; 6:6/5/1759091414551955. [PMID: 25290063 PMCID: PMC4187018 DOI: 10.1177/1759091414551955] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the central nervous system, demyelinating diseases, such as multiple sclerosis, result in devastating long-term neurologic damage, in part because of the lack of effective remyelination in the adult human brain. One model used to understand the mechanisms regulating remyelination is cuprizone-induced demyelination, which allows investigation of remyelination mechanisms in adult animals following toxin-induced demyelination. Unfortunately, the degree of demyelination in the cuprizone model can vary, which complicates understanding the process of remyelination. Previous work in our laboratory demonstrated that the Akt/mTOR pathway regulates active myelination. When given to young postnatal mice, the mTOR inhibitor, rapamycin, inhibits active myelination. In the current study, the cuprizone model was modified by the addition of rapamycin during cuprizone exposure. When administered together, cuprizone and rapamycin produced more complete demyelination and provided a longer time frame over which to investigate remyelination than treatment with cuprizone alone. The consistency in demyelination will allow a better understanding of the mechanisms initiating remyelination. Furthermore, the slower rate of remyelination provides a longer window of time in which to investigate the diverse contributing factors that regulate remyelination. This new model of cuprizone-induced demyelination could potentially aid in identification of new therapeutic targets to enhance remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- Hilary H Sachs
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathryn K Bercury
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniela C Popescu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - S Priya Narayanan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
260
|
Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. J Neurosci 2014; 34:10415-29. [PMID: 25080600 DOI: 10.1523/jneurosci.0710-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Failure of remyelination in diseases, such as multiple sclerosis (MS), leads to permanent axonal damage and irreversible functional loss. The mechanisms controlling remyelination are currently poorly understood. Recent studies implicate the cyclin-dependent kinase 5 (Cdk5) in regulating oligodendrocyte (OL) development and myelination in CNS. In this study, we show that Cdk5 is also an important regulator of remyelination. Pharmacological inhibition of Cdk5 inhibits repair of lysolecithin lesions. This inhibition is a consequence of Cdk5 disruption in neural cells because remyelination in slice cultures is blocked by Cdk5 inhibitors, whereas specific deletion of Cdk5 in OLs inhibits myelin repair. In CNP-Cre;Cdk5(fl/fl) conditional knock-out mouse (Cdk5 cKO), myelin repair was delayed significantly in response to focal demyelinating lesions compared with wild-type animals. The lack of myelin repair was reflected in decreased expression of MBP and proteolipid protein and a reduction in the total number of myelinated axons in the lesion. The number of CC1(+) cells in the lesion sites was significantly reduced in Cdk5 cKO compared with wild-type animals although the total number of oligodendrocyte lineage cells (Olig2(+) cells) was increased, suggesting that Cdk5 loss perturbs the transition of early OL lineage cell into mature OL and subsequent remyelination. The failure of remyelination in Cdk5 cKO animals was associated with a reduction in signaling through the Akt pathway and an enhancement of Gsk-3β signaling pathways. Together, these data suggest that Cdk5 is critical in regulating the transition of adult oligodendrocyte precursor cells to mature OLs that is essential for myelin repair in adult CNS.
Collapse
|
261
|
A pivotal role of nonmuscle myosin II during microglial activation. Exp Neurol 2014; 261:666-76. [PMID: 25150163 DOI: 10.1016/j.expneurol.2014.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 08/02/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages in the central nervous system (CNS) and the primary cells that contribute to CNS inflammation in many pathological conditions. Upon any signs of brain damage, microglia become activated and undergo tremendous cellular reorganization to adopt appropriate phenotypes. They migrate to lesion areas, accumulate, phagocytose cells or cellular debris, and produce a large array of inflammatory mediators like cytokines, chemokines, reactive oxygen species, and other mediators. To cope with the extreme cellular rearrangements during activation, microglia have to be highly dynamic. One major component of the cytoskeleton in nonmuscle cells is nonmuscle myosin II (NM II). This study was aimed to examine the functional role of NM II in resting and activated microglia. Using immunohistochemistry, we demonstrate strong expression of NM II isoform B (NM IIB) in microglia during cuprizone-induced demyelination as well as in cultured microglia. Treatment with the NM II inhibitor blebbistatin prevented the morphological shaping of microglial cells, led to functional deficits during chemokine-directed migration and phagocytosis, induced NM IIB redistribution, and affected actin microfilament patterning. In addition, inhibition of NM II led to an attenuated release of nitric oxide (NO), while TNFα secretion was not altered. In conclusion, we propose a pivotal role of NM II in cytoskeleton organization during microglial activation. This is of great importance to understand the mechanisms of microglial action in inflammatory CNS diseases.
Collapse
|
262
|
Czepiel M, Leicher L, Becker K, Boddeke E, Copray S. Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell-derived oligodendrocyte precursors. Stem Cells Transl Med 2014; 3:1100-9. [PMID: 25069776 DOI: 10.5966/sctm.2014-0041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible source for transplantable autologous oligodendrocyte precursors (OPCs). The first transplantation studies in animal models for demyelination with iPSC-derived OPCs demonstrated their survival and remyelinating capacity, but also revealed their limited migration capacity. In the present study, we induced overexpression of the polysialylating enzyme sialyltransferase X (STX) in iPSC-derived OPCs to stimulate the production of polysialic acid-neuronal cell adhesion molecules (PSA-NCAMs), known to promote and facilitate the migration of OPCs. The STX-overexpressing iPSC-derived OPCs showed a normal differentiation and maturation pattern and were able to downregulate PSA-NCAMs when they became myelin-forming oligodendrocytes. After implantation in the demyelinated corpus callosum of cuprizone-fed mice, STX-expressing iPSC-derived OPCs demonstrated a significant increase in migration along the axons. Our findings suggest that the reach and efficacy of iPSC-derived OPC transplantation can be improved by stimulating the OPC migration potential via specific gene modulation.
Collapse
Affiliation(s)
- Marcin Czepiel
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Lasse Leicher
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Katja Becker
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjef Copray
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
263
|
Krauthausen M, Saxe S, Zimmermann J, Emrich M, Heneka MT, Müller M. CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. J Neuroinflammation 2014; 11:109. [PMID: 24930935 PMCID: PMC4096537 DOI: 10.1186/1742-2094-11-109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
Background The functional state of glial cells, like astrocytes and microglia, critically modulates the course of neuroinflammatory and neurodegenerative diseases and can have both detrimental and beneficial effects. Glial cell function is tightly controlled by cellular interactions in which cytokines are important messengers. Recent studies provide evidence that in particular chemokines are important modulators of glial cell function. During the course of CNS diseases like multiple sclerosis or Alzheimer’s disease, and in the corresponding animal models, the chemokines CXCL9 and CXCL10 are abundantly expressed at sites of glial activation, arguing for an important role of these chemokines and their corresponding receptor CXCR3 in glial activation. To clarify the role of this chemokine system in glial cell activation, we characterized the impact of CXCR3 on glial activation in a model of toxic demyelination in which glial activation without a prominent influx of hematogenous cells is prototypical. Methods We investigated the impact of CXCR3 on cuprizone-induced demyelination, comparing CXCR3-deficient mice with wild type controls. The clinical course during cuprizone feeding was documented for five weeks and for the subsequent four days withdrawal of the cuprizone diet (5.5 weeks). Glial activation was characterized using histological, histomorphometric and phenotypic analysis. Molecular analysis for (de)myelination and neuroinflammation was applied to characterize the effect of cuprizone on CXCR3-deficient mice and control animals. Results CXCR3-deficient mice displayed a milder clinical course during cuprizone feeding and a more rapid body weight recovery after offset of diet. In the CNS, CXCR3 deficiency significantly attenuated the accumulation and activation of microglia and astrocytes. Moreover, a deficiency of CXCR3 reduced the expression of the microglial activation markers CD45 and CD11b. Compared to controls, we observed a vast reduction of RNA levels for proinflammatory cytokines and chemokines like Ccl2, Cxcl10, Tnf and Il6 within the CNS of cuprizone-treated mice. Lastly, CXCR3 deficiency had no major effects on the course of demyelination during cuprizone feeding. Conclusions The CXCR3 chemokine system is critically involved in the intrinsic glial activation during cuprizone-induced demyelination, which significantly modulates the distribution of glial cells and the local cytokine milieu.
Collapse
Affiliation(s)
- Marius Krauthausen
- Department of Neurology, Universitätsklinikum Bonn, Sigmund-Freud-Str, 25, D-53105 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
264
|
Mills Ko E, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM, Pleasure D. Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 2014; 11:105. [PMID: 24924222 PMCID: PMC4066277 DOI: 10.1186/1742-2094-11-105] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/27/2014] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by central nervous system (CNS) inflammation, demyelination, and axonal degeneration. CXCL10 (IP-10), a chemokine for CXCR3+ T cells, is known to regulate T cell differentiation and migration in the periphery, but effects of CXCL10 produced endogenously in the CNS on immune cell trafficking are unknown. We created floxed cxcl10 mice and crossed them with mice carrying an astrocyte-specific Cre transgene (mGFAPcre) to ablate astroglial CXCL10 synthesis. These mice, and littermate controls, were immunized with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide) to induce experimental autoimmune encephalomyelitis (EAE). In comparison to the control mice, spinal cord CXCL10 mRNA and protein were sharply diminished in the mGFAPcre/CXCL10fl/fl EAE mice, confirming that astroglia are chiefly responsible for EAE-induced CNS CXCL10 synthesis. Astroglial CXCL10 deletion did not significantly alter the overall composition of CD4+ lymphocytes and CD11b+ cells in the acutely inflamed CNS, but did diminish accumulation of CD4+ lymphocytes in the spinal cord perivascular spaces. Furthermore, IBA1+ microglia/macrophage accumulation within the lesions was not affected by CXCL10 deletion. Clinical deficits were milder and acute demyelination was substantially reduced in the astroglial CXCL10-deleted EAE mice, but long-term axon loss was equally severe in the two groups. We concluded that astroglial CXCL10 enhances spinal cord perivascular CD4+ lymphocyte accumulation and acute spinal cord demyelination in MOG peptide EAE, but does not play an important role in progressive axon loss in this MS model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Athena M Soulika
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine and Shriners Hospital, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| | | |
Collapse
|
265
|
Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 2014; 62:1659-70. [PMID: 24909143 DOI: 10.1002/glia.22706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
Abstract
Perinatal inflammation causes immediate changes of the blood-brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as "second hit," we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis. A single LPS injection at embryonic day 13.5 did not have an impact on demyelination in adulthood. In contrast, serial postnatal LPS injections (P0-P8) caused an early delay of myelin removal in the corpus callosum, which was paralleled by reduced numbers of activated microglia. During remyelination, postnatal LPS treatment enhanced early remyelination with a concomitant increase of mature oligodendrocytes. Furthermore, the postnatal LPS challenge impacts the phenotype of microglia since an elevated mRNA expression of microglia related genes such as TREM 2, CD11b, TNF-α, TGF-β1, HGF, FGF-2, and IGF-1 was found in these preconditioned mice during early demyelination. These data demonstrate that postnatal inflammation has long-lasting effects on microglia functions and modifies the course of demyelination and remyelination in adulthood.
Collapse
Affiliation(s)
- Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014; 8:73. [PMID: 24659953 PMCID: PMC3952085 DOI: 10.3389/fncel.2014.00073] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical SchoolHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| |
Collapse
|
267
|
Lo FS, Zhao S, Erzurumlu RS. Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional recovery. J Neurophysiol 2014; 111:1590-600. [PMID: 24478162 DOI: 10.1152/jn.00658.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker-specific neural patterns (barrelettes), conversion of functional synapses into silent synapses, and reactive gliosis in the brain stem trigeminal principal nucleus (PrV). Here we tested the hypothesis that neonatal peripheral nerve crush injuries permit better functional recovery of associated central nervous system (CNS) synaptic circuitry compared with nerve transection. We developed an in vitro whisker pad-trigeminal ganglion (TG)-brain stem preparation in neonatal rats and tested functional recovery in the PrV following ION crush. Intracellular recordings revealed that 68% of TG cells innervate the whisker pad. We used the proportion of whisker pad-innervating TG cells as an index of ION function. The ION function was blocked by ∼64%, immediately after mechanical crush, then it recovered beginning after 3 days postinjury and was complete by 7 days. We used this reversible nerve-injury model to study peripheral nerve injury-induced CNS synaptic plasticity. In the PrV, the incidence of silent synapses increased to ∼3.5 times of control value by 2-3 days postinjury and decreased to control levels by 5-7 days postinjury. Peripheral nerve injury-induced reaction of astrocytes and microglia in the PrV was also reversible. Neonatal ION crush disrupted barrelette formation, and functional recovery was not accompanied by de novo barrelette formation, most likely due to occurrence of recovery postcritical period (P3) for pattern formation. Our results suggest that nerve crush is more permissive for successful regeneration and reconnection (collectively referred to as "recovery" here) of the sensory inputs between the periphery and the brain stem.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
268
|
Rusielewicz T, Nam J, Damanakis E, John GR, Raine CS, Melendez-Vasquez CV. Accelerated repair of demyelinated CNS lesions in the absence of non-muscle myosin IIB. Glia 2014; 62:580-91. [PMID: 24470341 PMCID: PMC4135430 DOI: 10.1002/glia.22627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
The oligodendrocyte (OL), the myelinating cell of the central nervous system, undergoes dramatic changes in the organization of its cytoskeleton as it differentiates from a precursor (oligodendrocyte precursor cells) to a myelin-forming cell. These changes include an increase in its branching cell processes, a phenomenon necessary for OL to myelinate multiple axon segments. We have previously shown that levels and activity of non-muscle myosin II (NMII), a regulator of cytoskeletal contractility, decrease as a function of differentiation and that inhibition of NMII increases branching and myelination of OL in coculture with neurons. We have also found that mixed glial cell cultures derived from NMIIB knockout mice display an increase in mature myelin basic protein-expressing OL compared with wild-type cultures. We have now extended our studies to investigate the role of NMIIB ablation on myelin repair following focal demyelination by lysolecithin. To this end, we generated an oligodendrocyte-specific inducible knockout model using a Plp-driven promoter in combination with a temporally activated CRE-ER fusion protein. Our data indicate that conditional ablation of NMII in adult mouse brain, expedites lesion resolution and remyelination by Plp+ oligodendrocyte-lineage cells when compared with that observed in control brains. Taken together, these data validate the function of NMII as that of a negative regulator of OL myelination in vivo and provide a novel target for promoting myelin repair in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Tomasz Rusielewicz
- Department of Biological Sciences, Hunter College, New York, New York; The Graduate Center, Molecular Cellular and Developmental Biology, The City University of New York, New York
| | | | | | | | | | | |
Collapse
|
269
|
Raddatz BBR, Hansmann F, Spitzbarth I, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R. Transcriptomic meta-analysis of multiple sclerosis and its experimental models. PLoS One 2014; 9:e86643. [PMID: 24475162 PMCID: PMC3903571 DOI: 10.1371/journal.pone.0086643] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background Multiple microarray analyses of multiple sclerosis (MS) and its experimental models have been published in the last years. Objective Meta-analyses integrate the information from multiple studies and are suggested to be a powerful approach in detecting highly relevant and commonly affected pathways. Data sources ArrayExpress, Gene Expression Omnibus and PubMed databases were screened for microarray gene expression profiling studies of MS and its experimental animal models. Study eligibility criteria Studies comparing central nervous system (CNS) samples of diseased versus healthy individuals with n >1 per group and publically available raw data were selected. Material and Methods Included conditions for re-analysis of differentially expressed genes (DEGs) were MS, myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) in rats, proteolipid protein-induced EAE in mice, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and a transgenic tumor necrosis factor-overexpressing mouse model (TNFtg). Since solely a single MS raw data set fulfilled the inclusion criteria, a merged list containing the DEGs from two MS-studies was additionally included. Cross-study analysis was performed employing list comparisons of DEGs and alternatively Gene Set Enrichment Analysis (GSEA). Results The intersection of DEGs in MS, EAE, TMEV-IDD, and TNFtg contained 12 genes related to macrophage functions. The intersection of EAE, TMEV-IDD and TNFtg comprised 40 DEGs, functionally related to positive regulation of immune response. Over and above, GSEA identified substantially more differentially regulated pathways including coagulation and JAK/STAT-signaling. Conclusion A meta-analysis based on a simple comparison of DEGs is over-conservative. In contrast, the more experimental GSEA approach identified both, a priori anticipated as well as promising new candidate pathways.
Collapse
Affiliation(s)
- Barbara B. R. Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
270
|
|
271
|
Immunological demyelination triggers macrophage/microglial cells activation without inducing astrogliosis. Clin Dev Immunol 2013; 2013:812456. [PMID: 24319469 PMCID: PMC3844255 DOI: 10.1155/2013/812456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS) injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP). Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.
Collapse
|
272
|
Pierce AM, Keating AK. TAM receptor tyrosine kinases: expression, disease and oncogenesis in the central nervous system. Brain Res 2013; 1542:206-20. [PMID: 24184575 DOI: 10.1016/j.brainres.2013.10.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme.
Collapse
Affiliation(s)
- Angela M Pierce
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| | - Amy K Keating
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| |
Collapse
|
273
|
de Monasterio-Schrader P, Patzig J, Möbius W, Barrette B, Wagner TL, Kusch K, Edgar JM, Brophy PJ, Werner HB. Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. Glia 2013; 61:1832-47. [DOI: 10.1002/glia.22561] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Wiebke Möbius
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Benoit Barrette
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Tadzio L. Wagner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Kathrin Kusch
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Julia M. Edgar
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow; Bearsden Road, Glasgow G61 1QH United Kingdom
| | - Peter J. Brophy
- Centre for Neuroregeneration; University of Edinburgh; United Kingdom
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
274
|
Nessler J, Bénardais K, Gudi V, Hoffmann A, Salinas Tejedor L, Janßen S, Prajeeth CK, Baumgärtner W, Kavelaars A, Heijnen CJ, van Velthoven C, Hansmann F, Skripuletz T, Stangel M. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 2013; 8:e69795. [PMID: 23922802 PMCID: PMC3724887 DOI: 10.1371/journal.pone.0069795] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/17/2013] [Indexed: 11/24/2022] Open
Abstract
For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS). In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Laura Salinas Tejedor
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Stefanie Janßen
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annemieke Kavelaars
- Department of Symptom Research, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J. Heijnen
- Department of Symptom Research, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy van Velthoven
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
275
|
The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013; 2013:948976. [PMID: 23840244 PMCID: PMC3694375 DOI: 10.1155/2013/948976] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022]
Abstract
The central nervous system (CNS) is immune privileged with access to leukocytes being limited. In several neurological diseases, however, infiltration of immune cells from the periphery into the CNS is largely observed and accounts for the increased representation of macrophages within the CNS. In addition to extensive leukocyte infiltration, the activation of microglia is frequently observed. The functions of activated macrophages/microglia within the CNS are complex. In three animal models of multiple sclerosis (MS), namely, experimental autoimmune encephalomyelitis (EAE) and cuprizone- and lysolecithin-induced demyelination, there have been many reported detrimental roles associated with the involvement of macrophages and microglia. Such detriments include toxicity to neurons and oligodendrocyte precursor cells, release of proteases, release of inflammatory cytokines and free radicals, and recruitment and reactivation of T lymphocytes in the CNS. Many studies, however, have also reported beneficial roles of macrophages/microglia, including axon regenerative roles, assistance in promoting remyelination, clearance of inhibitory myelin debris, and the release of neurotrophic factors. This review will discuss the evidence supporting the detrimental and beneficial aspects of macrophages/microglia in models of MS, provide a discussion of the mechanisms underlying the dichotomous roles, and describe a few therapies in clinical use in MS that impinge on the activity of macrophages/microglia.
Collapse
|
276
|
Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 2013; 51:567-72. [PMID: 23666824 DOI: 10.1007/s12031-013-0026-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022]
Abstract
In the brain of multiple sclerosis (MS) patients, the conduction block of axons due to demyelination and inflammation underlies early neurological symptoms, whereas axonal transection accounts for permanent deficits occurring during later disease stages. The beneficial function of myelin for the protection of the axonal compartment and network stability between neurons has been shown in numerous studies. Thus, rapid and adequate remyelination is an important factor for axonal patronage during neuroinflammatory conditions. In this review article, we discuss frequently used experimental in vivo and in vitro animal models to examine remyelination and repair in MS. The focus of the discussion is the relevance of the toxin model 'cuprizone' to study the pathology of demyelination and the physiology of remyelination. This also includes recent findings in this animal model which implicate that axonal damage is an ongoing process independent of the initiation of endogenous remyelination.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | | | | |
Collapse
|
277
|
Azami Tameh A, Clarner T, Beyer C, Atlasi MA, Hassanzadeh G, Naderian H. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann Anat 2013; 195:415-23. [PMID: 23711509 DOI: 10.1016/j.aanat.2013.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/25/2013] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
Glutamate excitotoxicity is associated with a wide range of neurodegenerative disorders and also seems to be involved in the pathology of demyelinating disorders such as multiple sclerosis (MS). Cuprizone-induced toxic demyelination shows clear characteristics of MS such as demyelination and axonal damage without the involvement of the innate immune system. In this study, we have evaluated glutamate signaling during cuprizone-induced demyelination in the white and gray matter of mouse brain by studying the expression of ionotropic and metabotropic glutamate-receptors and -transporters by Affymetrix gene array analysis, followed by real-time PCR and western blot analysis. Cellular localization of glutamate transporters was investigated by fluorescence double-labeling experiments. Comparing white and gray matter areas, the expression of glutamate receptors was region-specific. Among NMDA receptor subunits, NR2A was up-regulated in the demyelinated corpus callosum (CC), whereas the metabotropic glutamate receptor mGluR2 was down-regulated in demyelinated gray matter. Glutamate-aspartate transporter (GLAST) co-localizing with GFAP(+) astrocytes was increased in both demyelinated CC and telencephalic cortex, whereas Slc1a4 transporter was up-regulated only in CC. Our data indicate that cuprizone treatment affects glutamate-receptors and -transporters differently in gray and white matter brain areas revealing particularly regulation of GLAST and Slc1a4 compared with other genes. This might have an important influence on brain-region selective sensitivity to neurotoxic compounds and the progression of demyelination as has been reported for MS and other demyelinating neurological diseases.
Collapse
Affiliation(s)
- Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran; Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
278
|
Innate Immunity in the CNS: Redefining the Relationship between the CNS and Its Environment. Neuron 2013; 78:214-32. [DOI: 10.1016/j.neuron.2013.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
|
279
|
|