251
|
Dräger M, Basu A. Galactan synthesis in a single step via oligomerization of monosaccharides. Beilstein J Org Chem 2014; 10:2658-63. [PMID: 25550728 PMCID: PMC4273286 DOI: 10.3762/bjoc.10.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022] Open
Abstract
Galactans ranging in length from one to five residues were prepared in a single step by treatment of the glycosyl donor 2,3,4-tri-O-benzoyl-β-D-galactopyranosyl fluoride with lanthanum perchlorate in the presence of an initiator alcohol. The product oligosaccharides were readily chromatographically separable. This oligomerization was used to synthesize a pentagalactan in a single step from monosaccharide building blocks in reasonable overall yields.
Collapse
Affiliation(s)
- Marius Dräger
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Amit Basu
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| |
Collapse
|
252
|
Rajasundaram D, Runavot JL, Guo X, Willats WGT, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS One 2014; 9:e112168. [PMID: 25383868 PMCID: PMC4226482 DOI: 10.1371/journal.pone.0112168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- * E-mail:
| |
Collapse
|
253
|
Enzymatic hydrolysis studies of arabinogalactan-protein structure from Acacia gum: The self-similarity hypothesis of assembly from a common building block. Carbohydr Polym 2014; 112:648-61. [DOI: 10.1016/j.carbpol.2014.06.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022]
|
254
|
Losada JM, Herrero M, Hormaza JI, Friedman WE. Arabinogalactan proteins mark stigmatic receptivity in the protogynous flowers of Magnolia virginiana (Magnoliaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:1963-75. [PMID: 25366861 DOI: 10.3732/ajb.1400280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PREMISE OF THE STUDY Factors affecting floral receptivity in angiosperms remain opaque, but recent studies suggest that the acquisition of stigmatic receptivity associated with cell-wall-related arabinogalactan proteins (AGPs) may be a widespread feature of flowering plants. Here, the time during which a stigma is receptive is evaluated and related to the secretion of AGPs in Magnolia virginiana, a protogynous member of an early-divergent angiosperm clade (magnoliids) with a clearly discernible female receptive phase. METHODS Magnolia virginiana flower phenology was documented, and histochemical changes in the stigma before and after pollination were examined. Stigmatic receptivity was evaluated in relation to the secretion of AGPs detected in whole mounts and immunolocalized in sectioned stigmas. KEY RESULTS Protogynous Magnolia flowers had a precise window of stigmatic receptivity, which is concomitant with the secretion of two AGPs labeled for different epitopes. After pollen germination and tube growth, these two AGPs could no longer be detected in the stigmas, suggesting that these AGPs interact with the growing male gametophytes and could be markers of stigmatic receptivity. CONCLUSIONS These results show that the period of stigmatic receptivity is finely coordinated with the secretion of two arabinogalactan proteins on stigmas of flowers of M. virginiana. This first report of AGP presence in stigmatic tissues in a member of the magnoliids, together with recently described similar patterns in eudicots, monocots, and members of early-divergent lineages of flowering plants, suggests an ancient and widespread role for AGPs on stigmatic receptivity in angiosperms.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 USA Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, Massachusetts 02131 USA
| | - Maria Herrero
- Department of Pomology, Aula Dei Experimental Station-CSIC, 1005 Avda. Montañana, Zaragoza, Spain 50059
| | - Jose I Hormaza
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea "la Mayora," (IHSM la Mayora-CSIC-UMA), Algarrobo-Costa, Málaga, Spain 29750
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 USA Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, Massachusetts 02131 USA
| |
Collapse
|
255
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. Proteomic profiling reveals insights into Triticeae stigma development and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6069-80. [PMID: 25170101 PMCID: PMC4203142 DOI: 10.1093/jxb/eru350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6 Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, Canada R6M 1Y5
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|
256
|
Rossez Y, Holmes A, Lodberg-Pedersen H, Birse L, Marshall J, Willats WGT, Toth IK, Holden NJ. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants. J Biol Chem 2014; 289:34349-65. [PMID: 25320086 DOI: 10.1074/jbc.m114.587717] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.
Collapse
Affiliation(s)
- Yannick Rossez
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Ashleigh Holmes
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Henriette Lodberg-Pedersen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg Copenhagen, Denmark
| | - Louise Birse
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Jacqueline Marshall
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - William G T Willats
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg Copenhagen, Denmark
| | - Ian K Toth
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| | - Nicola J Holden
- From the Cellular and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, United Kingdom and
| |
Collapse
|
257
|
Nguema-Ona E, Vicré-Gibouin M, Gotté M, Plancot B, Lerouge P, Bardor M, Driouich A. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. FRONTIERS IN PLANT SCIENCE 2014; 5:499. [PMID: 25324850 PMCID: PMC4183102 DOI: 10.3389/fpls.2014.00499] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 05/18/2023]
Abstract
Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Maxime Gotté
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Barbara Plancot
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
- Institut Universitaire de FranceParis, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
- Plate-Forme de Recherche en Imagerie Cellulaire de Haute-Normandie, Institut de Recherche et d’Innovation Biomédicale, Faculté des Sciences et Techniques, Normandie UniversitéMont-Saint-Aignan, France
| |
Collapse
|
258
|
Zhou LH, Weizbauer RA, Singamaneni S, Xu F, Genin GM, Pickard BG. Structures formed by a cell membrane-associated arabinogalactan-protein on graphite or mica alone and with Yariv phenylglycosides. ANNALS OF BOTANY 2014; 114:1385-97. [PMID: 25164699 PMCID: PMC4195565 DOI: 10.1093/aob/mcu172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/03/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Certain membrane-associated arabinogalactan-proteins (AGPs) with lysine-rich sub-domains participate in plant growth, development and resistance to stress. To complement fluorescence imaging of such molecules when tagged and introduced transgenically to the cell periphery and to extend the groundwork for assessing molecular structure, some behaviours of surface-spread AGPs were visualized at the nanometre scale in a simplified electrostatic environment. METHODS Enhanced green fluorescent protein (EGFP)-labelled LeAGP1 was isolated from Arabidopsis thaliana leaves using antibody-coated magnetic beads, deposited on graphite or mica, and examined with atomic force microscopy (AFM). KEY RESULTS When deposited at low concentration on graphite, LeAGP can form independent clusters and rings a few nanometres in diameter, often defining deep pits; the aperture of the rings depends on plating parameters. On mica, intermediate and high concentrations, respectively, yielded lacy meshes and solid sheets that could dynamically evolve arcs, rings, 'pores' and 'co-pores', and pits. Glucosyl Yariv reagent combined with the AGP to make very large and distinctive rings. CONCLUSIONS Diverse cell-specific nano-patterns of native lysine-rich AGPs are expected at the wall-membrane interface and, while there will not be an identical patterning in different environmental settings, AFM imaging suggests protein tendencies for surficial organization and thus opens new avenues for experimentation. Nanopore formation with Yariv reagents suggests how the reagent might bind with AGP to admit Ca(2+) to cells and hints at ways in which AGP might be structured at some cell surfaces.
Collapse
Affiliation(s)
- Li Hong Zhou
- Gladys Levis Allen Laboratory of Plant Sensory Physiology, Biology Department, Washington University in St. Louis, St. Louis, MO, USA Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA Biomedical Engineering & Biomechanics Center, Xi'an Jiaotong University, Xi'an, China
| | - Renate A Weizbauer
- Gladys Levis Allen Laboratory of Plant Sensory Physiology, Biology Department, Washington University in St. Louis, St. Louis, MO, USA Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA Carnegie Institution, Department of Plant Biology, Stanford, CA, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Feng Xu
- Biomedical Engineering & Biomechanics Center, Xi'an Jiaotong University, Xi'an, China School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guy M Genin
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Barbara G Pickard
- Gladys Levis Allen Laboratory of Plant Sensory Physiology, Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
259
|
Cheung AY, Li C, Zou YJ, Wu HM. Glycosylphosphatidylinositol anchoring: control through modification. PLANT PHYSIOLOGY 2014; 166:748-50. [PMID: 25288636 PMCID: PMC4213104 DOI: 10.1104/pp.114.246926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glycosylphosphatidylinositol-anchor biosynthesis and glycosylphosphatidylinositol modification of proteins are central to coordinated plant development.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Chao Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Yan-jiao Zou
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
260
|
Pielach A, Leroux O, Domozych DS, Knox JP, Popper ZA. Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria. ANNALS OF BOTANY 2014; 114:1359-73. [PMID: 25024256 PMCID: PMC4195557 DOI: 10.1093/aob/mcu121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/15/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. METHODS Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). KEY RESULTS Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. CONCLUSIONS The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria.
Collapse
Affiliation(s)
- Anna Pielach
- Botany and Plant Science and Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland Department of Arctic and Marine Biology, Naturfagbygget, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Olivier Leroux
- Botany and Plant Science and Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland Department of Biology, Research Group Pteridology, Ghent University, Ghent, Belgium
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zoë A Popper
- Botany and Plant Science and Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
261
|
Hijazi M, Roujol D, Nguyen-Kim H, Del Rocio Cisneros Castillo L, Saland E, Jamet E, Albenne C. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? ANNALS OF BOTANY 2014; 114:1087-97. [PMID: 24685714 PMCID: PMC4195544 DOI: 10.1093/aob/mcu038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Arabinogalactan protein 31 (AGP31) is a remarkable plant cell-wall protein displaying a multi-domain organization unique in Arabidopsis thaliana: it comprises a predicted signal peptide (SP), a short AGP domain of seven amino acids, a His-stretch, a Pro-rich domain and a PAC (PRP-AGP containing Cys) domain. AGP31 displays different O-glycosylation patterns with arabinogalactans on the AGP domain and Hyp-O-Gal/Ara-rich motifs on the Pro-rich domain. AGP31 has been identified as an abundant protein in cell walls of etiolated hypocotyls, but its function has not been investigated thus far. Literature data suggest that AGP31 may interact with cell-wall components. The purpose of the present study was to identify AGP31 partners to gain new insight into its function in cell walls. METHODS Nitrocellulose membranes were prepared by spotting different polysaccharides, which were either obtained commercially or extracted from cell walls of Arabidopsis thaliana and Brachypodium distachyon. After validation of the arrays, in vitro interaction assays were carried out by probing the membranes with purified native AGP31 or recombinant PAC-V5-6xHis. In addition, dynamic light scattering (DLS) analyses were carried out on an AGP31 purified fraction. KEY RESULTS It was demonstrated that AGP31 interacts through its PAC domain with galactans that are branches of rhamnogalacturonan I. This is the first experimental evidence that a PAC domain, also found as an entire protein or a domain of AGP31 homologues, can bind carbohydrates. AGP31 was also found to bind methylesterified polygalacturonic acid, possibly through its His-stretch. Finally, AGP31 was able to interact with itself in vitro through its PAC domain. DLS data showed that AGP31 forms aggregates in solution, corroborating the hypothesis of an auto-assembly. CONCLUSIONS These results allow the proposal of a model of interactions of AGP31 with different cell-wall components, in which AGP31 participates in complex supra-molecular scaffolds. Such scaffolds could contribute to the strengthening of cell walls of quickly growing organs such as etiolated hypocotyls.
Collapse
Affiliation(s)
- May Hijazi
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - David Roujol
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Huan Nguyen-Kim
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | | | - Estelle Saland
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Cécile Albenne
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
262
|
Lamport DTA, Varnai P, Seal CE. Back to the future with the AGP-Ca2+ flux capacitor. ANNALS OF BOTANY 2014; 114:1069-85. [PMID: 25139429 PMCID: PMC4195563 DOI: 10.1093/aob/mcu161] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp-arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca(2+) when paired with its adjacent sidechain. SCOPE AGPs bind Ca(2+) (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H(+)-ATPase generates a low periplasmic pH that dissociates AGP-Ca(2+) carboxylates (pka ∼3); the consequential large increase in free Ca(2+) drives entry into the cytosol via Ca(2+) channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca(2+) waves. This differs markedly from animals, in which cytosolic Ca(2+) originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca(2+) storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca(2+), hence an AGP-Ca(2+) oscillator. CONCLUSIONS The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Peter Varnai
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
263
|
Seifert GJ, Xue H, Acet T. The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. ANNALS OF BOTANY 2014; 114:1125-33. [PMID: 24603604 PMCID: PMC4195540 DOI: 10.1093/aob/mcu010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/14/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS The putative FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 4 (At-FLA4) locus of Arabidopsis thaliana has previously been shown to be required for the normal growth of wild-type roots in response to moderately elevated salinity. However, the genetic and physiological pathway that connects At-FLA4 and normal root growth remains to be elucidated. METHODS The radial swelling phenotype of At-fla4 was modulated with growth regulators and their inhibitors. The relationship of At-FLA4 to abscisic acid (ABA) signalling was analysed by probing marker gene expression and the observation of the At-fla4 phenotype in combination with ABA signalling mutants. KEY RESULTS Application of ABA suppresses the non-redundant role of At-FLA4 in the salt response. At-FLA4 positively regulates the response to low ABA concentration in roots and is required for the normal expression of ABA- and abiotic stress-induced genes. The At-fla4 phenotype is enhanced in the At-abi4 background, while two genetic suppressors of ABA-induced gene expression are required for salt oversensitivity of At-fla4. Salt oversensitivity in At-fla4 is suppressed by the CYP707A inhibitor abscinazole E2B, and salt oversensitivity in At-fla4 roots is phenocopied by chemical inhibition of ABA biosynthesis. CONCLUSIONS The predicted lipid-anchored glycoprotein At-FLA4 positively regulates cell wall biosynthesis and root growth by modulating ABA signalling.
Collapse
Affiliation(s)
- Georg J Seifert
- University of Natural Resources and Life Science, Vienna, Austria; Department of Applied Genetics and Cell Biology, Muthgasse 18, A-1990 Vienna, Austria
| | - Hui Xue
- University of Natural Resources and Life Science, Vienna, Austria; Department of Applied Genetics and Cell Biology, Muthgasse 18, A-1990 Vienna, Austria
| | - Tuba Acet
- University of Natural Resources and Life Science, Vienna, Austria; Department of Applied Genetics and Cell Biology, Muthgasse 18, A-1990 Vienna, Austria Gümüşhane University, School of Health & Nursing, 29100 Gümüşhane, Turkey Karadeniz Technical University, Science Faculty, Department of Biology, 61080 Trabzon, Turkey
| |
Collapse
|
264
|
Hijazi M, Velasquez SM, Jamet E, Estevez JM, Albenne C. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. FRONTIERS IN PLANT SCIENCE 2014; 5:395. [PMID: 25177325 PMCID: PMC4132260 DOI: 10.3389/fpls.2014.00395] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.
Collapse
Affiliation(s)
- May Hijazi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - Silvia M. Velasquez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - José M. Estevez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| |
Collapse
|
265
|
Griffiths JS, Tsai AYL, Xue H, Voiniciuc C, Sola K, Seifert GJ, Mansfield SD, Haughn GW. SALT-OVERLY SENSITIVE5 Mediates Arabidopsis Seed Coat Mucilage Adherence and Organization through Pectins. PLANT PHYSIOLOGY 2014; 165:991-1004. [PMID: 24808103 PMCID: PMC4081351 DOI: 10.1104/pp.114.239400] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/29/2014] [Indexed: 05/17/2023]
Abstract
Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5.
Collapse
Affiliation(s)
- Jonathan S Griffiths
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - Allen Yi-Lun Tsai
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - Hui Xue
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - Cătălin Voiniciuc
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - Krešimir Sola
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - Georg J Seifert
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - Shawn D Mansfield
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| | - George W Haughn
- Departments of Botany (J.S.G., A.Y.-L.T., C.V., K.S., G.W.H.) andWood Science (S.D.M.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; andDepartment of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, A-1990 Vienna, Austria (H.X., G.J.S.)
| |
Collapse
|
266
|
Zhao J, Yi H. Genome-wide transcriptome analysis of Arabidopsis response to sulfur dioxide fumigation. Mol Genet Genomics 2014; 289:989-99. [PMID: 24889700 DOI: 10.1007/s00438-014-0870-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/15/2014] [Indexed: 01/27/2023]
Abstract
Sulfur dioxide (SO2) supplies the basic sulfur element to promote plant growth, yet at the same time it is a harmful air pollutant. Currently, the mechanisms of plant adaptation to SO2 stress are largely unknown. Pathways of SO2 metabolism, a range of networks of interacting regulatory signals and defense mechanisms triggered in resistance to SO2 stress, have not yet been clarified. We performed transcriptome analysis of Arabidopsis plants fumigated with 30 mg m(-3) SO2 for 72 h and untreated controls using microarrays. This identified 2,780 significantly up- or down-regulated genes in plants response to SO2 stress, indicating a possible genome-scale reprogramming of the transcriptome. Significant changes in the transcript abundance of genes that participated in SO2 metabolic pathways indicated that numerous sulfites were involved in sulfur assimilatory pathways directly and away from sulfite oxidative pathways. Furthermore, the up-regulation of components involved in reactive oxygen species generating and scavenging pathways demonstrated altered redox homeostasis. Transcripts encoding key components in nitric oxide biosynthesis pathways were simultaneously up-regulated by SO2 exposure. In addition, transcripts associated with putative biotic stress were also up-regulated. Therefore, SO2 evokes a comprehensive reprogramming of metabolic pathways, consistent with up-regulation of transcripts involved in tolerance and defense mechanisms, in Arabidopsis.
Collapse
Affiliation(s)
- Jun Zhao
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China,
| | | |
Collapse
|
267
|
Paulsen B, Craik D, Dunstan D, Stone B, Bacic A. The Yariv reagent: Behaviour in different solvents and interaction with a gum arabic arabinogalactanprotein. Carbohydr Polym 2014; 106:460-8. [DOI: 10.1016/j.carbpol.2014.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
268
|
Shimoda R, Okabe K, Kotake T, Matsuoka K, Koyama T, Tryfona T, Liang HC, Dupree P, Tsumuraya Y. Enzymatic fragmentation of carbohydrate moieties of radish arabinogalactan-protein and elucidation of the structures. Biosci Biotechnol Biochem 2014; 78:818-31. [DOI: 10.1080/09168451.2014.910100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
We investigated the structures of L-arabino-galactooligosaccharides released from the sugar moieties of a radish arabinogalactan-protein (AGP) by the action of exo-β-(1→3)-galactanase. We detected a series of neutral β-(1→6)-linked galactooligosaccharides forming branches of one to up to at least 19 consecutive Gal groups, together with corresponding acidic derivatives terminating in 4-O-methyl-glucuronic acid (4-Me-GlcA) at the non-reducing end. Some oligosaccharide chains of degree of polymerization (dp) higher than 3 for neutral, and 4 for acidic oligomers were modified with L-Araf residues. The acidic tetrasaccharide 4-Me-β-GlcA-(1→6)[α-L-Araf-(1→3)]-β-Gal-(1→6)-Gal was detected as an abundant L-Araf-containing oligosaccharide among these neutral and acidic oligomers. A pentasaccharide containing an additional L-Araf group attached to the L-Ara in the tetrasaccharide through an α-(1→5)-linkage was also found. We observed L-arabino-galactooligosaccharides substituted with single or disaccharide L-Araf units at different Gal residues along these neutral and acidic β-(1→6)-galactooligosaccharide chains, indicating that these side chains are highly variable in length and substituted variously with L-Araf residues.
Collapse
Affiliation(s)
- Ryohei Shimoda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kohei Okabe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Tetsuo Koyama
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Theodora Tryfona
- School of Biological Sciences, Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Hui-Chung Liang
- School of Biological Sciences, Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Paul Dupree
- School of Biological Sciences, Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
269
|
Cornuault V, Manfield IW, Ralet MC, Knox JP. Epitope detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:715-22. [PMID: 24621270 DOI: 10.1111/tpj.12504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 05/24/2023]
Abstract
Plant cell walls are complex, multi-macromolecular assemblies of glycans and other molecules and their compositions and molecular architectures vary extensively. Even though the chemistry of cell-wall glycans is now well understood, it remains a challenge to understand the diversity of glycan configurations and interactions in muro, and how these relate to changes in the biological and mechanical properties of cell walls. Here we describe in detail a method called epitope detection chromatography analysis of cell-wall matrix glycan sub-populations and inter-connections. The method combines chromatographic separations with use of glycan-directed monoclonal antibodies as detection tools. The high discrimination capacity and high sensitivity for the detection of glycan structural features (epitopes) provided by use of established monoclonal antibodies allows the study of oligosaccharide motifs on sets of cell-wall glycans in small amounts of plant materials such as a single organ of Arabidopsis thaliana without the need for extensive purification procedures. We describe the use of epitope detection chromatography to assess the heterogeneity of xyloglucan and pectic rhamnogalacturonan I sub-populations and their modulation in A. thaliana organs.
Collapse
Affiliation(s)
- Valérie Cornuault
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
270
|
Zagorchev L, Odjakova M. Hydroxyproline Rich Proteins in Salt Adapted Embryogenic Suspension Cultures ofDactylis GlomerataL. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
271
|
Dilokpimol A, Poulsen CP, Vereb G, Kaneko S, Schulz A, Geshi N. Galactosyltransferases from Arabidopsis thaliana in the biosynthesis of type II arabinogalactan: molecular interaction enhances enzyme activity. BMC PLANT BIOLOGY 2014; 14:90. [PMID: 24693939 PMCID: PMC4234293 DOI: 10.1186/1471-2229-14-90] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/25/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins are abundant proteoglycans present on cell surfaces of plants and involved in many cellular processes, including somatic embryogenesis, cell-cell communication and cell elongation. Arabinogalactan proteins consist mainly of glycan, which is synthesized by post-translational modification of proteins in the secretory pathway. Importance of the variations in the glycan moiety of arabinogalactan proteins for their functions has been implicated, but its biosynthetic process is poorly understood. RESULTS We have identified a novel enzyme in the biosynthesis of the glycan moiety of arabinogalactan proteins. The At1g08280 (AtGALT29A) from Arabidopsis thaliana encodes a putative glycosyltransferase (GT), which belongs to the Carbohydrate Active Enzyme family GT29. AtGALT29A co-expresses with other arabinogalactan GTs, AtGALT31A and AtGLCAT14A. The recombinant AtGALT29A expressed in Nicotiana benthamiana demonstrated a galactosyltransferase activity, transferring galactose from UDP-galactose to a mixture of various oligosaccharides derived from arabinogalactan proteins. The galactose-incorporated products were analyzed using structure-specific hydrolases indicating that the recombinant AtGALT29A possesses β-1,6-galactosyltransferase activity, elongating β-1,6-galactan side chains and forming 6-Gal branches on the β-1,3-galactan main chain of arabinogalactan proteins. The fluorescence tagged AtGALT29A expressed in N. benthamiana was localized to Golgi stacks where it interacted with AtGALT31A as indicated by Förster resonance energy transfer. Biochemically, the enzyme complex containing AtGALT31A and AtGALT29A could be co-immunoprecipitated and the isolated protein complex exhibited increased level of β-1,6-galactosyltransferase activities compared to AtGALT29A alone. CONCLUSIONS AtGALT29A is a β-1,6-galactosyltransferase and can interact with AtGALT31A. The complex can work cooperatively to enhance the activities of adding galactose residues 6-linked to β-1,6-galactan and to β-1,3-galactan. The results provide new knowledge of the glycosylation process of arabinogalactan proteins and the functional significance of protein-protein interactions among O-glycosylation enzymes.
Collapse
Affiliation(s)
- Adiphol Dilokpimol
- Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, C, Denmark
- Present address: Fungal Physiology, CBS-KNAW, Fungal Biodiversity Center, Uppsalalaan 8, Utrecht 3584, CT, The Netherlands
| | - Christian Peter Poulsen
- Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, C, Denmark
| | - György Vereb
- Department of Biophysics and Cell Biology, and MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| | - Satoshi Kaneko
- Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, C, Denmark
| | - Naomi Geshi
- Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, C, Denmark
| |
Collapse
|
272
|
Cohen S, Zmudjak M, Colas des Francs-Small C, Malik S, Shaya F, Keren I, Belausov E, Many Y, Brown GG, Small I, Ostersetzer-Biran O. nMAT4, a maturase factor required for nad1 pre-mRNA processing and maturation, is essential for holocomplex I biogenesis in Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:253-68. [PMID: 24506473 DOI: 10.1111/tpj.12466] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 05/23/2023]
Abstract
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self-splicing ribozyme and its own intron-encoded maturase protein. A hallmark of maturases is that they are intron-specific, acting as cofactors that bind their intron-containing pre-RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron-encoded maturase open reading frames suggest that their splicing in vivo is assisted by 'trans'-acting protein factors. Interestingly, angiosperms harbor several nuclear-encoded maturase-related (nMat) genes that contain N-terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.
Collapse
Affiliation(s)
- Sigal Cohen
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
274
|
Tryfona T, Theys TE, Wagner T, Stott K, Keegstra K, Dupree P. Characterisation of FUT4 and FUT6 α-(1 → 2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases Arabidopsis root growth salt sensitivity. PLoS One 2014; 9:e93291. [PMID: 24667545 PMCID: PMC3965541 DOI: 10.1371/journal.pone.0093291] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/04/2014] [Indexed: 11/22/2022] Open
Abstract
Plant type II arabinogalactan (AG) polysaccharides are attached to arabinogalactan proteins (AGPs) at hydroxyproline residues, and they are very diverse and heterogeneous structures. The AG consists of a β-(1→3)-linked galactan backbone with β-(1→6)-galactan side chains that are modified mainly with arabinose, but they may also contain glucuronic acid, rhamnose or other sugars. Here, we studied the positions of fucose substitutions in AGPs, and we investigated the functions of this fucosylation. Monosaccharide analysis of Arabidopsis leaf AGP extracts revealed a significant reduction in L-Fucose content in the fut4 mutant, but not in the fut6 mutant. In addition, Fucose was reduced in the fut4 mutant in root AGP extracts and was absent in the fut4/fut6 mutant. Curiously, in all cases reduction of fucose was accompanied with a reduction in xylose levels. The fucosylated AGP structures in leaves and roots in wild type and fut mutant plants were characterised by sequential digestion with AG specific enzymes, analysis by Polysaccharide Analysis using Carbohydrate gel Electrophoresis, and Matrix Assisted Laser Desorption/Ionisation (MALDI)-Time of Flight Mass spectrometry (MS). We found that FUT4 is solely responsible for the fucosylation of AGPs in leaves. The Arabidopsis thaliana FUT4 and FUT6 genes have been previously proposed to be non-redundant AG-specific fucosyltransferases. Unexpectedly, FUT4 and FUT6 enzymes both fucosylate the same AGP structures in roots, suggesting partial redundancy to each other. Detailed structural characterisation of root AGPs with high energy MALDI-Collision Induced Dissociation MS and NMR revealed an abundant unique AG oligosaccharide structure consisting of terminal xylose attached to fucose. The loss of this structure in fut4/fut6 mutants explains the reduction of both fucose and xylose in AGP extracts. Under salt-stress growth conditions the fut4/fut6 mutant lacking AGP fucosylation exhibited a shorter root phenotype than wild type plants, implicating fucosylation of AGPs in maintaining proper cell expansion under these conditions.
Collapse
Affiliation(s)
- Theodora Tryfona
- School of Biological Sciences, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tina E. Theys
- School of Biological Sciences, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tanya Wagner
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Katherine Stott
- School of Biological Sciences, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kenneth Keegstra
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Paul Dupree
- School of Biological Sciences, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
275
|
González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:135-9. [PMID: 24467905 DOI: 10.1016/j.plantsci.2013.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 05/18/2023]
Abstract
Plants sense and transmit nutrient-deprivation signals to the nucleus. This increasingly interesting research field advances knowledge of signal transduction pathways for mineral deficiencies. The understanding of this topic for most micronutrients, especially boron (B), is more limited. Several hypotheses have been proposed to explain how a B deprivation signal would be conveyed to the nucleus, which are briefly summarized in this review. These hypotheses do not explain how so many metabolic and physiological processes quickly respond to B deficiency. Short-term B deficiency affects the cytosolic Ca(2+) levels as well as root expression of genes involved in Ca(2+) signaling. We propose and discuss that Ca(2+) and Ca(2+)-related proteins - channels/transporters, sensor relays, and sensor responders - might have major roles as intermediates in a transduction pathway triggered by B deprivation. This hypothesis may explain how plants sense and convey the B-deprivation signal to the nucleus and modulate physiological responses. The possible role of arabinogalactan-proteins in the B deficiency signaling pathway is also taken into account.
Collapse
Affiliation(s)
- Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain.
| | - M Teresa Navarro-Gochicoa
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - M Begoña Herrera-Rodríguez
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Carlos Quiles-Pando
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | - Jesús Rexach
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| |
Collapse
|
276
|
Dolan MC, Wu D, Cramer CL, Xu J. Hydroxyproline-O-glycosylated peptide tags enhance recombinant protein yields in tobacco transient expression. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
277
|
Structural characteristics of water-soluble polysaccharides from Heracleum sosnowskyi Manden. Carbohydr Polym 2014; 102:521-8. [DOI: 10.1016/j.carbpol.2013.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 01/06/2023]
|
278
|
Tucker MR, Koltunow AMG. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:137-45. [PMID: 24507505 DOI: 10.1016/j.pbi.2013.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 05/05/2023]
Abstract
The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.
Collapse
Affiliation(s)
- Matthew R Tucker
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Hartley Grove, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
279
|
Deutschle AL, Römhild K, Meister F, Janzon R, Riegert C, Saake B. Effects of cationic xylan from annual plants on the mechanical properties of paper. Carbohydr Polym 2014; 102:627-35. [DOI: 10.1016/j.carbpol.2013.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
|
280
|
Artemisia absinthium and Artemisia vulgaris: A comparative study of infusion polysaccharides. Carbohydr Polym 2014; 102:738-45. [DOI: 10.1016/j.carbpol.2013.10.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
|
281
|
Zagorchev L, Kamenova P, Odjakova M. The role of plant cell wall proteins in response to salt stress. ScientificWorldJournal 2014; 2014:764089. [PMID: 24574917 PMCID: PMC3916024 DOI: 10.1155/2014/764089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022] Open
Abstract
Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| | - Plamena Kamenova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| | - Mariela Odjakova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|
282
|
Matsubayashi Y. Posttranslationally modified small-peptide signals in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:385-413. [PMID: 24779997 DOI: 10.1146/annurev-arplant-050312-120122] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell-to-cell signaling is essential for many processes in plant growth and development, including coordination of cellular responses to developmental and environmental cues. Cumulative studies have demonstrated that peptide signaling plays a greater-than-anticipated role in such intercellular communication. Some peptides act as signals during plant growth and development, whereas others are involved in defense responses or symbiosis. Peptides secreted as signals often undergo posttranslational modification and proteolytic processing to generate smaller peptides composed of approximately 10 amino acid residues. Such posttranslationally modified small-peptide signals constitute one of the largest groups of secreted peptide signals in plants. The location of the modification group incorporated into the peptides by specific modification enzymes and the peptide chain length defined by the processing enzymes are critical for biological function and receptor interaction. This review covers 20 years of research into posttranslationally modified small-peptide signals in plants.
Collapse
|
283
|
|
284
|
Knoch E, Dilokpimol A, Geshi N. Arabinogalactan proteins: focus on carbohydrate active enzymes. FRONTIERS IN PLANT SCIENCE 2014; 5:198. [PMID: 24966860 PMCID: PMC4052742 DOI: 10.3389/fpls.2014.00198] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/24/2014] [Indexed: 05/02/2023]
Abstract
Arabinogalactan proteins (AGPs) are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/) involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.
Collapse
Affiliation(s)
| | | | - Naomi Geshi
- *Correspondence: Naomi Geshi, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark e-mail:
| |
Collapse
|
285
|
Abstract
Plant stature and development are governed by cell proliferation and directed cell growth. These parameters are determined largely by cell wall characteristics. Cellulose microfibrils, composed of hydrogen-bonded β-1,4 glucans, are key components for anisotropic growth in plants. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes. In higher plants, these complexes are assembled into hexameric rosettes in intracellular compartments and secreted to the plasma membrane. Here, the complexes typically track along cortical microtubules, which may guide cellulose synthesis, until the complexes are inactivated and/or internalized. Determining the regulatory aspects that control the behavior of cellulose synthase complexes is vital to understanding directed cell and plant growth and to tailoring cell wall content for industrial products, including paper, textiles, and fuel. In this review, we summarize and discuss cellulose synthesis and regulatory aspects of the cellulose synthase complex, focusing on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada;
| | | | | |
Collapse
|
286
|
Doblin MS, Johnson KL, Humphries J, Newbigin EJ, Bacic A. Are designer plant cell walls a realistic aspiration or will the plasticity of the plant's metabolism win out? Curr Opin Biotechnol 2013; 26:108-14. [PMID: 24679266 DOI: 10.1016/j.copbio.2013.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/15/2013] [Accepted: 11/28/2013] [Indexed: 01/28/2023]
Abstract
Plants have been redesigned by humans since the advent of modern agriculture some 10000 years ago, to provide ever increasing benefits to society. The phenomenal success of the green revolution in converting biomass from vegetative tissues into grain yield has sustained a growing population. At the dawn of the 21st century the need to further optimise plant biomass (largely plant walls) for a sustainable future is increasingly evident as our supply of fossil fuels is finite and the quality of our crop-based foods (functional foods; also determined by the composition of walls) are critical to maintaining a healthy lifestyle. Our capacity to engineer 'designer walls' suited to particular purposes is challenging plant breeders and biotechnologists in unprecedented ways. In this review we provide an overview of the critical steps in the assembly and remodelling of walls, the success (or otherwise) of such approaches and highlight another complex network, the cell surface, as a cell wall integrity (CWI) sensor that exerts control over wall composition and will need to be considered in any future modification of walls for agro-industrial purposes.
Collapse
Affiliation(s)
- Monika S Doblin
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Kim L Johnson
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - John Humphries
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Ed J Newbigin
- School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Antony Bacic
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic. 3010, Australia.
| |
Collapse
|
287
|
Conversion of fusaric acid to Fusarinol by Aspergillus tubingensis: a detoxification reaction. J Chem Ecol 2013; 40:84-9. [PMID: 24352475 DOI: 10.1007/s10886-013-0370-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA), which is also toxic to many microorganisms. An Aspergillus tubingensis strain with high tolerance to FA was isolated from soil and designated as CDRAt01. HPLC analysis of culture filtrates from A. tubingensis isolate CDRAt01 grown with the addition of FA indicated the formation of a metabolite over time that was associated with a decrease of FA. Spectral analysis and chemical synthesis confirmed the compound as 5-butyl-2-pyridinemethanol, referred to here as fusarinol. The phytotoxicity of fusarinol compared to FA was measured by comparing necrosis induced in cotton (Gossypium hirsutum L. cv. Coker 312) cotyledons. Fusarinol was significantly less phytotoxic than FA. Therefore, the A. tubingensis strain provides a novel detoxification mechanism against FA which may be utilized to control Fusarium wilt.
Collapse
|
288
|
Liang Y, Basu D, Pattathil S, Xu WL, Venetos A, Martin SL, Faik A, Hahn MG, Showalter AM. Biochemical and physiological characterization of fut4 and fut6 mutants defective in arabinogalactan-protein fucosylation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5537-51. [PMID: 24127514 PMCID: PMC3871811 DOI: 10.1093/jxb/ert321] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are highly glycosylated hydroxyproline-rich glycoproteins present in plant cell walls. AGPs are characterized by arabinose-/galactose-rich side chains, which define their interactive molecular surface. Fucose residues are found in some dicotyledon AGPs, and AGP fucosylation is developmentally regulated. We previously identified Arabidopsis thaliana FUT4 and FUT6 genes as AGP-specific fucosyltransferases (FUTs) based on their enzymatic activities when heterologously expressed in tobacco (Nicotiana tabacum) BY2 suspension-cultured cells. Here, the functions of FUT4 and FUT6 and the physiological roles of fucosylated AGPs were further investigated using Arabidopsis fut4, fut6, and fut4/fut6 mutant plants. All mutant plants showed no phenotypic differences compared to wild-type plants under physiological conditions, but showed reduced root growth in the presence of elevated NaCl. However, roots of wild-type and fut4 mutant plants contained terminal fucose epitopes, which were absent in fut6 and fut4/fut6 mutant plants as indicated by eel lectin staining. Monosaccharide analysis showed fucose was present in wild-type leaf and root AGPs, but absent in fut4 leaf AGPs and in fut4/fut6 double mutant leaf and root AGPs, indicating that FUT4 was required for fucosylation of leaf AGPs while both FUT4 and FUT6 contributed to fucosylation of root AGPs. Glycome profiling of cell wall fractions from mutant roots and leaves showed distinct glycome profiles compared to wild-type plants, indicating that fucosyl residues on AGPs may regulate intermolecular interactions between AGPs and other wall components. The current work exemplifies the possibilities of refinement of cell wall structures by manipulation of a single or a few cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Yan Liang
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Present address: Joint BioEnergy Institute, 1 Cyclotron Rd. MS: 978-4121, Berkeley, CA 94720, USA
| | - Debarati Basu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Wen-liang Xu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Present address: Hua Zhong Normal University, Wuhan, Hubei 430079, China
| | - Alexandra Venetos
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
289
|
Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS. Glycoproteome of elongating cotton fiber cells. Mol Cell Proteomics 2013; 12:3677-89. [PMID: 24019148 PMCID: PMC3861716 DOI: 10.1074/mcp.m113.030726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/04/2013] [Indexed: 11/21/2022] Open
Abstract
Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellular destined proteins. Elucidating the glycoproteome of fiber cells would reflect its wall composition as well as compartmental requirement, which must be system specific. Following complementary proteomic approaches, we have identified 334 unique proteins comprising structural and regulatory families. Glycopeptide-based enrichment followed by deglycosylation with PNGase F and A revealed 92 unique peptides containing 106 formerly N-linked glycosylated sites from 67 unique proteins. Our results showed that structural proteins like arabinogalactans and carbohydrate active enzymes were relatively more abundant and showed stage- and isoform-specific expression patterns in the differentiating fiber cell. Furthermore, our data also revealed the presence of heterogeneous and novel forms of structural and regulatory glycoproteins. Comparative analysis with other plant glycoproteomes highlighted the unique composition of the fiber glycoproteome. The present study provides the first insight into the identity, abundance, diversity, and composition of the glycoproteome within single celled cotton fibers. The elucidated composition also indirectly provides clues about unicellular compartmental requirements underlying single cell differentiation.
Collapse
Affiliation(s)
- Saravanan Kumar
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Krishan Kumar
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pankaj Pandey
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vijayalakshmi Rajamani
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Gurusamy Dhandapani
- §National Research Centre on Plant Biotechnology (NRCPB), IARI, New Delhi, India
| | | | - Sadhu Leelavathi
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Vanga Siva Reddy
- From the ‡Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
290
|
Dorca-Fornell C, Pajor R, Lehmeier C, Pérez-Bueno M, Bauch M, Sloan J, Osborne C, Rolfe S, Sturrock C, Mooney S, Fleming A. Increased leaf mesophyll porosity following transient retinoblastoma-related protein silencing is revealed by microcomputed tomography imaging and leads to a system-level physiological response to the altered cell division pattern. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:914-29. [PMID: 24118480 PMCID: PMC4282533 DOI: 10.1111/tpj.12342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 05/04/2023]
Abstract
The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression.
Collapse
Affiliation(s)
- Carmen Dorca-Fornell
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Radoslaw Pajor
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of NottinghamSutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Christoph Lehmeier
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Marísa Pérez-Bueno
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Marion Bauch
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Jen Sloan
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Colin Osborne
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Stephen Rolfe
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| | - Craig Sturrock
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of NottinghamSutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Sacha Mooney
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of NottinghamSutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew Fleming
- Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
291
|
Knoch E, Dilokpimol A, Tryfona T, Poulsen CP, Xiong G, Harholt J, Petersen BL, Ulvskov P, Hadi MZ, Kotake T, Tsumuraya Y, Pauly M, Dupree P, Geshi N. A β-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:1016-29. [PMID: 24128328 DOI: 10.1111/tpj.12353] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
We have characterized a β-glucuronosyltransferase (AtGlcAT14A) from Arabidopsis thaliana that is involved in the biosynthesis of type II arabinogalactan (AG). This enzyme belongs to the Carbohydrate Active Enzyme database glycosyltransferase family 14 (GT14). The protein was localized to the Golgi apparatus when transiently expressed in Nicotiana benthamiana. The soluble catalytic domain expressed in Pichia pastoris transferred glucuronic acid (GlcA) to β-1,6-galactooligosaccharides with degrees of polymerization (DP) ranging from 3-11, and to β-1,3-galactooligosaccharides of DP5 and 7, indicating that the enzyme is a glucuronosyltransferase that modifies both the β-1,6- and β-1,3-galactan present in type II AG. Two allelic T-DNA insertion mutant lines showed 20-35% enhanced cell elongation during seedling growth compared to wild-type. Analyses of AG isolated from the mutants revealed a reduction of GlcA substitution on Gal-β-1,6-Gal and β-1,3-Gal, indicating an in vivo role of AtGlcAT14A in synthesis of those structures in type II AG. Moreover, a relative increase in the levels of 3-, 6- and 3,6-linked galactose (Gal) and reduced levels of 3-, 2- and 2,5-linked arabinose (Ara) were seen, suggesting that the mutation in AtGlcAT14A results in a relative increase of the longer and branched β-1,3- and β-1,6-galactans. This increase of galactosylation in the mutants is most likely caused by increased availability of the O6 position of Gal, which is a shared acceptor site for AtGlcAT14A and galactosyltransferases in synthesis of type II AG, and thus addition of GlcA may terminate Gal chain extension. We discuss a role for the glucuronosyltransferase in the biosynthesis of type II AG, with a biological role during seedling growth.
Collapse
Affiliation(s)
- Eva Knoch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Suo B, Seifert S, Kirik V. Arabidopsis GLASSY HAIR genes promote trichome papillae development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4981-91. [PMID: 24014871 PMCID: PMC3830481 DOI: 10.1093/jxb/ert287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Specialized plant cells form cell walls with distinct composition and properties pertinent to their function. Leaf trichomes in Arabidopsis form thick cell walls that support the upright growth of these large cells and, curiously, have strong light-reflective properties. To understand the process of trichome cell-wall maturation and the molecular origins of this optical property, mutants affected in trichome light reflection were isolated and characterized. It was found that GLASSY HAIR (GLH) genes are required for the formation of surface papillae structures at late stages of trichome development. Trichomes in these mutants appeared transparent due to unobstructed light transmission. Genetic analysis of the isolated mutants revealed seven different gene loci. Two--TRICHOME BIREFRINGENCE (TBR) and NOK (Noeck)--have been reported previously to have the glassy trichome mutant phenotype. The other five glh mutants were analysed for cell-wall-related phenotypes. A significant reduction was found in cellulose content in glh2 and glh4 mutant trichomes. In addition to the glassy trichome phenotype, the glh6 mutants showed defects in leaf cuticular wax, and glh6 was found to represent a new allele of the eceriferum 10 (cer10) mutation. Trichomes of the glh1 and glh3 mutants did not show any other phenotypes beside reduced papillae formation. These data suggest that the GLH1 and GLH3 genes may have specific functions in trichome papillae formation, whereas GLH2, GLH4, and GLH6 genes are also involved in deposition of other cell-wall components.
Collapse
Affiliation(s)
- Bangxia Suo
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Stephanie Seifert
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
293
|
Twomey MC, Brooks JK, Corey JM, Singh-Cundy A. Characterization of PhPRP1, a histidine domain arabinogalactan protein from Petunia hybrida pistils. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1384-1388. [PMID: 23747062 DOI: 10.1016/j.jplph.2013.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
An arabinogalactan protein, PhPRP1, was purified from Petunia hybrida pistils and shown to be orthologous to TTS-1 and TTS-2 from Nicotiana tabacum and NaTTS from Nicotiana alata. Sequence comparisons among these proteins, and CaPRP1 from Capsicum annuum, reveal a conserved histidine-rich domain and two hypervariable domains. Immunoblots show that TTS-1 and PhPRP1 are also expressed in vegetative tissues of tobacco and petunia respectively. In contrast to the molecular mass heterogeneity displayed by the pistil proteins, the different isoforms found in seedlings, roots, and leaves each has a discrete size (37, 80, 160, and 200 kDa) on SDS-PAGE gels. On the basis of their chemistry, distinctive domain architecture, and the unique pattern of expression, we have named this group of proteins HD-AGPs (histidine domain-arabinogalactan proteins).
Collapse
Affiliation(s)
- Megan C Twomey
- Biology Department, Western Washington University, Bellingham, WA, USA
| | | | | | | |
Collapse
|
294
|
Geshi N, Johansen JN, Dilokpimol A, Rolland A, Belcram K, Verger S, Kotake T, Tsumuraya Y, Kaneko S, Tryfona T, Dupree P, Scheller HV, Höfte H, Mouille G. A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:128-37. [PMID: 23837821 DOI: 10.1111/tpj.12281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 05/18/2023]
Abstract
Arabinogalactan proteins (AGPs) are a complex family of cell-wall proteoglycans that are thought to play major roles in plant growth and development. Genetic approaches to studying AGP function have met limited success so far, presumably due to redundancy within the large gene families encoding AGP backbones. Here we used an alternative approach for genetic dissection of the role of AGPs in development by modifying their glycan side chains. We have identified an Arabidopsis glycosyltransferase of CAZY family GT31 (AtGALT31A) that galactosylates AGP side chains. A mutation in the AtGALT31A gene caused the arrest of embryo development at the globular stage. The presence of the transcript in the suspensor of globular-stage embryos is consistent with a role for AtGALT31A in progression of embryo development beyond the globular stage. The first observable defect in the mutant is perturbation of the formative asymmetric division of the hypophysis, indicating an essential role for AGP proteoglycans in either specification of the hypophysis or orientation of the asymmetric division plane.
Collapse
Affiliation(s)
- Naomi Geshi
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, Copenhagen, Frederiksberg C, 1871, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Ogawa-Ohnishi M, Matsushita W, Matsubayashi Y. Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nat Chem Biol 2013; 9:726-30. [PMID: 24036508 DOI: 10.1038/nchembio.1351] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
Abstract
Hydroxyproline (Hyp) O-arabinosylation is a post-translational modification that is prominent in extracellular glycoproteins in plants. Hyp O-arabinosylation is generally found in these glycoproteins in the form of linear oligoarabinoside chains and has a key role in their function by contributing to conformational stability. However, Hyp O-arabinosyltransferase (HPAT), a key enzyme that catalyzes the transfer of the L-arabinose to the hydroxyl group of Hyp residues, has remained undiscovered. Here, we purified and identified Arabidopsis HPAT as a Golgi-localized transmembrane protein that is structurally similar to the glycosyltransferase GT8 family. Loss-of-function mutations in HPAT-encoding genes cause pleiotropic phenotypes that include enhanced hypocotyl elongation, defects in cell wall thickening, early flowering, early senescence and impaired pollen tube growth. Our results indicate essential roles of Hyp O-arabinosylation in both vegetative and reproductive growth in plants.
Collapse
|
296
|
Tseng IC, Hong CY, Yu SM, Ho THD. Abscisic acid- and stress-induced highly proline-rich glycoproteins regulate root growth in rice. PLANT PHYSIOLOGY 2013; 163:118-34. [PMID: 23886623 PMCID: PMC3762635 DOI: 10.1104/pp.113.217547] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the root of rice (Oryza sativa), abscisic acid (ABA) treatment, salinity, or water deficit stress induces the expression of a family of four genes, REPETITIVE PROLINE-RICH PROTEIN (RePRP). These genes encode two subclasses of novel proline-rich glycoproteins with highly repetitive PX₁PX₂ motifs, RePRP1 and RePRP2. RePRP orthologs exist only in monocotyledonous plants, and their functions are virtually unknown. Rice RePRPs are heavily glycosylated with arabinose and glucose on multiple hydroxyproline residues. They are significantly different from arabinogalactan proteins that have glycan chains composed of arabinose and galactose. Transient and stable expressions of RePRP-green fluorescent protein reveal that a fraction of this protein is localized to the plasma membrane. In rice roots, ABA treatment increases RePRP expression preferentially in the elongation zone. Overexpression of RePRP in transgenic rice reduces root cell elongation in the absence of ABA, similar to the effect of ABA on wild-type roots. Conversely, simultaneous knockdown of the expression of RePRP1 and RePRP2 reduces the root sensitivity to ABA, indicating that RePRP proteins play an essential role in ABA/stress regulation of root growth and development. Moreover, rice RePRPs specifically interact with a polysaccharide, arabinogalactan, in a dosage-dependent manner. It is suggested that RePRP1 and RePRP2 are functionally redundant suppressors of root cell expansion and probably act through interactions with cell wall components near the plasma membrane.
Collapse
|
297
|
Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. THE PLANT CELL 2013; 25:3329-46. [PMID: 24045021 PMCID: PMC3809535 DOI: 10.1105/tpc.113.114868] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/14/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in cellulase3/glycosylhydrolase9b3 and leucine rich extensin2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development.
Collapse
Affiliation(s)
- Daniel R. Lewis
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
| | - Amy L. Olex
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
| | - Stacey R. Lundy
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
| | - William H. Turkett
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
| | - Jacquelyn S. Fetrow
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
- Department of Physics, Wake Forest University, Winston Salem, North Carolina 27109
| | - Gloria K. Muday
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
- Address correspondence to
| |
Collapse
|
298
|
El-Tantawy AA, Solís MT, Da Costa ML, Coimbra S, Risueño MC, Testillano PS. Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. PLANT REPRODUCTION 2013; 26:231-43. [PMID: 23729197 DOI: 10.1007/s00497-013-0217-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/17/2013] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39-4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39-4 gene, JIM13 and JIM14 epitopes found specifically in 2-4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.
Collapse
Affiliation(s)
- Ahmed-Abdalla El-Tantawy
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
299
|
Nguema-Ona E, Vicré-Gibouin M, Cannesan MA, Driouich A. Arabinogalactan proteins in root-microbe interactions. TRENDS IN PLANT SCIENCE 2013; 18:440-9. [PMID: 23623239 DOI: 10.1016/j.tplants.2013.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 05/20/2023]
Abstract
Arabinogalactan proteins (AGPs) are among the most intriguing sets of macromolecules, specific to plants, structurally complex, and found abundantly in all plant organs including roots, as well as in root exudates. AGPs have been implicated in several fundamental plant processes such as development and reproduction. Recently, they have emerged as interesting actors of root-microbe interactions in the rhizosphere. Indeed, recent findings indicate that AGPs play key roles at various levels of interaction between roots and soil-borne microbes, either beneficial or pathogenic. Therefore, the focus of this review is the role of AGPs in the interactions between root cells and microbes. Understanding this facet of AGP function will undoubtedly improve plant health and crop protection.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plate-forme d'Imagerie Cellulaire (PRIMACEN) et Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | | | | | | |
Collapse
|
300
|
Driouich A, Follet-Gueye ML, Vicré-Gibouin M, Hawes M. Root border cells and secretions as critical elements in plant host defense. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:489-95. [PMID: 23856080 DOI: 10.1016/j.pbi.2013.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/20/2023]
Abstract
Border cells and border-like cells are released from the root tip as individual cells and small aggregates, or as a group of attached cells. These are viable components of the root system that play a key role in controlling root interaction with living microbes of the rhizosphere. As their separation from root tip proceeds, the cells synthesize and secrete a hydrated mucilage that contains polysaccharides, secondary metabolites, antimicrobial proteins and extracellular DNA (exDNA). This exDNA-based matrix seems to function in root defense in a way similar to that of recently characterized neutrophil extracellular traps (NETs) in mammalian cells. This review discusses the role of the cells and secreted compounds in the protection of root tip against microbial infections.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (EA 4358), Grand Réseau de Recherche VASI Végétal-Agronomie-Sols et Innovations et Plate Forme d'Imagerie Cellulaire (PRIMACEN) de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | |
Collapse
|