251
|
Frank A, Matiolli CC, Viana AJC, Hearn TJ, Kusakina J, Belbin FE, Wells Newman D, Yochikawa A, Cano-Ramirez DL, Chembath A, Cragg-Barber K, Haydon MJ, Hotta CT, Vincentz M, Webb AAR, Dodd AN. Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63. Curr Biol 2018; 28:2597-2606.e6. [PMID: 30078562 PMCID: PMC6108399 DOI: 10.1016/j.cub.2018.05.092] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Synchronization of circadian clocks to the day-night cycle ensures the correct timing of biological events. This entrainment process is essential to ensure that the phase of the circadian oscillator is synchronized with daily events within the environment [1], to permit accurate anticipation of environmental changes [2, 3]. Entrainment in plants requires phase changes in the circadian oscillator, through unidentified pathways, which alter circadian oscillator gene expression in response to light, temperature, and sugars [4, 5, 6]. To determine how circadian clocks respond to metabolic rhythms, we investigated the mechanisms by which sugars adjust the circadian phase in Arabidopsis [5]. We focused upon metabolic regulation because interactions occur between circadian oscillators and metabolism in several experimental systems [5, 7, 8, 9], but the molecular mechanisms are unidentified. Here, we demonstrate that the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) regulates the circadian oscillator gene PSEUDO RESPONSE REGULATOR7 (PRR7) to change the circadian phase in response to sugars. We find that SnRK1, a sugar-sensing kinase that regulates bZIP63 activity and circadian period [10, 11, 12, 13, 14] is required for sucrose-induced changes in circadian phase. Furthermore, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1), which synthesizes the signaling sugar trehalose-6-phosphate, is required for circadian phase adjustment in response to sucrose. We demonstrate that daily rhythms of energy availability can entrain the circadian oscillator through the function of bZIP63, TPS1, and the KIN10 subunit of the SnRK1 energy sensor. This identifies a molecular mechanism that adjusts the circadian phase in response to sugars. The transcription factor bZIP63 binds and regulates the circadian clock gene PRR7 bZIP63 is required for adjustment of circadian period by sugars Trehalose-6-phosphate metabolism and KIN10 signaling regulate circadian period Sugar signals establish the correct circadian phase in light and dark cycles
Collapse
Affiliation(s)
- Alexander Frank
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Cleverson C Matiolli
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Américo J C Viana
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jelena Kusakina
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Fiona E Belbin
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - David Wells Newman
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Aline Yochikawa
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; Universidade Estadual de Campinas, Barão Geraldo, Campinas, São Paulo, Brazil
| | | | - Anupama Chembath
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Michael J Haydon
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Carlos T Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | - Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
252
|
dos Anjos L, Pandey PK, Moraes TA, Feil R, Lunn JE, Stitt M. Feedback regulation by trehalose 6-phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. PLANT DIRECT 2018; 2:e00078. [PMID: 31245743 PMCID: PMC6508811 DOI: 10.1002/pld3.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 05/02/2023]
Abstract
Trehalose 6-phosphate (Tre6P), a sucrose signaling metabolite, inhibits transitory starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves and potentially links starch turnover to leaf sucrose status and demand from sink organs (Plant Physiology, 163, 2013, 1142). To investigate this relationship further, we compared diel patterns of starch turnover in ethanol-inducible Tre6P synthase (iTPS) lines, which have high Tre6P and low sucrose after induction, with those in sweet11;12 sucrose export mutants, which accumulate sucrose in their leaves and were predicted to have high Tre6P. Short-term changes in irradiance were used to investigate whether the strength of inhibition by Tre6P depends on starch levels. sweet11;12 mutants had twofold higher levels of Tre6P and restricted starch mobilization. The relationship between Tre6P and starch mobilization was recapitulated in iTPS lines, pointing to a dominant role for Tre6P in feedback regulation of starch mobilization. Tre6P restricted mobilization across a wide range of conditions. However, there was no correlation between the level of Tre6P and the absolute rate of starch mobilization. Rather, Tre6P depressed the rate of mobilization below that required to exhaust starch at dawn, leading to incomplete use of starch. It is discussed how Tre6P interacts with the clock to set the rate of starch mobilization.
Collapse
Affiliation(s)
- Letícia dos Anjos
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
- Universidade Federal do CearáFortalezaBrazil
| | - Prashant Kumar Pandey
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
- Present address:
National Research Council Canada (NRC‐CNRC)110 Gymnasium PlaceSaskatoonSaskatchewanS7N 0W9Canada
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
| | - John E. Lunn
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
| |
Collapse
|
253
|
Fedosejevs ET, Feil R, Lunn JE, Plaxton WC. The signal metabolite trehalose-6-phosphate inhibits the sucrolytic activity of sucrose synthase from developing castor beans. FEBS Lett 2018; 592:2525-2532. [PMID: 30025148 DOI: 10.1002/1873-3468.13197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023]
Abstract
In plants, trehalose 6-phosphate (T6P) is a key signaling metabolite that functions as both a signal and negative feedback regulator of sucrose levels. The mode of action by which T6P senses and regulates sucrose is not fully understood. Here, we demonstrate that the sucrolytic activity of RcSUS1, the dominant sucrose synthase isozyme expressed in developing castor beans, is allosterically inhibited by T6P. The feedback inhibition of SUS by T6P may contribute to the control of sink strength and sucrolytic flux in heterotrophic plant tissues.
Collapse
Affiliation(s)
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
254
|
Bessho-Uehara K, Nugroho JE, Kondo H, Angeles-Shim RB, Ashikari M. Sucrose affects the developmental transition of rhizomes in Oryza longistaminata. JOURNAL OF PLANT RESEARCH 2018; 131:693-707. [PMID: 29740707 PMCID: PMC6488557 DOI: 10.1007/s10265-018-1033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/08/2018] [Indexed: 05/29/2023]
Abstract
Oryza longistaminata, the African wild rice, can propagate vegetatively through rhizomes. Rhizomes elongate horizontally underground as sink organs, however, they undergo a developmental transition that shifts their growth to the surface of the ground to become aerial stems. This particular stage is essential for the establishment of new ramets. While several determinants such as abiotic stimuli and plant hormones have been reported as key factors effecting developmental transition in aerial stem, the cause of this phenomenon in rhizome remains elusive. This study shows that depletion of nutrients, particularly sucrose, is the key stimulus that induces the developmental transition in rhizomes, as indicated by the gradient of sugars from the base to the tip of the rhizome. Sugar treatments revealed that sucrose specifically represses the developmental transition from rhizome to aerial stem by inhibiting the expression of sugar metabolism and hormone synthesis genes at the bending point. Sucrose depletion affected several factors contributing to the developmental transition of rhizome including signal transduction, transcriptional regulation and plant hormone balance.
Collapse
Affiliation(s)
- Kanako Bessho-Uehara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Jovano Erris Nugroho
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Hirono Kondo
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Rosalyn B Angeles-Shim
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
255
|
Chen L, Yang D, Zhang Y, Wu L, Zhang Y, Ye L, Pan C, He Y, Huang L, Ruan YL, Lu G. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. THE NEW PHYTOLOGIST 2018; 219:176-194. [PMID: 29668051 DOI: 10.1111/nph.15150] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/04/2018] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse aspects of plant growth. However, their potential role in reproductive development remains elusive. Here, we discovered an unique role of SlMPK20, a plant-specific group D MAPK, in pollen development in tomato. RNAi-mediated suppression of SlMPK20 or its knockout using CRISPR/Cas9 significantly reduced or completely abolished pollen viability, respectively, with no effects on maternal fertility. Cell biology and gene expression analyses established that SlMPK20 exerts its role specifically at the uni-to-binucleate transition during microgametogenesis. This assertion is based on the findings that the transgenic pollen was largely arrested at the binucleate stage with the appearance of subcellular abnormality at the middle uninucleate microspore stage; and SlMPK20 mRNA and SlMPK20-GUS signals were localized in the tetrads, uninuclear microspores and binuclear pollen grains but not in microspore mother cells or mature pollen grains. Transcriptomic and proteomic analyses revealed that knockout of SlMPK20 significantly reduced the expression of a large number of genes controlling sugar and auxin metabolism and signaling in anthers. Finally, protein-protein interaction assays identified SlMYB32 as a putative target protein of SlMPK20. We conclude that SlMPK20 specifically regulates post-meiotic pollen development through modulating sugar and auxin metabolism and signaling.
Collapse
Affiliation(s)
- Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Dandan Yang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Youwei Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Limin Wu
- Australia-China Research Centre for Crop Improvement and School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yaoyao Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Lei Ye
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun He
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Li Huang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
256
|
Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:933-942. [PMID: 29734513 DOI: 10.1111/tpj.13950] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 05/11/2023]
Abstract
The term metabolome was coined in 1998, by analogy to genome, transcriptome and proteome. The first research papers using the terms metabolomics, metabonomics, metabolic profiling or metabolite profiling were published shortly thereafter. In this short review we reflect on the major achievements brought about by the use of these approaches, and document the knowledge and technology gaps that are currently constraining its further development. Finally, we detail why we think that the time is ripe to refocus our efforts on the understanding of metabolic function.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
257
|
Minow MAA, Ávila LM, Turner K, Ponzoni E, Mascheretti I, Dussault FM, Lukens L, Rossi V, Colasanti J. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2937-2952. [PMID: 29688423 PMCID: PMC5972621 DOI: 10.1093/jxb/ery110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Luis M Ávila
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Katie Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena Ponzoni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Iride Mascheretti
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Forest M Dussault
- Research and Development, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Lewis Lukens
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
258
|
Medeiros DB, Perez Souza L, Antunes WC, Araújo WL, Daloso DM, Fernie AR. Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during light-induced stomatal opening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018. [PMID: 29543357 DOI: 10.1111/tpj.13889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Sucrose has long been thought to play an osmolytic role in stomatal opening. However, recent evidence supports the idea that the role of sucrose in this process is primarily energetic. Here we used a combination of stomatal aperture assays and kinetic [U-13 C]-sucrose isotope labelling experiments to confirm that sucrose is degraded during light-induced stomatal opening and to define the fate of the C released from sucrose breakdown. We additionally show that addition of sucrose to the medium did not enhance light-induced stomatal opening. The isotope experiment showed a consistent 13 C enrichment in fructose and glucose, indicating that during light-induced stomatal opening sucrose is indeed degraded. We also observed a clear 13 C enrichment in glutamate and glutamine (Gln), suggesting a concerted activation of sucrose degradation, glycolysis and the tricarboxylic acid cycle. This is in contrast to the situation for Gln biosynthesis in leaves under light, which has been demonstrated to rely on previously stored C. Our results thus collectively allow us to redraw current models concerning the influence of sucrose during light-induced stomatal opening, in which, instead of being accumulated, sucrose is degraded providing C skeletons for Gln biosynthesis.
Collapse
Affiliation(s)
- David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leonardo Perez Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Werner C Antunes
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60440-970, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
259
|
Minami A, Yano K, Gamuyao R, Nagai K, Kuroha T, Ayano M, Nakamori M, Koike M, Kondo Y, Niimi Y, Kuwata K, Suzuki T, Higashiyama T, Takebayashi Y, Kojima M, Sakakibara H, Toyoda A, Fujiyama A, Kurata N, Ashikari M, Reuscher S. Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. PLANT PHYSIOLOGY 2018; 176:3081-3102. [PMID: 29475897 PMCID: PMC5884608 DOI: 10.1104/pp.17.00858] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/15/2018] [Indexed: 05/29/2023]
Abstract
Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.
Collapse
Affiliation(s)
- Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Rico Gamuyao
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Madoka Ayano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanari Nakamori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masaya Koike
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuma Kondo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Niimi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takamasa Suzuki
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya Aichi 464-8601, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Nori Kurata
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Motoyuki Ashikari
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Stefan Reuscher
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
260
|
Locke AM, Barding GA, Sathnur S, Larive CK, Bailey-Serres J. Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery. PLANT, CELL & ENVIRONMENT 2018; 41:721-736. [PMID: 29094353 DOI: 10.1111/pce.13094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 05/24/2023]
Abstract
The rice (Oryza sativa L.) ethylene-responsive transcription factor gene SUB1A-1 confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Upon desubmergence, SUB1A-1 genotypes rapidly recover photosynthetic function and recommence development towards flowering. The underpinnings of the transition from stress amelioration to the return to homeostasis are not well known. Here, transcriptomic and metabolomic analyses were conducted to identify mechanisms by which SUB1A improves physiological function over the 24 hr following a sublethal submergence event. Evaluation of near-isogenic genotypes after submergence and over a day of reaeration demonstrated that SUB1A transiently constrains the remodelling of cellular activities associated with growth. SUB1A influenced the abundance of ca. 1,400 transcripts and had a continued impact on metabolite content, particularly free amino acids, glucose, and sucrose, throughout the recovery period. SUB1A promoted recovery of metabolic homeostasis but had limited influence on mRNAs associated with growth processes and photosynthesis. The involvement of low energy sensing during submergence and recovery was supported by dynamics in trehalose-6-phosphate and mRNAs encoding key enzymes and signalling proteins, which were modulated by SUB1A. This study provides new evidence of convergent signalling pathways critical to the rapidly reversible management of carbon and nitrogen metabolism in submergence resilient rice.
Collapse
Affiliation(s)
- Anna M Locke
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Soybean and Nitrogen Fixation Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7620, USA
| | - Gregory A Barding
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Sumukh Sathnur
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Cynthia K Larive
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
261
|
Stein O, Granot D. Plant Fructokinases: Evolutionary, Developmental, and Metabolic Aspects in Sink Tissues. FRONTIERS IN PLANT SCIENCE 2018; 9:339. [PMID: 29616058 PMCID: PMC5864856 DOI: 10.3389/fpls.2018.00339] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/28/2018] [Indexed: 05/03/2023]
Abstract
Sucrose, a glucose-fructose disaccharide, is the main sugar transported in the phloem of most plants and is the origin of most of the organic matter. Upon arrival in sink tissues, the sucrose must be cleaved by invertase or sucrose synthase. Both sucrose-cleaving enzymes yield free fructose, which must be phosphorylated by either fructokinase (FRK) or hexokinase (HXK). The affinity of FRK to fructose is much higher than that of HXK, making FRKs central for fructose metabolism. An FRK gene family seems to exist in most, if not all plants and usually consists of several cytosolic FRKs and a single plastidic FRK. These genes are expressed mainly in sink tissues such as roots, stems, flowers, fruits, and seeds, with lower levels of expression often seen in leaves. Plant FRK enzymes vary in their biochemical properties such as affinity for fructose, inhibition by their substrate (i.e., fructose), and expression level in different tissues. This review describes recently revealed roles of plant FRKs in plant development, including the combined roles of the plastidic and cytosolic FRKs in vascular tissues and seed development.
Collapse
Affiliation(s)
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
262
|
Wingler A. Transitioning to the Next Phase: The Role of Sugar Signaling throughout the Plant Life Cycle. PLANT PHYSIOLOGY 2018; 176:1075-1084. [PMID: 28974627 PMCID: PMC5813577 DOI: 10.1104/pp.17.01229] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 05/17/2023]
Abstract
Developmental transitions depend on the availability of sufficient carbon resources, which is sensed by sugar signaling pathways for high and low carbon availability.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30, Cork, Ireland
| |
Collapse
|
263
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
264
|
Coelho CP, Huang P, Lee DY, Brutnell TP. Making Roots, Shoots, and Seeds: IDD Gene Family Diversification in Plants. TRENDS IN PLANT SCIENCE 2018; 23:66-78. [PMID: 29056440 DOI: 10.1016/j.tplants.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 05/27/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) family of transcriptional regulators controls a diversity of processes in a variety of plant tissues and organs and at different stages of plant development. Several recent reports describe the genetic characterization of IDD family members, including those that are likely to regulate C4 kranz anatomy, with implications for the engineering of C4 traits into C3 crops. In this review we summarize the reported functions of IDD members in the regulation of metabolic sensing and leaf, root, seed, and inflorescence development. We also provide an IDD phylogeny for the grasses and suggest future directions and strategies to define the function of IDDs in C4 photosynthesis and other developmental processes.
Collapse
Affiliation(s)
- Carla P Coelho
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA. http://twitter.com/coelhopcarla%20
| | - Pu Huang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Dong-Yeon Lee
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA; Laboratory website: https://www.brutnelllab.org/.
| |
Collapse
|
265
|
Lin Y, Zhang J, Gao W, Chen Y, Li H, Lawlor DW, Paul MJ, Pan W. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC PLANT BIOLOGY 2017; 17:247. [PMID: 29258443 PMCID: PMC5738064 DOI: 10.1186/s12870-017-1207-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. RESULTS Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH4+) and nitrate (NO3-) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. CONCLUSIONS The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and production.
Collapse
Affiliation(s)
- Yingchao Lin
- Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China.
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guiyang, 550081, People's Republic of China.
| | - Jie Zhang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guiyang, 550081, People's Republic of China
| | - Yi Chen
- Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guiyang, 550081, People's Republic of China
| | - Hongxun Li
- Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guiyang, 550081, People's Republic of China
| | - David W Lawlor
- Formerly Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wenjie Pan
- Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guiyang, 550081, People's Republic of China
| |
Collapse
|
266
|
Asaf S, Khan AL, Khan MA, Imran QM, Yun BW, Lee IJ. Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol Res 2017; 205:135-145. [PMID: 28942839 DOI: 10.1016/j.micres.2017.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/07/2023]
Abstract
Osmotic stress induced by drought can hinder the growth and yield of crop plants. To understand the eco-physiological role of osmoprotectants, the combined utilization of endophytes and osmolytes (trehalose) can be an ideal strategy used to overcome the adverse effects of drought. Hence, in the present study, we aimed to investigate the role of Sphingomonas sp. LK11, which produces phytohormones and synthesizes trehalose, in improving soybean plant growth under drought-induced osmotic stress (-0.4, -0.9, and -1.2MPa). The results showed that the inoculation of soybean plants with Sphingomonas sp. LK11 significantly increased plant length, dry biomass, photosynthetic pigments, glutathione, amino acids (proline, glycine, and glutamate), and primary sugars as compared to control plants under varying drought stresses. Trehalose applied to the plant with or without endophyte-inoculation also showed similar plant growth-promoting attributes under stress. Stress exposure significantly enhanced endogenous jasmonic (JA) and abscisic (ABA) acid contents in control plants. In contrast, Sphingomonas sp. LK11-inoculation significantly lowered ABA and JA levels in soybean plants, but these phytohormones increased in response to combined treatments during stress. The drought-induced osmotic stress resistance associated with Sphingomonas sp. LK11 and trehalose was also evidenced by increased mRNA gene expression of soybean dehydration responsive element binding protein (DREB)-type transcription factors (GmDREBa and GmDREB2) and the MYB (myeloblastosis) transcription factor (GmMYBJ1) as compared to the control. In conclusion, our findings demonstrated that inoculation with this endophyte and trehalose improved the negative effects of drought-induced osmotic stress, and it enhanced soybean plant growth and tolerance.
Collapse
Affiliation(s)
- Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Qari Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
267
|
Griffiths CA, Paul MJ. Targeting carbon for crop yield and drought resilience. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4663-4671. [PMID: 28653336 PMCID: PMC5655914 DOI: 10.1002/jsfa.8501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/12/2017] [Accepted: 06/18/2017] [Indexed: 05/21/2023]
Abstract
Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Cara A Griffiths
- Plant Science, Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Matthew J Paul
- Plant Science, Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
268
|
Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Höfgen R, Stitt M, Beveridge CA, Lunn JE. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:611-623. [PMID: 28869799 DOI: 10.1111/tpj.13705] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 05/20/2023]
Abstract
Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot.
Collapse
Affiliation(s)
- Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Francois F Barbier
- School of Biological Sciences and the Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | | | - Tinashe G Chabikwa
- School of Biological Sciences and the Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rainer Höfgen
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Christine A Beveridge
- School of Biological Sciences and the Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| |
Collapse
|
269
|
Okumoto S, Versaw W. Genetically encoded sensors for monitoring the transport and concentration of nitrogen-containing and phosphorus-containing molecules in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:129-135. [PMID: 28750256 DOI: 10.1016/j.pbi.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen and phosphorus are macronutrients indispensable for plant growth. The acquisition and reallocation of both elements require a multitude of dedicated transporters that specifically recognize inorganic and organic forms of nitrogen and phosphorous. Although many transporters have been discovered through elegant screening processes and sequence homology, many remain uncharacterized for their functions in planta. Genetically encoded sensors for nitrogen and phosphorous molecules offer a unique opportunity for studying transport mechanisms that were previously inaccessible. In the past few years, sensors for some of the key nitrogen molecules became available, and many improvements have been made for existing sensors for phosphorus molecules. Methodologies for detailed in vivo analysis also improved. We summarize the recent improvements in genetically encoded sensors for nitrogen and phosphorus molecules, and the discoveries made by using such sensors.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Soil and Crop Sciences, Texas A&M University, HEEP Center, College Station, TX 77843 USA.
| | - Wayne Versaw
- Department of Biology, Texas A&M University, Biological Sciences Building East, College Station, TX 77843 USA
| |
Collapse
|
270
|
Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7824076. [PMID: 28951875 PMCID: PMC5603102 DOI: 10.1155/2017/7824076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.
Collapse
|
271
|
Chang TG, Zhu XG, Raines C. Source-sink interaction: a century old concept under the light of modern molecular systems biology. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4417-4431. [PMID: 28338782 DOI: 10.1093/jxb/erx002] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model.
Collapse
Affiliation(s)
- Tian-Gen Chang
- CAS Key Laboratory of Computational Biology and State Key Laboratory for Hybrid Rice, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology and State Key Laboratory for Hybrid Rice, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
272
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
273
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Mengin V, Lauxmann MA, Köhl K, Nikoloski Z, Stitt M, Lunn JE. Getting back to nature: a reality check for experiments in controlled environments. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4463-4477. [PMID: 28673035 PMCID: PMC5853417 DOI: 10.1093/jxb/erx220] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 05/07/2023]
Abstract
Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania “Luigi Vanvitelli”, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- University of Potsdam, Karl-Liebknecht-Str., Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
274
|
Navarro BV, Elbl P, De Souza AP, Jardim V, de Oliveira LF, Macedo AF, dos Santos ALW, Buckeridge MS, Floh EIS. Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS One 2017; 12:e0180051. [PMID: 28678868 PMCID: PMC5497979 DOI: 10.1371/journal.pone.0180051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
Three zygotic developmental stages and two somatic Araucaria angustifolia cell lines with contrasting embryogenic potential were analyzed to identify the carbohydrate-mediated responses associated with embryo formation. Using a comparison between zygotic and somatic embryogenesis systems, the non-structural carbohydrate content, cell wall sugar composition and expression of genes involved in sugar sensing were analyzed, and a network analysis was used to identify coordinated features during embryogenesis. We observed that carbohydrate-mediated responses occur mainly during the early stages of zygotic embryo formation, and that during seed development there are coordinated changes that affect the development of the different structures (embryo and megagametophyte). Furthermore, sucrose and starch accumulation were associated with the responsiveness of the cell lines. This study sheds light on how carbohydrate metabolism is influenced during zygotic and somatic embryogenesis in the endangered conifer species, A. angustifolia.
Collapse
Affiliation(s)
- Bruno V. Navarro
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Paula Elbl
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Amanda P. De Souza
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Vinicius Jardim
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Leandro F. de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Amanda F. Macedo
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - André L. W. dos Santos
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Marcos S. Buckeridge
- Laboratory of Plant Physiological Ecology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
| | - Eny I. S. Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo-SP, Brazil
- * E-mail:
| |
Collapse
|
275
|
Santelia D, Lunn JE. Transitory Starch Metabolism in Guard Cells: Unique Features for a Unique Function. PLANT PHYSIOLOGY 2017; 174:539-549. [PMID: 28292855 PMCID: PMC5462065 DOI: 10.1104/pp.17.00211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 05/18/2023]
Abstract
The pathway and timing of starch turnover in guard cells differs from mesophyll cells and is linked to stomatal opening in the light.
Collapse
Affiliation(s)
- Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, CH-8008 Zürich, Switzerland (D.S.); and
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| | - John E Lunn
- Department of Plant and Microbial Biology, University of Zürich, CH-8008 Zürich, Switzerland (D.S.); and
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| |
Collapse
|
276
|
Vocadlo DJ. Cura Annonae - chemische Erhöhung des Getreideertrags durch metabolisches Verfüttern einer pflanzlichen Signalmolekülvorstufe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David J. Vocadlo
- Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby BC V5A 1S6 Kanada
| |
Collapse
|
277
|
Vocadlo DJ. Cura Annonae-Chemically Boosting Crop Yields Through Metabolic Feeding of a Plant Signaling Precursor. Angew Chem Int Ed Engl 2017; 56:5980-5982. [PMID: 28276613 DOI: 10.1002/anie.201701474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/07/2022]
Abstract
The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content.
Collapse
Affiliation(s)
- David J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
278
|
Ramon M, Rolland F. Chemical Intervention: New Tools to Dissect Metabolic Signaling. TRENDS IN PLANT SCIENCE 2017; 22:353-355. [PMID: 28392158 DOI: 10.1016/j.tplants.2017.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
The metabolic intermediate trehalose-6-P (T6P) has emerged as a key regulator of plant growth and development, but the underlying mechanisms remain largely elusive. A recent publication reported a new chemical intervention strategy, providing a powerful tool to dissect T6P-mediated metabolic signaling.
Collapse
Affiliation(s)
- Matthew Ramon
- European Food Safety Authority, 43126 Parma PR, Italy
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven - KU Leuven, Leuven, Belgium.
| |
Collapse
|
279
|
Bledsoe SW, Henry C, Griffiths CA, Paul MJ, Feil R, Lunn JE, Stitt M, Lagrimini LM. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC PLANT BIOLOGY 2017; 17:74. [PMID: 28403831 PMCID: PMC5389189 DOI: 10.1186/s12870-017-1018-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. RESULTS A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol∙g-1 FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA.3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014):1-13, 2015). CONCLUSIONS The impact of kernel excision from the ear triggers a cascade of events starting with the precipitous drop in Tre6P levels. It is proposed that the removal of Tre6P suppression of SnRK1 activity results in transcription of putative SnRK1 target genes, and the metabolic transition from biosynthesis to catabolism. This highlights the importance of Tre6P in the metabolic response to starvation. We also present evidence that sugars can mediate the activation of SnRK1. The precipitous drop in Tre6P corresponds to a large increase in transcription of ZmTPPA.3, indicating that this specific enzyme may be responsible for the de-phosphorylation of Tre6P. The high levels of Tre6P in the immature embryo are likely important for preventing kernel abortion.
Collapse
Affiliation(s)
- Samuel W Bledsoe
- EAG Laboratories, 4780 Discovery Drive, Columbia, MO, 65201, USA
| | - Clémence Henry
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Cara A Griffiths
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Regina Feil
- Max Planck Institut fϋr Moleckulare Pflanzenphysiologie, Potsdam (OT) Golm, Germany
| | - John E Lunn
- Max Planck Institut fϋr Moleckulare Pflanzenphysiologie, Potsdam (OT) Golm, Germany
| | - Mark Stitt
- Max Planck Institut fϋr Moleckulare Pflanzenphysiologie, Potsdam (OT) Golm, Germany
| | - L Mark Lagrimini
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 377I Plant Science, Lincoln, NE, 68583-0915, USA.
| |
Collapse
|
280
|
Azhar N, Su N, Shabala L, Shabala S. Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels. PLANT & CELL PHYSIOLOGY 2017; 58:802-810. [PMID: 28340062 DOI: 10.1093/pcp/pcx026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/06/2017] [Indexed: 05/19/2023]
Abstract
This study has investigated mechanisms conferring beneficial effects of exogenous application of 24-epibrassinolides (EBL) on plant growth and performance under saline conditions. Barley seedlings treated with 0.25 mg l-1 EBL showed significant improvements in root hair length, shoot length, shoot fresh weight and relative water content when grown in the presence of 150 mM NaCl in the growth medium. In addition, EBL treatment significantly decreased the Na+ content in both shoots (by approximately 50%) and roots. Electrophysiological experiments revealed that pre-treatment with EBL for 1 and 24 h suppressed or completely prevented the NaCl-induced K+ leak in the elongation zone of barley roots, but did not affect root sensitivity to oxidative stress. Further experiments using Arabidopsis loss-of-function gork1-1 (lacking functional depolarization-activated outward-rectifying K+ channels in the root epidermal cells) and akt1 (lacking inward-rectifying K+ uptake channel) mutants showed that NaCl-induced K+ loss in the elongation zone of roots was reduced by EBL pre-treatment 50- to 100-fold in wild-type Col-0 and akt1, but only 10-fold in the gork1-1 mutant. At the same time, EBL treatment shifted vanadate-sensitive H+ flux towards net efflux. Taken together, these data indicate that exogenous application of EBL effectively improves plant salinity tolerance by prevention of K+ loss via regulating depolarization-activated K+ channels.
Collapse
Affiliation(s)
- Nazila Azhar
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nana Su
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
281
|
Becklin KM, Walker SM, Way DA, Ward JK. CO 2 studies remain key to understanding a future world. THE NEW PHYTOLOGIST 2017; 214:34-40. [PMID: 27891618 PMCID: PMC5329069 DOI: 10.1111/nph.14336] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 05/05/2023]
Abstract
Contents 34 I. 34 II. 36 III. 37 IV. 37 V. 38 38 References 38 SUMMARY: Characterizing plant responses to past, present and future changes in atmospheric carbon dioxide concentration ([CO2 ]) is critical for understanding and predicting the consequences of global change over evolutionary and ecological timescales. Previous CO2 studies have provided great insights into the effects of rising [CO2 ] on leaf-level gas exchange, carbohydrate dynamics and plant growth. However, scaling CO2 effects across biological levels, especially in field settings, has proved challenging. Moreover, many questions remain about the fundamental molecular mechanisms driving plant responses to [CO2 ] and other global change factors. Here we discuss three examples of topics in which significant questions in CO2 research remain unresolved: (1) mechanisms of CO2 effects on plant developmental transitions; (2) implications of rising [CO2 ] for integrated plant-water dynamics and drought tolerance; and (3) CO2 effects on symbiotic interactions and eco-evolutionary feedbacks. Addressing these and other key questions in CO2 research will require collaborations across scientific disciplines and new approaches that link molecular mechanisms to complex physiological and ecological interactions across spatiotemporal scales.
Collapse
Affiliation(s)
- Katie M. Becklin
- Department of Ecology and Evolutionary Biology, Kansas University, Lawrence, KS 66045, USA
| | - S. Michael Walker
- Department of Ecology and Evolutionary Biology, Kansas University, Lawrence, KS 66045, USA
| | - Danielle A. Way
- Department of Biology, University of Western Ontario, London, ON N6A 3K7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Joy K. Ward
- Department of Ecology and Evolutionary Biology, Kansas University, Lawrence, KS 66045, USA
| |
Collapse
|
282
|
Baena-González E, Hanson J. Shaping plant development through the SnRK1-TOR metabolic regulators. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:152-157. [PMID: 28027512 DOI: 10.1016/j.pbi.2016.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
SnRK1 (Snf1-related protein kinase 1) and TOR (target of rapamycin) are evolutionarily conserved protein kinases that lie at the heart of energy sensing, playing central and antagonistic roles in the regulation of metabolism and gene expression. Increasing evidence links these metabolic regulators to numerous aspects of plant development, from germination to flowering and senescence. This prompts the hypothesis that SnRK1 and TOR modify developmental programs according to the metabolic status to adjust plant growth to a specific environment. The aim of this review is to provide support to this hypothesis and to incentivize further studies on this topic by summarizing the work that establishes a genetic connection between SnRK1-TOR and plant development.
Collapse
Affiliation(s)
- Elena Baena-González
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
283
|
O’Leary BM, Plaxton WC. Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
284
|
Jones MA. Interplay of Circadian Rhythms and Light in the Regulation of Photosynthesis-Derived Metabolism. PROGRESS IN BOTANY VOL. 79 2017:147-171. [PMID: 0 DOI: 10.1007/124_2017_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
285
|
Chemical intervention in plant sugar signalling increases yield and resilience. Nature 2016; 540:574-578. [PMID: 27974806 DOI: 10.1038/nature20591] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a 'signalling-precursor' concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.
Collapse
|
286
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
287
|
Barraza A, Contreras-Cubas C, Estrada-Navarrete G, Reyes JL, Juárez-Verdayes MA, Avonce N, Quinto C, Díaz-Camino C, Sanchez F. The Class II Trehalose 6-phosphate Synthase Gene PvTPS9 Modulates Trehalose Metabolism in Phaseolus vulgaris Nodules. FRONTIERS IN PLANT SCIENCE 2016; 7:1589. [PMID: 27847509 PMCID: PMC5088437 DOI: 10.3389/fpls.2016.01589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 05/21/2023]
Abstract
Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant.
Collapse
Affiliation(s)
- Aarón Barraza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Cecilia Contreras-Cubas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - José L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Marco A. Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Nelson Avonce
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de MorelosCuernavaca, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|