251
|
Lin YT, Chen LJ, Herrfurth C, Feussner I, Li HM. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. THE PLANT CELL 2016; 28:219-32. [PMID: 26721860 PMCID: PMC4746690 DOI: 10.1105/tpc.15.01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cornelia Herrfurth
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
252
|
Chen MS, Pan BZ, Fu Q, Tao YB, Martínez-Herrera J, Niu L, Ni J, Dong Y, Zhao ML, Xu ZF. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas. FRONTIERS IN PLANT SCIENCE 2016; 7:1953. [PMID: 28144243 PMCID: PMC5239818 DOI: 10.3389/fpls.2016.01953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 05/11/2023]
Abstract
Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system.
Collapse
Affiliation(s)
- Mao-Sheng Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Bang-Zhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Qiantang Fu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Jorge Martínez-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasHuimanguillo, Mexico
| | - Longjian Niu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Jun Ni
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Yuling Dong
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Mei-Li Zhao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
- *Correspondence: Zeng-Fu Xu,
| |
Collapse
|
253
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/fpls.2016.00570/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
254
|
Cecchetti V, Brunetti P, Napoli N, Fattorini L, Altamura MM, Costantino P, Cardarelli M. ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1089-98. [PMID: 25626615 DOI: 10.1111/jipb.12332] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/19/2015] [Indexed: 05/20/2023]
Abstract
Arabidopsis abcb1 abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcb1 and abcb19 single mutant flowers. We found that pollen maturation and anther dehiscence are precocious in the abcb1 but not in the abcb19 mutant. Accordingly, endothecium lignification is altered only in abcb1 anthers. Both abcb1 and abcb1 abcb19 stamens also show altered early development, with asynchronous anther locules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcb1 abcb19 anther locules, while only a small percentage of pollen grains are non-viable according to Alexander's staining. In agreement, TAM (TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2 (BARELY ANY MERISTEM)-involved in tapetal cell development-are overexpressed in abcb1 abcb19 young flower buds. Correspondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcb1 and abcb1 abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a significant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.
Collapse
Affiliation(s)
- Valentina Cecchetti
- IBPM-CNR Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, Rome, 00185, Italy
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | - Patrizia Brunetti
- IBPM-CNR Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, Rome, 00185, Italy
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | - Nadia Napoli
- IBPM-CNR Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, Rome, 00185, Italy
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Paolo Costantino
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | - Maura Cardarelli
- IBPM-CNR Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, Rome, 00185, Italy
| |
Collapse
|
255
|
Nilsson AK, Johansson ON, Fahlberg P, Kommuri M, Töpel M, Bodin LJ, Sikora P, Modarres M, Ekengren S, Nguyen CT, Farmer EE, Olsson O, Ellerström M, Andersson MX. Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1152-66. [PMID: 26566971 DOI: 10.1111/tpj.13072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/25/2015] [Accepted: 11/03/2015] [Indexed: 05/25/2023]
Abstract
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Oskar N Johansson
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Per Fahlberg
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Murali Kommuri
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Mats Töpel
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Lovisa J Bodin
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Per Sikora
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Masoomeh Modarres
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Sophia Ekengren
- Department of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Chi T Nguyen
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Olof Olsson
- Department of Pure and Applied Biochemistry, Lund University, Lund, SE-221 00, Sweden
| | - Mats Ellerström
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Mats X Andersson
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| |
Collapse
|
256
|
Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:44-51. [PMID: 26125498 DOI: 10.1016/j.pbi.2015.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development.
Collapse
Affiliation(s)
- Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China.
| |
Collapse
|
257
|
Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C. Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. THE PLANT CELL 2015; 27:2814-28. [PMID: 26410299 PMCID: PMC4682329 DOI: 10.1105/tpc.15.00619] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Flowering time of plants must be tightly regulated to maximize reproductive success. Plants have evolved sophisticated signaling network to coordinate the timing of flowering in response to their ever-changing environmental conditions. Besides being a key immune signal, the lipid-derived plant hormone jasmonate (JA) also regulates a wide range of developmental processes including flowering time. Here, we report that the CORONATINE INSENSITIVE1 (COI1)-dependent signaling pathway delays the flowering time of Arabidopsis thaliana by inhibiting the expression of the florigen gene FLOWERING LOCUS T (FT). We provide genetic and biochemical evidence that the APETALA2 transcription factors (TFs) TARGET OF EAT1 (TOE1) and TOE2 interact with a subset of JAZ (jasmonate-ZIM domain) proteins and repress the transcription of FT. Our results support a scenario that, when plants encounter stress conditions, bioactive JA promotes COI1-dependent degradation of JAZs. Degradation of the JAZ repressors liberates the transcriptional function of the TOEs to repress the expression of FT and thereby triggers the signaling cascades to delay flowering. Our study identified interacting pairs of TF and JAZ transcriptional regulators that underlie JA-mediated regulation of flowering, suggesting that JA signals are converted into specific context-dependent responses by matching pairs of TF and JAZ proteins.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailong Feng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
258
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
259
|
Chen WH, Li PF, Chen MK, Lee YI, Yang CH. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. PLANT PHYSIOLOGY 2015; 168:1666-83. [PMID: 26063506 PMCID: PMC4528748 DOI: 10.1104/pp.15.00433] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/10/2015] [Indexed: 05/22/2023]
Abstract
In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Han Chen
- Institute of Biotechnology (W.-H.C., P.-F.L., M.-K.C., C.-H.Y.) andAgricultural Biotechnology Center (C.-H.Y.), National Chung Hsing University, Taichung, Taiwan 40227, Republic of China; andBiology Department, National Museum of Natural Science, Taichung, Taiwan 40227, Republic of China (Y.-I.L.)
| | - Pei-Fang Li
- Institute of Biotechnology (W.-H.C., P.-F.L., M.-K.C., C.-H.Y.) andAgricultural Biotechnology Center (C.-H.Y.), National Chung Hsing University, Taichung, Taiwan 40227, Republic of China; andBiology Department, National Museum of Natural Science, Taichung, Taiwan 40227, Republic of China (Y.-I.L.)
| | - Ming-Kun Chen
- Institute of Biotechnology (W.-H.C., P.-F.L., M.-K.C., C.-H.Y.) andAgricultural Biotechnology Center (C.-H.Y.), National Chung Hsing University, Taichung, Taiwan 40227, Republic of China; andBiology Department, National Museum of Natural Science, Taichung, Taiwan 40227, Republic of China (Y.-I.L.)
| | - Yung-I Lee
- Institute of Biotechnology (W.-H.C., P.-F.L., M.-K.C., C.-H.Y.) andAgricultural Biotechnology Center (C.-H.Y.), National Chung Hsing University, Taichung, Taiwan 40227, Republic of China; andBiology Department, National Museum of Natural Science, Taichung, Taiwan 40227, Republic of China (Y.-I.L.)
| | - Chang-Hsien Yang
- Institute of Biotechnology (W.-H.C., P.-F.L., M.-K.C., C.-H.Y.) andAgricultural Biotechnology Center (C.-H.Y.), National Chung Hsing University, Taichung, Taiwan 40227, Republic of China; andBiology Department, National Museum of Natural Science, Taichung, Taiwan 40227, Republic of China (Y.-I.L.)
| |
Collapse
|
260
|
Chen G, Greer MS, Weselake RJ. Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. Biomol Concepts 2015; 4:527-32. [PMID: 25436595 DOI: 10.1515/bmc-2013-0011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/25/2013] [Indexed: 01/17/2023] Open
Abstract
Plant phospholipase As (PLAs) are a complex group of enzymes that catalyze the release of free fatty acids from phospholipids. Plant PLAs can be grouped into three families, PLA1, PLA2, and patatin-like PLA, that catalyze the hydrolysis of acyl groups from the sn-1 and/or sn-2 position. Each family is composed of multiple isoforms of phospholipases that differ in structural, catalytic, and physiological characteristics. In this review, recently acquired information on molecular, biochemical, and functional aspects of plant PLAs will be discussed.
Collapse
|
261
|
Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 2015; 5:11790. [PMID: 26134787 PMCID: PMC4488762 DOI: 10.1038/srep11790] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/04/2015] [Indexed: 11/08/2022] Open
Abstract
Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis.
Collapse
|
262
|
Böttcher C, Burbidge CA, di Rienzo V, Boss PK, Davies C. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:618-27. [PMID: 25494944 DOI: 10.1111/jipb.12321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/08/2014] [Indexed: 05/14/2023]
Abstract
The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal.
Collapse
Affiliation(s)
- Christine Böttcher
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | - Crista A Burbidge
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | | | - Paul K Boss
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| | - Christopher Davies
- CSIRO Agriculture Flagship, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
263
|
Qi T, Huang H, Song S, Xie D. Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. THE PLANT CELL 2015; 27:1620-33. [PMID: 26002869 PMCID: PMC4498206 DOI: 10.1105/tpc.15.00116] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/19/2015] [Accepted: 05/05/2015] [Indexed: 05/19/2023]
Abstract
Stamens are the plant male reproductive organs essential for plant fertility. Proper development of stamens is modulated by environmental cues and endogenous hormone signals. Deficiencies in biosynthesis or perception of the phytohormone jasmonate (JA) attenuate stamen development, disrupt male fertility, and abolish seed production in Arabidopsis thaliana. This study revealed that JA-mediated stamen development and seed production are regulated by a bHLH-MYB complex. The IIIe basic helix-loop-helix (bHLH) transcription factor MYC5 acts as a target of JAZ repressors to function redundantly with other IIIe bHLH factors such as MYC2, MYC3, and MYC4 in the regulation of stamen development and seed production. The myc2 myc3 myc4 myc5 quadruple mutant exhibits obvious defects in stamen development and significant reduction in seed production. Moreover, these IIIe bHLH factors interact with the MYB transcription factors MYB21 and MYB24 to form a bHLH-MYB transcription complex and cooperatively regulate stamen development. We speculate that the JAZ proteins repress the bHLH-MYB complex to suppress stamen development and seed production, while JA induces JAZ degradation and releases the bHLH-MYB complex to subsequently activate the expression of downstream genes essential for stamen development and seed production.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
264
|
Chawla A, Stobdan T, Srivastava RB, Jaiswal V, Chauhan RS, Kant A. Sex-Biased Temporal Gene Expression in Male and Female Floral Buds of Seabuckthorn (Hippophae rhamnoides). PLoS One 2015; 10:e0124890. [PMID: 25915052 PMCID: PMC4410991 DOI: 10.1371/journal.pone.0124890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/18/2015] [Indexed: 12/29/2022] Open
Abstract
Seabuckthorn is an economically important dioecious plant in which mechanism of sex determination is unknown. The study was conducted to identify seabuckthorn homologous genes involved in floral development which may have role in sex determination. Forty four putative Genes involved in sex determination (GISD) reported in model plants were shortlisted from literature survey, and twenty nine seabuckthorn homologous sequences were identified from available seabuckthorn genomic resources. Of these, 21 genes were found to differentially express in either male or female flower bud stages. HrCRY2 was significantly expressed in female flower buds only while HrCO had significant expression in male flowers only. Among the three male and female floral development stages (FDS), male stage II had significant expression of most of the GISD. Information on these sex-specific expressed genes will help in elucidating sex determination mechanism in seabuckthorn.
Collapse
Affiliation(s)
- Aseem Chawla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tsering Stobdan
- Defence Institute of High Altitude Research, Defence R & D Organisation, Leh, Jammu, and Kashmir, India
| | - Ravi B. Srivastava
- Defence Institute of High Altitude Research, Defence R & D Organisation, Leh, Jammu, and Kashmir, India
| | - Varun Jaiswal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Rajinder S. Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
- * E-mail:
| |
Collapse
|
265
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol 2015; 13:28. [PMID: 25895675 PMCID: PMC4443647 DOI: 10.1186/s12915-015-0135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1. RESULTS Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release. CONCLUSIONS Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Collapse
Affiliation(s)
- Susanne Dobritzsch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Julian Dindas
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
- Present address: Department of Botany I, University of Würzburg, Julius-von-Sachs-Platz 2, D97082, Würzburg, Germany.
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, Weinbergweg 22, D06120, Halle, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D14476, Potsdam, (OT) Golm, Germany.
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| |
Collapse
|
266
|
Zhou L, Lan W, Chen B, Fang W, Luan S. A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. PLANT PHYSIOLOGY 2015; 167:1351-60. [PMID: 25713341 PMCID: PMC4378171 DOI: 10.1104/pp.114.256065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/17/2015] [Indexed: 05/17/2023]
Abstract
Calcium plays an essential role in pollen tube tip growth. However, little is known concerning the molecular basis of the signaling pathways involved. Here, we identified Arabidopsis (Arabidopsis thaliana) CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19 (CIPK19) as an important element to pollen tube growth through a functional survey for CIPK family members. The CIPK19 gene was specifically expressed in pollen grains and pollen tubes, and its overexpression induced severe loss of polarity in pollen tube growth. In the CIPK19 loss-of-function mutant, tube growth and polarity were significantly impaired, as demonstrated by both in vitro and in vivo pollen tube growth assays. Genetic analysis indicated that disruption of CIPK19 resulted in a male-specific transmission defect. Furthermore, loss of polarity induced by CIPK19 overexpression was associated with elevated cytosolic Ca2+ throughout the bulging tip, whereas LaCl3, a Ca2+ influx blocker, rescued CIPK19 overexpression-induced growth inhibition. Our results suggest that CIPK19 may be involved in maintaining Ca2+ homeostasis through its potential function in the modulation of Ca2+ influx.
Collapse
Affiliation(s)
- Liming Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China (L.Z., W.F.);Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China (W.L., S.L.);College of Biological Sciences, China Agricultural University, Beijing 100193, China (B.C.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (S.L.)
| | - Wenzhi Lan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China (L.Z., W.F.);Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China (W.L., S.L.);College of Biological Sciences, China Agricultural University, Beijing 100193, China (B.C.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (S.L.)
| | - Binqing Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China (L.Z., W.F.);Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China (W.L., S.L.);College of Biological Sciences, China Agricultural University, Beijing 100193, China (B.C.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (S.L.)
| | - Wei Fang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China (L.Z., W.F.);Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China (W.L., S.L.);College of Biological Sciences, China Agricultural University, Beijing 100193, China (B.C.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (S.L.)
| | - Sheng Luan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China (L.Z., W.F.);Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China (W.L., S.L.);College of Biological Sciences, China Agricultural University, Beijing 100193, China (B.C.); andDepartment of Plant and Microbial Biology, University of California, Berkeley, California 94720 (S.L.)
| |
Collapse
|
267
|
McGlew K, Shaw V, Zhang M, Kim RJ, Yang W, Shorrosh B, Suh MC, Ohlrogge J. An annotated database of Arabidopsis mutants of acyl lipid metabolism. PLANT CELL REPORTS 2015; 34:519-32. [PMID: 25487439 PMCID: PMC4371839 DOI: 10.1007/s00299-014-1710-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 05/19/2023]
Abstract
We have constructed and annotated a web-based database of over 280 Arabidopsis genes that have characterized mutants associated with Arabidopsis acyl lipid metabolism. Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. In addition, the database of mutants is integrated within the ARALIP plant acyl lipid metabolism website ( http://aralip.plantbiology.msu.edu ) so that information on mutants is displayed on and can be accessed from metabolic pathway maps. Mutants for at least 30% of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. The database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.
Collapse
Affiliation(s)
- Kathleen McGlew
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Vincent Shaw
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Ryeo Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - Weili Yang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | | | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
268
|
Bayon S, Chen G, Weselake RJ, Browse J. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. PLANT PHYSIOLOGY 2015; 167:1259-70. [PMID: 25667315 PMCID: PMC4378157 DOI: 10.1104/pp.114.253641] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/04/2015] [Indexed: 05/21/2023]
Abstract
Ricinoleic acid, an industrially useful hydroxy fatty acid (HFA), only accumulates to high levels in the triacylglycerol fraction of castor (Ricinus communis) endosperm, even though it is synthesized on the membrane lipid phosphatidylcholine (PC) from an oleoyl ester. The acyl chains of PC undergo intense remodeling through the process of acyl editing. The identities of the proteins involved in this process, however, are unknown. A phospholipase A2 (PLA2) is thought to be involved in the acyl-editing process. We show here a role for RcsPLA2α in the acyl editing of HFA esterified to PC. RcsPLA2α was identified by its high relative expression in the castor endosperm transcriptome. Coexpression in Arabidopsis (Arabidopsis thaliana) seeds of RcsPLA2α with the castor fatty acid hydroxylase RcFAH12 led to a dramatic decrease in seed HFA content when compared with RcFAH12 expression alone in both PC and the neutral lipid fraction. The low-HFA trait was heritable and gene dosage dependent, with hemizygous lines showing intermediate HFA levels. The low seed HFA levels suggested that RcsPLA2α functions in vivo as a PLA2 with HFA specificity. Activity assays with yeast (Saccharomyces cerevisiae) microsomes showed a high specificity of RcsPLA2α for ricinoleic acid, superior to that of the endogenous Arabidopsis PLA2α. These results point to RcsPLA2α as a phospholipase involved in acyl editing, adapted to specifically removing HFA from membrane lipids in seeds.
Collapse
Affiliation(s)
- Shen Bayon
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| | - Guanqun Chen
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| | - Randall J Weselake
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (S.B., J.B.); andAlberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (G.C., R.J.W.)
| |
Collapse
|
269
|
Transcriptome analysis of thermogenic Arum concinnatum reveals the molecular components of floral scent production. Sci Rep 2015; 5:8753. [PMID: 25736477 PMCID: PMC5390080 DOI: 10.1038/srep08753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022] Open
Abstract
Several plant species can generate enough heat to increase their internal floral temperature above ambient temperature. Among thermogenic plants, Arum concinnatum shows the highest respiration activity during thermogenesis. However, an overall understanding of the genes related to plant thermogenesis has not yet been achieved. In this study, we performed de novo transcriptome analysis of flower organs in A. concinnatum. The de novo transcriptome assembly represented, in total, 158,490 non-redundant transcripts, and 53,315 of those showed significant homology with known genes. To explore genes associated with thermogenesis, we filtered 1266 transcripts that showed a significant correlation between expression pattern and the temperature trend of each sample. We confirmed five putative alternative oxidase transcripts were included in filtered transcripts as expected. An enrichment analysis of the Gene Ontology terms for the filtered transcripts suggested over-representation of genes involved in 1-deoxy-d-xylulose-5-phosphate synthase (DXS) activity. The expression profiles of DXS transcripts in the methyl-d-erythritol 4-phosphate (MEP) pathway were significantly correlated with thermogenic levels. Our results suggest that the MEP pathway is the main biosynthesis route for producing scent monoterpenes. To our knowledge, this is the first report describing the candidate pathway and the key enzyme for floral scent production in thermogenic plants.
Collapse
|
270
|
Ling S, Chen C, Wang Y, Sun X, Lu Z, Ouyang Y, Yao J. The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice. BMC Genomics 2015; 16:101. [PMID: 25765586 PMCID: PMC4340671 DOI: 10.1186/s12864-015-1305-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Background The anthers and pollen grains are critical for male fertility and hybrid rice breeding. The development of rice mature anther and pollen consists of multiple continuous stages. However, molecular mechanisms regulating mature anther development were poorly understood. Results In this study, we have identified 291 mature anther-preferentially expressed genes (OsSTA) in rice based on Affymetrix microarray data. Gene Ontology (GO) analysis indicated that OsSTA genes mainly participated in metabolic and cellular processes that are likely important for rice anther and pollen development. The expression patterns of OsSTA genes were validated using real-time PCR and mRNA in situ hybridizations. Cis-element identification showed that most of the OsSTA genes had the cis-elements responsive to phytohormone regulation. Co-expression analysis of OsSTA genes showed that genes annotated with pectinesterase and calcium ion binding activities were rich in the network, suggesting that OsSTA genes could be involved in pollen germination and anther dehiscence. Furthermore, OsSTA RNAi transgenic lines showed male-sterility and pollen germination defects. Conclusions The results suggested that OsSTA genes function in rice male fertility, pollen germination and anther dehiscence and established molecular regulating networks that lay the foundation for further functional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1305-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Caisheng Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yang Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaocong Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhanhua Lu
- College of Plant Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
271
|
Sherif S, El-Sharkawy I, Mathur J, Ravindran P, Kumar P, Paliyath G, Jayasankar S. A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biol 2015; 13:11. [PMID: 25857534 PMCID: PMC4364584 DOI: 10.1186/s12915-015-0124-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in floral display represent one of the core features associated with the transition from allogamy to autogamy in angiosperms. The promotion of autogamy under stress conditions suggests the potential involvement of a signaling pathway with a dual role in both flower development and stress response. The jasmonic acid (JA) pathway is a plausible candidate to play such a role because of its involvement in many plant responses to environmental and developmental cues. In the present study, we used peach (Prunus persica L.) varieties with showy and non-showy flowers to investigate the role of JA (and JA signaling suppressors) in floral display. RESULTS Our results show that PpJAZ1, a component of the JA signaling pathway in peach, regulates petal expansion during anthesis and promotes self-pollination. PpJAZ1 transcript levels were higher in petals of the non-showy flowers than those of showy flowers at anthesis. Moreover, the ectopic expression of PpJAZ1 in tobacco (Nicotiana tabacum L.) converted the showy, chasmogamous tobacco flowers into non-showy, cleistogamous flowers. Stability of PpJAZ1 was confirmed in vivo using PpJAZ1-GFP chimeric protein. PpJAZ1 inhibited JA-dependent processes in roots and leaves of transgenic plants, including induction of JA-response genes to mechanical wounding. However, the inhibitory effect of PpJAZ1 on JA-dependent fertility functions was weaker, indicating that PpJAZ1 regulates the spatial localization of JA signaling in different plant organs. Indeed, JA-related genes showed differential expression patterns in leaves and flowers of transgenic plants. CONCLUSIONS Our results reveal that under stress conditions – for example, herbivore attacks – stable JAZ proteins such as PpJAZ1 may alter JA signaling in different plant organs, resulting in autogamy as a reproductive assurance mechanism. This represents an additional mechanism by which plant hormone signaling can modulate a vital developmental process in response to stress.
Collapse
Affiliation(s)
- Sherif Sherif
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Islam El-Sharkawy
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Jaideep Mathur
- />Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Pratibha Ravindran
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Prakash Kumar
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Gopinadhan Paliyath
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Subramanian Jayasankar
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
| |
Collapse
|
272
|
Westbrook JW, Walker AR, Neves LG, Munoz P, Resende MFR, Neale DB, Wegrzyn JL, Huber DA, Kirst M, Davis JM, Peter GF. Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations. THE NEW PHYTOLOGIST 2015; 205:627-641. [PMID: 25266813 DOI: 10.1111/nph.13074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P. taeda × Pinus elliottii) × P. elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2) ˜ 0.12-0.21) and positively genetically correlated with xylem growth (rg ˜ 0.32-0.72) and oleoresin flow (rg ˜ 0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.
Collapse
Affiliation(s)
- Jared W Westbrook
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA; Plant Molecular and Cellular Biology graduate program, University of Florida, Gainesville, PO Box 110410, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Transcriptome-wide analysis of SAMe superfamily to novelty phosphoethanolamine N-methyltransferase copy in Lonicera japonica. Int J Mol Sci 2014; 16:521-34. [PMID: 25551601 PMCID: PMC4307260 DOI: 10.3390/ijms16010521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/24/2014] [Indexed: 01/01/2023] Open
Abstract
The S-adenosyl-L-methionine-dependent methyltransferase superfamily plays important roles in plant development. The buds of Lonicera japonica are used as Chinese medical material and foods; chinese people began domesticating L. japonica thousands of years ago. Compared to the wild species, L. japonica var. chinensis, L. japonica gives a higher yield of buds, a fact closely related to positive selection over the long cultivation period of the species. Genome duplications, which are always detected in the domestic species, are the source of the multifaceted roles of the functional gene. In this paper, we investigated the evolution of the SAMe genes in L. japonica and L. japonica var. chinensis and further analyzed the roles of the duplicated genes among special groups. The SAMe protein sequences were subdivided into three clusters and several subgroups. The difference in transcriptional levels of the duplicated genes showed that seven SAMe genes could be related to the differences between the wild and the domesticated varieties. The sequence diversity of seven SAMe genes was also analyzed, and the results showed that different gene expression levels between the varieties could not be related to amino acid variation. The transcriptional level of duplicated PEAMT could be regulated through the SAM-SAH cycle.
Collapse
|
274
|
Pan Y, Li Q, Wang Z, Wang Y, Ma R, Zhu L, He G, Chen R. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling. BMC Genomics 2014; 15:1114. [PMID: 25512054 PMCID: PMC4320516 DOI: 10.1186/1471-2164-15-1114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
Background Thermosensitive genic male sterile (TGMS) lines and photoperiod-sensitive genic male sterile (PGMS) lines have been successfully used in hybridization to improve rice yields. However, the molecular mechanisms underlying male sterility transitions in most PGMS/TGMS rice lines are unclear. In the recently developed TGMS-Co27 line, the male sterility is based on co-suppression of a UDP-glucose pyrophosphorylase gene (Ugp1), but further study is needed to fully elucidate the molecular mechanisms involved. Results Microarray-based transcriptome profiling of TGMS-Co27 and wild-type Hejiang 19 (H1493) plants grown at high and low temperatures revealed that 15462 probe sets representing 8303 genes were differentially expressed in the two lines, under the two conditions, or both. Environmental factors strongly affected global gene expression. Some genes important for pollen development were strongly repressed in TGMS-Co27 at high temperature. More significantly, series-cluster analysis of differentially expressed genes (DEGs) between TGMS-Co27 plants grown under the two conditions showed that low temperature induced the expression of a gene cluster. This cluster was found to be essential for sterility transition. It includes many meiosis stage-related genes that are probably important for thermosensitive male sterility in TGMS-Co27, inter alia: Arg/Ser-rich domain (RS)-containing zinc finger proteins, polypyrimidine tract-binding proteins (PTBs), DEAD/DEAH box RNA helicases, ZOS (C2H2 zinc finger proteins of Oryza sativa), at least one polyadenylate-binding protein and some other RNA recognition motif (RRM) domain-containing proteins involved in post-transcriptional processes, eukaryotic initiation factor 5B (eIF5B), ribosomal proteins (L37, L1p/L10e, L27 and L24), aminoacyl-tRNA synthetases (ARSs), eukaryotic elongation factor Tu (eEF-Tu) and a peptide chain release factor protein involved in translation. The differential expression of 12 DEGs that are important for pollen development, low temperature responses or TGMS was validated by quantitative RT-PCR (qRT-PCR). Conclusions Temperature strongly affects global gene expression and may be the common regulator of fertility in PGMS/TGMS rice lines. The identified expression changes reflect perturbations in the transcriptomic regulation of pollen development networks in TGMS-Co27. Findings from this and previous studies indicate that sets of genes involved in post-transcriptional and translation processes are involved in thermosensitive male sterility transitions in TGMS-Co27. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1114) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China.
| |
Collapse
|
275
|
Beauzamy L, Nakayama N, Boudaoud A. Flowers under pressure: ins and outs of turgor regulation in development. ANNALS OF BOTANY 2014; 114:1517-33. [PMID: 25288632 PMCID: PMC4204789 DOI: 10.1093/aob/mcu187] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Turgor pressure is an essential feature of plants; however, whereas its physiological importance is unequivocally recognized, its relevance to development is often reduced to a role in cell elongation. SCOPE This review surveys the roles of turgor in development, the molecular mechanisms of turgor regulation and the methods used to measure turgor and related quantities, while also covering the basic concepts associated with water potential and water flow in plants. Three key processes in flower development are then considered more specifically: flower opening, anther dehiscence and pollen tube growth. CONCLUSIONS Many molecular determinants of turgor and its regulation have been characterized, while a number of methods are now available to quantify water potential, turgor and hydraulic conductivity. Data on flower opening, anther dehiscence and lateral root emergence suggest that turgor needs to be finely tuned during development, both spatially and temporally. It is anticipated that a combination of biological experiments and physical measurements will reinforce the existing data and reveal unexpected roles of turgor in development.
Collapse
Affiliation(s)
- Léna Beauzamy
- Reproduction et Développement des Plantes, INRA, CNRS, ENS de Lyon, UCBL Lyon I, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Naomi Nakayama
- Reproduction et Développement des Plantes, INRA, CNRS, ENS de Lyon, UCBL Lyon I, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Rd, King's Buildings, Edinburgh EH9 3JH, UK
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, INRA, CNRS, ENS de Lyon, UCBL Lyon I, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
276
|
Stitz M, Hartl M, Baldwin IT, Gaquerel E. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). THE PLANT CELL 2014; 26:3964-83. [PMID: 25326292 PMCID: PMC4247565 DOI: 10.1105/tpc.114.128165] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 05/20/2023]
Abstract
Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-L-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study.
Collapse
Affiliation(s)
- Michael Stitz
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| | - Markus Hartl
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
277
|
Yang X, Wang SS, Wang M, Qiao Z, Bao CC, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca(2+) concentration. PLANT MOLECULAR BIOLOGY 2014; 86:225-36. [PMID: 25139229 DOI: 10.1007/s11103-014-0220-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/23/2014] [Indexed: 05/10/2023]
Abstract
Cytosolic free calcium ([Ca(2+)]cyt), which is essential during pollen germination and pollen tube growth, can be sensed by calmodulin-like proteins (CMLs). The Arabidopsis thaliana genome encodes over 50 CMLs, the physiological role(s) of most of which are unknown. Here we show that the gene AtCML24 acts as a regulator of pollen germination and pollen tube extension, since the pollen produced by loss-of-function mutants germinated less rapidly than that of wild-type (WT) plants, the rate of pollen tube extension was slower, and the final length of the pollen tube was shorter. The [Ca(2+)]cyt within germinated pollen and extending pollen tubes produced by the cml24 mutant were higher than their equivalents in WT plants, and pollen tube extension was less sensitive to changes in external [K(+)] and [Ca(2+)]. The pollen and pollen tubes produced by cml24 mutants were characterized by a disorganized actin cytoskeleton and lowered sensitivity to the action of latrunculin B. The observations support an interaction between CML24 and [Ca(2+)]cyt and an involvement of CML24 in actin organization, thereby affecting pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
278
|
Paupière MJ, van Heusden AW, Bovy AG. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites 2014; 4:889-920. [PMID: 25271355 PMCID: PMC4279151 DOI: 10.3390/metabo4040889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Adriaan W van Heusden
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Arnaud G Bovy
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| |
Collapse
|
279
|
Xiao Y, Chen Y, Charnikhova T, Mulder PPJ, Heijmans J, Hoogenboom A, Agalou A, Michel C, Morel JB, Dreni L, Kater MM, Bouwmeester H, Wang M, Zhu Z, Ouwerkerk PBF. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. PLANT MOLECULAR BIOLOGY 2014; 86:19-33. [PMID: 24947835 DOI: 10.1007/s11103-014-0212-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates are important phytohormones regulating reproductive development. We used two recessive rice Tos17 alleles of OsJAR1, osjar1-2 and osjar1-3, to study the biological function of jasmonates in rice anthesis. The florets of both osjar1 alleles stayed open during anthesis because the lodicules, which control flower opening in rice, were not withering on time. Furthermore, dehiscence of the anthers filled with viable pollen, was impaired, resulting in lower fertility. In situ hybridization and promoter GUS transgenic analysis confirmed OsJAR1 expression in these floral tissues. Flower opening induced by exogenous applied methyl jasmonate was impaired in osjar1 plants and was restored in a complementation experiment with transgenics expressing a wild type copy of OsJAR1 controlled by a rice actin promoter. Biochemical analysis showed that OsJAR1 encoded an enzyme conjugating jasmonic acid (JA) to at least Ile, Leu, Met, Phe, Trp and Val and both osjar1 alleles had substantial reduction in content of JA-Ile, JA-Leu and JA-Val in florets. We conclude that OsJAR1 is a JA-amino acid synthetase that is required for optimal flower opening and closing and anther dehiscence in rice.
Collapse
Affiliation(s)
- Yuguo Xiao
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Song Y, Ci D, Tian M, Zhang D. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. PLANT MOLECULAR BIOLOGY 2014; 86:139-56. [PMID: 25002226 DOI: 10.1007/s11103-014-0218-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/15/2014] [Indexed: 05/21/2023]
Abstract
In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China,
| | | | | | | |
Collapse
|
281
|
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. PLANT PHYSIOLOGY 2014; 166:396-410. [PMID: 25073705 PMCID: PMC4149723 DOI: 10.1104/pp.114.237388] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 05/20/2023]
Abstract
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Louwrance P Wright
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Jonathan Gershenzon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Claus Wasternack
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Bettina Hause
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| |
Collapse
|
282
|
Wang Q, Ma B, Qi X, Guo Q, Wang X, Zeng Q, He N. Identification and characterization of genes involved in the jasmonate biosynthetic and signaling pathways in mulberry (Morus notabilis). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:663-672. [PMID: 24428303 DOI: 10.1111/jipb.12166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Jasmonate (JA) is an important phytohormone regulating growth, development, and environmental response in plants, particularly defense response against herbivorous insects. Recently, completion of the draft genome of the mulberry (Morus notabilis) in conjunction with genome sequencing of silkworm (Bombyx mori) provides an opportunity to study this unique plant-herbivore interaction. Here, we identified genes involved in JA biosynthetic and signaling pathways in the genome of mulberry for the first time, with the majority of samples showing a tissue-biased expression pattern. The analysis of the representative genes 12-oxophytodienoic acid reductase (OPRs) and jasmonate ZIM-domain (JAZs) was performed and the results indicated that the mulberry genome contains a relatively small number of JA biosynthetic and signaling pathway genes. A gene encoding an important repressor, MnNINJA, was identified as an alternative splicing variant lacking an ethylene-responsive element binding factor-associated amphiphilic repression motif. Having this fundamental information will facilitate future functional study of JA-related genes pertaining to mulberry-silkworm interactions.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | | | | | | | | | | | | |
Collapse
|
283
|
Schuck S, Kallenbach M, Baldwin IT, Bonaventure G. The Nicotiana attenuata GLA1 lipase controls the accumulation of Phytophthora parasitica-induced oxylipins and defensive secondary metabolites. PLANT, CELL & ENVIRONMENT 2014; 37:1703-15. [PMID: 24450863 PMCID: PMC4190502 DOI: 10.1111/pce.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 05/24/2023]
Abstract
Nicotiana attenuata plants silenced in the expression of GLYCEROLIPASE A1 (ir-gla1 plants) are compromised in the herbivore- and wound-induced accumulation of jasmonic acid (JA). However, these plants accumulate wild-type (WT) levels of JA and divinyl-ethers during Phytophthora parasitica infection. By profiling oxylipin-enriched fractions with targeted and untargeted liquid chromatography-tandem time-of-flight mass spectrometry approaches, we demonstrate that the accumulation of 9-hydroxy-10E,12Z-octadecadienoic acid (9-OH-18:2) and additional C18 and C19 oxylipins is reduced by ca. 20-fold in P. parasitica-infected ir-gla1 leaves compared with WT. This reduced accumulation of oxylipins was accompanied by a reduced accumulation of unsaturated free fatty acids and specific lysolipid species. Untargeted metabolic profiling of total leaf extracts showed that 87 metabolites accumulated differentially in leaves of P. parasitica-infected ir-gla1 plants with glycerolipids, hydroxylated-diterpene glycosides and phenylpropanoid derivatives accounting together for ca. 20% of these 87 metabolites. Thus, P. parasitica-induced oxylipins may participate in the regulation of metabolic changes during infection. Together, the results demonstrate that GLA1 plays a distinct role in the production of oxylipins during biotic stress responses, supplying substrates for 9-OH-18:2 and additional C18 and C19 oxylipin formation during P. parasitica infection, whereas supplying substrates for the biogenesis of JA during herbivory and mechanical wounding.
Collapse
Affiliation(s)
- Stefan Schuck
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Mario Kallenbach
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| | - Gustavo Bonaventure
- Max Planck Institute of Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| |
Collapse
|
284
|
Ruduś I, Terai H, Shimizu T, Kojima H, Hattori K, Nishimori Y, Tsukagoshi H, Kamiya Y, Seo M, Nakamura K, Kępczyński J, Ishiguro S. Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana. PLANT CELL REPORTS 2014; 33:849-860. [PMID: 24430866 DOI: 10.1007/s00299-013-1561-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.
Collapse
Affiliation(s)
- Izabela Ruduś
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Marco F, Busó E, Carrasco P. Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. FRONTIERS IN PLANT SCIENCE 2014; 5:115. [PMID: 24734036 PMCID: PMC3973925 DOI: 10.3389/fpls.2014.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/11/2014] [Indexed: 05/07/2023]
Abstract
It has been previously described that elevation of endogenous spermine levels in Arabidopsis could be achieved by transgenic overexpression of S-Adenosylmethionine decarboxylase (SAMDC) or Spermine synthase (SPMS). In both cases, spermine accumulation had an impact on the plant transcriptome, with up-regulation of a set of genes enriched in functional categories involved in defense-related processes against both biotic and abiotic stresses. In this work, the response of SAMDC1-overexpressing plants against bacterial and oomycete pathogens has been tested. The expression of several pathogen defense-related genes was induced in these plants as well as in wild type plants exposed to an exogenous supply of spermine. SAMDC1-overexpressing plants showed an increased tolerance to infection by Pseudomonas syringae and by Hyaloperonospora arabidopsidis. Both results add more evidence to the hypothesis that spermine plays a key role in plant resistance to biotic stress.
Collapse
Affiliation(s)
- Francisco Marco
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de ValènciaValència, Spain
| | - Enrique Busó
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de ValènciaValència, Spain
| | - Pedro Carrasco
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de ValènciaValència, Spain
| |
Collapse
|
286
|
Fan X, Yang C, Klisch D, Ferguson A, Bhaellero RP, Niu X, Wilson ZA. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development. PLANT PHYSIOLOGY 2014; 164:1338-49. [PMID: 24424320 PMCID: PMC3938624 DOI: 10.1104/pp.113.227769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/14/2014] [Indexed: 05/18/2023]
Abstract
The trans-Golgi network (TGN) plays a central role in cellular secretion and has been implicated in sorting cargo destined for the plasma membrane. Previously, the Arabidopsis (Arabidopsis thaliana) echidna (ech) mutant was shown to exhibit a dwarf phenotype due to impaired cell expansion. However, ech also has a previously uncharacterized phenotype of reduced male fertility. This semisterility is due to decreased anther size and reduced amounts of pollen but also to decreased pollen viability, impaired anther opening, and pollen tube growth. An ECH translational fusion (ECHPro:ECH-yellow fluorescent protein) revealed developmentally regulated tissue-specific expression, with expression in the tapetum during early anther development and microspore release and subsequent expression in the pollen, pollen tube, and stylar tissues. Pollen viability and production, along with germination and pollen tube growth, were all impaired. The ech anther endothecium secondary wall thickening also appeared reduced and disorganized, resulting in incomplete anther opening. This did not appear to be due to anther secondary thickening regulatory genes but perhaps to altered secretion of wall materials through the TGN as a consequence of the absence of the ECH protein. ECH expression is critical for a variety of aspects of male reproduction, including the production of functional pollen grains, their effective release, germination, and tube formation. These stages of pollen development are fundamentally influenced by TGN trafficking of hormones and wall components. Overall, this suggests that the fertility defect is multifaceted, with the TGN trafficking playing a significant role in the process of both pollen formation and subsequent fertilization.
Collapse
|
287
|
Shih CF, Hsu WH, Peng YJ, Yang CH. The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:621-39. [PMID: 24323506 PMCID: PMC3904717 DOI: 10.1093/jxb/ert412] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ANTHER INDEHISCENCE FACTOR (AIF), a NAC-like gene, was identified in Arabidopsis. In AIF:GUS flowers, β-glucuronidase (GUS) activity was detected in the anther, the upper parts of the filaments, and in the pollen of stage 7-9 young flower buds; GUS activity was reduced in mature flowers. Yellow fluorescent protein (YFP)+AIF-C fusion proteins, which lacked a transmembrane domain, accumulated in the nuclei of the Arabidopsis cells, whereas the YFP+AIF fusion proteins accumulated in the membrane and were absent in the nuclei. Further detection of a cleaved AIF protein in flowers revealed that AIF needs to be processed and released from the endoplasmic reticulum in order to function. The ectopic expression of AIF-C caused a male-sterile phenotype with indehiscent anthers throughout flower development in Arabidopsis. The presence of a repressor domain in AIF and the similar phenotype of indehiscent anthers in AIF-C+SRDX plants suggest that AIF acts as a repressor. The defect in anther dehiscence was due to the down-regulation of genes that participate in jasmonic acid (JA) biosynthesis, such as DAD1/AOS/AOC3/OPR3/OPCL1. The external application of JA rescued the anther indehiscence in AIF-C and AIF-C+SRDX flowers. In AIF-C+VP16 plants, which are transgenic dominant-negative mutants in which AIF is converted to a potent activator via fusion to a VP16-AD motif, the anther dehiscence was promoted, and the expression of DAD1/AOS/AOC3/OPR3/OPCL1 was up-regulated. Furthermore, the suppression of AIF through an antisense strategy resulted in a mutant phenotype similar to that observed in the AIF-C+VP16 flowers. The present data suggest a role for AIF in controlling anther dehiscence by suppressing the expression of JA biosynthesis genes in Arabidopsis.
Collapse
Affiliation(s)
- Ching-Fang Shih
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Yan-Jhu Peng
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227 ROC
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
288
|
Spyropoulou EA, Haring MA, Schuurink RC. Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. PLANT MOLECULAR BIOLOGY 2014; 84:345-57. [PMID: 24142382 DOI: 10.1007/s11103-013-0142-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/07/2013] [Indexed: 05/08/2023]
Abstract
Terpene biosynthesis in tomato glandular trichomes has been well studied, with most if not all terpene synthases (TPSs) being identified. However, transcription factors (TFs) that regulate TPSs have not yet been discovered from tomato. In order to unravel the transcriptional regulation of the Solanum lycopersicum linalool synthase (SlMTS1, recently renamed SlTPS5) gene in glandular trichomes, we functionally dissected its promoter. A 207 bp fragment containing the minimal promoter and the 5'UTR appeared to be sufficient for trichome-specific expression in transgenic plants. Yeast-one-hybrid screens with this fragment identified a glandular trichome-specific transcription factor, designated Expression of Terpenoids 1 (SlEOT1). SlEOT1 is a member of a conserved family of TFs that includes the Arabidopsis Stylish 1 (AtSTY1) and Short Internode (AtSHI) genes. The EOT1 protein localized to the nucleus and specifically transactivated the SlTPS5 promoter in Nicotiana benthamiana leaves.
Collapse
Affiliation(s)
- Eleni A Spyropoulou
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | |
Collapse
|
289
|
Li XR, Li HJ, Yuan L, Liu M, Shi DQ, Liu J, Yang WC. Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. THE PLANT CELL 2014; 26:619-35. [PMID: 24510720 PMCID: PMC3967029 DOI: 10.1105/tpc.113.121087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 05/20/2023]
Abstract
Pollen undergo a maturation process to sustain pollen viability and prepare them for germination. Molecular mechanisms controlling these processes remain largely unknown. Here, we report an Arabidopsis thaliana mutant, dayu (dau), which impairs pollen maturation and in vivo germination. Molecular analysis indicated that DAU encodes the peroxisomal membrane protein ABERRANT PEROXISOME MORPHOLOGY9 (APEM9). DAU is transiently expressed from bicellular pollen to mature pollen during male gametogenesis. DAU interacts with peroxisomal membrane proteins PEROXIN13 (PEX13) and PEX16 in planta. Consistently, both peroxisome biogenesis and peroxisome protein import are impaired in dau pollen. In addition, the jasmonic acid (JA) level is significantly decreased in dau pollen, and the dau mutant phenotype is partially rescued by exogenous application of JA, indicating that the male sterility is mainly due to JA deficiency. In addition, the phenotypic survey of peroxin mutants indicates that the PEXs most likely play different roles in pollen germination. Taken together, these data indicate that DAU/APEM9 plays critical roles in peroxisome biogenesis and function, which is essential for JA production and pollen maturation and germination.
Collapse
Affiliation(s)
- Xin-Ran Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Yuan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
290
|
Kim DS, Jeun Y, Hwang BK. The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling. PLANT MOLECULAR BIOLOGY 2014; 84:329-44. [PMID: 24085708 DOI: 10.1007/s11103-013-0137-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/24/2013] [Indexed: 05/06/2023]
Abstract
Phospholipases hydrolyze phospholipids into fatty acids and other lipophilic substances. Phospholipid signaling is crucial for diverse cellular processes in plants. However, the precise role of phospholipases in plant cell death and defense signaling is not fully understood. Here, we identified a pepper (Capsicum annuum) patatin-like phospholipase (CaPLP1) gene that is transcriptionally induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPLP1 containing an N-terminal signal peptide localized to the cytoplasm and plasma membrane, leading to the secretion into the apoplastic regions. Silencing of CaPLP1 in pepper conferred enhanced susceptibility to Xcv infection. Defense responses to Xcv, including the generation of reactive oxygen species (ROS), hypersensitive cell death and the expression of the salicylic acid (SA)-dependent marker gene CaPR1, were compromised in the CaPLP1-silenced pepper plants. Transient expression of CaPLP1 in pepper leaves induced the accumulation of fluorescent phenolics, expression of the defense marker genes CaPR1 and CaSAR82A, and generation of ROS, ultimately leading to the hypersensitive cell death response. Overexpression (OX) of CaPLP1 in Arabidopsis also conferred enhanced resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPLP1-OX leaves showed reduced Pst growth, enhanced ROS burst and electrolyte leakage, induction of the defense response genes AtPR1, AtRbohD and AtGST, as well as constitutive activation of both the SA-dependent gene AtPR1 and the JA-dependent gene AtPDF1.2. Together, these results suggest that CaPLP1 is involved in plant defense and cell death signaling in response to microbial pathogens.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | | | | |
Collapse
|
291
|
Bonaventure G. Lipases and the biosynthesis of free oxylipins in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28429. [PMID: 24603593 PMCID: PMC4091546 DOI: 10.4161/psb.28429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 05/23/2023]
Abstract
The production of free oxylipins in plants is exquisitely controlled by cellular mechanisms that respond to environmental factors such as mechanical damage, insect herbivory and pathogen infection. One of the main targets of these cellular mechanisms are glycerolipases class A (GLA); acyl-hydrolyzing enzymes that upon their biochemical activation release unsaturated fatty acids or acylated oxylipins from glycerolipids. Recent studies performed in the wild tobacco species Nicotiana attenuata have started to reveal the complexity and specificity of GLA-regulated free oxylipin production. I present a model in which individual GLA lipases associate with individual lipoxygenases (LOX) in chloroplast membranes and envelope to define the initial committed steps of distinct oxylipin biosynthesis pathways. The unravelling of the mechanisms that activate GLAs and LOXs at the biochemical level and that control the interaction between these enzymes and their association with membranes will prove to be fundamental to understand how plants control free oxylipin biogenesis.
Collapse
|
292
|
Nakashima A, von Reuss SH, Tasaka H, Nomura M, Mochizuki S, Iijima Y, Aoki K, Shibata D, Boland W, Takabayashi J, Matsui K. Traumatin- and dinortraumatin-containing galactolipids in Arabidopsis: their formation in tissue-disrupted leaves as counterparts of green leaf volatiles. J Biol Chem 2013; 288:26078-26088. [PMID: 23888054 PMCID: PMC3764811 DOI: 10.1074/jbc.m113.487959] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/23/2013] [Indexed: 11/06/2022] Open
Abstract
Green leaf volatiles (GLVs) consisting of six-carbon aldehydes, alcohols, and their esters, are biosynthesized through the action of fatty acid hydroperoxide lyase (HPL), which uses fatty acid hydroperoxides as substrates. GLVs form immediately after disruption of plant leaf tissues by herbivore attacks and mechanical wounding and play a role in defense against attackers that attempt to invade through the wounds. The fates and the physiological significance of the counterparts of the HPL reaction, the 12/10-carbon oxoacids that are formed from 18/16-carbon fatty acid 13-/11-hydroperoxides, respectively, are largely unknown. In this study, we detected monogalactosyl diacylglycerols (MGDGs) containing the 12/10-carbon HPL products in disrupted leaf tissues of Arabidopsis, cabbage, tobacco, tomato, and common bean. They were identified as an MGDG containing 12-oxo-9-hydroxy-(E)-10-dodecenoic acid and 10-oxo-7-hydroxy-(E)-8-decenoic acid and an MGDG containing two 12-oxo-9-hydroxy-(E)-10-dodecenoic acids as their acyl groups. Analyses of Arabidopsis mutants lacking HPL indicated that these MGDGs were formed enzymatically through an active HPL reaction. Thus, our results suggested that in disrupted leaf tissues, MGDG-hydroperoxides were cleaved by HPL to form volatile six-carbon aldehydes and non-volatile 12/10-carbon aldehyde-containing galactolipids. Based on these results, we propose a novel oxylipin pathway that does not require the lipase reaction to form GLVs.
Collapse
Affiliation(s)
- Anna Nakashima
- From the Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Stephan H von Reuss
- the Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Hiroyuki Tasaka
- From the Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Misaki Nomura
- From the Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Satoshi Mochizuki
- From the Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yoko Iijima
- the Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan,; the Department of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi-shi, Kanagawa 243-0292, Japan
| | - Koh Aoki
- the Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan,; the Graduate School of Life and Environmental Sciences, Osaka Prefectural University, Sakai, Osaka 599-8531, Japan, and
| | - Daisuke Shibata
- the Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Wilhelm Boland
- the Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Junji Takabayashi
- the Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Kenji Matsui
- From the Department of Biological Chemistry, Faculty of Agriculture and the Department of Applied Molecular Bioscience, Graduate School of Medicine Yamaguchi University, Yamaguchi 753-8515, Japan,.
| |
Collapse
|
293
|
Methyl jasmonate-induced cell death in grapevine requires both lipoxygenase activity and functional octadecanoid biosynthetic pathway. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0220-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
294
|
Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. PLANT CELL REPORTS 2013; 32:1085-1098. [PMID: 23584548 DOI: 10.1007/s00299-013-1441-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 05/23/2023]
Abstract
Plants frequently live in environments characterized by the presence of simultaneous and different stresses. The intricate and finely tuned molecular mechanisms activated by plants in response to abiotic and biotic environmental factors are not well understood, and less is known about the integrative signals and convergence points activated by plants in response to multiple (a)biotic stresses. Phytohormones play a key role in plant development and response to (a)biotic stresses. Among these, one of the most important signaling molecules is an oxylipin, the plant hormone jasmonic acid. Oxylipins are derived from oxygenation of polyunsaturated fatty acids. Jasmonic acid and its volatile derivative methyl jasmonate have been considered for a long time to be the bioactive forms due to their physiological effects and abundance in the plant. However, more recent studies showed unambiguously that they are only precursors of the active forms represented by some amino acid conjugates. Upon developmental or environmental stimuli, jasmonates are synthesized and accumulate transiently. Upon perception, jasmonate signal transduction process is finely tuned by a complex mechanism comprising specific repressor proteins which in turn control a number of transcription factors regulating the expression of jasmonate responsive genes. We discuss the latest discoveries about the role of jasmonates in plants resistance mechanism against biotic and abiotic stresses. Finally, the deep interplay of different phytohormones in stresses signaling will be also discussed.
Collapse
Affiliation(s)
- Angelo Santino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
295
|
The Progamic Phase in High-Mountain Plants: From Pollination to Fertilization in the Cold. PLANTS 2013; 2:354-70. [PMID: 27137380 PMCID: PMC4844372 DOI: 10.3390/plants2030354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/03/2022]
Abstract
In high-mountains, cold spells can occur at any time during the growing season and plants may be covered with snow for several days. This raises the question to what extent sexual processes are impaired by low temperatures. We tested pollen performance and fertilization capacity of high-mountain species with different elevational distribution in the European Alps (Cerastium uniflorum, Gentianella germanica, Ranunculus glacialis, R. alpestris, Saxifraga bryoides, S. caesia, S. moschata) during simulated cold snaps in the laboratory. Plants were exposed to 0 °C (the temperature below the snow) for 12, 36, 60 and 84 h. In S. caesia, the experiment was verified in situ during a cold snap. Sexual processes coped well with large temperature differences and remained functional at near-freezing temperatures for a few days. During the cooling-down phase a high percentage (67–97%) of pollen grains germinated and grew tubes into the style. At zero degrees, tube growth continued slowly both in the laboratory and in situ below the snow. Fertilization occurred in up to 100% of flowers in the nival species and in G. germanica, but was strongly delayed or absent in the alpine species. During rewarming, fertilization continued. Overall, progamic processes in high-mountain plants appear fairly robust toward weather extremes increasing the probability of successful reproduction.
Collapse
|
296
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-1058. [PMID: 23558912 DOI: 10.1093/aob/mct06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
297
|
Lyons R, Manners JM, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative overview. PLANT CELL REPORTS 2013; 32:815-27. [PMID: 23455708 DOI: 10.1007/s00299-013-1400-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/21/2023]
Abstract
The plant hormone jasmonate (JA) fulfils essential roles in plant defense and development. While most of our current understanding of the JA pathway comes from the dicotyledonous model plant Arabidopsis thaliana, new studies in monocotyledonous plants are providing additional insights into this important hormone signaling pathway. In this review, we present a comparative overview of the JA biosynthetic and signaling pathways in monocots. We highlight recent studies that have revealed molecular mechanisms (mostly conserved but also diverged) underlying JA signaling and biosynthesis in the economically important plants: maize and rice. A better understanding of the JA pathway in monocots should lead to significant improvements in pest and pathogen resistance in cereal crops, which provide the bulk of the world's food and feed supply.
Collapse
Affiliation(s)
- Rebecca Lyons
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct (QBP), Brisbane, QLD 4067, Australia
| | | | | |
Collapse
|
298
|
Suzuki T, Tsunekawa S, Koizuka C, Yamamoto K, Imamura J, Nakamura K, Ishiguro S. Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:25-36. [PMID: 23602096 DOI: 10.1016/j.plantsci.2013.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/11/2013] [Accepted: 02/09/2013] [Indexed: 05/19/2023]
Abstract
The pollen coat covering the surface of pollen grains has many important roles for pollination. In Brassicaceae plants, the pollen coat components are synthesized and temporarily accumulated in two tapetum-specific organelles, the elaioplast and the tapetosome. Although many biochemical and electron microscopic analyses have been attempted, the structure and biogenesis of these organelles have not been fully elucidated. To resolve this problem, we performed live imaging of these organelles using two markers, FIB1a-GFP and GRP17-GFP. FIB1a is an Arabidopsis fibrillin, a structural protein of elaioplast plastoglobules. In transgenic Arabidopsis, fluorescence of FIB1a-GFP appeared in young elaioplasts, in which small plastoglobules were developing. However, the fluorescence disappeared in later stages, while enlargement of plastoglobules continued. GRP17 is an Arabidopsis oleopollenin, an oleosin-like protein in tapetosomes. Fluorescence microscopy of GRP17-GFP expressed in Arabidopsis and Brassica napus revealed that tapetosomes do not contain oleopollenin-coated vesicles but have an outer envelope, indicating that the tapetosome structure is distinct from seed oil bodies. Visualization of GRP17-GFP also demonstrated that the tapetal cells become protoplasts and migrate into locules before pollen coat formation, and provided live imaging of the foot formation between pollen grains and stigmatic papilla cells.
Collapse
Affiliation(s)
- Toshiya Suzuki
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
299
|
Wang J, Yan DW, Yuan TT, Gao X, Lu YT. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level. PLANT MOLECULAR BIOLOGY 2013; 82:71-83. [PMID: 23483289 DOI: 10.1007/s11103-013-0039-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/05/2013] [Indexed: 05/21/2023]
Abstract
Auxin regulates a variety of physiological processes via its downstream factors included Aux/IAAs. In this study, one of these Aux/IAAs, IAA8 is shown to play its role in Arabidopsis development with transgenic plants expressing GFP-mIAA8 under the control of IAA8 promoter, in which IAA8 protein was mutated by changing Pro170 to Leu170 in its conserved domain II. These transgenic dwarfed plants had more lateral branches, short primary inflorescence stems, decreased shoot apical dominance, curled leaves and abnormal flower organs (short petal and stamen, and bent stigmas). Further experiments revealed that IAA8::GFP-mIAA8 plants functioned as gain-of-function mutation to increase GFP-mIAA8 amount probably by stabilizing IAA8 protein against proteasome-mediated protein degradation with IAA8::GFP-IAA8 plants as control. The searching for its downstream factors indicated its interaction with both ARF6 and ARF8, suggesting that IAA8 may involve in flower organ development. This was further evidenced by analyzing the expression of jasmonic acid (JA) biosynthetic genes and JA levels because ARF6 and ARF8 are required for normal JA production. These results indicated that in IAA8::GFP-mIAA8 plants, JA biosynthetic genes including DAD1 (AT2G44810), AOS (AT5G42650) and ORP3 (AT2G06050) were dramatically down-regulated and JA level in the flowers was reduced to 70 % of that in wild-type. Furthermore, exogenous JA application can partially rescue short petal and stamen observed IAA8::GFP-mIAA8 plants. Thus, IAA8 plays its role in floral organ development by changes in JA levels probably via its interaction with ARF6/8 proteins.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|
300
|
Nakata M, Mitsuda N, Herde M, Koo AJ, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in arabidopsis. THE PLANT CELL 2013; 25:1641-56. [PMID: 23673982 PMCID: PMC3694697 DOI: 10.1105/tpc.113.111112] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 05/20/2023]
Abstract
Jasmonates (JAs) are plant hormones that regulate the balance between plant growth and responses to biotic and abiotic stresses. Although recent studies have uncovered the mechanisms for JA-induced responses in Arabidopsis thaliana, the mechanisms by which plants attenuate the JA-induced responses remain elusive. Here, we report that a basic helix-loop-helix-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1 (JAM1), acts as a transcriptional repressor and negatively regulates JA signaling. Gain-of-function transgenic plants expressing the chimeric repressor for JAM1 exhibited substantial reduction of JA responses, including JA-induced inhibition of root growth, accumulation of anthocyanin, and male fertility. These plants were also compromised in resistance to attack by the insect herbivore Spodoptera exigua. Conversely, jam1 loss-of-function mutants showed enhanced JA responsiveness, including increased resistance to insect attack. JAM1 and MYC2 competitively bind to the target sequence of MYC2, which likely provides the mechanism for negative regulation of JA signaling and suppression of MYC2 functions by JAM1. These results indicate that JAM1 negatively regulates JA signaling, thereby playing a pivotal role in fine-tuning of JA-mediated stress responses and plant growth.
Collapse
Affiliation(s)
- Masaru Nakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Marco Herde
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Abraham J.K. Koo
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Javier E. Moreno
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Kaoru Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Gregg A. Howe
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama 338-8770, Japan
- Address correspondence to
| |
Collapse
|