251
|
Huang H, Chen S, Li H, Jiang J. Next-generation transcriptome analysis in transgenic birch overexpressing and suppressing APETALA1 sheds lights in reproduction development and diterpenoid biosynthesis. PLANT CELL REPORTS 2015; 34:1663-1680. [PMID: 26063613 DOI: 10.1007/s00299-015-1817-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Overexpression of BpAP1 could cause early flowering in birch. BpAP1 affected the expression of many flowering-related unigenes and diterpenoid biosynthesis in transgenic birch, and BpPI was a putative target gene of BpAP1. APETALA1 (AP1) is an MADS-box transcription factor that is involved in the flowering process in plants and has been a focus of genetic studies examining flower development. Here, we carried out transcriptome analysis of birch (Betula platyphylla Suk.), including BpAP1 overexpression lines, BpAP1 suppression lines, and non-transgenic line (NT). Compared with NT, we detected 8302 and 7813 differentially expressed unigenes in 35S::BpAP1 and 35S::BpAP1RNAi transgenic lines, respectively. Overexpression and suppression of BpAP1 in birch affected diterpenoid biosynthesis and altered expression of many flowering-related unigenes. Moreover, combining information from the RNA-seq database and the birch genome, we predicted downstream target genes of BpAP1. Among the 166 putative target genes of BpAP1, there was a positive correlation between BpAP1 and BpPI. These results provide references for further examining the relationship between BpAP1 and its target genes, and reveal that BpAP1 functions as a transcription regulator in birch.
Collapse
Affiliation(s)
- Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China,
| | | | | | | |
Collapse
|
252
|
Ni J, Gao C, Chen MS, Pan BZ, Ye K, Xu ZF. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas. PLANT & CELL PHYSIOLOGY 2015; 56:1655-66. [PMID: 26076970 PMCID: PMC4523387 DOI: 10.1093/pcp/pcv089] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants.
Collapse
Affiliation(s)
- Jun Ni
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Congcong Gao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Mao-Sheng Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Bang-Zhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Kaiqin Ye
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| |
Collapse
|
253
|
|
254
|
Mardi M, Karimi Farsad L, Gharechahi J, Salekdeh GH. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia. PLoS One 2015; 10:e0130425. [PMID: 26132073 PMCID: PMC4489016 DOI: 10.1371/journal.pone.0130425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.
Collapse
Affiliation(s)
- Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | - Laleh Karimi Farsad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
| | - Javad Gharechahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Tehran, Iran
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
255
|
Zhou Z, Ma H, Lin K, Zhao Y, Chen Y, Xiong Z, Wang L, Tian B. RNA-seq Reveals Complicated Transcriptomic Responses to Drought Stress in a Nonmodel Tropic Plant, Bombax ceiba L. Evol Bioinform Online 2015; 11:27-37. [PMID: 26157330 PMCID: PMC4479181 DOI: 10.4137/ebo.s20620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
High-throughput transcriptome provides an unbiased approach for understanding the genetic basis and gene functions in response to different conditions. Here we sequenced RNA-seq libraries derived from a Bombax ceiba L. system under a controlled experiment. As a known medicinal and ornamental plant, B. ceiba grows mainly in hot-dry monsoon rainforests in Southeast Asia and Australia. Due to the specific growth environment, it has evolved a unique system that enables a physiologic response to drought stress. To date, few studies have characterized the genome-wide features of drought endurance in B. ceiba. In this study, we first attempted to characterize and identify the most differentially expressed genes and associated functional pathways under drought treatment and normal condition. Using RNA-seq technology, we generated the first transcriptome of B. ceiba and identified 59 differentially expressed genes with greater than 1,000-fold changes under two conditions. The set of upregulated genes implicates interplay among various pathways: plants growth, ubiquitin-mediated proteolysis, polysaccharides hydrolyzation, oxidative phosphorylation and photosynthesis, etc. In contrast, genes associated with stem growth, cell division, fruit ripening senescence, disease resistance, and proline synthesis are repressed. Notably, key genes of high RPKM levels in drought are AUX1, JAZ, and psbS, which are known to regulate the growth of plants, the resistance against abiotic stress, and the photosynthesis process. Furthermore, 16,656 microsatellite markers and 3,071 single-nucleotide polymorphisms (SNPs) were predicted by in silico methods. The identification and functional annotation of differentially expressed genes, microsatellites, and SNPs represent a major step forward and would serve as a valuable resource for understanding the complexity underlying drought endurance and adaptation in B. ceiba.
Collapse
Affiliation(s)
- Zhili Zhou
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| | - Huancheng Ma
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Kevin Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Youjie Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Yuan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhi Xiong
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Bin Tian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
256
|
Wuddineh WA, Mazarei M, Zhang J, Poovaiah CR, Mann DGJ, Ziebell A, Sykes RW, Davis MF, Udvardi MK, Stewart CN. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:636-47. [PMID: 25400275 DOI: 10.1111/pbi.12287] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/19/2014] [Accepted: 10/01/2014] [Indexed: 05/18/2023]
Abstract
Gibberellin 2-oxidases (GA2oxs) are a group of 2-oxoglutarate-dependent dioxygenases that catalyse the deactivation of bioactive GA or its precursors through 2β-hydroxylation reaction. In this study, putatively novel switchgrass C20 GA2ox genes were identified with the aim of genetically engineering switchgrass for improved architecture and reduced biomass recalcitrance for biofuel. Three C20 GA2ox genes showed differential regulation patterns among tissues including roots, seedlings and reproductive parts. Using a transgenic approach, we showed that overexpression of two C20 GA2ox genes, that is PvGA2ox5 and PvGA2ox9, resulted in characteristic GA-deficient phenotypes with dark-green leaves and modified plant architecture. The changes in plant morphology appeared to be associated with GA2ox transcript abundance. Exogenous application of GA rescued the GA-deficient phenotypes in transgenic lines. Transgenic semi-dwarf lines displayed increased tillering and reduced lignin content, and the syringyl/guaiacyl lignin monomer ratio accompanied by the reduced expression of lignin biosynthetic genes compared to nontransgenic plants. A moderate increase in the level of glucose release in these transgenic lines might be attributed to reduced biomass recalcitrance as a result of reduced lignin content and lignin composition. Our results suggest that overexpression of GA2ox genes in switchgrass is a feasible strategy to improve plant architecture and reduce biomass recalcitrance for biofuel.
Collapse
Affiliation(s)
- Wegi A Wuddineh
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jiyi Zhang
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Charleson R Poovaiah
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David G J Mann
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Angela Ziebell
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Robert W Sykes
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Mark F Davis
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael K Udvardi
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Charles Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
257
|
E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development. Biochem J 2015; 469:299-314. [PMID: 26008766 DOI: 10.1042/bj20141302] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/26/2015] [Indexed: 11/17/2022]
Abstract
Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation.
Collapse
|
258
|
Martín-Rodríguez JÁ, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM. Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. PHYSIOLOGIA PLANTARUM 2015; 154:66-81. [PMID: 25186107 DOI: 10.1111/ppl.12274] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 05/07/2023]
Abstract
Gibberellins (GAs) are key regulators of plant growth and development and recent studies suggest also a role during arbuscular mycorrhizal (AM) formation. Here, complementary approaches have been used to obtain a clearer picture that correlates AM fungal development inside roots with GA metabolism. An extensive analysis of genes associated with GA metabolism as well as a quantification of GA content in roots was made. Application of GA3 and its biosynthesis inhibitor prohexadione calcium (PrCa) combined with a GA-constitutive response mutant (procera) were used to determine whether fungal colonization is altered by the level of these hormones or by changes in the GA-signaling pathway. The increased levels of specific GAs from the 13-hydroxylation pathway in mycorrhizal roots correlate closely with the increased expression of genes coding enzymes from the GA biosynthetic trail. The imbalance of GAs in tomato roots caused by exogenous applications of GA3 or PrCa affects arbuscules in both negative and positive ways, respectively. In addition, procera plants were adversely affected by the mycorrhization process. Our findings demonstrate that an imbalance in favor of an increased amount of GAs negatively affects the frequency of mycorrhization and particularly the arbuscular abundance in tomato mycorrhizal roots and the results point out that AM formation is associated with a change in the 13-hydroxylation pathway of GAs.
Collapse
Affiliation(s)
- José Ángel Martín-Rodríguez
- Departamento de Microbiología del suelo y sistemas simbióticos, Estación Experimental del Zaidín (EEZ), CSIC, Granada, 18008, Spain
| | | | | | | | | | | |
Collapse
|
259
|
Kondhare K, Farrell A, Kettlewell P, Hedden P, Monaghan J. Pre-maturity α-amylase in wheat: The role of abscisic acid and gibberellins. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
260
|
Chen X, Lu S, Wang Y, Zhang X, Lv B, Luo L, Xi D, Shen J, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:302-14. [PMID: 25754802 DOI: 10.1111/tpj.12819] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 05/02/2023]
Abstract
Plant height and flowering time are key agronomic traits affecting yield in rice (Oryza sativa). In this study, we investigated the functions in rice growth and development of OsNAC2, encoding a NAC transcription factor in rice. Transgenic plants that constitutively expressed OsNAC2 had shorter internodes, shorter spikelets, and were more insensitive to gibberellic acid (GA(3)). In addition, the levels of GAs decreased in OsNAC2 overexpression plants, compared with the wild-type. Moreover, flowering was delayed for approximately 5 days in transgenic lines. The transcription of Hd3a, a flowering-time related gene, was suppressed in transgenic lines. In addition, transgenic Arabidopsis plants expressing OsNAC2 were also more insensitive to GA(3). The expression levels of GA biosynthetic genes OsKO2 and OsKAO were repressed. The expression of OsSLRL, encoding a repressor in the GA signal pathway, and OsEATB, which encodes a repressor of GA biosynthesis, were both enhanced. Western blotting indicated that DELLA also accumulated at the protein level. Dual-luciferase reporter analyses, yeast one-hybrid assays and ChIP-qPCR suggested that OsNAC2 directly interacted with the promoter of OsEATB and OsKO2. Taken together, we proposed that OsNAC2 is a negative regulator of the plant height and flowering time, which acts by directly regulating key genes of the GA pathway in rice.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Reitz MU, Gifford ML, Schäfer P. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2187-97. [PMID: 25821072 PMCID: PMC4986725 DOI: 10.1093/jxb/erv106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 05/27/2023]
Abstract
Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.
Collapse
Affiliation(s)
- M U Reitz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - M L Gifford
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - P Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
262
|
A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One 2015; 10:e0121824. [PMID: 25807368 PMCID: PMC4373942 DOI: 10.1371/journal.pone.0121824] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Jasmonate (JA) is an important signaling molecule involved in the regulation of many physiological and stress-related processes in plants. Jasmonate ZIM-domain (JAZ) proteins have been implicated in regulating JA signaling pathways and the cross talk between various phytohormones. Maize is not only an important cereal crop, but also a model plant for monocotyledon studies. Although many JAZ proteins have been characterized in Arabidopsis and rice, few reports have examined the function of JAZ proteins in maize. In this report, we examined the phylogenetic relationship and expression pattern of JAZ family genes in maize. In addition, a tassel and endosperm-specific JAZ gene, ZmJAZ14, was identified using microarray data analysis and real-time RT-PCR, and its expression was induced by polyethylene glycol (PEG), jasmonate (JA), abscisic acid (ABA), and gibberellins (GAs). ZmJAZ14 was shown to be localized in the nucleus and possessed no transcriptional activating activity, suggesting that it functions as a transcriptional regulator. We found that overexpression of ZmJAZ14 in Arabidopsis enhanced plant tolerance to JA and ABA treatment, as well as PEG stress, while it promoted growth under GA stimulus. Moreover, ZmJAZ14 interacted with a subset of transcription factors in Arabidopsis, and the accumulation of several marker genes involved in JA, ABA, and GA signaling pathways were altered in the overexpression lines. These results suggest that ZmJAZ14 may serve as a hub for the cross talk among the JA, ABA, and GA signaling pathways. Our results can be used to further characterize the function of JAZ family proteins in maize, and the gene cloned in this study may serve as a candidate for drought tolerance and growth promotion regulation in maize.
Collapse
|
263
|
Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Li Z, Fei Z, Wang Y, Wang X. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 2015; 16:128. [PMID: 25888129 PMCID: PMC4348105 DOI: 10.1186/s12864-015-1324-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gibberellins are well known for their growth control function in flower, fruit and seed development, and as such, exogenous gibberellic acid (GA) application plays an important role in viticulture. Unfortunately, the mechanism by which GA3 acts in the regulation of these complicated developmental processes in grape remains unclear. RESULTS In the present study, we demonstrated that application of GA3 to 'Kyoho' grapevine inflorescences at pre-bloom promoted flower opening, and induced fruit coloring as well as seed abortion. In an attempt to obtain a deeper understanding of the molecular mechanisms driving these responses to GA3 treatment, we performed large-scale transcriptome sequencing of grape flowers following GA3 treatment using Illumina sequencing technology. Global expression profiles of GA3-treated and untreated grape flowers were compared and a large number of GA3-responsive genes were identified. Gene ontology (GO) term classification and biochemical pathway analyses indicated that GA3 treatment caused changes in the levels of transcripts involved in cellular processes, reproduction, hormone and secondary metabolism, as well as the scavenging and detoxification of reactive oxygen species (ROS). These findings suggest that GA3-induced morphological alterations may be related to the control of hormone biosynthesis and signaling, regulation of transcription factors, alteration of secondary metabolites, and the stability of redox homeostasis. CONCLUSIONS Taken together, this comprehensive inflorescence transcriptome data set provides novel insight into the response of grape flowers to GA3 treatment, and also provides possible candidate genes or markers that could be used to guide future efforts in this field.
Collapse
Affiliation(s)
- Chenxia Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaozhao Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, 100193, China.
| | - Yiming Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA. .,USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
264
|
Guo Y, Zhu C, Gan L, Ng D, Xia K. Effects of exogenous gibberellic acid3 on iron and manganese plaque amounts and iron and manganese uptake in rice. PLoS One 2015; 10:e0118177. [PMID: 25710173 PMCID: PMC4339979 DOI: 10.1371/journal.pone.0118177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/05/2015] [Indexed: 11/20/2022] Open
Abstract
Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L(-1)) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L(-1)) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected.
Collapse
Affiliation(s)
- Yue Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Denny Ng
- CP Bio, Inc., 4802 Murrieta St., Chino, California, 91710, United States of America
| | - Kai Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
265
|
Guo J, Bian YY, Zhu KX, Guo XN, Peng W, Zhou HM. Activation of Endogenous Phytase and Degradation of Phytate in Wheat Bran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1082-1087. [PMID: 25511133 DOI: 10.1021/jf504319t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Wheat bran contains a significant amount of the anti-nutritional factor phytate. This study is the first to explore the effectiveness of activating endogenous phytase and further reducing phytate content through resulting programmed cell death (PCD). Effects of solid-liquid ratio (1:1, 1:2, 1:3, and 1:6), incubation temperature (4, 20, 38, 55, and 70 °C), metal ions (Na+, K+, Ca2+, and Mg2+), gibberellin concentration (0, 5, 50, 500, 2000, and 5000 mg/L), hydrogen peroxide concentration (0, 0.2, 0.4, 0.6, 0.8, and 1.0%), and incubation time (30, 80, 180, and 360 min) on activation of endogenous phytase activity and phytate degradation in wheat bran samples are discussed in this study. It was found that when the wheat bran was incubated with distilled water at 55 °C for 80 min, its endogenous phytase activity was dramatically increased 4-fold from 12.96 to 53.54 FTU/g, whereas the phytate content was reduced by about 70% from 45.20 to 13.52 mg/g. By comparison of photomicrographs of raw wheat bran sample and sample incubated with distilled water for 360 min at 55 °C, a conclusion could be drawn that PCD in aleurone cells had occurred.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yuan-Yuan Bian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Wei Peng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Hui-Ming Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
266
|
Du X, Hussain N, Li Z, Chen X, Hua S, Zhang D, Jiang L. Effect of Gibberellin on the biosynthesis of tocopherols in Oilseed rape (Brassica napus L.) and arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:360-9. [PMID: 25514635 DOI: 10.1021/jf505312c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Elevating the yield and altering the composition of seed tocopherols (Toc’s) are important to rapeseed breeding and production. However, little is known about the biosynthesis of Toc’s in response to environmental signals. In this study, we investigated the effects of exogenous gibberellin (GA3) and paclobutrazol (PAC) on Toc biosynthesis. We also explored the interactive effects between the two plant growth regulators (PGRs) and other factors, such as PGR treatment duration, genotype, and growing location on the total Toc yield and composition in oilseed rape seed. GA3 significantly enhanced the production of Toc’s and elevated the α-/γ-Toc ratio in a time- and genotype-dependent manner. By contrast, PAC significantly reduced Toc yield. Genotypic differences were observed in the effects of GA3 on Toc yield and composition in the seeds. GA3 significantly increased the Toc yield and α-/γ-Toc ratio in Zheyou-50, a genotype with a low proportion of very long chain fatty acids (VLCFAs). However, GA3 did not significantly influence these parameters in Jiu-Er-13Xi, a genotype with a high VLCFA proportion. The increased Toc yield induced by GA3 was mediated by the upregulation of genes (BnPDS1 and BnVTE1) that catalyze the production of Toc precursors. Therefore, applying GA3 can improve rapeseed quality by increasing Toc yield and improving Toc composition.
Collapse
|
267
|
Liu Z, Cheng Q, Sun Y, Dai H, Song G, Guo Z, Qu X, Jiang D, Liu C, Wang W, Yang D. A SNP in OsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. PLANT MOLECULAR BIOLOGY 2015; 87:17-30. [PMID: 25307286 DOI: 10.1007/s11103-014-0257-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/08/2014] [Indexed: 05/26/2023]
Abstract
Plant architecture directly affects biomass in higher plants, especially grain yields in agricultural crops. In this study, we characterized a recessive mutant, plant architecture determinant (pad), derived from the Oryza sativa ssp. indica cultivar MH86. The mutant exhibited severe dwarf phenotypes, including shorter and stunted leaves, fewer secondary branches during both the vegetative and reproductive growth stages. Cytological studies revealed that pad mutant growth defects are primarily due to the inhibition of cell expansion. The PAD gene was isolated using a map-based cloning strategy. It encodes a plasma membrane protein OsMCA1 and a SNP responsible for a single amino acid change was found in the mutant. PAD was universally expressed in rice tissues from the vegetative to reproductive growth stages, especially in seedlings, nodes and rachillae. Quantitative real-time PCR analysis revealed that the most of the genes responding to gibberellin (GA) metabolism were up-regulated in pad mutant internodes. The endogenous GA content measurement revealed that the levels of GA1 were significantly decreased in the third internode of pad mutants. Moreover, a GA response assay suggested that OsMCA1/PAD might be involved in the regulation of GA metabolism and signal transduction. Our results revealed the pad is a loss-of-function mutant of the OsMCA1/PAD, leading to upregulation of genes related to GA deactivation, which decreased bioactive GA levels.
Collapse
Affiliation(s)
- Zhenwei Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, Hubei Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP. Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. TREE PHYSIOLOGY 2015; 35:86-94. [PMID: 25536962 DOI: 10.1093/treephys/tpu102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In an even-aged pine forest trees can vary considerably in stem size. We examined the basis for this anomaly using a retrospective approach. Twelve open-pollinated families of Pinus densiflora Sieb. et Zucc. were deliberately chosen for their variation in stem volumes at age 32 years. Seedlings obtained from these families were grown to age 6 months under optimal nursery conditions. Endogenous levels of growth hormones (auxin [IAA] and gibberellins [GAs]) and expression of the GA biosynthesis gene, PdGA20ox1, all assessed at age 3 months, were significantly correlated, across family, with seedling stem and/or shoot dry biomass at age 6 months. Retrospective comparisons of seedling growth, seedling stem tissue GA(20) and seedling stem expression levels of PdGA20ox1 were then made, across family, with tree stem growth at age 32 years. Age 6 months length and shoot dry biomass at age 6 months showed positive and significant Pearson's correlations with age 32 years tree stem diameters and a tree stem volume index, as did seedling stem tissue GA(20). Even seedling stem PdGA20ox1 expression levels were positively and near significantly (P = 0.088) correlated with age 32 years tree stem diameters. Auxin and GAs control nursery growth of seedlings at the family level, and this control also extends, for GAs at least, to field growth of older trees. We propose that family differences in PdGA20ox1 gene expression, and thus endogenous GA levels, may explain much of the natural variation seen for tree stem size in even-aged pine forests. If our hypothesis is correct, then the heritable components of variation in tree stem growth capacity should be predictable by hormonal and gene expression profiling. Such profiling, combined with the measurement of seedling phenotypic growth characters, could have the potential to accelerate the early selection of those conifer families that possess traits for inherently rapid stem wood growth.
Collapse
Affiliation(s)
- Eung-Jun Park
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Wi-Young Lee
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Leonid V Kurepin
- Biological Sciences Department, University of Calgary, Calgary, Alberta, Canada T2N 1N4 Present address: Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| | - Ruichuan Zhang
- Biological Sciences Department, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Loeke Janzen
- Biological Sciences Department, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Richard P Pharis
- Biological Sciences Department, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
269
|
Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS. Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. HORTICULTURE RESEARCH 2015; 2:15028. [PMID: 26504574 PMCID: PMC4595985 DOI: 10.1038/hortres.2015.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/23/2015] [Accepted: 05/24/2015] [Indexed: 05/08/2023]
Abstract
Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Xiong
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- ()
| |
Collapse
|
270
|
Wu J, Zhu C, Pang J, Zhang X, Yang C, Xia G, Tian Y, He C. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1118-30. [PMID: 25353370 DOI: 10.1111/tpj.12714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/25/2014] [Accepted: 10/20/2014] [Indexed: 05/05/2023]
Abstract
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination.
Collapse
Affiliation(s)
- Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Rana S, Bhat WW, Dhar N, Pandith SA, Razdan S, Vishwakarma R, Lattoo SK. Molecular characterization of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera (L.) Dunal: expression analysis and withanolide accumulation in response to exogenous elicitations. BMC Biotechnol 2014; 14:89. [PMID: 25416924 PMCID: PMC4247701 DOI: 10.1186/s12896-014-0089-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pharmacological investigations position withanolides as important bioactive molecules demanding their enhanced production. Therefore, one of the pivotal aims has been to gain knowledge about complete biosynthesis of withanolides in terms of enzymatic and regulatory genes of the pathway. However, the pathway remains elusive at the molecular level. P450s monooxygenases play a crucial role in secondary metabolism and predominantly help in functionalizing molecule core structures including withanolides. RESULTS In an endeavor towards identification and characterization of different P450s, we here describe molecular cloning, characterization and expression analysis of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera. Full length cDNAs of WsCYP98A and WsCYP76A have open reading frames of 1536 and 1545 bp encoding 511 (58.0 kDa) and 515 (58.7 kDa) amino acid residues, respectively. Entire coding sequences of WsCYP98A and WsCYP76A cDNAs were expressed in Escherichia coli BL21 (DE3) using pGEX4T-2 expression vector. Quantitative real-time PCR analysis indicated that both genes express widely in leaves, stalks, roots, flowers and berries with higher expression levels of WsCYP98A in stalks while WsCYP76A transcript levels were more obvious in roots. Further, transcript profiling after methyl jasmonate, salicylic acid, and gibberellic acid elicitations displayed differential transcriptional regulation of WsCYP98A and WsCYP76A. Copious transcript levels of both P450s correlated positively with the higher production of withanolides. CONCLUSIONS Two A-types P450 WsCYP98A and WsCYP76A were isolated, sequenced and heterologously expressed in E. coli. Both P450s are spatially regulated at transcript level showing differential tissue specificity. Exogenous elicitors acted as both positive and negative regulators of mRNA transcripts. Methyl jasmonate and salicylic acid resulted in copious expression of WsCYP98A and WsCYP76A. Enhanced mRNA levels also corroborated well with the increased accumulation of withanolides in response to elicitations. The empirical findings suggest that elicitors possibly incite defence or stress responses of the plant by triggering higher accumulation of withanolides.
Collapse
Affiliation(s)
- Satiander Rana
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Wajid Waheed Bhat
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Niha Dhar
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Shahzad A Pandith
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Sumeer Razdan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Ram Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| |
Collapse
|
272
|
Regnault T, Davière JM, Heintz D, Lange T, Achard P. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:462-74. [PMID: 25146977 DOI: 10.1111/tpj.12648] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 05/10/2023]
Abstract
Ent-kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent-kaurenoic acid (KA) to gibberellin (GA) GA12 , the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2. In this study, we used various approaches to determine the physiological roles of KAO1 and KAO2 throughout plant development. Analysis of gene expression pattern reveals that both genes are mainly expressed in germinating seeds and young developing organs, thus suggesting functional redundancy. Consistent with this, kao1 and kao2 single mutants are indistinguishable from wild-type plants. By contrast, the kao1 kao2 double mutant exhibits typical non-germinating GA-dwarf phenotypes, similar to those observed in the severely GA-deficient ga1-3 mutant. Phenotypic characterization and quantitative analysis of endogenous GA contents of single and double kao mutants further confirm an overlapping role of KAO1 and KAO2 throughout Arabidopsis development.
Collapse
Affiliation(s)
- Thomas Regnault
- Institut de Biologie Moléculaire des Plantes, UPR2357, conventionné avec l'Université de Strasbourg, 67084, Strasbourg, France
| | | | | | | | | |
Collapse
|
273
|
Delporte F, Pretova A, du Jardin P, Watillon B. Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. PROTOPLASMA 2014; 251:1455-70. [PMID: 24763701 PMCID: PMC4209243 DOI: 10.1007/s00709-014-0647-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 04/08/2014] [Indexed: 05/08/2023]
Abstract
Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed.
Collapse
Affiliation(s)
- Fabienne Delporte
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRA-W), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| | - Anna Pretova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O. Box 39 A, 950 07 Nitra, Slovakia
- Department of Biology- Faculty of Natural Sciences, University of SS Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK 917 01 Trnava, Slovak Republic
| | - Patrick du Jardin
- Gembloux Agro-Bio Tech, Plant Biology Unit, University of Liège (ULg), Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Bernard Watillon
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRA-W), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| |
Collapse
|
274
|
Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.). J Pineal Res 2014; 57:269-79. [PMID: 25112973 DOI: 10.1111/jpi.12167] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the inhibitory effects of NaCl stress on germination mainly by regulating the biosynthesis and catabolism of ABA and GA4.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Mimura M, Itoh JI. Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development. RICE (NEW YORK, N.Y.) 2014; 7:25. [PMID: 25243048 PMCID: PMC4169055 DOI: 10.1186/s12284-014-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/11/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND The rice PLASTOCHRON (PLA) genes PLA1 and PLA2 regulate leaf maturation and the temporal pattern of leaf initiation. Although the function of PLA genes in the leaf initiation process has been analyzed, little is known about how they affect leaf growth. Previously, we suggested that PLA1 and PLA2 function downstream of the gibberellin (GA) signal transduction pathway. In the present study, we examined the phenotype of a double mutant of pla and slender rice 1 (slr1), which is a constitutive GA response mutant. By analyzing these double mutants, we discuss the relationship between PLA-related and GA-dependent pathways and the possible function of PLA genes in leaf growth. FINDINGS Single slr1 and pla mutants exhibited elongated and dwarf phenotypes in the vegetative stage, respectively. The stature and leaf size of the pla1/slr1 and pla2/slr1 double mutants were intermediate between those of the pla and slr1 single mutants. However, the effects of slr1 on leaf elongation were markedly suppressed in the pla1 and pla2 mutant backgrounds. On the other hand, the change in cell length in the double mutants was almost the same as that in the single mutants. An expression analysis of genes involved in GA biosynthesis and catabolism indicated that feedback regulation functioned normally in the pla/slr1 double mutants. CONCLUSIONS Our genetic results confirm that PLA genes regulate leaf growth downstream of the GA pathway. Our findings also suggest that PLA1 and PLA2 are partly required for GA-dependent leaf elongation, mainly by affecting cellular proliferation.
Collapse
Affiliation(s)
- Manaki Mimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
276
|
Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
277
|
Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C, Liu X, Yang S, Ren H. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3201-13. [PMID: 24790111 PMCID: PMC4071842 DOI: 10.1093/jxb/eru176] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cucumber (Cucumis sativus L.) is a typical monoecious vegetable with individual male and female flowers, and has been used as a model plant for sex determination. It is well known that sex differentiation of cucumber can be regulated by phytohormones, such as gibberellic acid (GA) and ethylene. The molecular mechanism of female sex expression modulated by ethylene has been widely understood, but how GA controls male sex expression remains elusive. In hermaphroditic Arabidopsis and rice, GA can regulate stamen and anther development via the transcriptional regulation of GAMYB. Here we characterized a GAMYB homologue CsGAMYB1 in cucumber. We found that CsGAMYB1 is predominantly expressed in male flower buds, where its expression is upregulated by GA3 treatment. CsGAMYB1 protein is localized in the nucleus. CsGAMYB1 can partially rescue stamen development and fertility phenotypes of an Arabidopsis myb33 myb65 double mutant. However, constitutive overexpression of CsGAMYB1 in wild-type Arabidopsis resulted in male sterility, which mimics the effect of GA overdose in flower development. Knockdown of CsGAMYB1 in cucumber decreases the ratio of nodes with male and female flowers, and ethylene is not involved in this process. Our data suggest that CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway.
Collapse
Affiliation(s)
- Yan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Bin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Wenjiao Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xingwang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhua Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaofeng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Huazhong Ren
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
278
|
Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C, Liu X, Yang S, Ren H. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014. [PMID: 24790111 DOI: 10.1093/jxb/eru1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cucumber (Cucumis sativus L.) is a typical monoecious vegetable with individual male and female flowers, and has been used as a model plant for sex determination. It is well known that sex differentiation of cucumber can be regulated by phytohormones, such as gibberellic acid (GA) and ethylene. The molecular mechanism of female sex expression modulated by ethylene has been widely understood, but how GA controls male sex expression remains elusive. In hermaphroditic Arabidopsis and rice, GA can regulate stamen and anther development via the transcriptional regulation of GAMYB. Here we characterized a GAMYB homologue CsGAMYB1 in cucumber. We found that CsGAMYB1 is predominantly expressed in male flower buds, where its expression is upregulated by GA3 treatment. CsGAMYB1 protein is localized in the nucleus. CsGAMYB1 can partially rescue stamen development and fertility phenotypes of an Arabidopsis myb33 myb65 double mutant. However, constitutive overexpression of CsGAMYB1 in wild-type Arabidopsis resulted in male sterility, which mimics the effect of GA overdose in flower development. Knockdown of CsGAMYB1 in cucumber decreases the ratio of nodes with male and female flowers, and ethylene is not involved in this process. Our data suggest that CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway.
Collapse
Affiliation(s)
- Yan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Bin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Wenjiao Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xingwang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhua Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaofeng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Huazhong Ren
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
279
|
Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D. Genetics 2014; 197:1395-407. [PMID: 24950892 DOI: 10.1534/genetics.114.163931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Panicle type has a direct bearing on rice yield. Here, we characterized a rice clustered-spikelet mutant, sped1-D, with shortened pedicels and/or secondary branches, which exhibits decreased pollen fertility. We cloned sped1-D and found that it encodes a pentatricopeptide repeat protein. We investigated the global expression profiles of wild-type, 9311, and sped1-D plants using Illumina RNA sequencing. The expression of several GID1L2 family members was downregulated in the sped1-D mutant, suggesting that the gibberellin (GA) pathway is involved in the elongation of pedicels and/or secondary branches. When we overexpressed one GID1L2, AK070299, in sped1-D plants, the panicle phenotype was restored to varying degrees. In addition, we analyzed the expression of genes that function in floral meristems and found that RFL and WOX3 were severely downregulated in sped1-D. These results suggest that sped1-D may prompt the shortening of pedicels and secondary branches by blocking the action of GID1L2, RFL, and Wox3. Moreover, overexpression of sped1-D in Arabidopsis resulted in the shortening of pedicels and clusters of siliques, which indicates that the function of sped1-D is highly conserved in monocotyledonous and dicotyledonous plants. Sequence data from this article have been deposited with the miRBase Data Libraries under accession no. MI0003201.
Collapse
|
280
|
Bai WQ, Xiao YH, Zhao J, Song SQ, Hu L, Zeng JY, Li XB, Hou L, Luo M, Li DM, Pei Y. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers. PLoS One 2014; 9:e96537. [PMID: 24816840 PMCID: PMC4015984 DOI: 10.1371/journal.pone.0096537] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/08/2014] [Indexed: 12/15/2022] Open
Abstract
Bioactive gibberellins (GAs) comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.
Collapse
Affiliation(s)
- Wen-Qin Bai
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Yue-Hua Xiao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Shui-Qing Song
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Lin Hu
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Jian-Yan Zeng
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Xian-Bi Li
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Ming Luo
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - De-Mou Li
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
281
|
Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J. A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis. THE PLANT CELL 2014; 26:2038-2054. [PMID: 24858937 PMCID: PMC4079367 DOI: 10.1105/tpc.114.124867] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Flowering time and an ability to tolerate abiotic stresses are important for plant growth and development. We characterized BBX24, a zinc finger transcription factor gene, from Chrysanthemum morifolium and found it to be associated with both flowering time and stress tolerance. Transgenic lines with suppressed expression of Cm-BBX24 (Cm-BBX24-RNAi) flowered earlier than wild-type plants and showed decreased tolerance to freezing and drought stresses. Global expression analysis revealed that genes associated with both photoperiod and gibberellin (GA) biosynthesis pathways were upregulated in Cm-BBX24-RNAi lines, relative to the wild type. By contrast, genes that were upregulated in overexpressing lines (Cm-BBX24-OX), but downregulated in Cm-BBX24-RNAi lines (both relative to the wild type), included genes related to compatible solutes and carbohydrate metabolism, both of which are associated with abiotic stress. Cm-BBX24 expression was also influenced by daylength and GA4/7 application. Under long days, changes in endogenous GA1, GA4, GA19, and GA20 levels occurred in young leaves of transgenic lines, relative to the wild type. Regulation of flowering involves the FLOWERING TIME gene, which integrates photoperiod and GA biosynthesis pathways. We postulate that Cm-BBX24 plays a dual role, modulating both flowering time and abiotic stress tolerance in chrysanthemum, at least in part by influencing GA biosynthesis.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chao Ma
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Qian Wei
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Muhammad Imtiaz
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Haibo Lan
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shan Gao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853 U.S. Department of Agriculture Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Lina Cheng
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Meiyan Wang
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853 U.S. Department of Agriculture Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Bo Hong
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
282
|
Song G, Guo Z, Liu Z, Qu X, Jiang D, Wang W, Zhu Y, Yang D. The phenotypic predisposition of the parent in F1 hybrid is correlated with transcriptome preference of the positive general combining ability parent. BMC Genomics 2014; 15:297. [PMID: 24755044 PMCID: PMC4023606 DOI: 10.1186/1471-2164-15-297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sprague and Tatum (1942) introduced the concepts of general combining ability (GCA) and specific combining ability (SCA) to evaluate the breeding parents and F1 hybrid performance, respectively. Since then, the GCA was widely used in cross breeding for elite parent selection. However, the molecular basis of GCA remains to unknown. RESULTS We studied the transcriptomes of three varieties and three F1 hybrids using RNA-Sequencing. Transcriptome sequence analysis revealed that the transcriptome profiles of the F1s were similar to the positive GCA-effect parent. Moreover, the expression levels of most differentially expressed genes (DEGs) were equal to the parent with a positive GCA effect. Analysis of the gene expression patterns of gibberellic acid (GA) and flowering time pathways that determine plant height and flowering time in rice validated the preferential transcriptome expression of the parents with positive GCA effect. Furthermore, H3K36me3 modification bias in the Pseudo-Response Regulators (PRR) gene family was observed in the positive GCA effect parents and demonstrated that the phenotype and transcriptome bias in the positive GCA effect parents have been epigenetically regulated by either global modification or specific signaling pathways in rice. CONCLUSIONS The results revealed that the transcriptome profiles and DEGs in the F1s were highly related to phenotype bias to the positive GCA-effect parent. The transcriptome bias toward high GCA parents in F1 hybrids attributed to H3K36me3 modification both on global modification level and specific signaling pathways. Our results indicated the transcriptome profile and epigenetic modification level bias to high GCA parents could be the molecular basis of GCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daichang Yang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, Hubei Province, China.
| |
Collapse
|
283
|
Chao Y, Kang J, Zhang T, Yang Q, Gruber MY, Sun Y. Disruption of the homogentisate solanesyltransferase gene results in albino and dwarf phenotypes and root, trichome and stomata defects in Arabidopsis thaliana. PLoS One 2014; 9:e94031. [PMID: 24743244 PMCID: PMC3990575 DOI: 10.1371/journal.pone.0094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/11/2014] [Indexed: 12/16/2022] Open
Abstract
Homogentisate solanesyltransferase (HST) plays an important role in plastoquinone (PQ) biosynthesis and acts as the electron acceptor in the carotenoids and abscisic acid (ABA) biosynthesis pathways. We isolated and identified a T-DNA insertion mutant of the HST gene that displayed the albino and dwarf phenotypes. PCR analyses and functional complementation also confirmed that the mutant phenotypes were caused by disruption of the HST gene. The mutants also had some developmental defects, including trichome development and stomata closure defects. Chloroplast development was also arrested and chlorophyll (Chl) was almost absent. Developmental defects in the chloroplasts were consistent with the SDS-PAGE result and the RNAi transgenic phenotype. Exogenous gibberellin (GA) could partially rescue the dwarf phenotype and the root development defects and exogenous ABA could rescue the stomata closure defects. Further analysis showed that ABA and GA levels were both very low in the pds2-1 mutants, which suggested that biosynthesis inhibition by GAs and ABA contributed to the pds2-1 mutants' phenotypes. An early flowering phenotype was found in pds2-1 mutants, which showed that disruption of the HST gene promoted flowering by partially regulating plant hormones. RNA-sequencing showed that disruption of the HST gene resulted in expression changes to many of the genes involved in flowering time regulation and in the biosynthesis of PQ, Chl, GAs, ABA and carotenoids. These results suggest that HST is essential for chloroplast development, hormone biosynthesis, pigment accumulation and plant development.
Collapse
Affiliation(s)
- Yuehui Chao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail:
| | - Margaret Yvonne Gruber
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Yan Sun
- College of Animal Science and Technology, China Agriculture University, Beijing, People's Republic of China
| |
Collapse
|
284
|
Duca M, Port A, Orozco-Cardenas M, Lovatt C. Gibberellin-Induced Gene Expression Associated with Cytoplasmic Male Sterility in Sunflower. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
285
|
Bai S, Yao T, Li M, Guo X, Zhang Y, Zhu S, He Y. PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. MOLECULAR PLANT 2014; 7:616-25. [PMID: 24157606 PMCID: PMC3973492 DOI: 10.1093/mp/sst142] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/07/2013] [Indexed: 05/21/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is an important component in the phytochrome signaling pathway and mediates plant responses to various environmental conditions. We found that PIF3 is involved in the inhibition of root growth of Arabidopsis thaliana seedlings induced by nitric oxide (NO) in light. Overexpression of PIF3 partially alleviated the inhibitory effect of NO on root growth, whereas the pif3-1 mutant displayed enhanced sensitivity to NO in terms of root growth. During phytochrome signaling, the photoreceptor PHYB mediates the degradation of PIF3. We found that the phyB-9 mutant had a similar phenotype to that of PIF3ox in terms of responsiveness to NO. Furthermore, NO treatment promoted the accumulation of PHYB, and thus reduced PIF3 content. Our results further show that the activity of PIF3 is regulated by the DELLA protein RGL3[RGA (repressor of ga1-3) LIKE 3]. Therefore, we speculate that PIF3 lies downstream of PHYB and RGL3, and plays an important role in the inhibitory effect of NO on root growth of Arabidopsis seedlings in light.
Collapse
Affiliation(s)
- Sulan Bai
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Tao Yao
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Miaomiao Li
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Xiaomin Guo
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yaochuan Zhang
- Beijing Vocational College of Agriculture, Beijing 102442, PR China
| | - Shengwei Zhu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100731, PR China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| |
Collapse
|
286
|
Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H, Watanabe M, Matsuoka M, Higashitani A. Reduction of gibberellin by low temperature disrupts pollen development in rice. PLANT PHYSIOLOGY 2014; 164:2011-9. [PMID: 24569847 PMCID: PMC3982758 DOI: 10.1104/pp.113.234401] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/24/2014] [Indexed: 05/18/2023]
Abstract
Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change.
Collapse
|
287
|
Zhang Y, Liu B, Yang S, An J, Chen C, Zhang X, Ren H. A cucumber DELLA homolog CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes. PLoS One 2014; 9:e91804. [PMID: 24632777 PMCID: PMC3954735 DOI: 10.1371/journal.pone.0091804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023] Open
Abstract
In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucumber, and we found that CsGAIP is highly expressed in stem and male flower buds. In situ hybridization showed that CsGAIP is greatly enriched in the stamen primordia, especially during the hermaphrodite stage of flower development. Further, CsGAIP protein is located in nucleus. CsGAIP can partially rescue the plant height, stamen development and fertility phenotypes of Arabidopsis rga-24/gai-t6 mutant, and ectopic expression of CsGAIP in wide-type Arabidopsis results in reduced number of stamens and decreased transcription of B class floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI). Our data suggest that monoecious CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes in Arabidopsis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Sen Yang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Jingbo An
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Chunhua Chen
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Xiaolan Zhang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
- * E-mail: (XZ); (HR)
| | - Huazhong Ren
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
- * E-mail: (XZ); (HR)
| |
Collapse
|
288
|
Ramaiah M, Jain A, Raghothama KG. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses. PLANT PHYSIOLOGY 2014; 164:1484-98. [PMID: 24394776 PMCID: PMC3938635 DOI: 10.1104/pp.113.231183] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/23/2013] [Indexed: 05/07/2023]
Abstract
Inorganic phosphate (Pi) availability is a major factor determining growth and consequently the productivity of crops. However, it is one of the least available macronutrients due to its high fixation in the rhizospheres. To overcome this constraint, plants have developed adaptive responses to better acquire, utilize, and recycle Pi. Molecular determinants of these adaptive mechanisms include transcription factors (TFs) that play a major role in transcriptional control, thereby regulating genome-scale networks. In this study, we have characterized the biological role of Arabidopsis thaliana Ethylene Response Factor070 (AtERF070), a Pi starvation-induced TF belonging to the Apetala2/Ethylene Response Factor family of TFs in Arabidopsis (Arabidopsis thaliana). It is localized to the nucleus and induced specifically in Pi-deprived roots and shoots. RNA interference-mediated suppression of AtERF070 led to augmented lateral root development resulting in higher Pi accumulation, whereas there were reductions in both primary root length and lateral root number in 12-d-old transgenic seedlings overexpressing AtERF070. When the overexpressing lines were grown to maturity under greenhouse conditions, they revealed a stunted bushy appearance that could be rescued by gibberellic acid application. Furthermore, a number of Pi starvation-responsive genes were modulated in AtERF070-overexpressing and RNA interference lines, thereby suggesting a potential role for this TF in maintaining Pi homeostasis.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165 (M.R., K.G.R.); and
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India (A.J.)
| | - Ajay Jain
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165 (M.R., K.G.R.); and
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India (A.J.)
| | | |
Collapse
|
289
|
Jung CJ, Hur YY, Jung SM, Noh JH, Do GR, Park SJ, Nam JC, Park KS, Hwang HS, Choi D, Lee HJ. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development. JOURNAL OF PLANT RESEARCH 2014; 127:359-71. [PMID: 24374939 DOI: 10.1007/s10265-013-0623-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 11/16/2013] [Indexed: 05/06/2023]
Abstract
The concept that gibberellin (GA) application on seeded grapevines induces seedlessness has been known for decades in viticulture. GA was applied to inflorescence clusters of seeded diploid grapevine cultivar 'Tamnara' (Vitis spp.) at 14 days before full bloom (DBF). Morphological and molecular effects of GA application were examined on the induction of parthenocarpic fruit development. With GA application, ovaries were enlarged and pollen tube growth was completely inhibited. Vitis GA oxidase enzymes, key determinants for GA level, were characterized through phylogenetic analysis with Arabidopsis GA oxidase enzymes. Five VvGA 20-oxidase (VvGA20ox), three VvGA 3-oxidase (VvGA3ox), and nine VvGA 2-oxidase (VvGA2ox) family proteins, and one VvGA methyltransferase (VvGAMT) and one Vitis cytochrome P450 714A1 proteins were identified, and their expression patterns were analyzed during inflorescence development from 14 DBF to 5 days after full bloom (DAF). VvGA2ox1, VvGA20ox3, and VvGA3ox2 were the most abundantly expressed genes in each gene family at 7, 5, and 2 DBF, respectively. Following GA application at 14 DBF inducing seedlessness, GA catabolic genes such as VvGAMT2, VvGA2ox3, and VvGA2ox4 were up-regulated at 12 DBF, full bloom, and 5 DAF, respectively. Conversely, most GA biosynthetic genes, VvGA20oxs and VvGA3oxs, were down-regulated at near full bloom, and the timing of their peak expression was changed. These results suggest that GA application at pre-bloom changes the GA biosynthesis into GA catabolic pathway at near full bloom by altering the transcription level and timing of GA oxidase genes during grapevine inflorescence development.
Collapse
Affiliation(s)
- Chan Jin Jung
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, 440-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Guan C, Wang X, Feng J, Hong S, Liang Y, Ren B, Zuo J. Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:1515-26. [PMID: 24443524 PMCID: PMC3938637 DOI: 10.1104/pp.113.234740] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/16/2014] [Indexed: 05/18/2023]
Abstract
In higher plants, seed germination is followed by postgerminative growth. One of the key developmental events during postgerminative growth is cotyledon greening, which enables a seedling to establish photosynthetic capacity. The plant phytohormone abscisic acid (ABA) plays a vital role by inhibiting seed germination and postgerminative growth in response to dynamically changing internal and environmental cues. It has been shown that abscisic acid insensitive5 (ABI5), a basic leucine zipper transcription factor, is an important factor in the regulation of the ABA-mediated inhibitory effect on seed germination and postgerminative growth. Conversely, the phytohormone cytokinin has been proposed to promote seed germination by antagonizing the ABA-mediated inhibitory effect. However, the underpinning molecular mechanism of cytokinin-repressed ABA signaling is largely unknown. Here, we show that cytokinin specifically antagonizes ABA-mediated inhibition of cotyledon greening with minimal effects on seed germination in Arabidopsis (Arabidopsis thaliana). We found that the cytokinin-antagonized ABA effect is dependent on a functional cytokinin signaling pathway, mainly involved in the cytokinin receptor gene cytokinin response1/Arabidopsis histidine kinase4, downstream histidine phosphotransfer protein genes AHP2, AHP3, and AHP5, and a type B response regulator gene, ARR12, which genetically acts upstream of ABI5 to regulate cotyledon greening. Cytokinin has no apparent effect on the transcription of ABI5. However, cytokinin efficiently promotes the proteasomal degradation of ABI5 in a cytokinin signaling-dependent manner. These results define a genetic pathway through which cytokinin specifically induces the degradation of ABI5 protein, thereby antagonizing ABA-mediated inhibition of postgerminative growth.
Collapse
|
291
|
Ji SH, Gururani MA, Lee JW, Ahn BO, Chun SC. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:428-39. [PMID: 23944972 DOI: 10.1111/plb.12069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/06/2013] [Indexed: 05/02/2023]
Abstract
We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants.
Collapse
Affiliation(s)
- S H Ji
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | |
Collapse
|
292
|
Shan C, Mei Z, Duan J, Chen H, Feng H, Cai W. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress. PLoS One 2014; 9:e87110. [PMID: 24475234 PMCID: PMC3903634 DOI: 10.1371/journal.pone.0087110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 12/22/2013] [Indexed: 11/18/2022] Open
Abstract
Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C₁₉-GA2oxs and a smaller class of C₂₀-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C₂₀-GA2oxs subfamily, a subfamily of GA2oxs acting on C₂₀-GAs (GA₁₂, GA₅₃). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.
Collapse
Affiliation(s)
- Chi Shan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiling Mei
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianli Duan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huafeng Feng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
293
|
Chen L, Hao L, Condon AG, Hu YG. Exogenous GA3 application can compensate the morphogenetic effects of the GA-responsive dwarfing gene Rht12 in bread wheat. PLoS One 2014; 9:e86431. [PMID: 24466090 PMCID: PMC3896480 DOI: 10.1371/journal.pone.0086431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022] Open
Abstract
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2 ∶ 3 and F3 ∶ 4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1-2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liugen Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
294
|
Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One 2014; 9:e86217. [PMID: 24465967 PMCID: PMC3896445 DOI: 10.1371/journal.pone.0086217] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/07/2013] [Indexed: 11/23/2022] Open
Abstract
Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba) showing that gibberellin (GA) catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD) induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox) and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid) and reductions in electrolyte leakage (EL). Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Victor B. Busov
- School of Forest Research and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
295
|
Matsuoka K, Furukawa J, Bidadi H, Asahina M, Yamaguchi S, Satoh S. Gibberellin-Induced Expression of Fe Uptake-Related Genes in Arabidopsis. ACTA ACUST UNITED AC 2013; 55:87-98. [DOI: 10.1093/pcp/pct160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
296
|
de Saint Germain A, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C. Strigolactones stimulate internode elongation independently of gibberellins. PLANT PHYSIOLOGY 2013; 163:1012-25. [PMID: 23943865 PMCID: PMC3793021 DOI: 10.1104/pp.113.220541] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/08/2013] [Indexed: 05/18/2023]
Abstract
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Dun
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - John J. Ross
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - Christine A. Beveridge
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | | |
Collapse
|
297
|
Paparelli E, Parlanti S, Gonzali S, Novi G, Mariotti L, Ceccarelli N, van Dongen JT, Kölling K, Zeeman SC, Perata P. Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth in Arabidopsis. THE PLANT CELL 2013; 25:3760-9. [PMID: 24096343 PMCID: PMC3877829 DOI: 10.1105/tpc.113.115519] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/26/2013] [Accepted: 09/16/2013] [Indexed: 05/18/2023]
Abstract
A plant's eventual size depends on the integration of its genetic program with environmental cues, which vary on a daily basis. Both efficient carbon metabolism and the plant hormone gibberellin are required to guarantee optimal plant growth. Yet, little is known about the interplay between carbon metabolism and gibberellins that modulates plant growth. Here, we show that sugar starvation in Arabidopsis thaliana arising from inefficient starch metabolism at night strongly reduces the expression of ent-kaurene synthase, a key regulatory enzyme for gibberellin synthesis, the following day. Our results demonstrate that plants integrate the efficiency of photosynthesis over a period of days, which is transduced into a daily rate of gibberellin biosynthesis. This enables a plant to grow to a size that is compatible with its environment.
Collapse
Affiliation(s)
- Eleonora Paparelli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Sandro Parlanti
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Silvia Gonzali
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Giacomo Novi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | | | | | - Joost T. van Dongen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Katharina Kölling
- Institute of Agricultural Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
- Address correspondence to
| |
Collapse
|
298
|
Gupta R, Chakrabarty SK. Gibberellic acid in plant: still a mystery unresolved. PLANT SIGNALING & BEHAVIOR 2013; 8:e25504. [PMID: 23857350 PMCID: PMC4002599 DOI: 10.4161/psb.25504] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 05/18/2023]
Abstract
Gibberellic acid (GA), a plant hormone stimulating plant growth and development, is a tetracyclic di-terpenoid compound. GAs stimulate seed germination, trigger transitions from meristem to shoot growth, juvenile to adult leaf stage, vegetative to flowering, determines sex expression and grain development along with an interaction of different environmental factors viz., light, temperature and water. The major site of bioactive GA is stamens that influence male flower production and pedicel growth. However, this opens up the question of how female flowers regulate growth and development, since regulatory mechanisms/organs other than those in male flowers are mandatory. Although GAs are thought to act occasionally like paracrine signals do, it is still a mystery to understand the GA biosynthesis and its movement. It has not yet confirmed the appropriate site of bioactive GA in plants or which tissues targeted by bioactive GAs to initiate their action. Presently, it is a great challenge for scientific community to understand the appropriate mechanism of GA movement in plant's growth, floral development, sex expression, grain development and seed germination. The appropriate elucidation of GA transport mechanism is essential for the survival of plant species and successful crop production.
Collapse
Affiliation(s)
- Ramwant Gupta
- Division of Seed Science and Technology; Indian Agricultural Research Institute; New Delhi, India
| | - S K Chakrabarty
- Division of Seed Science and Technology; Indian Agricultural Research Institute; New Delhi, India
| |
Collapse
|
299
|
Chen SH, Lin SW, Lin SR, Liang PH, Yang JM. Moiety-linkage map reveals selective nonbisphosphonate inhibitors of human geranylgeranyl diphosphate synthase. J Chem Inf Model 2013; 53:2299-311. [PMID: 23919676 DOI: 10.1021/ci400227r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bisphosphonates are potent inhibitors of farnesyl pyrophosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS). Current bisphosphonate drugs (e.g., Fosamax and Zometa) are highly efficacious in the treatment of bone diseases such as osteoporosis, Paget's disease, and tumor-induced osteolysis, but they are often less potent in blood and soft-tissue due to their phosphate moieties. The discovery of nonbisphosphonate inhibitors of FPPS and/or GGPPS for the treatment of bone diseases and cancers is, therefore, a current goal. Here, we propose a moiety-linkage-based method, combining a site-moiety map with chemical structure rules (CSRs), to discover nonbisphosphonate inhibitors from thousands of commercially available compounds and known crystal structures. Our moiety-linkage map reveals the binding mechanisms and inhibitory efficacies of 51 human GGPPS (hGGPPS) inhibitors. To the best of our knowledge, we are the first team to discover two novel selective nonbisphosphonate inhibitors, which bind to the inhibitory site of hGGPPS, using CSRs and site-moiety maps. These two compounds can be considered as a novel lead for the potent inhibitors of hGGPPS for the treatment of cancers and mevalonate-pathway diseases. Moreover, based on our moiety-linkage map, we identified two key residues of hGGPPS, K202, and K212, which play an important role for the inhibitory effect of zoledronate (IC50 = 3.4 μM and 2.4 μM, respectively). This result suggests that our method can discover specific hGGPPS inhibitors across multiple prenyltransferases. These results show that the compounds that highly fit our moiety-linkage map often inhibit hGGPPS activity and induce tumor cell apoptosis. We believe that our method is useful for discovering potential inhibitors and binding mechanisms for pharmaceutical targets.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30050, Taiwan
| | | | | | | | | |
Collapse
|
300
|
Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P. Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet 2013; 54:381-90. [PMID: 23975516 PMCID: PMC3825292 DOI: 10.1007/s13353-013-0165-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/01/2023]
Abstract
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of those genes that are associated with the key agronomical traits. Presently, use of a dwarfing gene in breeding process is crucial for the development of modern cultivars. In barley, more than 30 types of dwarfs or semi-dwarfs have been hitherto described. However, only a few of them have been successfully used in barley breeding programs. Both breeding and molecular mapping experiments were undertaken to enhance and evaluate the performance of semi-dwarf barley lines. The semi-dwarfing cultivars had improved lodging resistance and a higher harvest index. There have been a lot of investigations that have contributed new information to our basic understanding of the mechanisms underlying growth regulations in barley. This paper reviews semi-dwarfing genes in barley in general and special attention is paid to mapping of the sdw1/denso locus, changes in protein abundance and associations of the semi-dwarfness with gibberellins.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland,
| | | | | | | | | | | |
Collapse
|