251
|
Nakabayashi M, Kataoka M, Mishima Y, Maeno Y, Ishikawa K. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:877-88. [PMID: 24598756 PMCID: PMC3949513 DOI: 10.1107/s1399004713032276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Abstract
Substitutive mutations that convert a tetrameric β-glucosidase into a dimeric state lead to improvement of its crystal quality. β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed.
Collapse
Affiliation(s)
- Makoto Nakabayashi
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Misumi Kataoka
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yumiko Mishima
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yuka Maeno
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
252
|
Belova OV, Lisov AV, Vinokurova NG, Kostenevich AA, Sapunova LI, Lobanok AG, Leontievsky AA. Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: Production, properties, and applications for the saccharification of plant material. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814020057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
253
|
Expeditious quantification of lignocellulolytic enzymes from indigenous wood rot and litter degrading fungi from tropical dry evergreen forests of Tamil Nadu. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:127848. [PMID: 24719770 PMCID: PMC3955672 DOI: 10.1155/2014/127848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/31/2013] [Indexed: 11/17/2022]
Abstract
In this study thirty wood rotting and litter degrading basidiomycetes were screened for the production of lignocellulolytic enzymes such as, laccase, peroxidase, and cellulase using rapid micro quantification assay. Out of the 30 indigenous isolates Trametes gibbosa was identified to be a potential lignocellulolytic enzyme producer, producing a maximum amount of cellulase (299.66 ± 1.59 IU/L) and laccase (257.94 ± 1.79 U/L). Moreover, it is the second leading producer of peroxidase enzyme (170.19 ± 1.98 U/L). Tricholomopsis sp. a wood rot basidiomycete was found to be the leading lignin decomposer with maximum peroxidase activity (287.84 ± 2 U/L) and second maximum laccase activity (250.19 ± 1.83 U/L). However, its cellulolytic potential was found to be moderate (100.04 ± 1.13 U/L). A higher level of lignocellulolytic enzymes was recorded in wood rotting basidiomycetes, whereas very low levels of lignolytic enzymes were found in litter inhabiting basidiomycetes. However, their cellulolytic potential was found to be moderate.
Collapse
|
254
|
Strakowska J, Błaszczyk L, Chełkowski J. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 2014; 54 Suppl 1:S2-13. [PMID: 24532413 DOI: 10.1002/jobm.201300821] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/25/2013] [Indexed: 11/09/2022]
Abstract
The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma.
Collapse
Affiliation(s)
- Judyta Strakowska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | |
Collapse
|
255
|
Kunii M, Yasuno M, Shindo Y, Kawata T. A Dictyostelium cellobiohydrolase orthologue that affects developmental timing. Dev Genes Evol 2014; 224:25-35. [PMID: 24240571 DOI: 10.1007/s00427-013-0460-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Dictyostelium discoideum is a facultative multicellular amoebozoan with cellulose in the stalk and spore coat of its fruiting body as well as in the extracellular matrix of the migrating slug. The organism also harbors a number of cellulase genes. One of them, cbhA, was identified as a candidate cellobiohydrolase gene based on the strong homology of its predicted protein product to fungal cellobiohydrolase I (CBHI). Expression of the cbhA was developmentally regulated, with strong expression in the spores of the mature fruiting body. However, a weak but detectable level of expression was observed in the extracellular matrix at the mound - tipped finger stages, in prestalk O cells, and in the slime sheath of the migrating slug - late culminant stages. A null mutant of the cbhA showed almost normal morphology. However, the developmental timing of the mutant was delayed by 2-4 h. When a c-Myc epitope-tagged CbhA was expressed, it was secreted into the culture medium and was able to bind crystalline cellulose. The CbhA-myc protein was glycosylated, as demonstrated by its ability to bind succinyl concanavalin A-agarose. Moreover, conditioned medium from the cbhA-myc (oe) strain displayed 4-methylumbelliferyl β-D-cellobioside (4-MUC) digesting activity in Zymograms in which conditioned medium was examined via native-polyacrylamide gel electrophoresis or spotted on an agar plate containing 4-MUC, one of the substrates of cellobiohydrolase. Taken together, these findings indicate that Dictyostelium CbhA is an orthologue of CBH I that is required for a normal rate of development.
Collapse
Affiliation(s)
- Mizuho Kunii
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | | | | | | |
Collapse
|
256
|
Rytioja J, Hildén K, Hatakka A, Mäkelä MR. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Fungal Genet Biol 2014; 72:91-98. [PMID: 24394946 DOI: 10.1016/j.fgb.2013.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
The recent discovery of oxidative cellulose degradation enhancing enzymes has considerably changed the traditional concept of hydrolytic cellulose degradation. The relative expression levels of ten cellulose-acting enzyme encoding genes of the white-rot fungus Dichomitus squalens were studied on solid-state spruce wood and in microcrystalline Avicel cellulose cultures. From the cellobiohydrolase encoding genes, cel7c was detected at the highest level and showed constitutive expression whereas variable transcript levels were detected for cel7a, cel7b and cel6 in the course of four-week spruce cultivation. The cellulolytic enzyme activities detected in the liquid cultures were consistent with the transcript levels. Interestingly, the selected lytic polysaccharide monooxygenase (LPMO) encoding genes were expressed in both cultures, but showed different transcription patterns on wood compared to those in submerged microcrystalline cellulose cultures. On spruce wood, higher transcript levels were detected for the lpmos carrying cellulose binding module (CBM) than for the lpmos without CBMs. In both cultures, the expression levels of the lpmo genes were generally higher than the levels of cellobiose dehydrogenase (CDH) encoding genes. Based on the results of this work, the oxidative cellulose cleaving enzymes of D. squalens have essential role in cellulose degrading machinery of the fungus.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland.
| |
Collapse
|
257
|
Baldrian P, López-Mondéjar R. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl Microbiol Biotechnol 2014; 98:1531-7. [PMID: 24384749 DOI: 10.1007/s00253-013-5457-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022]
Abstract
Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Vídeňská 1083, 14220, Prague 4, Czech Republic,
| | | |
Collapse
|
258
|
Navarro D, Rosso MN, Haon M, Olivé C, Bonnin E, Lesage-Meessen L, Chevret D, Coutinho PM, Henrissat B, Berrin JG. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:143. [PMID: 25320637 PMCID: PMC4197297 DOI: 10.1186/s13068-014-0143-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/18/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Enzymatic breakdown of lignocellulosic biomass is a known bottleneck for the production of high-value molecules and biofuels from renewable sources. Filamentous fungi are the predominant natural source of enzymes acting on lignocellulose. We describe the extraordinary cellulose-deconstructing capacity of the basidiomycete Laetisaria arvalis, a soil-inhabiting fungus. RESULTS The L. arvalis strain displayed the capacity to grow on wheat straw as the sole carbon source and to fully digest cellulose filter paper. The cellulolytic activity exhibited in the secretomes of L. arvalis was up to 7.5 times higher than that of a reference Trichoderma reesei industrial strain, resulting in a significant improvement of the glucose release from steam-exploded wheat straw. Global transcriptome and secretome analyses revealed that L. arvalis produces a unique repertoire of carbohydrate-active enzymes in the fungal taxa, including a complete set of enzymes acting on cellulose. Temporal analyses of secretomes indicated that the unusual degradation efficiency of L. arvalis relies on its early response to the carbon source, and on the finely tuned sequential secretion of several lytic polysaccharide monooxygenases and hydrolytic enzymes targeting cellulose. CONCLUSIONS The present study illustrates the adaptation of a litter-rot fungus to the rapid breakdown of recalcitrant plant biomass. The cellulolytic capabilities of this basidiomycete fungus result from the rapid, selective and successive secretion of oxidative and hydrolytic enzymes. These enzymes expressed at critical times during biomass degradation may inspire the design of improved enzyme cocktails for the conversion of plant cell wall resources into fermentable sugars.
Collapse
Affiliation(s)
- David Navarro
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />CIRM-CF, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Marie-Noëlle Rosso
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Mireille Haon
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Caroline Olivé
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Estelle Bonnin
- />INRA, Unité de Recherche Biopolymères, Interactions, Assemblages, 44316 Nantes, France
| | - Laurence Lesage-Meessen
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| | - Didier Chevret
- />INRA, UMR1319 Micalis, Plateforme d’Analyse Protéomique de Paris Sud-Ouest, 78352 Jouy-en-Josas, France
| | - Pedro M Coutinho
- />CNRS, UMR7257 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
- />Aix-Marseille Université, UMR7257 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
| | - Bernard Henrissat
- />Aix-Marseille Université, UMR7257 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
- />Department of Biological Sciences, King Abdulaziz University, Abdullah Sulayman, Jeddah, 22254 Saudi Arabia
| | - Jean-Guy Berrin
- />INRA, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
- />Aix-Marseille Université, Polytech Marseille, UMR1163 Biotechnologie des Champignons Filamenteux, 13288 Marseille, France
| |
Collapse
|
259
|
Gomes FJB, Santos FA, Colodette JL, Demuner IF, Batalha LAR. Literature Review on Biorefinery Processes Integrated to the Pulp Industry. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nr.2014.59039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
260
|
Daniel G. Fungal and Bacterial Biodegradation: White Rots, Brown Rots, Soft Rots, and Bacteria. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1158.ch002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, Box 7008, Uppsala, Sweden
| |
Collapse
|
261
|
Grell MN, Linde T, Nygaard S, Nielsen KL, Boomsma JJ, Lange L. The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides. BMC Genomics 2013; 14:928. [PMID: 24373541 PMCID: PMC3880420 DOI: 10.1186/1471-2164-14-928] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants. RESULTS A broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place. CONCLUSIONS The fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants discarding old fungal biomass from this part of the garden. The transcripts that we found suggest that actively growing mycelium in the bottom of gardens helps to maintain an optimal water balance to avoid hyphal disintegration, so the ants can ultimately discard healthy rather than decaying and diseased garden material, and to buffer negative effects of varying availability and quality of substrate across the seasons.
Collapse
Affiliation(s)
- Morten N Grell
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, A,C, Meyers Vænge 15, DK-2450, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
262
|
Page SE, Kling GW, Sander M, Harrold KH, Logan JR, McNeill K, Cory RM. Dark formation of hydroxyl radical in Arctic soil and surface waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12860-12867. [PMID: 24111975 DOI: 10.1021/es4033265] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydroxyl radical (•OH) is a highly reactive and unselective oxidant in atmospheric and aquatic systems. Current understanding limits the role of DOM-produced •OH as an oxidant in carbon cycling mainly to sunlit environments where •OH is produced photochemically, but a recent laboratory study proposed a sunlight-independent pathway in which •OH forms during oxidation of reduced aquatic dissolved organic matter (DOM) and iron. Here we demonstrate this non-photochemical pathway for •OH formation in natural aquatic environments. Across a gradient from dry upland to wet lowland habitats, •OH formation rates increase with increasing concentrations of DOM and reduced iron, with highest •OH formation predicted at oxic-anoxic boundaries in soil and surface waters. Comparison of measured vs expected electron release from reduced moieties suggests that both DOM and iron contribute to •OH formation. At landscape scales, abiotic DOM oxidation by this dark •OH pathway may be as important to carbon cycling as bacterial oxidation of DOM in arctic surface waters.
Collapse
Affiliation(s)
- Sarah E Page
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology (ETH) , Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
263
|
A′Bear AD, Murray W, Webb R, Boddy L, Jones TH. Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi. PLoS One 2013; 8:e77610. [PMID: 24194892 PMCID: PMC3806825 DOI: 10.1371/journal.pone.0077610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/08/2013] [Indexed: 12/01/2022] Open
Abstract
Predicting the influence of biotic and abiotic factors on species interactions and ecosystem processes is among the primary aims of community ecologists. The composition of saprotrophic fungal communities is a consequence of competitive mycelial interactions, and a major determinant of woodland decomposition and nutrient cycling rates. Elevation of atmospheric temperature is predicted to drive changes in fungal community development. Top-down regulation of mycelial growth is an important determinant of, and moderator of temperature-driven changes to, two-species interaction outcomes. This study explores the interactive effects of a 4 °C temperature increase and soil invertebrate (collembola or woodlice) grazing on multispecies interactions between cord-forming basidiomycete fungi emerging from colonised beech (Fagus sylvatica) wood blocks. The fungal dominance hierarchy at ambient temperature (16 °C; Phanerochaete velutina > Resinicium bicolor > Hypholoma fasciculare) was altered by elevated temperature (20 °C; R. bicolor > P. velutina > H. fasciculare) in ungrazed systems. Warming promoted the competitive ability of the fungal species (R. bicolor) that was preferentially grazed by all invertebrate species. As a consequence, grazing prevented the effect of temperature on fungal community development and maintained a multispecies assemblage. Decomposition of fungal-colonised wood was stimulated by warming, with implications for increased CO2 efflux from woodland soil. Analogous to aboveground plant communities, increasing complexity of biotic and abiotic interactions appears to be important in buffering climate change effects on soil decomposers.
Collapse
Affiliation(s)
- A. Donald A′Bear
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - William Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Webb
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - T. Hefin Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
264
|
Sulej J, Janusz G, Mazur A, Żuber K, Żebracka A, Rogalski J. Cellobiose dehydrogenase from the ligninolytic basidiomycete Phlebia lindtneri. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
265
|
Wu W, Kasuga T, Xiong X, Ma D, Fan Z. Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity. Arch Microbiol 2013; 195:823-9. [PMID: 24162785 DOI: 10.1007/s00203-013-0931-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/18/2013] [Accepted: 10/03/2013] [Indexed: 11/24/2022]
Abstract
This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.
Collapse
Affiliation(s)
- Weihua Wu
- Biological and Agricultural Engineering Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
266
|
Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. THE ISME JOURNAL 2013; 7:2010-22. [PMID: 23788332 PMCID: PMC3965319 DOI: 10.1038/ismej.2013.91] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022]
Abstract
The majority of nitrogen in forest soils is found in organic matter-protein complexes. Ectomycorrhizal fungi (EMF) are thought to have a key role in decomposing and mobilizing nitrogen from such complexes. However, little is known about the mechanisms governing these processes, how they are regulated by the carbon in the host plant and the availability of more easily available forms of nitrogen sources. Here we used spectroscopic analyses and transcriptome profiling to examine how the presence or absence of glucose and/or ammonium regulates decomposition of litter material and nitrogen mobilization by the ectomycorrhizal fungus Paxillus involutus. We found that the assimilation of nitrogen and the decomposition of the litter material are triggered by the addition of glucose. Glucose addition also resulted in upregulation of the expression of genes encoding enzymes involved in oxidative degradation of polysaccharides and polyphenols, peptidases, nitrogen transporters and enzymes in pathways of the nitrogen and carbon metabolism. In contrast, the addition of ammonium to organic matter had relatively minor effects on the expression of transcripts and the decomposition of litter material, occurring only when glucose was present. On the basis of spectroscopic analyses, three major types of chemical modifications of the litter material were observed, each correlated with the expression of specific sets of genes encoding extracellular enzymes. Our data suggest that the expression of the decomposition and nitrogen assimilation processes of EMF can be tightly regulated by the host carbon supply and that the availability of inorganic nitrogen as such has limited effects on saprotrophic activities.
Collapse
Affiliation(s)
- F Rineau
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - F Shah
- Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden
| | - M M Smits
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - P Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Johansson
- Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden
| | - R Carleer
- Applied and Analytical Chemistry, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - C Troein
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - A Tunlid
- Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden
| |
Collapse
|
267
|
Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 2013; 3:415-431. [PMID: 28324338 PMCID: PMC3781263 DOI: 10.1007/s13205-013-0167-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The hunt for alternative sources of energy generation that are inexpensive, ecofriendly, renewable and can replace fossil fuels is on, owing to the increasing demands of energy. One approach in this direction is the conversion of plant residues into biofuels wherein lignocellulose, which forms the structural framework of plants consisting of cellulose, hemicellulose and lignin, is first broken down and hydrolyzed into simple fermentable sugars, which upon fermentation form biofuels such as ethanol. A major bottleneck is to disarray lignin which is present as a protective covering and makes cellulose and hemicellulose recalcitrant to enzymatic hydrolysis. A number of biomass deconstruction or pretreatment processes (physical, chemical and biological) have been used to break the structural framework of plants and depolymerize lignin. This review surveys and discusses some major pretreatment processes pertaining to the pretreatment of plant biomass, which are used for the production of biofuels and other value added products. The emphasis is given on processes that provide maximum amount of sugars, which are subsequently used for the production of biofuels.
Collapse
Affiliation(s)
- Venkatesh Chaturvedi
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Pradeep Verma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh India
- Present Address: Department of Microbiology, Central University of Rajasthan, N.H. 8 Bandarsindri, Kishangarh, Ajmer, Rajasthan India
| |
Collapse
|
268
|
Nihira T, Saito Y, Nishimoto M, Kitaoka M, Igarashi K, Ohtsubo K, Nakai H. Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi. FEBS Lett 2013; 587:3556-61. [PMID: 24055472 DOI: 10.1016/j.febslet.2013.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/25/2022]
Abstract
A novel phosphorylase was characterized as new member of glycoside hydrolase family 94 from the cellulolytic bacterium Xanthomonas campestris and the fungus Neurospora crassa. The enzyme catalyzed reversible phosphorolysis of cellobionic acid. We propose 4-O-β-D-glucopyranosyl-D-gluconic acid: phosphate α-D-glucosyltransferase as the systematic name and cellobionic acid phosphorylase as the short names for the novel enzyme. Several cellulolytic fungi of the phylum Ascomycota also possess homologous proteins. We, therefore, suggest that the enzyme plays a crucial role in cellulose degradation where cellobionic acid as oxidized cellulolytic product is converted into α-D-glucose 1-phosphate and D-gluconic acid to enter glycolysis and the pentose phosphate pathway, respectively.
Collapse
Affiliation(s)
- Takanori Nihira
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
269
|
Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, Nicora C, Norbeck AD, Taylor RC, Aldrich JT, Robinson EW. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 2013; 4:280. [PMID: 24065962 PMCID: PMC3777014 DOI: 10.3389/fmicb.2013.00280] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.
Collapse
Affiliation(s)
- Kristen M Deangelis
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395). GENOME ANNOUNCEMENTS 2013; 1:1/5/e00698-13. [PMID: 24029755 PMCID: PMC3772139 DOI: 10.1128/genomea.00698-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes.
Collapse
|
271
|
Rinkes ZL, Sinsabaugh RL, Moorhead DL, Grandy AS, Weintraub MN. Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter. Front Microbiol 2013; 4:260. [PMID: 24027563 PMCID: PMC3760071 DOI: 10.3389/fmicb.2013.00260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/14/2013] [Indexed: 11/13/2022] Open
Abstract
Fluctuations in climate and edaphic factors influence field decomposition rates and preclude a complete understanding of how microbial communities respond to plant litter quality. In contrast, laboratory microcosms isolate the intrinsic effects of litter chemistry and microbial community from extrinsic effects of environmental variation. Used together, these paired approaches provide mechanistic insights to decomposition processes. In order to elucidate the microbial mechanisms underlying how environmental conditions alter the trajectory of decay, we characterized microbial biomass, respiration, enzyme activities, and nutrient dynamics during early (<10% mass loss), mid- (10-40% mass loss), and late (>40% mass loss) decay in parallel field and laboratory litter bag incubations for deciduous tree litters with varying recalcitrance (dogwood < maple < maple-oak mixture < oak). In the field, mass loss was minimal (<10%) over the first 50 days (January-February), even for labile litter types, despite above-freezing soil temperatures and adequate moisture during these winter months. In contrast, microcosms displayed high C mineralization rates in the first week. During mid-decay, the labile dogwood and maple litters in the field had higher mass loss per unit enzyme activity than the lab, possibly due to leaching of soluble compounds. Microbial biomass to litter mass (B:C) ratios peaked in the field during late decay, but B:C ratios declined between mid- and late decay in the lab. Thus, microbial biomass did not have a consistent relationship with litter quality between studies. Higher oxidative enzyme activities in oak litters in the field, and higher nitrogen (N) accumulation in the lab microcosms occurred in late decay. We speculate that elevated N suppressed fungal activity and/or biomass in microcosms. Our results suggest that differences in microbial biomass and enzyme dynamics alter the decay trajectory of the same leaf litter under field and lab conditions.
Collapse
Affiliation(s)
- Zachary L Rinkes
- Department of Environmental Sciences, University of Toledo, Toledo OH, USA
| | | | | | | | | |
Collapse
|
272
|
Wang TY, Huang CJ, Chen HL, Ho PC, Ke HM, Cho HY, Ruan SK, Hung KY, Wang IL, Cai YW, Sung HM, Li WH, Shih MC. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol 2013; 13:71. [PMID: 24004614 PMCID: PMC3766678 DOI: 10.1186/1472-6750-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 08/29/2013] [Indexed: 11/28/2022] Open
Abstract
Background As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. Results Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. Conclusions Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for increasing the extracellular activities of recombinant proteins expressed in S. cerevisiae.
Collapse
Affiliation(s)
- Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Dimarogona M, Topakas E, Christakopoulos P. Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Appl Microbiol Biotechnol 2013; 97:8455-65. [PMID: 23995228 DOI: 10.1007/s00253-013-5197-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The classical hydrolytic mechanism for the degradation of plant polysaccharides by saprophytic microorganisms has been reconsidered after the recent landmark discovery of a new class of oxidases termed lytic polysaccharide monooxygenases (LPMOs). LPMOs are of increased biotechnological interest due to their implication in lignocellulosic biomass decomposition for the production of biofuels and high-value chemicals. They act on recalcitrant polysaccharides by a combination of hydrolytic and oxidative function, generating oxidized and non-oxidized chain ends. They are copper-dependent and require molecular oxygen and an external electron donor for their proper function. In this review, we present the recent findings concerning the mechanism of action of these oxidative enzymes and identify issues and questions to be addressed in the future.
Collapse
Affiliation(s)
- Maria Dimarogona
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str, Zografou Campus, 15700, Athens, Greece
| | | | | |
Collapse
|
274
|
Li Z, Chen CH, Hegg EL, Hodge DB. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:119. [PMID: 23971902 PMCID: PMC3765420 DOI: 10.1186/1754-6834-6-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/20/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. RESULTS We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. CONCLUSIONS This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.
Collapse
Affiliation(s)
- Zhenglun Li
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
| | - Charles H Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
| | - Eric L Hegg
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, USA
| | - David B Hodge
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- Department of Biosystems & Agricultural Engineering, Michigan State University, East Lansing, USA
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
275
|
Ortiz-Santana B, Lindner DL, Miettinen O, Justo A, Hibbett DS. A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia 2013; 105:1391-411. [PMID: 23935025 DOI: 10.3852/13-051] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phylogenetic relationships among members of the antrodia clade were investigated with molecular data from two nuclear ribosomal DNA regions, LSU and ITS. A total of 123 species representing 26 genera producing a brown rot were included in the present study. Three DNA datasets (combined LSU-ITS dataset, LSU dataset, ITS dataset) comprising sequences of 449 isolates were evaluated with three different phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference). We present a phylogenetic overview of the five main groups recovered: the fibroporia, laetiporus, postia, laricifomes and core antrodia groups. Not all of the main groups received strong support in the analyses, requiring further research. We were able to identify a number of well supported clades within the main groups.
Collapse
Affiliation(s)
- Beatriz Ortiz-Santana
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726
| | | | | | | | | |
Collapse
|
276
|
van der Wal A, Geydan TD, Kuyper TW, de Boer W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 2013; 37:477-94. [DOI: 10.1111/1574-6976.12001] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 12/24/2022] Open
|
277
|
Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci U S A 2013; 110:10189-94. [PMID: 23733951 DOI: 10.1073/pnas.1301502110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.
Collapse
|
278
|
Activation energy of extracellular enzymes in soils from different biomes. PLoS One 2013; 8:e59943. [PMID: 23536898 PMCID: PMC3607567 DOI: 10.1371/journal.pone.0059943] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones.
Collapse
|
279
|
Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. BIORESOURCE TECHNOLOGY 2013; 130:296-305. [PMID: 23313674 DOI: 10.1016/j.biortech.2012.11.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/10/2012] [Accepted: 11/30/2012] [Indexed: 05/24/2023]
Abstract
The plant pathogenic fungus Chrysoporthe cubensis was cultivated under solid state employing different substrates and the highest endoglucanase (33.84Ug(-1)), FPase (2.52Ug(-1)), β-glucosidase (21.55Ug(-1)) and xylanase (362.38Ug(-1)) activities were obtained using wheat bran as carbon source. Cellulases and xylanase produced by C. cubensis showed maximal hydrolysis rate at pH 4.0 and in a temperature range of 50-60°C. All enzymatic activities were highly stable at 40 and 50°C through 48h of pre-incubation. Saccharification of alkaline pretreated sugarcane bagasse by crude enzyme extract from C. cubensis resulted in release of 320.8mg/g and 288.7mg/g of glucose and xylose, respectively. On another hand, a similar assay employing commercial cellulase preparation resulted in release of 250.6mg/g and 62.1mg/g of glucose and xylose, respectively. Cellulolytic extract from C. cubensis showed a great potential to be used in biomass saccharification processes.
Collapse
Affiliation(s)
- Daniel Luciano Falkoski
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | | | | | | | | | | |
Collapse
|
280
|
Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci Rep 2013; 3:1030. [PMID: 23301151 PMCID: PMC3538285 DOI: 10.1038/srep01030] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/01/2012] [Indexed: 12/16/2022] Open
Abstract
Streptomyces are best known for producing antimicrobial secondary metabolites, but they are also recognized for their contributions to biomass utilization. Despite their importance to carbon cycling in terrestrial ecosystems, our understanding of the cellulolytic ability of Streptomyces is currently limited to a few soil-isolates. Here, we demonstrate the biomass-deconstructing capability of Streptomyces sp. SirexAA-E (ActE), an aerobic bacterium associated with the invasive pine-boring woodwasp Sirex noctilio. When grown on plant biomass, ActE secretes a suite of enzymes including endo- and exo-cellulases, CBM33 polysaccharide-monooxygenases, and hemicellulases. Genome-wide transcriptomic and proteomic analyses, and biochemical assays have revealed the key enzymes used to deconstruct crystalline cellulose, other pure polysaccharides, and biomass. The mixture of enzymes obtained from growth on biomass has biomass-degrading activity comparable to a cellulolytic enzyme cocktail from the fungus Trichoderma reesei, and thus provides a compelling example of high cellulolytic capacity in an aerobic bacterium.
Collapse
|
281
|
Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V. Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol Lett 2012. [PMID: 23181595 DOI: 10.1111/1574-6968.12057] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ninety bacteria isolated from raw composting materials were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. The bacteria producing the highest cellulolytic activity levels were identified by 16S rRNA sequencing as Bacillus licheniformis strain 1, Bacillus subtilis subsp. subtilis strain B7B, Bacillus subtilis subsp. spizizenii strain 6, and Bacillus amyloliquefaciens strain B31C. Cellulase activity production by the most productive strain B. amyloliquefaciens B31C was optimized in liquid culture varying the carbon source. Comparison of growth curves of B. amyloliquefaciens B31C at temperatures from 28 to 47 °C indicated its thermotolerant nature. Moreover, analysis of time courses of cellulase activity production in this thermal range showed that increase of temperature from 28 to 37 °C causes an increase of cellulase activity levels. Investigating the enzymes responsible for cellulase activity produced by B. amyloliquefaciens B31C by proteomic analyses, an endoglucanase was identified. It was shown that the purified enzyme catalyzes carboxymethylcellulose's hydrolysis following Michaelis-Menten kinetics with a K(M) of 9.95 mg ml(-1) and a v(max) of 284 μM min(-1) . It shows a retention of 90% of its activity for at least 144 h of incubation at 40 °C and exhibits a range of optimum temperatures from 50 to 70 °C.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario Monte S. Angelo, Naples, Italy
| | | | | | | | | | | |
Collapse
|
282
|
Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GHJ, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJGM, Zhong S, Goodwin SB, Grigoriev IV. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 2012; 8:e1003037. [PMID: 23236275 PMCID: PMC3516569 DOI: 10.1371/journal.ppat.1003037] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022] Open
Abstract
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress. Dothideomycetes is the largest and most ecologically diverse class of fungi that includes many plant pathogens with high economic impact. Currently 18 genome sequences of Dothideomycetes are available, 14 of which are newly described in this paper and in several companion papers, allowing unprecedented resolution in comparative analyses. These 18 organisms have diverse lifestyles and strategies of plant pathogenesis. Three feed on dead organic matter only, six are necrotrophs (killing the host plant cells), one is a biotroph (forming an association with and thus feeding on the living cells of the host plant cells) and 8 are hemibiotrophs (having an initial biotrophic stage, and killing the host plant at a later stage). These various lifestyles are also reflected in the gene sets present in each group. For example, sets of genes involved in carbohydrate degradation and secondary metabolism are expanded in necrotrophs. Many genes involved in pathogenesis are located near repetitive sequences, which are believed to speed up their evolution. Blocks of genes with conserved gene order were identified. In addition to this we deduce that the mechanism for mesosynteny, a type of genome evolution particular to Dothideomycetes, is by intra-chromosomal inversions.
Collapse
Affiliation(s)
- Robin A. Ohm
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- * E-mail: (RAO); (IVG)
| | - Nicolas Feau
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, Marseille, France
| | | | | | - Kerrie W. Barry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Bradford J. Condon
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Alex C. Copeland
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Braham Dhillon
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, Technion - IIT, Haifa, Israel
| | - Cedar N. Hesse
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Idit Kosti
- Department of Biology, Technion - IIT, Haifa, Israel
| | - Kurt LaButti
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Erika A. Lindquist
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Susan Lucas
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Asaf A. Salamov
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Rosie E. Bradshaw
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Lynda Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Richard C. Hamelin
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Natural Resources Canada, Ste-Foy, Quebec, Canada
| | | | - Christopher Lawrence
- Virginia Bioinformatics Institute & Department of Biological Sciences, Blacksburg, Virginia, United States of America
| | - James A. Scott
- Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - B. Gillian Turgeon
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | | | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Stephen B. Goodwin
- United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, Indiana, United States of America
| | - Igor V. Grigoriev
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- * E-mail: (RAO); (IVG)
| |
Collapse
|
283
|
Triebwasser DJ, Tharayil N, Preston CM, Gerard PD. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history. THE NEW PHYTOLOGIST 2012; 196:1122-1132. [PMID: 23025512 DOI: 10.1111/j.1469-8137.2012.04346.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/15/2012] [Indexed: 05/15/2023]
Abstract
By inhibiting soil enzymes, tannins play an important role in soil carbon (C) and nitrogen (N) mineralization. The role of tannin chemistry in this inhibitory process, in conjunction with enzyme classes and isoforms, is less well understood. Here, we compared the inhibition efficiencies of mixed tannins (MTs, mostly limited to angiosperms) and condensed tannins (CTs, produced mostly by gymnosperms) against the potential activity of β-glucosidase (BG), N-acetyl-glucosaminidase (NAG), and peroxidase in two soils that differed in their vegetation histories. Compared with CTs, MTs exhibited 50% more inhibition of almond (Prunus dulcis) BG activity and greater inhibition of the potential NAG activity in the gymnosperm-acclimatized soils. CTs exhibited lower BG inhibition in the angiosperm-acclimated soils, whereas both types of tannins exhibited higher peroxidase inhibition in the angiosperm soils than in gymnosperm soils. At all of the tested tannin concentrations, irrespective of the tannin type and site history, the potential peroxidase activity was inhibited two-fold more than the hydrolase activity and was positively associated with the redox-buffering efficiency of tannins. Our finding that the inhibitory activities and mechanisms of MTs and CTs are dependent on the vegetative history and enzyme class is novel and furthers our understanding of the role of tannins and soil isoenzymes in decomposition.
Collapse
Affiliation(s)
- Daniella J Triebwasser
- School of Agriculture, Forestry and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Nishanth Tharayil
- School of Agriculture, Forestry and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Caroline M Preston
- School of Agriculture, Forestry and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
- Natural Resources Canada, Pacific Forestry Centre, Victoria, BC, V8Z 1M5, Canada
| | - Patrick D Gerard
- Mathematical Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
284
|
Větrovský T, Baldrian P, Gabriel J. Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1,4-β-glucosidase. Appl Biochem Biotechnol 2012; 169:100-9. [PMID: 23149715 DOI: 10.1007/s12010-012-9952-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/31/2012] [Indexed: 01/24/2023]
Abstract
Production of the lignocellulose-degrading enzymes endo-1,4-β-glucanase, 1,4-β-glucosidase, cellobiohydrolase, endo-1,4-β-xylanase, 1,4-β-xylosidase, Mn peroxidase, and laccase was characterized in a common wood-rotting fungus Fomes fomentarius, a species able to efficiently decompose dead wood, and compared to the production in eight other fungal species. The main aim of this study was to characterize the 1,4-β-glucosidase produced by F. fomentarius that was produced in high quantities in liquid stationary culture (25.9 U ml(-1)), at least threefold compared to other saprotrophic basidiomycetes, such as Rhodocollybia butyracea, Hypholoma fasciculare, Irpex lacteus, Fomitopsis pinicola, Pleurotus ostreatus, Piptoporus betulinus, and Gymnopus sp. (between 0.7 and 7.9 U ml(-1)). The 1,4-β-glucosidase enzyme was purified to electrophoretic homogeneity by both anion-exchange and size-exclusion chromatography. A single 1,4-β-glucosidase was found to have an apparent molecular mass of 58 kDa and a pI of 6.7. The enzyme exhibited high thermotolerance with an optimum temperature of 60 °C. Maximal activity was found in the pH range of 4.5-5.0, and K (M) and V (max) values were 62 μM and 15.8 μmol min(-1) l(-1), respectively, when p-nitrophenylglucoside was used as a substrate. The enzyme was competitively inhibited by glucose with a K (i) of 3.37 mM. The enzyme also acted on p-nitrophenylxyloside, p-nitrophenylcellobioside, p-nitrophenylgalactoside, and p-nitrophenylmannoside with optimal pH values of 6.0, 3.5, 5.0, and 4.0-6.0, respectively. The combination of relatively low molecular mass and low K (M) value make the 1,4-β-glucosidase a promising enzyme for biotechnological applications.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 14220 Praha 4, Czech Republic
| | | | | |
Collapse
|
285
|
Dimarogona M, Topakas E, Christakopoulos P. Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J 2012; 2:e201209015. [PMID: 24688656 PMCID: PMC3962083 DOI: 10.5936/csbj.201209015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 11/22/2022] Open
Abstract
Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.
Collapse
Affiliation(s)
- Maria Dimarogona
- BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str, Zografou Campus, 15700, Athens, Greece
| | - Evangelos Topakas
- BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str, Zografou Campus, 15700, Athens, Greece
| | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology,SE-97187Luleå, Sweden
| |
Collapse
|
286
|
Deswal D, Gupta R, Kuhad RC. Enhanced Exoglucanase Production by Brown Rot Fungus Fomitopsis sp. RCK2010 and its Application for Cellulose Saccharification. Appl Biochem Biotechnol 2012; 168:2004-16. [DOI: 10.1007/s12010-012-9913-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022]
|
287
|
Voříšková J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME JOURNAL 2012; 7:477-86. [PMID: 23051693 DOI: 10.1038/ismej.2012.116] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa.
Collapse
Affiliation(s)
- Jana Voříšková
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha 4, Czech Republic.
| | | |
Collapse
|
288
|
Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 2012; 109:17501-6. [PMID: 23045686 DOI: 10.1073/pnas.1206847109] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.
Collapse
|
289
|
|
290
|
Purification, gene cloning and characterization of an acidic β-1,4-glucanase from Phialophora sp. G5 with potential applications in the brewing and feed industries. J Biosci Bioeng 2012; 114:379-84. [DOI: 10.1016/j.jbiosc.2012.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
|
291
|
Fungal β-glucosidase expression in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2012; 39:1445-52. [DOI: 10.1007/s10295-012-1150-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Abstract
Recombinant Saccharomyces cerevisiae strains expressing β-glucosidases from Thermoascus aurantiacus (Tabgl1) and Phanerochaete chrysosporium (PcbglB and Pccbgl1) were constructed and compared to S. cerevisiae Y294[SFI], previously identified as the best β-glucosidase-producing strain. The PcbglB was also intracellularly expressed in combination with the lac12 lactose permease of Kluyveromyces lactis in S. cerevisiae Y294[PcbglB + Lac12]. The recombinant extracellular β-glucosidases indicated maximum activity in the pH range 4–5 and temperature optima varying from 50 to 75 °C. The S. cerevisiae Y294[Pccbgl1] strain performed best under aerobic and anaerobic conditions, producing 2.6 times more β-glucosidase activity than S. cerevisiae Y294[SFI] and an ethanol concentration of 4.8 g l−1 after 24 h of cultivation on cellobiose as sole carbohydrate source. S. cerevisiae Y294[Tabgl1] was unable to grow on cellobiose (liquid medium), whereas S. cerevisiae Y294[PcbglB + Lac12] exhibited limited growth.
Collapse
|
292
|
Hastrup ACS, Howell C, Larsen FH, Sathitsuksanoh N, Goodell B, Jellison J. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biol 2012; 116:1052-63. [DOI: 10.1016/j.funbio.2012.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
293
|
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012; 336:1715-9. [PMID: 22745431 DOI: 10.1126/science.1221748] [Citation(s) in RCA: 1056] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
Collapse
|
294
|
Hahn F, Ullrich R, Hofrichter M, Liers C. Experimental approach to follow the spatiotemporal wood degradation in fungal microcosms. Biotechnol J 2012; 8:127-32. [DOI: 10.1002/biot.201200183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/14/2012] [Accepted: 07/10/2012] [Indexed: 11/06/2022]
|
295
|
Canessa P, Muñoz-Guzmán F, Vicuña R, Larrondo LF. Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 2012; 49:626-34. [DOI: 10.1016/j.fgb.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/19/2023]
|
296
|
Deswal D, Sharma A, Gupta R, Kuhad RC. Application of lignocellulolytic enzymes produced under solid state cultivation conditions. BIORESOURCE TECHNOLOGY 2012; 115:249-254. [PMID: 22067437 DOI: 10.1016/j.biortech.2011.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/03/2011] [Accepted: 10/08/2011] [Indexed: 05/31/2023]
Abstract
In this paper, cellulose from brown-rot fungus Fomitopsis sp. RCK2010, thermostable and alkalostable xylanase from Bacillus pumilus MK001 and laccase from Ganoderma sp. rckk-02 were evaluated for (i) saccharification of alkali pretreated rice straw and wheat straw, (ii) upgradation of chick feed and (iii) decolorization of dyes, respectively. The cellulose from brown-rot fungus resulted in a sugar release of 151.48 and 214.11 mg/g, respectively, from rice straw and wheat straw, which was comparatively higher than the earlier reports. While xylan, one of the main anti-nutritional factors (ANFs) present in the chick feed was removed to an extent of 11.6 mg/g xylose sugars at 50°C using the thermostable xylanase. Besides, the treatment with thermostable xylanase also brought about a release of 0.85 (mg/g) of soluble phosphorous. Moreover, the laccase when used for the decolorization of Remazol Brilliant Blue R (RBBR) and xylidine ponceau cause almost complete decolorization in 2 and 4h, respectively, depicting high rate of decolorization.
Collapse
Affiliation(s)
- Deepa Deswal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | | | | |
Collapse
|
297
|
Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME JOURNAL 2012; 6:1992-2001. [PMID: 22717883 DOI: 10.1038/ismej.2012.53] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saprotrophic fungi are key regulators of nutrient cycling in terrestrial ecosystems. They are the primary agents of plant litter decomposition and their hyphal networks, which grow throughout the soil-litter interface, represent highly dynamic channels through which nutrients are readily distributed. By ingesting hyphae and dispersing spores, soil invertebrates, including Arthropoda, Oligochaetae and Nematoda, influence fungal-mediated nutrient distribution within soil. Fungal physiological responses to grazing include changes to hydrolytic enzyme production and respiration rates. These directly affect nutrient mineralisation and the flux of CO(2) between terrestrial and atmospheric pools. Preferential grazing may also exert selective pressures on saprotrophic communities, driving shifts in fungal succession and community composition. These functional and ecological consequences of grazing are intrinsically linked, and influenced by invertebrate grazing intensity. High-intensity grazing often reduces fungal growth and activity, whereas low-intensity grazing can have stimulatory effects. Grazing intensity is directly related to invertebrate abundance, and varies dramatically between species and functional groups. Invertebrate diversity and community composition, therefore, represent key factors determining the functioning of saprotrophic fungal communities and the services they provide.
Collapse
Affiliation(s)
- Thomas W Crowther
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
298
|
Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Olsen PB, Persson P, Grell MN, Lindquist E, Grigoriev IV, Lange L, Tunlid A. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 2012; 14:1477-87. [PMID: 22469289 PMCID: PMC3440587 DOI: 10.1111/j.1462-2920.2012.02736.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/16/2012] [Accepted: 03/07/2012] [Indexed: 01/25/2023]
Abstract
Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.
Collapse
Affiliation(s)
- Francois Rineau
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | - Doris Roth
- Department of Biotechnology and Chemistry, Aalborg UniversityLautrupvang 15, DK-2750, Ballerup, Denmark
| | - Firoz Shah
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | - Mark Smits
- Centre for Environmental Sciences, Hasselt UniversityBuilding D, Agoralaan, 3590 Diepenbeek, Limburg, Belgium
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | - Björn Canbäck
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | | | - Per Persson
- Department of Chemistry, Umeå UniversitySE-901 87 Umeå, Sweden
| | - Morten Nedergaard Grell
- Department of Biotechnology and Chemistry, Aalborg UniversityLautrupvang 15, DK-2750, Ballerup, Denmark
| | - Erika Lindquist
- US Department of Energy, Joint Genome Institute2800 Mitchell Avenue, Walnut Creek, CA94598, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute2800 Mitchell Avenue, Walnut Creek, CA94598, USA
| | - Lene Lange
- Department of Biotechnology and Chemistry, Aalborg UniversityLautrupvang 15, DK-2750, Ballerup, Denmark
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| |
Collapse
|
299
|
Evans TN, Seviour RJ. Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. MICROBIAL ECOLOGY 2012; 63:773-786. [PMID: 22134599 DOI: 10.1007/s00248-011-9984-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/05/2011] [Indexed: 05/31/2023]
Abstract
Fungal diversity of communities in several activated sludge plants treating different influent wastes was determined by comparative sequence analyses of their 18S rRNA genes. Methods for DNA extraction and choice of primers for PCR amplification were both optimised using denaturing gradient gel electrophoresis profile patterns. Phylogenetic analysis revealed that the levels of fungal biodiversity in some communities, like those treating paper pulp wastes, were low, and most of the fungi detected in all communities examined were novel uncultured representatives of the major fungal subdivisions, in particular, the newly described clade Cryptomycota. The fungal populations in activated sludge revealed by these culture-independent methods were markedly different to those based on culture-dependent data. Members of the genera Penicillium, Cladosporium, Aspergillus and Mucor, which have been commonly identified in mixed liquor, were not identified in any of these plant communities. Non-fungal eukaryotic 18S rRNA genes were also amplified with the primer sets used. This is the first report where culture-independent methods have been applied to flocculated activated sludge biomass samples to estimate fungal community composition and, as expected, the data obtained gave a markedly different view of their population biodiversity compared to that based on culture-dependent methods.
Collapse
Affiliation(s)
- Tegan N Evans
- Biotechnology Research Centre, La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Victoria 3552, Australia.
| | | |
Collapse
|
300
|
Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J. Proteins of higher fungi – from forest to application. Trends Biotechnol 2012; 30:259-73. [DOI: 10.1016/j.tibtech.2012.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 12/27/2022]
|