251
|
Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res 2007; 35:7475-84. [PMID: 17942417 PMCID: PMC2190721 DOI: 10.1093/nar/gkm744] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 01/03/2023] Open
Abstract
The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.
Collapse
Affiliation(s)
- Francis Rodier
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945 and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Judith Campisi
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945 and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dipa Bhaumik
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945 and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
252
|
Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O'Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 2007; 282:27285-27297. [PMID: 17623659 PMCID: PMC3119455 DOI: 10.1074/jbc.m702810200] [Citation(s) in RCA: 537] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66(shc), two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro. We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Lilian I Plotkin
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Scott A Stewart
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Paula K Roberson
- Department of Biostatistics, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205
| | - Stavroula Kousteni
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Teresita Bellido
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - A Michael Parfitt
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the.
| |
Collapse
|
253
|
Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative Stress Antagonizes Wnt Signaling in Osteoblast Precursors by Diverting β-Catenin from T Cell Factor- to Forkhead Box O-mediated Transcription. J Biol Chem 2007; 282:27298-27305. [PMID: 17623658 DOI: 10.1074/jbc.m702811200] [Citation(s) in RCA: 428] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have elucidated that oxidative stress is a pivotal pathogenetic factor of age-related bone loss and strength in mice, leading to, among other changes, a decrease in osteoblast number and bone formation. To gain insight into the molecular mechanism by which oxidative stress exerts such adverse effects, we have tested the hypothesis that induction of the Forkhead box O (FoxO) transcription factors by reactive oxygen species may antagonize Wnt signaling, an essential stimulus for osteoblastogenesis. In support of this hypothesis, we report herein that the expression of FoxO target genes increases, whereas the expression of Wnt target genes decreases, with increasing age in C57BL/6 mice. Moreover, we show that in osteoblastic cell models, oxidative stress (exemplified by H(2)O(2)) promotes the association of FoxOs with beta-catenin, beta-catenin is required for the stimulation of FoxO target genes by H(2)O(2), and H(2)O(2) promotes FoxO-mediated transcription at the expense of Wnt-/T-cell factor-mediated transcription and osteoblast differentiation. Furthermore, beta-catenin overexpression is sufficient to prevent FoxO-mediated suppression of T-cell factor transcription. These results demonstrate that diversion of the limited pool of beta-catenin from T-cell factor- to FoxO-mediated transcription in osteoblastic cells may account, at least in part, for the attenuation of osteoblastogenesis and bone formation by the age-dependent increase in oxidative stress.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205.
| |
Collapse
|
254
|
Abstract
At first glance, cancer and ageing would seem to be unlikely bedfellows. Yet the origins for this improbable union can actually be traced back to a sequence of tragic--and some say unethical--events that unfolded more than half a century ago. Here we review the series of key observations that has led to a complex but growing convergence between our understanding of the biology of ageing and the mechanisms that underlie cancer.
Collapse
Affiliation(s)
- Toren Finkel
- Cardiology Branch, NIH, NHLBI, Building 10/CRC 5-3330, 10 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
255
|
Abstract
DNA helicases are molecular motors that catalyse the unwinding of energetically unstable structures into single strands and have therefore an essential role in nearly all metabolism transactions. Defects in helicase function can result in human syndromes in which predisposition to cancer and genomic instability are common features. So far different helicase genes have been found associated in 8 such disorders. RecQ helicases are a family of conserved enzymes required for maintaining the genome integrity that function as suppressors of inappropriate recombination. Mutations in RecQ4, BLM and WRN give rise to various disorders: Bloom syndrome, Rothmund-Thomson syndrome, and Werner syndrome characterized by genomic instability and increased cancer susceptibility. The DNA helicase BRIP1/BACH1 is involved in double-strand break repair and is defective in Fanconi anemia complementation group J. Mutations in XPD and XPB genes can result in xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, three genetic disorders with different clinical features but with association of transcription and NER defects. This review summarizes our current knowledge on the diverse biological functions of these helicases and the molecular basis of the associated diseases.
Collapse
Affiliation(s)
- Muriel Uhring
- Institut de génétique et de biologie moléculaire et cellulaire, UMR 7104 CNRS/Inserm/ULP, 1, rue Laurent-Fries, BP 10142, 67404 Illkirch Cedex, France
| | | |
Collapse
|
256
|
Abstract
Genomic instability is the driving force behind cancer development. Human syndromes with DNA repair deficiencies comprise unique opportunities to study the clinical consequences of faulty genome maintenance leading to premature aging and premature cancer development. These syndromes include chromosomal breakage syndromes with defects in DNA damage signal transduction and double-strand break repair, mismatch repair defective syndromes as well as nucleotide excision repair defective syndromes. The same genes that are severely affected in these model diseases may harbour more subtle variations in the 'healthy' normal population leading to genomic instability, cancer development, and accelerated aging at later stages of life. Thus, studying those syndromes and the molecular mechanisms behind can significantly contribute to our understanding of (skin) cancerogenesis as well as to the development of novel individualized preventive and therapeutic anticancer strategies. The establishment of centers of excellence for studying rare genetic model diseases may be helpful in this direction.
Collapse
Affiliation(s)
- Kai-Martin Thoms
- Department of Dermatology and Venerology, Georg-August-University Goettingen, Germany
| | | | | |
Collapse
|
257
|
Abstract
In the past several years, remarkable progress has been made in the understanding of the mechanisms of premature aging. These rare, genetic conditions offer valuable insights into the normal aging process and the complex biology of cardiovascular disease. Many of these advances have been made in the most dramatic of these disorders, Hutchinson–Gilford progeria syndrome. Although characterized by features of normal aging such as alopecia, skin wrinkling, and osteoporosis, patients with Hutchinson–Gilford progeria syndrome are affected by accelerated, premature arteriosclerotic disease that leads to heart attacks and strokes at a mean age of 13 years. In this review, we highlight recent advances in the biology of premature aging uncovered in Hutchinson–Gilford progeria syndrome and other accelerated aging syndromes, advances that provide insight into the mechanisms of cardiovascular diseases ranging from atherosclerosis to arrhythmias.
Collapse
Affiliation(s)
- Brian C Capell
- Genome Technology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-2486, USA
| | | | | |
Collapse
|
258
|
de Grey ADNJ. Protagonistic pleiotropy: Why cancer may be the only pathogenic effect of accumulating nuclear mutations and epimutations in aging. Mech Ageing Dev 2007; 128:456-9. [PMID: 17588643 DOI: 10.1016/j.mad.2007.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Since Szilard's seminal 1959 article, the role of accumulating nuclear DNA (nDNA) damage -- whether as mutations, i.e. changes to sequence, or as epimutations, i.e. adventitious but persistent alterations to methylation and other decorations of nDNA and histones -- has been widely touted as likely to contribute substantially to the aging process throughout the animal kingdom. Such damage certainly accumulates with age and is central to one of the most prevalent age-related causes of death in mammals, namely cancer. However, its role in contributing to the rates of other aspects of aging is less clear. Here I argue that, in animals prone to cancer, evolutionary pressure to postpone cancer will drive the fidelity of nDNA maintenance and repair to a level greatly exceeding that needed to prevent nDNA damage from reaching levels during a normal lifetime that are pathogenic other than via cancer or, possibly, apoptosis resistance. I term this the "protagonistic pleiotropy of chromosomal damage" (PPCD) hypothesis, because this interaction of cancer-related and -unrelated damage is the converse of the well-known "antagonistic pleiotropy" phenomenon. I then consider a selection of recent data on the rate of accumulation of nDNA damage in the context of this hypothesis, and conclude that all presently available evidence is consistent with it. If this conclusion is correct, the implications for the feasibility of greatly postponing mammalian (and eventually human) aging and age-related pathology are far-reaching.
Collapse
|
259
|
Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447:725-9. [PMID: 17554309 DOI: 10.1038/nature05862] [Citation(s) in RCA: 855] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/18/2007] [Indexed: 12/31/2022]
Abstract
A diminished capacity to maintain tissue homeostasis is a central physiological characteristic of ageing. As stem cells regulate tissue homeostasis, depletion of stem cell reserves and/or diminished stem cell function have been postulated to contribute to ageing. It has further been suggested that accumulated DNA damage could be a principal mechanism underlying age-dependent stem cell decline. We have tested these hypotheses by examining haematopoietic stem cell reserves and function with age in mice deficient in several genomic maintenance pathways including nucleotide excision repair, telomere maintenance and non-homologous end-joining. Here we show that although deficiencies in these pathways did not deplete stem cell reserves with age, stem cell functional capacity was severely affected under conditions of stress, leading to loss of reconstitution and proliferative potential, diminished self-renewal, increased apoptosis and, ultimately, functional exhaustion. Moreover, we provide evidence that endogenous DNA damage accumulates with age in wild-type stem cells. These data are consistent with DNA damage accrual being a physiological mechanism of stem cell ageing that may contribute to the diminished capacity of aged tissues to return to homeostasis after exposure to acute stress or injury.
Collapse
Affiliation(s)
- Derrick J Rossi
- Department of Pathology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
260
|
Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Brown EJ. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 2007; 1:113-126. [PMID: 18371340 PMCID: PMC2920603 DOI: 10.1016/j.stem.2007.03.002] [Citation(s) in RCA: 626] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/15/2007] [Accepted: 03/28/2007] [Indexed: 12/17/2022]
Abstract
Developmental abnormalities, cancer, and premature aging each have been linked to defects in the DNA damage response (DDR). Mutations in the ATR checkpoint regulator cause developmental defects in mice (pregastrulation lethality) and humans (Seckel syndrome). Here we show that eliminating ATR in adult mice leads to defects in tissue homeostasis and the rapid appearance of age-related phenotypes, such as hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. Histological and genetic analyses indicate that ATR deletion causes acute cellular loss in tissues in which continuous cell proliferation is required for maintenance. Importantly, thymic involution, alopecia, and hair graying in ATR knockout mice were associated with dramatic reductions in tissue-specific stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity. In aggregate, these studies suggest that reduced regenerative capacity in adults via deletion of a developmentally essential DDR gene is sufficient to cause the premature appearance of age-related phenotypes.
Collapse
Affiliation(s)
- Yaroslava Ruzankina
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Carolina Pinzon-Guzman
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Amma Asare
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Tony Ong
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Laura Pontano
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - George Cotsarelis
- Department of Dermatology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Valerie P Zediak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Marielena Velez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Eric J Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
261
|
Hoeijmakers JHJ. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev 2007; 128:460-2. [PMID: 17588642 DOI: 10.1016/j.mad.2007.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/18/2007] [Indexed: 12/16/2022]
Affiliation(s)
- Jan H J Hoeijmakers
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, P.O. Box 1738, Rotterdam 3000DR, The Netherlands.
| |
Collapse
|
262
|
Abstract
This review provides an overview of a selection of the most pertinent molecular pathways that link cancer and aging and focuses on those where recent advances were most important. When organizing the bulk of information on this subject, I became aware of the fact that the most evident partition, namely, mechanisms that influence aging and mechanisms that influence cancer occurrence, is difficult to apply. Most mechanisms explaining the aging process are also those that influence carcinogenesis. Mechanisms that are described in tumor suppressor pathways are also contributors to the aging process. From an intuitive point of view, there are phenomena that have traditionally been contributed to aging others to cancer-inducing factors and they are presented herein.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
263
|
Cleaver JE, Hefner E, Laposa RR, Karentz D, Marti T. Cockayne syndrome exhibits dysregulation of p21 and other gene products that may be independent of transcription-coupled repair. Neuroscience 2007; 145:1300-8. [PMID: 17055654 PMCID: PMC2100027 DOI: 10.1016/j.neuroscience.2006.08.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 01/09/2023]
Abstract
Cockayne syndrome (CS) is a progressive childhood neurodegenerative disorder associated with a DNA repair defect caused by mutations in either of two genes, CSA and CSB. These genes are involved in nucleotide excision repair (NER) of DNA damage from ultraviolet (UV) light, other bulky chemical adducts and reactive oxygen in transcriptionally active genes (transcription-coupled repair, TCR). For a long period it has been assumed that the symptoms of CS patients are all due to reduced TCR of endogenous DNA damage in the brain, together with unexplained unique sensitivity of specific neural cells in the cerebellum. Not all the symptoms of CS patients are however easily related to repair deficiencies, so we hypothesize that there are additional pathways relevant to the disease, particularly those that are downstream consequences of a common defect in the E3 ubiquitin ligase associated with the CSA and CSB gene products. We have found that the CSB defect results in altered expression of anti-angiogenic and cell cycle genes and proteins at the level of both gene expression and protein lifetime. We find an over-abundance of p21 due to reduced protein turnover, possibly due to the loss of activity of the CSA/CSB E3 ubiquitylation pathway. Increased levels of p21 can result in growth inhibition, reduced repair from the p21-PCNA interaction, and increased generation of reactive oxygen. Consistent with increased reactive oxygen levels we find that CS-A and -B cells grown under ambient oxygen show increased DNA breakage, as compared with xeroderma pigmentosum cells. Thus the complex symptoms of CS may be due to multiple, independent downstream targets of the E3 ubiquitylation system that results in increased DNA damage, reduced transcription coupled repair, and inhibition of cell cycle progression and growth.
Collapse
Affiliation(s)
- J E Cleaver
- Auerback Melanoma Laboratory, Box 0808, Room N431, UCSF Cancer Center, University of California, San Francisco, CA 94143-0808, USA.
| | | | | | | | | |
Collapse
|
264
|
van der Pluijm I, Garinis GA, Brandt RMC, Gorgels TGMF, Wijnhoven SW, Diderich KEM, de Wit J, Mitchell JR, van Oostrom C, Beems R, Niedernhofer LJ, Velasco S, Friedberg EC, Tanaka K, van Steeg H, Hoeijmakers JHJ, van der Horst GTJ. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol 2007; 5:e2. [PMID: 17326724 PMCID: PMC1698505 DOI: 10.1371/journal.pbio.0050002] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 10/16/2006] [Indexed: 12/21/2022] Open
Abstract
Cockayne syndrome (CS) is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER). Here, complete inactivation of NER in Csbm/m/Xpa−/− mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn Csbm/m/Xpa−/− mice display attenuated growth, progressive neurological dysfunction, retinal degeneration, cachexia, kyphosis, and die before weaning. Mouse liver transcriptome analysis and several physiological endpoints revealed systemic suppression of the growth hormone/insulin-like growth factor 1 (GH/IGF1) somatotroph axis and oxidative metabolism, increased antioxidant responses, and hypoglycemia together with hepatic glycogen and fat accumulation. Broad genome-wide parallels between Csbm/m/Xpa−/− and naturally aged mouse liver transcriptomes suggested that these changes are intrinsic to natural ageing and the DNA repair–deficient mice. Importantly, wild-type mice exposed to a low dose of chronic genotoxic stress recapitulated this response, thereby pointing to a novel link between genome instability and the age-related decline of the somatotroph axis. Studies in mice defective in two DNA repair pathways (global NER and TCR; an animal model for Cockayne syndrome) highlight a link between aging, a failure to repair DNA lesions, and metabolic alterations. Normal metabolism routinely produces reactive oxygen species that damage DNA and other cellular components and is thought to contribute to the ageing process. Although DNA damage is typically kept in check by a variety of enzymes, several premature ageing disorders result from failure to remove damage from active genes. Patients with Cockayne syndrome (CS), a genetic mutation affecting one class of DNA repair enzymes, display severe growth retardation, neurological symptoms, and signs of premature ageing followed by an early death. Whereas mouse models for CS exhibit relatively mild deficits, we show that concomitant inactivation of a second DNA repair gene elicits severe CS pathology and ageing. Moreover, a few days after birth, these mice undergo systemic suppression of genes controlling growth, an unexpected decrease in oxidative metabolism, and an increased antioxidant response. Similar physiological changes are also triggered in normal mice by chronic exposure to DNA-damaging oxidative stress. From these findings, we conclude that DNA damage triggers a response aimed at limiting oxidative DNA damage levels (and associated tissue degeneration) to extend lifespan and promote healthy ageing. Better understanding of the ageing process will help to delineate intervention strategies to combat age-associated pathology.
Collapse
Affiliation(s)
- Ingrid van der Pluijm
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George A Garinis
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Renata M. C Brandt
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo G. M. F Gorgels
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Susan W Wijnhoven
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Karin E. M Diderich
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan de Wit
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - James R Mitchell
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Conny van Oostrom
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Rudolf Beems
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Laura J Niedernhofer
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Susana Velasco
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kiyoji Tanaka
- Division of Cellular Genetics, Institute for Molecular and Cellular Biology, Osaka University, Osaka, Japan
| | - Harry van Steeg
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Jan H. J Hoeijmakers
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gijsbertus T. J van der Horst
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
265
|
Jeng YM, Cai-Ng S, Li A, Furuta S, Chew H, Chen PL, Lee EYH, Lee WH. Brca1 heterozygous mice have shortened life span and are prone to ovarian tumorigenesis with haploinsufficiency upon ionizing irradiation. Oncogene 2007; 26:6160-6. [PMID: 17420720 DOI: 10.1038/sj.onc.1210451] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BRCA1 mutation carriers have an 85% lifetime risk of breast cancer and 60% for ovarian cancer. BRCA1 facilitates DNA double-strand break repair, and dysfunction of BRCA1 leads to hypersensitivity to DNA damaging agents and consequently genomic instability of cells. In this communication, we have examined the tumor incidence and survival of Brca1 heterozygous female mice. Brca1 heterozygotes appear to have a shortened life span with 70% tumor incidence. Lymphoma, but not ovarian and mammary gland tumors, occurs commonly in these mice. After a whole-body exposure to ionizing radiation, Brca1 heterozygous mice have a 3-5-fold higher incidence specific to ovarian tumors, but not lymphoma, when compared with the Brca1+/+ mice. All the tumors from heterozygous mice examined retain the wild-type allele and the cancer cells express Brca1 protein, precluding the chromosomal mechanism for loss of heterozygosity of Brca1 locus. Although the manifestation of BRCA1 haploinsufficiency may be different between human and mouse, this study suggests that women carrying Brca1 mutations may be more prone to ovarian tumor formation after IR exposure than nonmutation carriers.
Collapse
Affiliation(s)
- Y-M Jeng
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Halaschek-Wiener J, Brooks-Wilson A. Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 2007; 62:3-8. [PMID: 17301031 DOI: 10.1093/gerona/62.1.3] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal genetic disorder that is characterized by segmental accelerated aging. The major causal mutation associated with HGPS triggers abnormal messenger RNA splicing of the lamin A gene leading to changes in the nuclear architecture. To date, two models have been proposed to explain how mutations in the lamin A gene could lead to HGPS, structural fragility and altered gene expression. We favor a compatible model that links HGPS to stem cell-driven tissue regeneration. In this model, nuclear fragility of lamin A-deficient cells increases apoptotic cell death to levels that exhaust tissues' ability for stem cell-driven regeneration. Tissue-specific differences in cell death or regenerative potential, or both, result in the tissue-specific segmental aging pattern seen in HGPS. We propose that the pattern of aging-related conditions present or absent in HGPS can provide insight into the genetic and environmental factors that contribute to normal aging.
Collapse
Affiliation(s)
- Julius Halaschek-Wiener
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, BC Cnacer Research centre, Vancouver, Canada.
| | | |
Collapse
|
267
|
RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair (Amst) 2007; 6:841-51. [PMID: 17374514 DOI: 10.1016/j.dnarep.2007.01.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/18/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
The blockage of transcription elongation by RNA polymerase II (RNAPII) at DNA lesions on the transcribed strand is a serious challenge to accurate transcription. Transcription-coupled DNA repair (TCR), which is assumed to be initiated by the blockage of transcription, rapidly removes lesions on the transcribed strand of expressed genes and allows the resumption of transcription. Although helix-distorting bulky damage such as a cyclobutane pyrimidine dimer is known to block transcription elongation and to be repaired by TCR, it is not clear whether oxidative DNA lesions are repaired by TCR. First, we examined whether transcription elongation by RNAPII is stalled at sites of 2-hydroxyadenine (2-OH-A), 8-oxoadenine (8-oxoA), 8-oxoguanine (8-oxoG), or thymine glycol (Tg) on the transcribed strand. Our results indicate that RNAPII incorporated nucleotides opposite the lesions and then stalled. In addition, we found that transcription elongation factor TFIIS (SII) enabled RNAPII to bypass 8-oxoG but not the other types of damage, while transcription initiation and elongation factor TFIIF did not bypass 8-oxoG. These results suggest that SII is important for preventing cellular death due to oxidative DNA damage, assisting RNAPII to bypass 8-oxoG.
Collapse
|
268
|
Cao L, Xu X, Cao LL, Wang RH, Coumoul X, Kim SS, Deng CX. Absence of full-length Brca1 sensitizes mice to oxidative stress and carcinogen-induced tumorigenesis in the esophagus and forestomach. Carcinogenesis 2007; 28:1401-7. [PMID: 17363841 DOI: 10.1093/carcin/bgm060] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Environmental and genetic factors are important both in affecting life span and neoplastic transformation. We have shown previously that mice, which are homozygous for full-length breast cancer-associated gene-1 (Brca1) deletion and heterozygous for a p53-null mutation (Brca1(Delta11/Delta11)p53(+/-)), display premature aging and high frequency of spontaneous lymphoma and mammary tumor formation. To investigate the role of Brca1 in regulation of organ homeostasis and susceptibility of Brca1 deficiency to environmental carcinogens, we examined biological function of Brca1 in maintaining organ homeostasis and carcinogen-induced tumorigenesis. Brca1(Delta11/Delta11)p53(+/-) mice showed altered gastrointestinal tract homeostasis, including hyperkeratosis in the esophagus and forestomach. At 6 months of age, most mutant mice displayed hyperplasia in their forestomach and esophagus, leading to dysplasia and carcinoma formation in older animals. Brca1 mutant mice exhibited increased expression of Redd1, elevated reactive oxygen species and are more sensitive to oxidative stress induced lethality. Upon methyl-N-amylnitrosamine (MNAN) treatment, 70% Brca1 mutant mice developed tumors within 4 months whereas only 14% control animals developed tumor at the same period of the time. Our further analysis revealed that the tumorigenesis is accompanied by the loss of p53 and increased expression of a number of oncogenes, including Cyclin D1, phosphorylated form of Akt, beta-catenin, Runx-2 and c-Myc. These results suggest that Brca1 is involved in renewable organ homeostasis, linking the environmental and genetic factors in carcinogenesis and aging, and providing new insights into genomic instability in organism maintenance and tumorigenesis.
Collapse
Affiliation(s)
- Liu Cao
- Genetics of Development and Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
269
|
|
270
|
Wijnhoven SWP, Hoogervorst EM, de Waard H, van der Horst GTJ, van Steeg H. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mutat Res 2007; 614:77-94. [PMID: 16769089 DOI: 10.1016/j.mrfmmm.2005.12.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/23/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
271
|
Abstract
Cardiologists and most physicians believe that aging is an independent risk factor for human atherosclerosis, whereas atherosclerosis is thought to be a characteristic feature of aging in humans by many gerontologists. Because atherosclerosis is among the age-associated changes that almost always escape the influence of natural selection in humans, it might be reasonable to regard atherosclerosis as a feature of aging. Accordingly, when we investigate the pathogenesis of human atherosclerosis, it may be more important to answer the question of how we age than what specifically promotes atherosclerosis. Recently, genetic analyses using various animal models have identified molecules that are crucial for aging. These include components of the DNA-repair system, the tumor suppressor pathway, the telomere maintenance system, the insulin/Akt pathway, and other metabolic pathways. Interestingly, most of the molecules that influence the phenotypic changes of aging also regulate cellular senescence, suggesting a causative link between cellular senescence and aging. For example, DNA-repair defects can cause phenotypic changes that resemble premature aging, and senescent cells that show DNA damage accumulate in the elderly. Excessive calorie intake can cause diabetes and hyperinsulinemia, whereas dysregulation of the insulin pathway has been shown to induce cellular senescence in vitro. Calorie restriction or a reduction of insulin signals extends the lifespan of various species and decreases biomarkers of cellular senescence in vivo. There is emerging evidence that cellular senescence contributes to the pathogenesis of human atherosclerosis. Senescent vascular cells accumulate in human atheroma tissues and exhibit various features of dysfunction. In this review, we examine the hypothesis that cellular senescence might contribute to atherosclerosis, which is a characteristic of aging in humans.
Collapse
Affiliation(s)
- Tohru Minamino
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
272
|
Andressoo JO, Jans J, de Wit J, Coin F, Hoogstraten D, van de Ven M, Toussaint W, Huijmans J, Thio HB, van Leeuwen WJ, de Boer J, Egly JM, Hoeijmakers JHJ, van der Horst GTJ, Mitchell JR. Rescue of progeria in trichothiodystrophy by homozygous lethal Xpd alleles. PLoS Biol 2007; 4:e322. [PMID: 17020410 PMCID: PMC1584416 DOI: 10.1371/journal.pbio.0040322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 07/31/2006] [Indexed: 12/05/2022] Open
Abstract
Although compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specific biallelic effects from differences in environment or genetic background. We addressed the potential of different recessive alleles to contribute to the enigmatic pleiotropy associated with XPD recessive disorders in compound heterozygous mouse models. Alterations in this essential helicase, with functions in both DNA repair and basal transcription, result in diverse pathologies ranging from elevated UV sensitivity and cancer predisposition to accelerated segmental progeria. We report a variety of biallelic effects on organismal phenotype attributable to combinations of recessive Xpd alleles, including the following: (i) the ability of homozygous lethal Xpd alleles to ameliorate a variety of disease symptoms when their essential basal transcription function is supplied by a different disease-causing allele, (ii) differential developmental and tissue-specific functions of distinct Xpd allele products, and (iii) interallelic complementation, a phenomenon rarely reported at clinically relevant loci in mammals. Our data suggest a re-evaluation of the contribution of “null” alleles to XPD disorders and highlight the potential of combinations of recessive alleles to affect both normal and pathological phenotypic plasticity in mammals. Effects of mutations in Xpd were investigated in mice. Compound heterozygotes of otherwise homozygous lethal alleles demonstrated interallelic complementation and partial phenotypic rescue of XPD-related disease symptoms.
Collapse
Affiliation(s)
- Jaan-Olle Andressoo
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Judith Jans
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jan de Wit
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Frederic Coin
- Institut de Genetique et de Biologie et Cellulaire, Strasbourg, France
| | - Deborah Hoogstraten
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marieke van de Ven
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wendy Toussaint
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jan Huijmans
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - H. Bing Thio
- Department of Dermatology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wibeke J van Leeuwen
- Department of Experimental Radiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jan de Boer
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jean-Marc Egly
- Institut de Genetique et de Biologie et Cellulaire, Strasbourg, France
| | - Jan H. J Hoeijmakers
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Gijsbertus T. J van der Horst
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - James R Mitchell
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
273
|
Laposa RR, Huang EJ, Cleaver JE. Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc Natl Acad Sci U S A 2007; 104:1389-94. [PMID: 17229834 PMCID: PMC1783131 DOI: 10.1073/pnas.0610619104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a rare recessive childhood-onset neurodegenerative disease, characterized by a deficiency in the DNA repair pathway of transcription-coupled nucleotide excision repair. Mice with a targeted deletion of the CSB gene (Csb-/-) exhibit a much milder ataxic phenotype than human patients. Csb-/- mice that are also deficient in global genomic repair [Csb-/-/xeroderma pigmentosum C (Xpc)-/-] are more profoundly affected, exhibiting whole-body wasting, ataxia, and neural loss by postnatal day 21. Cerebellar granule cells demonstrated high TUNEL staining indicative of apoptosis. Purkinje cells, identified by the marker calbindin, were severely depleted and, although not TUNEL-positive, displayed strong immunoreactivity for p53, indicating cellular stress. A subset of animals heterozygous for Csb and Xpc deficiencies was more mildly affected, demonstrating ataxia and Purkinje cell loss at 3 months of age. Mouse, Csb-/-, and Xpc-/- embryonic fibroblasts each exhibited increased sensitivity to UV light, which generates bulky DNA damage that is a substrate for excision repair. Whereas Csb-/-/Xpc-/- fibroblasts were more UV-sensitive than either single knockout, double-heterozygote fibroblasts had normal UV sensitivity. Csb-/- mice crossed with a strain defective in base excision repair (Ogg1) demonstrated no enhanced neurodegenerative phenotype. Complete deficiency in nucleotide excision repair therefore renders the brain profoundly sensitive to neurodegeneration in specific cell types of the cerebellum, possibly because of unrepaired endogenous DNA damage that is a substrate for nucleotide but not base excision repair.
Collapse
Affiliation(s)
- R. R. Laposa
- Departments of *Dermatology and Cancer Center and
| | - E. J. Huang
- Pathology, University of California, San Francisco, CA 94143-0808
| | | |
Collapse
|
274
|
Berneburg M, Kamenisch Y, Krutmann J, Röcken M. 'To repair or not to repair - no longer a question': repair of mitochondrial DNA shielding against age and cancer. Exp Dermatol 2007; 15:1005-15. [PMID: 17083367 DOI: 10.1111/j.1600-0625.2006.00508.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of mitochondria in energy production and apoptosis is well known. The role of mitochondria and particularly the role of the mitochondria's own genome, mitochondrial (mt) DNA, in the process of ageing were postulated decades ago. However, this was discussed, debated and more or less disposed of. Recent data from elegant mouse models now confirm that mutations of mtDNA do indeed play a central and pivotal role in the ageing process. Newer reports also indicate a possible role of mtDNA mutations in the carcinogenesis of several organs. But is damaged mtDNA repaired, or is it simply degraded and discarded? This question appears to be answered now. According to recent data, mitochondria possess functional repair mechanisms such as base excision repair, double-strand break repair and mismatch repair, yet nucleotide excision repair has so far not been detected.
Collapse
Affiliation(s)
- Mark Berneburg
- Molecular Oncology and Aging, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | | | | | | |
Collapse
|
275
|
Wang L, Yang L, Debidda M, Witte D, Zheng Y. Cdc42 GTPase-activating protein deficiency promotes genomic instability and premature aging-like phenotypes. Proc Natl Acad Sci U S A 2007; 104:1248-53. [PMID: 17227869 PMCID: PMC1783128 DOI: 10.1073/pnas.0609149104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase family known to regulate cell actin cytoskeleton organization, polarity, and growth, but its function in mammalian organismal physiology remains unclear. We found that natural aging of WT mice is marked with increased Cdc42 activity in various tissues. Among the negative regulators of Cdc42, gene targeting of Cdc42 GTPase-activating protein (Cdc42GAP) results in constitutively elevated Cdc42-GTP level in diverse tissues of adult mice; significantly shortened life span of the animals; and multiple premature aging-like phenotypes, including a reduction in body mass, a loss of subdermal adipose tissue, severe lordokyphosis, muscle atrophy, osteoporosis, and reduction of reepithelialization ability in wound-healing. Cdc42GAP-/- mouse embryonic fibroblasts and/or tissues display reduced population doubling, significantly dampened DNA damage repair activity after DNA-damaging agent treatment, accumulated genomic abnormalities, and induction of p53, p16Ink4a, p21Cip1, and senescence-associated beta-galactosidase expressions. Furthermore, Cdc42 activation is sufficient to promote a premature cellular senescence phenotype that depends on p53. These results suggest a role of Cdc42 activity in regulating mammalian genomic stability and aging-related physiology.
Collapse
Affiliation(s)
- Lei Wang
- Divisions of Experimental Hematology and Pathology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229
| | - Linda Yang
- Divisions of Experimental Hematology and Pathology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229
| | - Marcella Debidda
- Divisions of Experimental Hematology and Pathology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229
| | - David Witte
- Divisions of Experimental Hematology and Pathology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229
| | - Yi Zheng
- Divisions of Experimental Hematology and Pathology, Molecular Developmental Biology Graduate Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229
- *To whom correspondence should be addressed at:
Division of Experimental Hematology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229. E-mail:
| |
Collapse
|
276
|
Abstract
Half a century ago, when the free radical theory of aging was first proposed, the damaging effects of reactive oxygen species (ROS) were in the focus of attention and considered the single most important determinant of aging. Two decades later, however, the disposable soma theory of aging redirected the attention to the potential impact of cellular maintenance and repair pathways that are both genetically and environmentally determined and are counteracting the damaging effects of ROS. In the present paper, recent experimental data linking DNA repair pathways with the aging process are summarised. Special attention is paid to poly(ADP-ribosyl)ation, a DNA-damage driven posttranslational modification of proteins.
Collapse
Affiliation(s)
- Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Box X911, D-78457, Konstanz, Germany.
| |
Collapse
|
277
|
van Apeldoorn AA, de Boer J, van Steeg H, Hoeijmakers JHJ, Otto C, van Blitterswijk CA. Physicochemical Composition of Osteoporotic Bone in the Trichothiodystrophy Premature Aging Mouse Determined by Confocal Raman Microscopy. J Gerontol A Biol Sci Med Sci 2007; 62:34-40. [PMID: 17301035 DOI: 10.1093/gerona/62.1.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although it has been established that premature aging trichothiodystrophy (TTD) mice display typical signs of osteoporosis, exact changes in physicochemical properties of these mice have not been elucidated. We used confocal Raman microscopy and histology to study femora of TTD mice. We measured femora isolated from xeroderma pigmentosum group A (XPA)/TTD double mutant mice to establish that Raman microscopy can be applied to measure differences in bone composition. Raman data from XPA/TTD mice showed remarkable changes in bone mineral composition. Moreover, we observed a severe form of osteoporosis, with strongly reduced cortical bone thickness. We used Raman microscopy to analyze bone composition in eight wild-type and eight TTD animals, and observed decreased levels of phosphate and carbonate in the cortex of femora isolated from TTD mice. In contrast, the bands representing the bone protein matrix were not affected in these mice.
Collapse
Affiliation(s)
- Aart A van Apeldoorn
- Department of Polymer Chemistry and Biomaterials, Faculty of Technology and Sciences, University of Twente, PO Box 98, 3720 AB Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
278
|
van de Ven M, Andressoo JO, Holcomb VB, Hasty P, Suh Y, van Steeg H, Garinis GA, Hoeijmakers JH, Mitchell JR. Extended longevity mechanisms in short-lived progeroid mice: identification of a preservative stress response associated with successful aging. Mech Ageing Dev 2007; 128:58-63. [PMID: 17126380 PMCID: PMC1919472 DOI: 10.1016/j.mad.2006.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Semantic distinctions between "normal" aging, "pathological" aging (or age-related disease) and "premature" aging (otherwise known as segmental progeria) potentially confound important insights into the nature of each of the complex processes. Here we review a recent, unexpected discovery: the presence of longevity-associated characteristics typical of long-lived endocrine-mutant and dietary-restricted animals in short-lived progeroid mice. These data suggest that a subset of symptoms observed in premature aging, and possibly normal aging as well, may be indirect manifestations of a beneficial adaptive stress response to endogenous oxidative damage, rather than a detrimental result of the damage itself.
Collapse
Affiliation(s)
- Marieke van de Ven
- Medical Genetics Center, Dept of Cell Biology and Genetics, Center of Biomedical Genetics, PO Box 1738, Erasmus MC, 3000DR Rotterdam, The Netherlands
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, Viikinkaari 9, University of Helsinki, 00014, Finland
| | - Valerie B. Holcomb
- Dept of Molecular Medicine, University of Texas/Institute of Biotechnology, San Antonio TX, USA
| | - Paul Hasty
- Dept of Molecular Medicine, University of Texas/Institute of Biotechnology, San Antonio TX, USA
| | - Yousin Suh
- Dept of Molecular Medicine, University of Texas/Institute of Biotechnology, San Antonio TX, USA
| | - Harry van Steeg
- National Institute of Public Health and the Environment, Post Office Box 1, 3720 BA Bilthoven, The Netherlands
| | - George A. Garinis
- Medical Genetics Center, Dept of Cell Biology and Genetics, Center of Biomedical Genetics, PO Box 1738, Erasmus MC, 3000DR Rotterdam, The Netherlands
| | - Jan H.J. Hoeijmakers
- Medical Genetics Center, Dept of Cell Biology and Genetics, Center of Biomedical Genetics, PO Box 1738, Erasmus MC, 3000DR Rotterdam, The Netherlands
| | - James R. Mitchell
- Medical Genetics Center, Dept of Cell Biology and Genetics, Center of Biomedical Genetics, PO Box 1738, Erasmus MC, 3000DR Rotterdam, The Netherlands
| |
Collapse
|
279
|
Abstract
The central theme of the 3rd International Conference on Functional Genomics of Ageing was tissue regeneration as a remedial strategy to address age-related cellular damage and the pathology that ensues. The conference included sessions on maintaining genome integrity and the potential of stem cells to restore function to damaged tissues. In addition to several human syndromes that appear to reflect accelerated ageing, there are now a number of mouse models that prematurely display phenotypes associated with ageing. The intent of this summary presented at the end of the conference was to: (1) discuss various human syndromes and mouse models of accelerated ageing; (2) evaluate whether the phenotypes displayed might result from an elevated rate of cell death coupled with an inability to adequately maintain cell number in various tissues with increasing age; and (3) discuss whether similar events may be occurring during normal ageing, albeit much more slowly.
Collapse
Affiliation(s)
- Huber R Warner
- University of Minnesota, College of Biological Sciences, St. Paul, MN 55108, United States.
| |
Collapse
|
280
|
Zucchero T, Ahmed S. Genetics of proliferative aging. Exp Gerontol 2006; 41:992-1000. [PMID: 17049783 DOI: 10.1016/j.exger.2006.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/21/2006] [Accepted: 06/30/2006] [Indexed: 12/23/2022]
Abstract
Human lifespan is limited by aging of both mitotic and post-mitotic cells. These two forms of aging may occur by distinct or overlapping mechanisms. Telomere erosion has been shown to limit the proliferative lifespan of human somatic cells. Other vertebrates, such as mice, possess robust telomerase activity in most cell types and their somatic cells display finite replicative lifespans as a consequence of other forms of macromolecular damage. Genetic analysis in humans, mice and yeast has provided clues regarding pathways that may affect a cell's replicative lifespan. In addition, analysis of the means by which germ cells maintain their effervescent character may provide a deeper understanding of how replicative aging occurs in somatic cells.
Collapse
Affiliation(s)
- Theresa Zucchero
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
281
|
van de Ven M, Andressoo JO, Holcomb VB, von Lindern M, Jong WMC, Zeeuw CID, Suh Y, Hasty P, Hoeijmakers JHJ, van der Horst GTJ, Mitchell JR. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice. PLoS Genet 2006; 2:e192. [PMID: 17173483 PMCID: PMC1698946 DOI: 10.1371/journal.pgen.0020192] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/02/2006] [Indexed: 12/29/2022] Open
Abstract
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPDG602D/R722W/XPA−/−) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80−/− mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage. Oxidative damage to cellular components, including fats, proteins, and DNA, is an inevitable consequence of cellular energy use and may underlie both normal and pathological aging. Calorie restriction delays the aging process and extends lifespan in a number of lower organisms including rodents. Inborn defects in the postnatal growth axis resulting in dwarfism can also extend lifespan. Both may function via overlapping pathways impacting on energy metabolism. Here, we report a novel DNA repair-deficient mouse model with symptoms of the related premature aging disorders Cockayne syndrome and trichothiodystrophy, namely reduced fat deposits, neurological dysfunction, failure to thrive, and reduced lifespan. Surprisingly, we also observed traits usually associated with extended longevity as found in calorie restriction and dwarfism, including reduced blood sugar and reduced insulin-like growth factor-1. These characteristics were present at 2 wk of age, that is, during the period of rapid postnatal development, but returned to normal by sexual maturation at 10 wk. Furthermore, they were absent altogether in another premature aging mouse model with a distinct DNA repair defect. Specific types of unrepaired DNA damage may thus elicit a preservative organismal response affecting energy metabolism that is similar to the one that evolved to cope with the stress of food shortage.
Collapse
Affiliation(s)
- Marieke van de Ven
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jaan-Olle Andressoo
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie B Holcomb
- Department of Molecular Medicine, University of Texas/Institute of Biotechnology, San Antonio, Texas, United States of America
| | | | - Willeke M. C Jong
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yousin Suh
- Department of Molecular Medicine, University of Texas/Institute of Biotechnology, San Antonio, Texas, United States of America
| | - Paul Hasty
- Department of Molecular Medicine, University of Texas/Institute of Biotechnology, San Antonio, Texas, United States of America
| | - Jan H. J Hoeijmakers
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijsbertus T. J van der Horst
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - James R Mitchell
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
282
|
Cabelof DC, Ikeno Y, Nyska A, Busuttil RA, Anyangwe N, Vijg J, Matherly LH, Tucker JD, Wilson SH, Richardson A, Heydari AR. Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. Cancer Res 2006; 66:7460-5. [PMID: 16885342 DOI: 10.1158/0008-5472.can-06-1177] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study uses a base excision repair (BER)-deficient model, the DNA polymerase beta heterozygous mouse, to investigate the effect of BER deficiency on tumorigenicity and aging. Aged beta-pol(+/-) mice express 50% less beta-pol transcripts and protein (P < 0.05) than aged beta-pol(+/+) mice, showing maintenance of the heterozygous state over the life span of the mouse. This reduction in beta-pol expression was not associated with an increase in mutation rate but was associated with a 100% increase in the onset of hypoploidy. Aged beta-pol(+/-) mice exhibited a 6.7-fold increase in developing lymphoma (P < 0.01). Accordingly, 38% of beta-pol(+/-) mice exhibited lymphoid hyperplasia, whereas none of the beta-pol(+/+) exhibited this phenotype. beta-pol(+/-) mice were also more likely to develop adenocarcinoma (2.7-fold increase; P < 0.05) and more likely to develop multiple tumors, as 20% of the beta-pol(+/-) animals died bearing multiple tumors compared with only 5% of the beta-pol(+/+) animals (P < 0.05). In spite of accelerated tumor development, no gross effect of beta-pol heterozygosity was seen with respect to life span. However, the survival curves for the beta-pol(+/+) and beta-pol(+/-) mice are not identical. A maximum likelihood estimation analysis showed a modest but significant (P < 0.05) acceleration of the age-dependent mortality rate in beta-pol(+/-) mice. Thus, the beta-pol(+/-) mouse represents a model in which mortality rate and tumor development are accelerated and provides evidence supporting the role of genomic maintenance in both aging and carcinogenesis.
Collapse
Affiliation(s)
- Diane C Cabelof
- Karmanos Cancer Institute, Developmental Therapeutics Program, Wayne State University School of Medicine, 110 East Warren, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Ramos CA, Bowman TA, Boles NC, Merchant AA, Zheng Y, Parra I, Fuqua SAW, Shaw CA, Goodell MA. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells. PLoS Genet 2006; 2:e159. [PMID: 17009876 PMCID: PMC1584276 DOI: 10.1371/journal.pgen.0020159] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 08/09/2006] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic stem cells replenish all the cells of the blood throughout the lifetime of an animal. Although thousands of stem cells reside in the bone marrow, only a few contribute to blood production at any given time. Nothing is known about the differences between individual stem cells that dictate their particular state of activation readiness. To examine such differences between individual stem cells, we determined the global gene expression profile of 12 single stem cells using microarrays. We showed that at least half of the genetic expression variability between 12 single cells profiled was due to biological variation in 44% of the genes analyzed. We also identified specific genes with high biological variance that are candidates for influencing the state of readiness of individual hematopoietic stem cells, and confirmed the variability of a subset of these genes using single-cell real-time PCR. Because apparent variation of some genes is likely due to technical factors, we estimated the degree of biological versus technical variation for each gene using identical RNA samples containing an RNA amount equivalent to that of single cells. This enabled us to identify a large cohort of genes with low technical variability whose expression can be reliably measured on the arrays at the single-cell level. These data have established that gene expression of individual stem cells varies widely, despite extremely high phenotypic homogeneity. Some of this variation is in key regulators of stem cell activity, which could account for the differential responses of particular stem cells to exogenous stimuli. The capacity to accurately interrogate individual cells for global gene expression will facilitate a systems approach to biological processes at a single-cell level. The hematopoietic stem cell (HSC) has the remarkable property of being able to generate more stem cells or cells that are committed to undergo differentiation into specific blood lineages. Currently, very little is known about the specific mechanisms that underlie self-renewal or lineage commitment. Although it is possible that some of these mechanisms are influenced by the specific environment in which the HSC dwells, the ultimate fate decision has to occur at the single HSC level. The authors have developed a method that amplifies the messages from the majority of genes that are active in a single stem cell and combines it with large-scale genetic expression analysis through the use of nucleic acid microarrays. A significant fraction of these genes are found to be highly variable in an apparently very homogeneous stem cell population, which could be the substrate for differences in behavior of individual stem cells. Understanding the genetic expression events at the single-cell level would grant the ability to expand HSCs or to direct their differentiation into specific populations, both important from a therapeutic point of view. Furthermore, the same techniques can be applied to other stem cell systems to investigate their physiology.
Collapse
Affiliation(s)
- Carlos A Ramos
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Teresa A Bowman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Cell and Molecular Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathan C Boles
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Cell and Molecular Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Akil A Merchant
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yayun Zheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Irma Parra
- Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suzanne A. W Fuqua
- Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad A Shaw
- Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Margaret A Goodell
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Cell and Molecular Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
284
|
Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J, de Zeeuw CI, Jaspers NGJ, Raams A, Lehmann AR, Vermeulen W, Hoeijmakers JHJ, van der Horst GTJ. An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 2006; 10:121-32. [PMID: 16904611 DOI: 10.1016/j.ccr.2006.05.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 04/05/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Inborn defects in nucleotide excision DNA repair (NER) can paradoxically result in elevated cancer incidence (xeroderma pigmentosum [XP]) or segmental progeria without cancer predisposition (Cockayne syndrome [CS] and trichothiodystrophy [TTD]). We report generation of a knockin mouse model for the combined disorder XPCS with a G602D-encoding mutation in the Xpd helicase gene. XPCS mice are the most skin cancer-prone NER model to date, and we postulate an unusual NER dysfunction that is likely responsible for this susceptibility. XPCS mice also displayed symptoms of segmental progeria, including cachexia and progressive loss of germinal epithelium. Like CS fibroblasts, XPCS and TTD fibroblasts from human and mouse showed evidence of defective repair of oxidative DNA lesions that may underlie these segmental progeroid symptoms.
Collapse
Affiliation(s)
- Jaan-Olle Andressoo
- Medical Genetics Center, Department of Cell Biology and Genetics, Center of Biomedical Genetics, Cancer Genomics Center, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Free radicals provide a generally accepted explanation for age-related decline in tissue function. However, the free radical hypothesis does not provide a mechanistic course of action to explain exactly how damage to macromolecules translates into the recognizable pathophysiology of aged organisms. Recent advances in the fields of DNA damage and cellular senescence point towards a substantial role for the DNA damage response, rather than DNA mutations per se, in the genesis of cellular and/or tissue damage. Furthermore, several studies suggest that protein damage can be at least as important as DNA damage in bringing about the aging phenotype. Here we propose that a "protein damage response," namely the ER/UPR (endoplasmic reticulum/unfolded protein) stress response is likely to play an important role in the aging process.
Collapse
Affiliation(s)
- Felipe Sierra
- Biology of Aging, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave., Suite 2C231, Bethesda, MD 20892, USA.
| |
Collapse
|
286
|
Kunzmann A, Liu D, Annett K, Malaisé M, Thaa B, Hyland P, Barnett Y, Bürkle A. Flow-cytometric assessment of cellular poly(ADP-ribosyl)ation capacity in peripheral blood lymphocytes. IMMUNITY & AGEING 2006; 3:8. [PMID: 16854233 PMCID: PMC1564410 DOI: 10.1186/1742-4933-3-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/19/2006] [Indexed: 12/18/2022]
Abstract
Background Poly(ADP-ribosyl)ation is a posttranslational modification of nuclear proteins catalysed by poly(ADP-ribose) polymerases (PARPs), using NAD+ as a substrate. Activation of PARP-1 is in immediate response to DNA damage generated by endogenous and exogenous damaging agents. It has been implicated in several crucial cellular processes including DNA repair and maintenance of genomic stability, which are both intimately linked with the ageing process. The measurement of cellular poly(ADP-ribosyl)ation capacity, defined as the amount of poly(ADP-ribose) produced under maximal stimulation, is therefore relevant for research on ageing, as well as for a variety of other scientific questions. Results This paper reports a new, robust protocol for the measurement of cellular poly(ADP-ribosyl)ation capacity in PBMC or Jurkat T-cells using flow cytometry, based on a previously established immuno-dot-blot assay. In order to validate the new assay, we determined the dose-response curve of 3-aminobenzamide, a well-known competitive PARP inhibitor, and we derived an IC50 that is very close to the published value. When testing a set of PBMC samples taken from fifteen healthy young human donors, we could confirm the presence of a substantial interindividual variation, as previously observed using a radiometric assay. Conclusion The methodology described in this paper should be generally useful for the determination of cellular poly(ADP-ribosyl)ation capacity in a wide variety of settings, especially for the comparison of large sets of samples, such as population studies. In contrast to previously published radiometric or immuno-dot-blot assays, the new FACS-based method allows (i) selective analysis of mononuclear cells by gating and (ii) detection of a possible heterogeneity in poly(ADP-ribosyl)ation capacity between cells of the same type.
Collapse
Affiliation(s)
- Andrea Kunzmann
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| | - Dan Liu
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| | - Kathryn Annett
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Muriel Malaisé
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| | - Bastian Thaa
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| | - Paul Hyland
- School of Biomedical and Natural Sciences, College of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, Nottingham, UK
| | - Yvonne Barnett
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
- School of Biomedical and Natural Sciences, College of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, Nottingham, UK
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
287
|
Hartman TK, Wengenack TM, Poduslo JF, van Deursen JM. Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiol Aging 2006; 28:921-7. [PMID: 16781018 DOI: 10.1016/j.neurobiolaging.2006.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 04/03/2006] [Accepted: 05/03/2006] [Indexed: 11/27/2022]
Abstract
Aging is an intricate biological process thought to involve multiple molecular pathways. The spindle assembly checkpoint protein BubR1 has recently been implicated in aging since mutant mice that have small amounts of this protein (BubR1(H/H) mice) develop several early aging-associated phenotypes. The phenotype within the brain of BubR1(H/H) mice has not yet been established. Here we show that BubR1(H/H) mice exhibit features of age-related cerebral degeneration. We found that glial fibrillary acidic protein (GFAP), a marker of reactive astrogliosis, was expressed at increased levels in the cortex and thalamus of BubR1(H/H) mice as early as 1 month of age. Furthermore, CD11b, a marker of microgliosis, was markedly elevated in the cortex and hippocampus of BubR1(H/H) mice at 5 months of age. Levels of both GFAP and CD11b further increased with age. Our results demonstrate that BubR1 acts to prevent cerebral gliosis of both astrocytes and microglial cells, and suggest a role for BubR1 in the aging process of the brain.
Collapse
Affiliation(s)
- Tyler K Hartman
- Department of Pediatric/Adolescent Medicine, Mayo Clinic, College of Medicine, Rochester, MN 55905, United States
| | | | | | | |
Collapse
|
288
|
Razzaque MS, Lanske B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med 2006; 12:298-305. [PMID: 16731043 DOI: 10.1016/j.molmed.2006.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/18/2006] [Accepted: 05/16/2006] [Indexed: 02/07/2023]
Abstract
The essential role of low levels of vitamin D during aging is well documented. However, possible effects of high levels of vitamin D on the aging process are not yet clear. Recent in vivo genetic-manipulation studies have shown increased serum level of vitamin D and altered mineral-ion homeostasis in mice that lack either fibroblast growth factor 23 (Fgf23) or klotho (Kl) genes. These mice develop identical phenotypes consistent with premature aging. Elimination or reduction of vitamin-D activity from Fgf23 and Kl mutant mice, either by dietary restriction or genetic manipulation could rescue premature aging-like features and ectopic calcifications, resulting in prolonged survival of both mutants. Such in vivo experimental studies indicated that excessive vitamin-D activity and altered mineral-ion homeostasis could accelerate the aging process.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Educational Building, 190 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
289
|
Giglia-Mari G, Miquel C, Theil AF, Mari PO, Hoogstraten D, Ng JMY, Dinant C, Hoeijmakers JHJ, Vermeulen W. Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol 2006; 4:e156. [PMID: 16669699 PMCID: PMC1457016 DOI: 10.1371/journal.pbio.0040156] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 03/15/2006] [Indexed: 01/11/2023] Open
Abstract
Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the
TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER.
Transcription/repair factor IIH (TFIIH) is a multi-subunit protein complex essential for RNA polymerase II transcription and nucleotide excision repair (NER). The authors show that the TTDA subunit is associated with TFIIH specifically during NER.
Collapse
Affiliation(s)
- Giuseppina Giglia-Mari
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Catherine Miquel
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Arjan F Theil
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pierre-Olivier Mari
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Deborah Hoogstraten
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jessica M. Y Ng
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christoffel Dinant
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jan H. J Hoeijmakers
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wim Vermeulen
- 1Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
290
|
Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F. Selenium Supplementation Restores the Antioxidative Capacity and Prevents Cell Damage in Bone Marrow Stromal Cells In Vitro. Stem Cells 2006; 24:1226-35. [PMID: 16424399 DOI: 10.1634/stemcells.2005-0117] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone marrow stromal cells (BMSCs) and other cell populations derived from mesenchymal precursors are developed for cell-based therapeutic strategies and undergo cellular stress during ex vivo procedures. Reactive oxygen species (ROS) of cellular and environmental origin are involved in redox signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process superoxide anion to hydrogen peroxide, which is subsequently neutralized by GPx and CAT; TrxR neutralizes other ROS, such as peroxinitrite. Primary BMSCs and telomerase-immortalized human mesenchymal stem cells (hMSC-TERT) express GPx1-3, TrxR1, TrxR2, SOD1, SOD2, and CAT. We show here that in standard cell cultures (5%-10% fetal calf serum, 5-10 nM selenite), the activity of antioxidative selenoenzymes is impaired in hMSC-TERT and BMSCs. Under these conditions, the superoxide anion processing enzyme SOD1 is not sufficiently stimulated by an ROS load. Resulting oxidative stress favors generation of micronuclei in BMSCs. Supplementation of selenite (100 nM) restores basal GPx and TrxR activity, rescues basal and ROS-stimulated SOD1 mRNA expression and activity, and reduces ROS accumulation in hMSC-TERT and micronuclei generation in BMSCs. In conclusion, BMSCs in routine cell culture have low antioxidative capacity and are subjected to oxidative stress, as indicated by the generation of micronuclei. Selenite supplementation of BMSC cultures appears to be an important countermeasure to restore their antioxidative capacity and to reduce cell damage in the context of tissue engineering and transplantation procedures.
Collapse
Affiliation(s)
- Regina Ebert
- Musculosceletal Research Center, Orthopaedic Department, University of Würzburg, Brettreichstrasse 11, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Lukas J, Bohr VA, Halazonetis TD. Cellular responses to DNA damage: Current state of the field and review of the 52nd Benzon Symposium. DNA Repair (Amst) 2006; 5:591-601. [PMID: 16504601 DOI: 10.1016/j.dnarep.2006.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 01/02/2023]
Abstract
The response of cells to DNA damage is critical for maintaining genomic integrity and for preventing cancer development. Current advances in our understanding of the response of cells to DNA double-strand breaks and to stalled DNA replication forks and the relationship of these responses to human disease were discussed at the 52nd Benzon Symposium in Denmark, Copenhagen. Here we review the novel findings that were presented at this Symposium and the current state of the field.
Collapse
Affiliation(s)
- Jiri Lukas
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
292
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
293
|
Baker DJ, Jeganathan KB, Malureanu L, Perez-Terzic C, Terzic A, van Deursen JMA. Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. ACTA ACUST UNITED AC 2006; 172:529-40. [PMID: 16476774 PMCID: PMC2063673 DOI: 10.1083/jcb.200507081] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aging is a highly complex biological process that is believed to involve multiple mechanisms. Mice that have small amounts of the mitotic checkpoint protein BubR1 age much faster than normal mice, but whether other mitotic checkpoint genes function to prevent the early onset of aging is unknown. In this study, we show that several aging-associated phenotypes appear early in mice that are double haploinsufficient for the mitotic checkpoint genes Bub3 and Rae1 but not in mice that are single haploinsufficient for these genes. Mouse embryonic fibroblasts (MEFs) from Bub3/Rae1 haploinsufficient mice undergo premature senescence and accumulate high levels of p19, p53, p21, and p16, whereas MEFs from single haploinsufficient mice do not. Furthermore, although BubR1 hypomorphic mice have less aneuploidy than Bub3/Rae1 haploinsufficient mice, they age much faster. Our findings suggest that early onset of aging-associated phenotypes in mice with mitotic checkpoint gene defects is linked to cellular senescence and activation of the p53 and p16 pathways rather than to aneuploidy.
Collapse
Affiliation(s)
- Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
294
|
Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006; 20:720-2. [PMID: 16436465 PMCID: PMC2899884 DOI: 10.1096/fj.05-5432fje] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor 23 null mice (Fgf-23-/-) have a short lifespan and show numerous biochemical and morphological features consistent with premature aging-like phenotypes, including kyphosis, severe muscle wasting, hypogonadism, osteopenia, emphysema, uncoordinated movement, T cell dysregulation, and atrophy of the intestinal villi, skin, thymus, and spleen. Furthermore, increased vitamin D activities in homozygous mutants are associated with severe atherosclerosis and widespread soft tissue calcifications; ablation of vitamin D activity from Fgf-23-/- mice, by genetically deleting the 1alpha(OH)ase gene, eliminates atherosclerosis and ectopic calcifications and significantly rescues premature aging-like features of Fgf-23-/- mice, resulting in prolonged survival of Fgf-23-/-/1alpha(OH)ase-/- double mutants. Our results indicate a novel role of Fgf-23 in developing premature aging-like features through regulating vitamin D homeostasis. Finally, our data support a new model of interactions among Fgf-23, vitamin D, and klotho, a gene described as being associated with premature aging process.
Collapse
Affiliation(s)
- Mohammed S. Razzaque
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Despina Sitara
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Takashi Taguchi
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
295
|
Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124:315-29. [PMID: 16439206 DOI: 10.1016/j.cell.2005.11.044] [Citation(s) in RCA: 1214] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/19/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.
Collapse
Affiliation(s)
- Raul Mostoslavsky
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Abstract
Aging of somatic cells can be defined as the gradual loss of the information embedded in the global and local properties of complex macromolecular networks. This loss of information may reflect the dynamic interplay between stochastic factors, such as the accumulation of unrepaired somatic damage, and gene-encoded programmatic responses. This would ultimately result in loss of function, impaired response to environmental challenge, and a progressively increased incidence of disease. Here the authors present the case for aging as a continuous battle between maintaining genomic integrity and ensuring sufficient cell functional mass. Focusing on aging of the liver in rodents, evidence is presented that normal aging is associated with a gradual accumulation of random alterations in the DNA of the genome as a consequence of imperfect DNA repair and a decrease in the rate of DNA damage-induced apoptosis. Apoptosis is the cell's genome maintenance mechanism of last resort and an imbalance towards apoptosis can contribute to manifestations of aging-related phenotypes, as exemplified by mouse models of premature aging due to genetic defects in genome maintenance. Prospects to reset the clock in this zero sum game between survival and the maintenance of phenotypic integrity will be discussed.
Collapse
Affiliation(s)
- Yousin Suh
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78425, USA.
| | | |
Collapse
|
297
|
Leeuwenburgh C, Prolla TA. Genetics, redox signaling, oxidative stress, and apoptosis in mammalian aging. Antioxid Redox Signal 2006; 8:503-5. [PMID: 16677094 DOI: 10.1089/ars.2006.8.503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
298
|
Dollé MET, Busuttil RA, Garcia AM, Wijnhoven S, van Drunen E, Niedernhofer LJ, van der Horst G, Hoeijmakers JHJ, van Steeg H, Vijg J. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat Res 2006; 596:22-35. [PMID: 16472827 DOI: 10.1016/j.mrfmmm.2005.11.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 11/16/2022]
Abstract
Genetic defects in nucleotide excision repair (NER) are associated with premature aging, including cancer, in both humans and mice. To investigate the possible role of increased somatic mutation accumulation in the accelerated appearance of symptoms of aging as a consequence of NER deficiency, we crossed four different mouse mutants, Xpa-/-, Ercc6(Csb)-/-, Ercc2(Xpd)m/m and Ercc1-/m, with mice harboring lacZ-reporter genes to assess mutant frequencies and spectra in different organs during aging. The results indicate an accelerated accumulation of mutations in both liver and kidney of Xpa defective mice, which correlated with a trend towards a decreased lifespan. Until 52 weeks, Xpa deficiency resulted mainly in 1-bp deletions. At old age (104 weeks), the spectrum had undergone a shift, in both organs, to G:C-->T:A transversions, a signature mutation of oxidative DNA damage. Ercc1-/m mice, with their short lifespan of 6 months and severe symptoms of premature aging, especially in liver and kidney, displayed an even faster lacZ-mutant accumulation in liver. In this case, the excess mutations were mostly genome rearrangements. Csb-/- mice, with mild premature aging features and no reduction in lifespan, and Xpdm/m mice, exhibiting prominent premature aging features and about 20% reduction in lifespan, did not have elevated lacZ-mutant frequencies. It is concluded that while increased genomic instability could play a causal role in the mildly accelerated aging phenotype in the Xpa-null mice or in the severe progeroid symptoms of the Ercc1-mutant mice, shortened lifespan in mice with defects in transcription-related repair do not depend upon increased mutation accumulation.
Collapse
Affiliation(s)
- Martijn E T Dollé
- National Institute of Public Health and Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, Woontner M, Goodman SI, Cheng KC. A diet-induced mouse model for glutaric aciduria type I. ACTA ACUST UNITED AC 2006; 129:899-910. [PMID: 16446282 DOI: 10.1093/brain/awl009] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the autosomal recessive human disease, glutaric aciduria type I (GA-1), glutaryl-CoA dehydrogenase (GCDH) deficiency disrupts the mitochondrial catabolism of lysine and tryptophan. Affected individuals accumulate glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in the serum and often suffer acute striatal injury in childhood. Prior attempts to produce selective striatal vulnerability in an animal model have been unsuccessful. We hypothesized that acute striatal injury may be induced in GCDH-deficient (Gcdh-/-) mice by elevated dietary protein and lysine. Here, we show that high protein diets are lethal to 4-week-old and 8-week-old Gcdh-/- mice within 2-3 days and 7-8 days, respectively. High lysine alone resulted in vasogenic oedema and blood-brain barrier breakdown within the striatum, associated with serum and tissue GA accumulation, neuronal loss, haemorrhage, paralysis, seizures and death in 75% of 4-week-old Gcdh-/- mice after 3-12 days. In contrast, most 8-week-old Gcdh-/- mice survived on high lysine, but developed white matter lesions, reactive astrocytes and neuronal loss after 6 weeks. Thus, the Gcdh-/- mouse exposed to high protein or lysine may be a useful model of human GA-1 including developmentally dependent striatal vulnerability.
Collapse
Affiliation(s)
- William J Zinnanti
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Bonsall MB. The evolution of anisogamy: The adaptive significance of damage, repair and mortality. J Theor Biol 2006; 238:198-210. [PMID: 15993424 DOI: 10.1016/j.jtbi.2005.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 05/05/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Classic theory on the evolution of anisogamy focuses on the trade-off between gamete productivity and provisioning and mechanisms associated with post-zygotic survival. In this article, the role of mortality acting on both zygotes and gametes is explored as a factor influencing the evolution of different sized gametes. In particular, variable mortality through differential survival or metabolic damage is shown to affect the persistence of isogamy, the evolution of more than two sexes and the evolution of anisogamy. Evolutionary stable isogamous states are shown to be locally unstable and disruptive selection can induce the evolution of anisogamy. Analysis of both the isogamous and anisogamous ESS points reveals that the persistence of either of these conditions is not always assured. The implications of variable survival on the evolution of anisogamy are discussed.
Collapse
Affiliation(s)
- Michael B Bonsall
- Department of Biological Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK.
| |
Collapse
|