251
|
Taylor DJ, Leach RW, Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol Biol 2010; 10:193. [PMID: 20569424 PMCID: PMC2906475 DOI: 10.1186/1471-2148-10-193] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hemorrhagic diseases from Ebolavirus and Marburgvirus (Filoviridae) infections can be dangerous to humans because of high fatality rates and a lack of effective treatments or vaccine. Although there is evidence that wild mammals are infected by filoviruses, the biology of host-filovirus systems is notoriously poorly understood. Specifically, identifying potential reservoir species with the expected long-term coevolutionary history of filovirus infections has been intractable. Integrated elements of filoviruses could indicate a coevolutionary history with a mammalian reservoir, but integration of nonretroviral RNA viruses is thought to be nonexistent or rare for mammalian viruses (such as filoviruses) that lack reverse transcriptase and replication inside the nucleus. Here, we provide direct evidence of integrated filovirus-like elements in mammalian genomes by sequencing across host-virus gene boundaries and carrying out phylogenetic analyses. Further we test for an association between candidate reservoir status and the integration of filoviral elements and assess the previous age estimate for filoviruses of less than 10,000 years. Results Phylogenetic and sequencing evidence from gene boundaries was consistent with integration of filoviruses in mammalian genomes. We detected integrated filovirus-like elements in the genomes of bats, rodents, shrews, tenrecs and marsupials. Moreover, some filovirus-like elements were transcribed and the detected mammalian elements were homologous to a fragment of the filovirus genome whose expression is known to interfere with the assembly of Ebolavirus. The phylogenetic evidence strongly indicated that the direction of transfer was from virus to mammal. Eutherians other than bats, rodents, and insectivores (i.e., the candidate reservoir taxa for filoviruses) were significantly underrepresented in the taxa with detected integrated filovirus-like elements. The existence of orthologous filovirus-like elements shared among mammalian genera whose divergence dates have been estimated suggests that filoviruses are at least tens of millions of years old. Conclusions Our findings indicate that filovirus infections have been recorded as paleoviral elements in the genomes of small mammals despite extranuclear replication and a requirement for cooption of reverse transcriptase. Our results show that the mammal-filovirus association is ancient and has resulted in candidates for functional gene products (RNA or protein).
Collapse
Affiliation(s)
- Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
252
|
Leung DW, Shabman RS, Farahbakhsh M, Prins KC, Borek DM, Wang T, Mühlberger E, Basler CF, Amarasinghe GK. Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain. J Mol Biol 2010; 399:347-57. [PMID: 20399790 PMCID: PMC2917615 DOI: 10.1016/j.jmb.2010.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/10/2010] [Accepted: 04/12/2010] [Indexed: 12/01/2022]
Abstract
Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled with the multiple critical roles played by Ebola virus VP35 proteins, highlight the viability of VP35 as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Daisy W. Leung
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reed S. Shabman
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mina Farahbakhsh
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Biochemistry Undergraduate Program, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Kathleen C. Prins
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Dominika M. Borek
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Tianjiao Wang
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
- National Emerging Infectious Diseases Laboratories Institute, 72 East Concord Street, Boston, MA 02118
| | | | - Gaya K. Amarasinghe
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
253
|
Arzt J, White WR, Thomsen BV, Brown CC. Agricultural diseases on the move early in the third millennium. Vet Pathol 2010; 47:15-27. [PMID: 20080480 DOI: 10.1177/0300985809354350] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With few exceptions, the diseases that present the greatest risk to food animal production have been largely similar throughout the modern era of veterinary medicine. The current trend regarding the ever-increasing globalization of the trade of animals and animal products ensures that agricultural diseases will continue to follow legal and illegal trade patterns with increasing rapidity. Global climate changes have already had profound effects on the distribution of animal diseases, and it is an inevitable reality that continually evolving climatic parameters will further transform the ecology of numerous pathogens. In recent years, many agricultural diseases have given cause for concern regarding changes in distribution or severity. Foot-and-mouth disease, avian influenza, and African swine fever continue to cause serious problems. The expected announcement of the global eradication of rinderpest is one of the greatest successes of veterinary preventative medicine, yet the closely related disease peste des petits ruminants still spreads throughout the Middle East and Asia. The spread of novel strains of bluetongue virus across Europe is an ominous indicator that climate change is sure to influence trends in movement of agricultural diseases. Overall, veterinary practitioners and investigators are advised to not only maintain vigilance against the staple disease threats but to always be sufficiently broad-minded to expect the unexpected.
Collapse
Affiliation(s)
- J Arzt
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA.
| | | | | | | |
Collapse
|
254
|
Becquart P, Wauquier N, Mahlakõiv T, Nkoghe D, Padilla C, Souris M, Ollomo B, Gonzalez JP, De Lamballerie X, Kazanji M, Leroy EM. High prevalence of both humoral and cellular immunity to Zaire ebolavirus among rural populations in Gabon. PLoS One 2010; 5:e9126. [PMID: 20161740 PMCID: PMC2817732 DOI: 10.1371/journal.pone.0009126] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/20/2010] [Indexed: 11/24/2022] Open
Abstract
To better understand Zaire ebolavirus (ZEBOV) circulation and transmission to humans, we conducted a large serological survey of rural populations in Gabon, a country characterized by both epidemic and non epidemic regions. The survey lasted three years and covered 4,349 individuals from 220 randomly selected villages, representing 10.7% of all villages in Gabon. Using a sensitive and specific ELISA method, we found a ZEBOV-specific IgG seroprevalence of 15.3% overall, the highest ever reported. The seroprevalence rate was significantly higher in forested areas (19.4%) than in other ecosystems, namely grassland (12.4%), savannah (10.5%), and lakeland (2.7%). No other risk factors for seropositivity were found. The specificity of anti-ZEBOV IgG was confirmed by Western blot in 138 individuals, and CD8 T cells from seven IgG+ individuals were shown to produce IFN-gamma after ZEBOV stimulation. Together, these findings show that a large fraction of the human population living in forested areas of Gabon has both humoral and cellular immunity to ZEBOV. In the absence of identified risk factors, the high prevalence of "immune" persons suggests a common source of human exposure such as fruits contaminated by bat saliva. These findings provide significant new insights into ZEBOV circulation and human exposure, and raise important questions as to the human pathogenicity of ZEBOV and the existence of natural protective immunization.
Collapse
Affiliation(s)
- Pierre Becquart
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- UMR190 Emergence des Pathologies Virales, Université Aix-Marseille II & Institut de Recherche pour le Développement, Marseille, France
| | - Nadia Wauquier
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Tanel Mahlakõiv
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Dieudonné Nkoghe
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Cindy Padilla
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Marc Souris
- UMR190 Emergence des Pathologies Virales, Université Aix-Marseille II & Institut de Recherche pour le Développement, Marseille, France
- Mahidol University at Salaya, Nakhonpathon, Thailand
| | - Benjamin Ollomo
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Jean-Paul Gonzalez
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Xavier De Lamballerie
- UMR190 Emergence des Pathologies Virales, Université Aix-Marseille II & Institut de Recherche pour le Développement, Marseille, France
| | - Mirdad Kazanji
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Eric M. Leroy
- Unité des Maladies Virales Emergentes, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- UMR190 Emergence des Pathologies Virales, Université Aix-Marseille II & Institut de Recherche pour le Développement, Marseille, France
| |
Collapse
|
255
|
Cárdenas WB. Evasion of the interferon-mediated antiviral response by filoviruses. Viruses 2010; 2:262-282. [PMID: 21994610 PMCID: PMC3185555 DOI: 10.3390/v2010262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/09/2023] Open
Abstract
The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs) that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN) antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.
Collapse
Affiliation(s)
- Washington B Cárdenas
- Laboratorio de Biomedicina, FIMCM, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km 30.5 via Perimetral, Apartado 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
256
|
Valmas C, Grosch MN, Schümann M, Olejnik J, Martinez O, Best SM, Krähling V, Basler CF, Mühlberger E. Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 2010; 6:e1000721. [PMID: 20084112 PMCID: PMC2799553 DOI: 10.1371/journal.ppat.1000721] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/10/2009] [Indexed: 12/27/2022] Open
Abstract
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling. The closely related members of the filovirus family, Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic disease in humans with high fatality rates. Infected individuals exhibit dysregulated immune responses which appear to result from several factors, including virus-mediated impairment of innate immune responses. Previous studies demonstrated that both MARV and EBOV block the type I interferon-induced Jak-STAT signaling pathway. For EBOV, the viral protein VP24 mediates the inhibitory effects by interfering with the nuclear translocation of activated STAT proteins. Here, we show that MARV uses a distinct mechanism to block IFN signaling pathways. Our data revealed that MARV blocks the phosphorylation of Janus kinases and their target STAT proteins in response to type I and type II interferon and interleukin 6. Surprisingly, the observed inhibition is not achieved by the MARV VP24 protein, but by the matrix protein VP40 which also mediates viral budding. Over-expression studies indicate that MARV VP40 globally antagonizes Jak1-dependent signaling. Further, we show that a MARV VP40 mutant defective for budding retains interferon antagonist function. Our results highlight a basic difference between EBOV and MARV, define a new function for MARV VP40 and reveal new targets for the development of anti-MARV therapies.
Collapse
Affiliation(s)
- Charalampos Valmas
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Melanie N. Grosch
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories Institute, Boston, Massachusetts, United States of America
- Department of Virology, Philipps University of Marburg, Marburg, Germany
| | - Michael Schümann
- Department of Virology, Philipps University of Marburg, Marburg, Germany
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories Institute, Boston, Massachusetts, United States of America
- Department of Virology, Philipps University of Marburg, Marburg, Germany
| | - Osvaldo Martinez
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Verena Krähling
- Department of Virology, Philipps University of Marburg, Marburg, Germany
| | - Christopher F. Basler
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (CFB); (EM)
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories Institute, Boston, Massachusetts, United States of America
- Department of Virology, Philipps University of Marburg, Marburg, Germany
- * E-mail: (CFB); (EM)
| |
Collapse
|
257
|
Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc Natl Acad Sci U S A 2009; 107:314-9. [PMID: 20018665 DOI: 10.1073/pnas.0910547107] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.
Collapse
|
258
|
Insights into the evolutionary history of an emerging livestock pathogen: porcine circovirus 2. J Virol 2009; 83:12813-21. [PMID: 19812157 DOI: 10.1128/jvi.01719-09] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is the primary etiological agent of postweaning multisystemic wasting syndrome (PMWS), one of the most economically important emerging swine diseases worldwide. Virulent PCV2 was first identified following nearly simultaneous outbreaks of PMWS in North America and Europe in the 1990s and has since achieved global distribution. However, the processes responsible for the emergence and spread of PCV2 remain poorly understood. Here, phylogenetic and cophylogenetic inferences were utilized to address key questions on the time scale, processes, and geographic diffusion of emerging PCV2. The results of these analyses suggest that the two genotypes of PCV2 (PCV2a and PCV2b) are likely to have emerged from a common ancestor approximately 100 years ago and have been on independent evolutionary trajectories since that time, despite cocirculating in the same host species and geographic regions. The patterns of geographic movement of PCV2 that we recovered appear to mimic those of the global pig trade and suggest that the movement of asymptomatic animals is likely to have facilitated the rapid spread of virulent PCV2 around the globe. We further estimated the rate of nucleotide substitution for PCV2 to be on the order of 1.2 x 10(-3) substitutions/site/year, the highest yet recorded for a single-stranded DNA virus. This high rate of evolution may allow PCV2 to maintain evolutionary dynamics closer to those of single-stranded RNA viruses than to those of double-stranded DNA viruses, further facilitating the rapid emergence of PCV2 worldwide.
Collapse
|
259
|
News in brief. Nat Med 2009. [DOI: 10.1038/nm0809-832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
260
|
Abstract
Ebolavirus (EBOV) is a highly virulent pathogen capable of causing a severe hemorrhagic fever with 50-90% lethality. The EBOV glycoprotein (GP) is the only virally expressed protein on the virion surface and is critical for attachment to host cells and catalysis of membrane fusion. Hence, the EBOV GP is a critical component of vaccines as well as a target of neutralizing antibodies and inhibitors of attachment and fusion. The crystal structure of the Zaire ebolavirus GP in its trimeric, prefusion conformation (3 GP(1) plus 3 GP(2)) in complex with a neutralizing antibody fragment, derived from a human survivor of the 1995 Kikwit outbreak, was recently determined. This is the first near-complete structure of any filovirus glycoprotein. The overall molecular architecture of the Zaire ebolavirus GP and its role in viral entry and membrane fusion are discussed in this article.
Collapse
Affiliation(s)
- Jeffrey E Lee
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Tel.: +1 858 784 7976, Fax: +1 858 784 8218
| | - Erica Ollmann Saphire
- Department of Immunology & Microbial Science and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Tel.: +1 858 784 8602, Fax: +1 858 784 8218
| |
Collapse
|