251
|
MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons. Clin Sci (Lond) 2019; 133:583-595. [PMID: 30777884 DOI: 10.1042/cs20180980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
Recent reports, including ours, have indicated that microRNA (miR)-33 located within the intron of sterol regulatory element binding protein (SREBP) 2 controls cholesterol homeostasis and can be a potential therapeutic target for the treatment of atherosclerosis. Here, we show that SPAST, which encodes a microtubule-severing protein called SPASTIN, was a novel target gene of miR-33 in human. Actually, the miR-33 binding site in the SPAST 3'-UTR is conserved not in mice but in mid to large mammals, and it is impossible to clarify the role of miR-33 on SPAST in mice. We demonstrated that inhibition of miR-33a, a major form of miR-33 in human neurons, via locked nucleic acid (LNA)-anti-miR ameliorated the pathological phenotype in hereditary spastic paraplegia (HSP)-SPG4 patient induced pluripotent stem cell (iPSC)-derived cortical neurons. Thus, miR-33a can be a potential therapeutic target for the treatment of HSP-SPG4.
Collapse
|
252
|
Panserat S, Marandel L, Seiliez I, Skiba-Cassy S. New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annu Rev Anim Biosci 2019; 7:195-220. [DOI: 10.1146/annurev-animal-020518-115250] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid development of aquaculture production throughout the world over the past few decades has led to the emergence of new scientific challenges to improve fish nutrition. The diet formulations used for farmed fish have been largely modified in the past few years. However, bottlenecks still exist in being able to suppress totally marine resources (fish meal and fish oil) in diets without negatively affecting growth performance and flesh quality. A better understanding of fish metabolism and its regulation by nutrients is thus mandatory. In this review, we discuss four fields of research that are highly important for improving fish nutrition in the future: ( a) fish genome complexity and subsequent consequences for metabolism, ( b) microRNAs (miRNAs) as new actors in regulation of fish metabolism, ( c) the role of autophagy in regulation of fish metabolism, and ( d) the nutritional programming of metabolism linked to the early life of fish.
Collapse
Affiliation(s)
- S. Panserat
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - L. Marandel
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - I. Seiliez
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - S. Skiba-Cassy
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
253
|
LI H, HOU H, LIU S, FENG Y, ZHONG W, HU X, YAN N. miR-33 and RIP140 participate in LPS-induced acute lung injury. Turk J Med Sci 2019; 49:422-428. [PMID: 30761836 PMCID: PMC7350843 DOI: 10.3906/sag-1804-173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/aim Pulmonary microvascular endothelial cells (PMVECs) play a pivotal role in the process of acute lung injury (ALI), which can be induced by lipopolysaccharide (LPS). Numerous reports have indicated that both miR-33 and RIP140 are involved in the inflammatory response in macrophages. In this study, we sought to investigate whether miR-33 and RIP140 participate in ALI induced by LPS. Materials and methods First, we isolated and identified PMVECs from BALB/c mice. Subsequently, both PMVECs and BALB/c mice were treated with PBS, LPS, or pyrrolidine dithiocarbamate (PDTC) plus LPS and divided into three groups: control (PBS), LPS (LPS), and L+P (LPS plus PDTC) groups. We assessed pathology by hematoxylin and eosin staining, and miR-33 and RIP140 expression levels were examined using quantitative PCR and Western blot analyses. Results Our results demonstrated that LPS can induce PMVEC injury and ALI and that LPS treatment significantly decreased miR-33 expression compared with controls (P < 0.001, n = 5). On the contrary, RIP140 was markedly overexpressed by LPS treatment (P < 0.001, n = 5). However, this alteration can be inhibited by pretreatment with PDTC before LPS (P < 0.05, n = 5). Conclusion This study is the first to confirm that both miR-33 and RIP140 participate in LPS-induced PMVEC injury and ALI, which may help uncover the mechanism of ALI.
Collapse
Affiliation(s)
- Hua LI
- Basic Medical Experiments Center, Nanchang University, Nanchang, JiangxiP.R. China
| | - Huan HOU
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,Nanchang University, Nanchang, JiangxiP.R. China
| | - Shuang LIU
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,Nanchang University, Nanchang, JiangxiP.R. China
| | - Yangyang FENG
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,Nanchang University, Nanchang, JiangxiP.R. China
| | - Wansi ZHONG
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,Nanchang University, Nanchang, JiangxiP.R. China
| | - Xiaojuan HU
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,Nanchang University, Nanchang, JiangxiP.R. China
| | - Nianlong YAN
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences,Nanchang University, Nanchang, JiangxiP.R. China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
254
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
255
|
Wu H, Fan F, Liang C, Zhou Y, Qiao X, Sun Y, Jiang Y, Kang L. Variants of pri-miR-26a-5p polymorphisms are associated with values for chicken egg production variables and affects abundance of mature miRNA. Anim Reprod Sci 2019; 201:93-101. [DOI: 10.1016/j.anireprosci.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
|
256
|
Shao F, Wang X, Yu J, Shen K, Qi C, Gu Z. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxidation-regulatory genes CROT and HADHB in chicken liver. Br Poult Sci 2019; 60:115-124. [PMID: 30698464 DOI: 10.1080/00071668.2018.1564242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Limiting the growth of adipose tissue in chickens is a major issue in the poultry industry. In chickens, de novo synthesis of lipids occurs primarily in the liver. Thus, it is necessary to understand how fatty acid accumulation in the liver is controlled. The miR-33 is an intronic microRNA (miRNA) of the chicken sterol regulatory element binding transcription factor 2 (SREBF2), which is a master switch in activating many genes involved in the uptake and synthesis of cholesterol, triglycerides, fatty acids and phospholipids. 2. In the current study, the genes CROT and HADHB known to encode enzymes critical for fatty acid oxidation were predicted to be potential targets of miR-33 in chickens via the miRNA target prediction programs 'miRanda' and 'TargetScan'. Co-transfection and dual-luciferase reporter assays showed that the expression of luciferase reporter gene linked to the 3'-untranslated region (3'UTR) of the chicken CROT and HADHB mRNA was down-regulated by overexpression of the chicken miR-33 (P < 0.05). This down-regulation was completely abolished when the predicted miR-33 target sites in the CROT and HADHB 3'UTR were mutated. 3. Transfecting miR-33 mimics into the LMH cells led to a decrease in the mRNA expression of CROT and HADHB (P < 0.01), and this transfection had a similar effect on the proteins (P < 0.05). In contrast, the expression of CROT in primary chicken hepatocytes was up-regulated after transfection with the miR-33 inhibitor LNA-anti-miR-33 (P < 0.05). 4. Using quantitative RT-PCR, it was shown that the expression of miR-33 was increased in the chicken liver from day 0 to day 49 of age, whereas the CROT and HADHB mRNA levels decreased during the same period. 5. These findings support the conclusion that miR-33 might play an important role in lipid metabolism in the chicken liver by negatively regulating the expression of the CROT and HADHB genes, which encode enzymes critical for lipid oxidation.
Collapse
Affiliation(s)
- F Shao
- a Department of Life Science and Technology , Changshu Institute of Technology , Changshu, Jiangsu , China.,b Medical Research Centre , The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University , Changzhou, Jiangsu , China
| | - X Wang
- c Jiangsu Institute of Poultry Science , Yangzhou , Jiangsu , China
| | - J Yu
- a Department of Life Science and Technology , Changshu Institute of Technology , Changshu, Jiangsu , China
| | - K Shen
- b Medical Research Centre , The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University , Changzhou, Jiangsu , China
| | - C Qi
- b Medical Research Centre , The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University , Changzhou, Jiangsu , China
| | - Z Gu
- a Department of Life Science and Technology , Changshu Institute of Technology , Changshu, Jiangsu , China
| |
Collapse
|
257
|
Yu J, Peng J, Luan Z, Zheng F, Su W. MicroRNAs as a Novel Tool in the Diagnosis of Liver Lipid Dysregulation and Fatty Liver Disease. Molecules 2019; 24:molecules24020230. [PMID: 30634538 PMCID: PMC6358728 DOI: 10.3390/molecules24020230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic disorder, especially fatty liver disease, has been considered a major challenge to global health. The attention of researchers focused on expanding knowledge of the regulation mechanism behind these diseases and towards the new diagnostics tools and treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic tool, the function of microRNAs during fatty liver disease has recently come into notice in biological research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of fatty liver disease.
Collapse
Affiliation(s)
- Jingwei Yu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
- Department of Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jun Peng
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
258
|
Zhang BH, Shen CA, Zhu BW, An HY, Zheng B, Xu SB, Sun JC, Sun PC, Zhang W, Wang J, Liu JY, Fan YQ. Insight into miRNAs related with glucometabolic disorder. Biomed Pharmacother 2019; 111:657-665. [PMID: 30611990 DOI: 10.1016/j.biopha.2018.12.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022] Open
Abstract
A microRNA (miRNA) is a single-stranded, small and non-coding RNA molecule that contains 20-25 nucleotides. More than 2000 miRNAs have been identified in human genes since the first miRNA was discovered in Caenorhabditis elegans in the early 1990s. miRNAs play a crucial role in various biological processes by regulating gene expression through post-transcriptional mechanisms. The alterations of their levels are associated with various diseases, such as glucometabolic disorder and lipid metabolism disorder. In recent years, miRNAs have been proved to be involved in regulating the functions of pancreatic β-cells, insulin resistance and other biological behaviors related to glucometabolic disorder and the pathogenesis of diabetes mellitus (DM). This review summarized specific miRNAs, including miRNA-375 (miR-375), miRNA-155 (miR-155), miRNA-21 (miR-21), miRNA-33 (miR-33), the let-7 family and some other miRNAs related to glucometabolic regulation, introduced the obstacles and challenges in miRNA therapy, and discussed the prospect of new treatment methods for glucometabolic disorder.
Collapse
Affiliation(s)
- Bo-Han Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Chuan-An Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China.
| | - Bi-Wei Zhu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Hua-Ying An
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Bo Zheng
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Sheng-Bo Xu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jia-Chen Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Peng-Chao Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Wen Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jia Wang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jia-Ying Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Ya-Qian Fan
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
259
|
Hennessy EJ, van Solingen C, Scacalossi KR, Ouimet M, Afonso MS, Prins J, Koelwyn GJ, Sharma M, Ramkhelawon B, Carpenter S, Busch A, Chernogubova E, Matic LP, Hedin U, Maegdefessel L, Caffrey BE, Hussein MA, Ricci EP, Temel RE, Garabedian MJ, Berger JS, Vickers KC, Kanke M, Sethupathy P, Teupser D, Holdt LM, Moore KJ. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat Metab 2019; 1:98-110. [PMID: 31410392 PMCID: PMC6691505 DOI: 10.1038/s42255-018-0004-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human genome encodes thousands of long non-coding RNAs (lncRNAs), the majority of which are poorly conserved and uncharacterized. Here we identify a primate-specific lncRNA (CHROME), elevated in the plasma and atherosclerotic plaques of individuals with coronary artery disease, that regulates cellular and systemic cholesterol homeostasis. LncRNA CHROME expression is influenced by dietary and cellular cholesterol via the sterol-activated liver X receptor transcription factors, which control genes mediating responses to cholesterol overload. Using gain- and loss-of-function approaches, we show that CHROME promotes cholesterol efflux and HDL biogenesis by curbing the actions of a set of functionally related microRNAs that repress genes in those pathways. CHROME knockdown in human hepatocytes and macrophages increases levels of miR-27b, miR-33a, miR-33b and miR-128, thereby reducing expression of their overlapping target gene networks and associated biologic functions. In particular, cells lacking CHROME show reduced expression of ABCA1, which regulates cholesterol efflux and nascent HDL particle formation. Collectively, our findings identify CHROME as a central component of the non-coding RNA circuitry controlling cholesterol homeostasis in humans.
Collapse
Affiliation(s)
- Elizabeth J. Hennessy
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Coen van Solingen
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Kaitlyn R. Scacalossi
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Mireille Ouimet
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Milessa S. Afonso
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Jurrien Prins
- Department of Internal Medicine (Nephrology), Einthoven
Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center,
Leiden, The Netherlands
| | - Graeme J. Koelwyn
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Monika Sharma
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Bhama Ramkhelawon
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology,
University of California, Santa Cruz, California, USA
| | - Albert Busch
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum
Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum
Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Maryem A. Hussein
- Department of Microbiology, New York University School of
Medicine, New York, New York, USA
| | - Emiliano P. Ricci
- INSERM U1111, Centre International de Recherche en
Infectiologie, Ecole Normale Supérieure de Lyon, Université de Lyon,
Lyon, France
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, University of
Kentucky, Lexington, Kentucky, USA
| | - Michael J. Garabedian
- Department of Microbiology, New York University School of
Medicine, New York, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical
Center, Nashville, Tenessee, USA
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary
Medicine, Cornell University Ithaca, New York, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary
Medicine, Cornell University Ithaca, New York, USA
| | - Daniel Teupser
- Institute of Laboratory Medicine,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lesca M. Holdt
- Institute of Laboratory Medicine,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
260
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|
261
|
Nakamura A, Rampersaud YR, Nakamura S, Sharma A, Zeng F, Rossomacha E, Ali SA, Krawetz R, Haroon N, Perruccio AV, Mahomed NN, Gandhi R, Rockel JS, Kapoor M. microRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints. Ann Rheum Dis 2019; 78:111-121. [PMID: 30287418 DOI: 10.1136/annrheumdis-2018-213629] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We recently identified microRNA-181a-5p (miR-181a-5p) as a critical mediator involved in the destruction of lumbar facet joint (FJ) cartilage. In this study, we tested if locked nucleic acid (LNA) miR-181a-5p antisense oligonucleotides (ASO) could be used as a therapeutic to limit articular cartilage degeneration. METHODS We used a variety of experimental models consisting of both human samples and animal models of FJ and knee osteoarthritis (OA) to test the effects of LNA-miR-181a-5p ASO on articular cartilage degeneration. Histopathological analysis including immunohistochemistry and in situ hybridisation were used to detect key OA catabolic markers and microRNA, respectively. Apoptotic/cell death markers were evaluated by flow cytometry. qPCR and immunoblotting were applied to quantify gene and protein expression. RESULTS miR-181a-5p expression was increased in human FJ OA and knee OA cartilage as well as injury-induced FJ OA (rat) and trauma-induced knee OA (mouse) cartilage compared with control cartilage, correlating with classical OA catabolic markers in human, rat and mouse cartilage. We demonstrated that LNA-miR-181a-5p ASO in rat and mouse chondrocytes reduced the expression of cartilage catabolic and chondrocyte apoptotic/cell death markers in vitro. Treatment of OA-induced rat FJ or mouse knee joints with intra-articular injections of in vivo grade LNA-miR-181a-5p ASO attenuated cartilage destruction, and the expression of catabolic, hypertrophic, apoptotic/cell death and type II collagen breakdown markers. Finally, treatment of LNA-miR-181a-5p ASO in cultures of human knee OA chondrocytes (in vitro) and cartilage explants (ex vivo) further demonstrated its cartilage protective effects. CONCLUSIONS Our data demonstrate, for the first time, that LNA-miR-181a-5p ASO exhibit cartilage-protective effects in FJ and knee OA.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
- Division of Rheumatology, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Yoga Raja Rampersaud
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Sayaka Nakamura
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
| | - Anirudh Sharma
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
| | - Fanxing Zeng
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
| | - Evgeny Rossomacha
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
| | - Shabana Amanda Ali
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Nigil Haroon
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
- Division of Rheumatology, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
- Institute of Health Policy, Management & Evaluation, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Nizar N Mahomed
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jason S Rockel
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto , Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
262
|
Caputo TM, Cummaro A, Lettera V, Mazzarotta A, Battista E, Netti PA, Causa F. One-step scalable fluorescent microgel bioassay for the ultrasensitive detection of endogenous viral miR-US4-5p. Analyst 2018; 144:1369-1378. [PMID: 30566146 DOI: 10.1039/c8an02166j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (hCMV) infection is the leading cause of birth defects in newborns and death in immunosuppressed people. Traditional techniques require time-consuming and costly analyses, and sometimes result in false positive results; thus, a rapid and accurate detection for hCMV infection is necessary. Recently, hcmv-miR-US4-5p was selected as the biomarker for cytomegalovirus diagnosis and follow-up. Herein, we propose a bioassay based on microgels endowed with optical fluorescent oligonucleotide probes for the detection of circulating endogenous hcmv-microRNAs. In particular, a double strand probe, based on the fluorescence recovery after target capture, was conjugated on microgels and the probe density was opportunely optimised. Then, the microgels were directly mixed with the sample. The fluorescence read-out was measured as a function of target concentration at a fixed number of microgels per tube. As a bead-based assay, the performances of optical detection in terms of dynamic working range and limit of detection could be finely tuned by tuning the number of microgels per tube. The limit of detection of the assay could be tuned in the range from 39.1 fM to 156 aM by changing the microgel concentration from 50 μg mL-1 to 0.5 μg mL-1, respectively. The assay results specific for the selected target were stable over a one-year time span and they were not affected by the presence of human serum. Therefore, this bioassay based on microgels might represent a flexible platform that should be able to predict, identify and follow-up several diseases by monitoring freely circulating oligonucleotides in body fluids.
Collapse
Affiliation(s)
- Tania Mariastella Caputo
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Annunziata Cummaro
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Vincenzo Lettera
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Alessia Mazzarotta
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy. and Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy. and Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy and Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy. and Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy and Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
263
|
Reddy LL, Shah SAV, Ponde CK, Rajani RM, Ashavaid TF. Circulating miRNA-33: a potential biomarker in patients with coronary artery disease. Biomarkers 2018; 24:36-42. [PMID: 30022694 DOI: 10.1080/1354750x.2018.1501760] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNA) are present in body fluids in stable, cell-free form. Likewise, these miRNAs can be identified in various stages of coronary artery disease (CAD) such as inflammation, endothelial dysfunction, proliferation and atherosclerosis among others. miRNA expression levels can be identified. AIMS AND OBJECTIVES To determine the expression of circulating miRNAs (miR-126, miR-92, miR-33, miR-145 and miR-155) in CAD patients of Indian origin. MATERIAL AND METHODS miRNA profiling analysis in blood plasma was performed by quantitative real-time-PCR (qRT-PCR) in 60 angiographically verified subjects including 30 CAD patients and 30 age- and gender-matched controls. Association between the expression of all five circulating miRNAs and clinical characteristics of patients with CAD were analysed using Medcalc statistics. The severity of CAD was assessed using SYNTAX score (SS). RESULTS Expression of plasma miR-33 increased by 2.9 folds in CAD patients than in control group (p value ≥0.002) also it was found that miR-33 expression levels in mild cases (SS: ≤22) were significantly higher than CAD controls. There was a modest negative correlation between miR-33 and total cholesterol/high density lipoprotein ratio, triglycerides and very low density lipoprotein. CONCLUSION The study reports a significant association between increased levels of plasma miR-33 and CAD. Thus, plasma miR-33 appears to be a promising non-invasive biomarker, but requires further validation in a large cohort.
Collapse
Affiliation(s)
- Lakshmi Lavanya Reddy
- a Research Laboratories Department , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Swarup A V Shah
- b Department of Laboratory Medicine , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Chandrashekhar K Ponde
- c Department of Cardiology , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Rajesh M Rajani
- c Department of Cardiology , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Tester F Ashavaid
- d Department of Lab Medicine , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| |
Collapse
|
264
|
|
265
|
Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Gene 2018; 679:274-281. [DOI: 10.1016/j.gene.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/30/2023]
|
266
|
Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int J Mol Sci 2018; 19:ijms19113608. [PMID: 30445764 PMCID: PMC6275070 DOI: 10.3390/ijms19113608] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.
Collapse
|
267
|
Zhu T, Corraze G, Plagnes-Juan E, Skiba-Cassy S. Circulating miRNA measurements are reflective of cholesterol-based changes in rainbow trout (Oncorhynchus mykiss). PLoS One 2018; 13:e0206727. [PMID: 30395627 PMCID: PMC6218197 DOI: 10.1371/journal.pone.0206727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which are known to posttranscriptionally regulate the expression of most genes in both animals and plants. Meanwhile, studies have shown that numbers of miRNAs are present in body fluids including the plasma. Despite the mode of action of these circulating miRNAs still remains unknown, they have been found to be promising biomarkers for disease diagnosis, prognosis and response to treatment. In order to evaluate the potential of miRNAs as non-invasive biomarkers in aquaculture, a time-course experiment was implemented to investigate the postprandial regulation of miRNAs levels in liver and plasma as well as the hepatic expression of genes involved in cholesterol metabolism. We showed that miR-1, miR-33a, miR-122, miR-128 and miR-223 were expressed in the liver of rainbow trout and present at detectable level in the plasma. We also demonstrated that hepatic expression of miR-1, miR-122 and miR-128 were regulated by feed intake and reached their highest levels 12 hours after the meal. Interestingly, we observed that circulating levels of miR-128 and miR-223 are subjected to postprandial regulations similar to that observed in their hepatic counterparts. Statistical correlations were observed between liver and plasma for miR-128 and miR-223 and between hepatic and circulating miR-122, miR-128 and miR-223 and expression of genes related to cholesterol synthesis and efflux or glucose phosphorylation. These results demonstrated that circulating miR-122, miR-128 and miR-223 are potential biomarkers of cholesterol metabolism in rainbow trout.
Collapse
Affiliation(s)
- Tengfei Zhu
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Geneviève Corraze
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Sandrine Skiba-Cassy
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
- * E-mail:
| |
Collapse
|
268
|
miR-146a is involved in the regulation of vertebrate LC-PUFA biosynthesis by targeting elovl5 as demonstrated in rabbitfish Siganus canaliculatus. Gene 2018; 676:306-314. [DOI: 10.1016/j.gene.2018.08.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
|
269
|
Mohajeri M, Banach M, Atkin SL, Butler AE, Ruscica M, Watts GF, Sahebkar A. MicroRNAs: Novel Molecular Targets and Response Modulators of Statin Therapy. Trends Pharmacol Sci 2018; 39:967-981. [PMID: 30249403 DOI: 10.1016/j.tips.2018.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death globally. Addressing cardiovascular risk factors, particularly dyslipidemia, represents the most robust clinical strategy towards reducing the CVD burden. Statins inhibit 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and represent the main therapeutic approach for lowering cholesterol and reducing plaque formation/rupture. The protective effects of statins extend beyond lowering cholesterol. MicroRNAs (miRNAs or miRs), small noncoding regulatory RNAs, likely mediate the positive pleiotropic effects of statins via modulation of lipid metabolism, enhancement of endothelial function, inhibition of inflammation, improvement of plaque stability, and immune regulation. miRNAs are implicated in statin-related interindividual variations in therapeutic response, directly via HMG-CoA reductase, or indirectly through targeting cytochrome P450 3A (CYP3A) functionality and proprotein convertase subtilisin/kexin type9 (PCSK9) biology.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona-Gora, Poland
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Education City, Doha, Qatar
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Australia; School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
270
|
Liu Z, Chen X, Zhang Z, Zhang X, Saunders L, Zhou Y, Ma PX. Nanofibrous Spongy Microspheres To Distinctly Release miRNA and Growth Factors To Enrich Regulatory T Cells and Rescue Periodontal Bone Loss. ACS NANO 2018; 12:9785-9799. [PMID: 30141906 PMCID: PMC6205210 DOI: 10.1021/acsnano.7b08976] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In addition to T cells' roles in immune response and autoimmune diseases, certain types of T cells, called regulatory T cells (Tregs), play important roles in microenvironment modulation for resolution and tissue regeneration. However, there are currently few options available other than introducing more Tregs or immunosuppressive drugs to locally enrich Tregs. Herein, poly(l-lactic acid) (PLLA) nanofibrous spongy microspheres (NF-SMS), PLLA/polyethylene glycol (PEG) co-functionalized mesoporous silica nanoparticles (MSN), and poly(lactic acid- co-glycolic acid) microspheres (PLGA MS) are integrated into one multibiologic delivery vehicle for in situ Treg manipulation, where the MSNs and PLGA MS were utilized to distinctly release IL-2/TGF-β and miR-10a to locally recruit T cells and stimulate their differentiation into Tregs, while PLLA NF-SMS serve as an injectable scaffold for the adhesion and proliferation of these Tregs. In a mouse model of periodontitis, the injectable and biomolecule-delivering PLLA NF-SMS lead to Treg enrichment, expansion, and Treg-mediated immune therapy against bone loss. This system can potentially be utilized in a wide variety of other immune and regenerative therapies.
Collapse
Affiliation(s)
- Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Chen
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhanpeng Zhang
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojin Zhang
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
- Corresponding Authors (Y. Zhou): , (P.X. Ma):
| | - Peter X. Ma
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, Department of Materials Sciences and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding Authors (Y. Zhou): , (P.X. Ma):
| |
Collapse
|
271
|
Nie H, Yu X, He H, Zhou L, Li Q, Song C, Wang D, Ren T, Chen Z, Huang H, Dai X, Zhou Y. Hepatocyte miR-33a mediates mitochondrial dysfunction and hepatosteatosis by suppressing NDUFA5. J Cell Mol Med 2018; 22:6285-6293. [PMID: 30324697 PMCID: PMC6237601 DOI: 10.1111/jcmm.13918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/16/2018] [Accepted: 08/26/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that microRNAs (miRNAs) are essential for metabolic haemostasis of liver tissues. Among them, miR‐33a is supposed to modulate the cholesterol export and fatty acid oxidation, but whether miR‐33a involves in the process of fatty liver disease is unclear. To disclose the hypothesis, we utilized miR‐33a mimic and antisense to explore their effects in primary hepatocytes or high‐fat diet (HFD)‐fed mice. Treatment with palmitic acid (PA) or HFD significantly increased the expression of miR‐33a in hepatocytes or liver tissues. In primary hepatocytes, miR‐33a mimic decreased mitochondrial function, including reduction of ATP production and oxygen consumption, whereas miR‐33a inhibition protected PA‐induced mitochondrial dysfunction. Interestingly, miR‐33a selectively suppressed mitochondrial complex I activity and protein expression, but not other complexes. Through bioinformatics prediction, we found miR‐33a directly targeted on the 3′‐UTR of NDUFA5. Dual‐luciferase reporter analysis further confirmed the direct suppression of miR‐33a on NDUFA5 expression. More importantly, administration of miR‐33a antisense could effectively restore HFD‐induced mitochondrial dysfunction through up‐regulation of NDUFA5 levels. Mice treated with miR‐33a antisense also exhibited improved liver function and structural disorders under obese status. Taken together, miR‐33a was an important mediator of hepatocyte mitochondrial function, and the therapeutic benefits implied miR‐33a antisense had the potential clinical application in combating the fatty liver disease.
Collapse
Affiliation(s)
- Hezhongrong Nie
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaohong Yu
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haihong He
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lintao Zhou
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qing Li
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunli Song
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Damin Wang
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tingyu Ren
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zeyan Chen
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hanlian Huang
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoyan Dai
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yiwen Zhou
- Center of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
272
|
Jun S, Datta S, Wang L, Pegany R, Cano M, Handa JT. The impact of lipids, lipid oxidation, and inflammation on AMD, and the potential role of miRNAs on lipid metabolism in the RPE. Exp Eye Res 2018; 181:346-355. [PMID: 30292489 DOI: 10.1016/j.exer.2018.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
The accumulation of lipids within drusen, the epidemiologic link of a high fat diet, and the identification of polymorphisms in genes involved in lipid metabolism that are associated with disease risk, have prompted interest in the role of lipid abnormalities in AMD. Despite intensive investigation, our understanding of how lipid abnormalities contribute to AMD development remains unclear. Lipid metabolism is tightly regulated, and its dysregulation can trigger excess lipid accumulation within the RPE and Bruch's membrane. The high oxidative stress environment of the macula can promote lipid oxidation, impairing their original function as well as producing oxidation-specific epitopes (OSE), which unless neutralized, can induce unwanted inflammation that additionally contributes to AMD progression. Considering the multiple layers of lipid metabolism and inflammation, and the ability to simultaneously target multiple pathways, microRNA (miRNAs) have emerged as important regulators of many age-related diseases including atherosclerosis and Alzheimer's disease. These diseases have similar etiologic characteristics such as lipid-rich deposits, oxidative stress, and inflammation with AMD, which suggests that miRNAs might influence lipid metabolism in AMD. In this review, we discuss the contribution of lipids to AMD pathobiology and introduce how miRNAs might affect lipid metabolism during lesion development. Establishing how miRNAs contribute to lipid accumulation in AMD will help to define the role of lipids in AMD, and open new treatment avenues for this enigmatic disease.
Collapse
Affiliation(s)
- Sujung Jun
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Roma Pegany
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
273
|
Munir MT, Ponce C, Powell CA, Tarafdar K, Yanagita T, Choudhury M, Gollahon LS, Rahman SM. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer. J Steroid Biochem Mol Biol 2018; 183:1-9. [PMID: 29733910 DOI: 10.1016/j.jsbmb.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most commonly diagnosed cancers in women. Accumulating evidence suggests that cholesterol plays an important role in the development of breast cancer. Even though the mechanistic link between these two factors is not well understood, one possibility is that dysregulated cholesterol metabolism may affect lipid raft and membrane fluidity and can promote tumor development. Current studies have shown oxysterol 27-hydroxycholesterol (27-HC) as a critical regulator of cholesterol and breast cancer pathogenesis. This is supported by the significantly higher expression of CYP27A1 (cytochrome P450, family 27, subfamily A, polypeptide 1) in breast cancers. This enzyme is responsible for 27-HC synthesis from cholesterol. It has been shown that 27-HC can not only increase the proliferation of estrogen receptor (ER)-positive breast cancer cells but also stimulate tumor growth and metastasis in several breast cancer models. This phenomenon is surprising since 27-HC and other oxysterols generally reduce intracellular cholesterol levels by activating the liver X receptors (LXRs). Resolving this paradox will elucidate molecular pathways by which cholesterol, ER, and LXR are connected to breast cancer. These findings will also provide the rationale for evaluating pharmaceutical approaches that manipulate cholesterol or 27-HC synthesis in order to mitigate the impact of cholesterol on breast cancer pathophysiology. In addition to cholesterol, epigenetic changes including non-coding RNAs, and microRNAs, DNA methylation, and histone modifications, have all been shown to control tumorigenesis. The purpose of this review is to discuss the link between altered cholesterol metabolism and epigenetic modification during breast cancer progression.
Collapse
Affiliation(s)
- Maliha T Munir
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | | | - Catherine A Powell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | | | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Shaikh M Rahman
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
274
|
Yao ZY, Chen WB, Shao SS, Ma SZ, Yang CB, Li MZ, Zhao JJ, Gao L. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J Zhejiang Univ Sci B 2018; 19:183-198. [PMID: 29504312 DOI: 10.1631/jzus.b1600490] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic disorders are classified clinically as a complex and varied group of diseases including metabolic syndrome, obesity, and diabetes mellitus. Fat toxicity, chronic inflammation, and oxidative stress, which may change cellular functions, are considered to play an essential role in the pathogenetic progress of metabolic disorders. Recent studies have found that cells secrete nanoscale vesicles containing proteins, lipids, nucleic acids, and membrane receptors, which mediate signal transduction and material transport to neighboring and distant cells. Exosomes, one type of such vesicles, are reported to participate in multiple pathological processes including tumor metastasis, atherosclerosis, chronic inflammation, and insulin resistance. Research on exosomes has focused mainly on the proteins they contain, but recently the function of exosome-associated microRNA has drawn a lot of attention. Exosome-associated microRNAs regulate the physiological function and pathological processes of metabolic disorders. They may also be useful as novel diagnostics and therapeutics given their special features of non-immunogenicity and quick extraction. In this paper, we summarize the structure, content, and functions of exosomes and the potential diagnostic and therapeutic applications of exosome-associated microRNAs in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zhen-Yu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Wen-Bin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shan-Shan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Shi-Zhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Chong-Bo Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Meng-Zhu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
275
|
Li D, Guo L, Deng B, Li M, Yang T, Yang F, Yang Z. Long non‑coding RNA HR1 participates in the expression of SREBP‑1c through phosphorylation of the PDK1/AKT/FoxO1 pathway. Mol Med Rep 2018; 18:2850-2856. [PMID: 30015961 PMCID: PMC6102743 DOI: 10.3892/mmr.2018.9278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
Sterol regulatory element binding protein‑1c (SREBP‑1c), which serves an essential role in the process of fat synthesis, is a key adjustment factor that regulates the dynamic balance of lipid metabolism. SREBP‑1c activates the transcription of multiple genes encoding for enzymes involved in the synthesis of triglycerides (TG) and fatty acids (FA) and accelerates lipid synthesis. Previous analysis indicated that long non‑coding RNA HCV regulated 1 (lncHR1) participates in lipid metabolism in vivo and regulates the level of SREBP‑1c protein. However, the mechanism of lncHR1 in regulating SREBP‑1c levels has not been revealed. In the present study, a fatty degeneration cell model was used to study how lncHR1 regulates the SREBP‑1c protein at the cellular level. Furthermore TG accumulation was assessed according to morphological analysis. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to detected the expression of SREBP‑1c. An activator and an inhibitor of phosphoinositide 3‑kinase/AKT phosphorylation (IGF‑1 and LY294002, respectively) were used to study the effect of lncHR1 on this pathway. It was verified that lncHR1 regulated SREBP‑1c levels and the phosphorylation of AKT in the steatosis cell model. Detailed molecular mechanisms mediated by lncHR1 were associated with the phosphorylation AKT/FoxO1 in Huh7 cell lines. Simultaneously, lncHR1 affected the location of FoxO1 inside and outside of the nucleus. Furthermore, the phosphorylation of PDK1 upstream of AKT was regulated through overexpression or knockdown lncHR1, as determined by western blotting. Taken together, these data show that lncHR1 inhibits SREBP‑1c levels through the phosphorylation of the PDK1/AKT/FoxO1 axis.
Collapse
Affiliation(s)
- Duan Li
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Liwei Guo
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Baoguo Deng
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Min Li
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tingting Yang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Fan Yang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhijun Yang
- Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
276
|
Edwardson MA, Zhong X, Fiandaca MS, Federoff HJ, Cheema AK, Dromerick AW. Plasma microRNA markers of upper limb recovery following human stroke. Sci Rep 2018; 8:12558. [PMID: 30135469 PMCID: PMC6105620 DOI: 10.1038/s41598-018-31020-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Preclinical investigators have implicated several microRNAs as regulators of gene expression promoting neural plasticity following experimental stroke in rodent models. Our goal was to determine whether similar microRNAs might be identifiable in plasma of humans with variable recovery from stroke. Plasma was collected 19 days post-stroke from 27 participants with mild-moderate upper extremity impairment enrolled in the Critical Periods After Stroke Study (CPASS). MicroRNA expression was assessed using TaqMan microRNA assays. Good clinical recovery was defined as ≥6 point change in the Action Research Arm Test (ARAT) score from baseline to 6 months, with 22 subjects showing good and 5 showing poor recovery. When comparing the good versus poor recovery groups, six microRNAs showed significantly decreased expression – miR-371-3p, miR-524, miR-520g, miR-1255A, miR-453, and miR-583, while 3 showed significantly increased expression - miR-941, miR-449b, and miR-581. MiR-371-3p and miR-941 have previously been associated with neural repair mechanisms; none of the significant microRNAs have previously been associated with stroke. The 9 microRNAs converge on pathways associated with axonal guidance, developmental biology, and cancer. We conclude that plasma microRNAs may be informative regarding human neural repair mechanisms during stroke recovery and probably differ from those seen in experimental stroke models.
Collapse
Affiliation(s)
- Matthew A Edwardson
- Georgetown University, Department of Neurology, Washington, DC, USA. .,Georgetown University and MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Washington, DC, USA.
| | - Xiaogang Zhong
- Georgetown University, Department of Biostatistics, Bioinformatics, and Biomathematics, Washington, DC, USA
| | - Massimo S Fiandaca
- University of California Irvine, Department of Neurology, Irvine, CA, USA.,University of California Irvine, Department of Neurological Surgery, Irvine, CA, USA.,University of California Irvine, Department of Anatomy & Neurobiology, Irvine, CA, USA
| | - Howard J Federoff
- University of California Irvine, Department of Neurology, Irvine, CA, USA.,UC Irvine Health System, Irvine, CA, USA
| | - Amrita K Cheema
- Georgetown University, Department of Biochemistry, Washington, DC, USA.,Georgetown University, Department of Oncology, Washington, DC, USA
| | - Alexander W Dromerick
- Georgetown University, Department of Neurology, Washington, DC, USA.,Georgetown University and MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Washington, DC, USA.,VA Medical Center, Washington, DC, USA
| |
Collapse
|
277
|
Zhi Z, Zhu H, Lv X, Lu C, Li Y, Wu F, Zhou L, Li H, Tang W. IGF2-derived miR-483-3p associated with Hirschsprung's disease by targeting FHL1. J Cell Mol Med 2018; 22:4913-4921. [PMID: 30073757 PMCID: PMC6156468 DOI: 10.1111/jcmm.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic miRNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR-483-3p along with its host gene IGF2 (Insulin-like growth factor 2) was found down-regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR-483-3p via dual-luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SH-SY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR-483-3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR-483-3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 siRNA may inverse the function of miR-483-3p inhibitor. This study revealed that miR-483-3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.
Collapse
Affiliation(s)
- Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hairong Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Wu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
278
|
Abstract
MicroRNAs (miRNAs) are known as the master regulators of gene expression, and for the last two decades our knowledge of their functional reach keeps expanding. Recent studies have shown that a miRNA’s role in regulation extends to extracellular and intracellular organelles. Several studies have shown a role for miRNA in regulating the mitochondrial genome in normal and disease conditions. Mitochondrial dysfunction occurs in many human pathologies, such as cardiovascular disease, diabetes, cancer, and neurological diseases. These studies have shed some light on regulation of the mitochondrial genome as well as helped to explain the role of miRNA in altering mitochondrial function and the ensuing effects on cells. Although the field has grown in recent years, many questions still remain. For example, little is known about how nuclear-encoded miRNAs translocate to the mitochondrial matrix. Knowledge of the mechanisms of miRNA transport into the mitochondrial matrix is likely to provide important insights into our understanding of disease pathophysiology and could represent new targets for therapeutic intervention. For this review, our focus will be on the role of a subset of miRNAs, known as MitomiR, in mitochondrial function. We also discuss the potential mechanisms used by these nuclear-encoded miRNAs for import into the mitochondrial compartment. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/microrna-translocation-into-the-mitochondria/ .
Collapse
Affiliation(s)
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
279
|
Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR, Zhang Y, Kong J, Jiang C, Shi J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food 2018; 2:13. [PMID: 31304263 PMCID: PMC6550192 DOI: 10.1038/s41538-018-0022-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis (AS) is a typical example of a widespread fatal cardiovascular disease. Accumulation of cholesterol-laden macrophages in the artery wall forms the starting point of AS. Increased influx of oxidized low-density lipoprotein to macrophages and decreased efflux of free cholesterol out of macrophages constitute major factors promoting the development of AS. Inflammation further aggravates the development of AS along or via interaction with the cholesterol metabolism. Many microRNAs (miRNAs) are related to the regulation of macrophage in AS in aspects of cholesterol metabolism and inflammation signaling. Dietary compounds perform AS inhibitory effects via miRNAs in the cholesterol metabolism (miR-19b, miR-378, miR-10b, miR-33a, and miR-33b) and two miRNAs in the inflammation signaling (miR-155 and miR-146a). The targeted miRNAs in the cholesterol metabolism vary greatly among different food compounds; however, in inflammation signaling, most food compounds target miR-155. Many receptors are involved in macrophages via miRNAs, including ABCA1 and ABCG1 as major receptors in the cholesterol metabolism, while nuclear factor-κB (NF-κB) and Nrf2 signaling and PI3K/AKT signaling pathways are targeted during inflammation. This article reviews current literature to investigate possible AS therapy with dietary compounds via targeting miRNAs. Currently existing problems were also discussed to guide further studies.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yichao Di
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Lei Zhang
- Department of Microbiology and Pathogeny Biology, Xi’an Medical University, 1 Xinwang Road, Xi’an, 710072 Shaanxi China
| | - Muhammad shahid riaz Rajoka
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yudan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| |
Collapse
|
280
|
Abstract
The lung has a unique relationship to cholesterol that is shaped by its singular physiology. On the one hand, the lungs receive the full cardiac output and have a predominant dependence on plasma lipoprotein uptake for their cholesterol supply. On the other hand, surfactant lipids, including cholesterol, are continually susceptible to oxidation owing to direct environmental exposure and must be cleared or recycled because of the very narrow biophysical mandates placed upon surfactant lipid composition. Interestingly, increased lipid-laden macrophage "foam cells" have been noted in a wide range of human lung pathologies. This suggests that lipid dysregulation may be a unifying and perhaps contributory event in chronic lung disease pathogenesis. Recent studies have shown that perturbations in intracellular cholesterol trafficking critically modify the immune response of macrophages and other cells. This minireview discusses literature that has begun to demonstrate the importance of regulated cholesterol traffic through the lung to pulmonary immunity, inflammation, and fibrosis. This emerging recognition of coupling between immunity and lipid homeostasis in the lung presents potentially transformative concepts for understanding lung disease and may also offer novel and exciting avenues for therapeutic development.
Collapse
|
281
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
282
|
MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6C high Monocytes through Dual Pathways. Mol Cell Biol 2018; 38:MCB.00604-17. [PMID: 29712758 PMCID: PMC6024165 DOI: 10.1128/mcb.00604-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA 33 (miR-33) targets ATP-binding cassette transporter A1 (ABCA1), and its deficiency increases serum high-density lipoprotein (HDL)-cholesterol (HDL-C) and ameliorates atherosclerosis. Although we previously reported that miR-33 deficiency increased peripheral Ly6Chigh monocytes on an ApoE-deficient background, the effect of miR-33 on the monocyte population has not been fully elucidated, especially in a wild-type (WT) background. We found that Ly6Chigh monocytes in miR-33−/− mice were decreased in peripheral blood and increased in bone marrow (BM). Expansion of myeloid progenitors and decreased apoptosis in Lin− Sca1+ c-Kit+ (LSK) cells were observed in miR-33−/− mice. A BM transplantation study and competitive repopulation assay revealed that hematopoietic miR-33 deficiency caused myeloid expansion and increased peripheral Ly6Chigh monocytes and that nonhematopoietic miR-33 deficiency caused reduced peripheral Ly6Chigh monocytes. Expression of high-mobility group AT-hook 2 (HMGA2) targeted by miR-33 increased in miR-33-deficient LSK cells, and its knockdown abolished the reduction of apoptosis. Transduction of human apolipoprotein A1 and ABCA1 in WT mouse liver increased HDL-C and reduced peripheral Ly6Chigh monocytes. These data indicate that miR-33 deficiency affects distribution of inflammatory monocytes through dual pathways. One pathway involves the enhancement of Hmga2 expression in hematopoietic stem cells to increase Ly6Chigh monocytes, and the other involves the elevation of HDL-C to decrease peripheral Ly6Chigh monocytes.
Collapse
|
283
|
|
284
|
Zhang X, Price NL, Fernández-Hernando C. Non-coding RNAs in lipid metabolism. Vascul Pharmacol 2018; 114:93-102. [PMID: 29929012 DOI: 10.1016/j.vph.2018.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD), the leading cause of death and morbidity in the Western world, begins with lipid accumulation in the arterial wall, which is the initial step in atherogenesis. Alterations in lipid metabolism result in increased risk of cardiometabolic disorders, and treatment of lipid disorders remains the most common strategy aimed at reducing the incidence of CVD. Work done over the past decade has identified numerous classes of non-coding RNA molecules including microRNAs (miRNAs) and long-non-coding RNAs (lncRNAs) as critical regulators of gene expression involved in lipid metabolism and CVD, mostly acting at post-transcriptional level. A number of miRNAs, including miR-33, miR-122 and miR-148a, have been demonstrated to play important role in controlling the risk of CVD through regulation of cholesterol homeostasis and lipoprotein metabolism. lncRNAs are recently emerging as important regulators of lipid and lipoprotein metabolism. However, much additional work will be required to fully understand the impact of lncRNAs on CVD and lipid metabolism, due to the high abundance of lncRNAs and the poor-genetic conservation between species. This article reviews the role of miRNAs and lncRNAs in lipid and lipoprotein metabolism and their potential implications for the treatment of CVD.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA.
| |
Collapse
|
285
|
Wei Y, Zhu M, Schober A. Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer. Int J Mol Sci 2018; 19:ijms19061756. [PMID: 29899293 PMCID: PMC6032097 DOI: 10.3390/ijms19061756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies in chronic inflammatory diseases. MicroRNAs (miRNAs) have been demonstrated to play important roles in macrophage functions by regulating macrophage polarization, lipid metabolism and so on. Thus, miRNAs represent promising diagnostic and therapeutic targets in immune disorders. In this review, we will summarize the role of miRNAs in atherosclerosis, metabolic syndrome, and cancer by modulating macrophage phenotypes, which has been supported by in vivo evidence.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany.
| | - Mengyu Zhu
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
286
|
Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Rep 2018; 21:1317-1330. [PMID: 29091769 DOI: 10.1016/j.celrep.2017.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/12/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022] Open
Abstract
As an important regulator of macrophage cholesterol efflux and HDL biogenesis, miR-33 is a promising target for treatment of atherosclerosis, and numerous studies demonstrate that inhibition of miR-33 increases HDL levels and reduces plaque burden. However, important questions remain about how miR-33 impacts atherogenesis, including whether this protection is primarily due to direct effects on plaque macrophages or regulation of lipid metabolism in the liver. We demonstrate that miR-33 deficiency in Ldlr-/- mice promotes obesity, insulin resistance, and hyperlipidemia but does not impact plaque development. We further assess how loss of miR-33 or addition of miR-33b in macrophages and other hematopoietic cells impact atherogenesis. Macrophage-specific loss of miR-33 decreases lipid accumulation and inflammation under hyperlipidemic conditions, leading to reduced plaque burden. Therefore, the pro-atherogenic effects observed in miR-33-deficient mice are likely counterbalanced by protective effects in macrophages, which may be the primary mechanism through which anti-miR-33 therapies reduce atherosclerosis.
Collapse
|
287
|
Deng X, Qin S, Chen Y, Liu HY, Yuan E, Deng H, Liu SM. B-RCA revealed circulating miR-33a/b associates with serum cholesterol in type 2 diabetes patients at high risk of ASCVD. Diabetes Res Clin Pract 2018; 140:191-199. [PMID: 29601916 DOI: 10.1016/j.diabres.2018.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
AIMS Type 2 diabetes (T2D) is a complex metabolic disease with high incidence throughout the world. Dyslipidemia is the leading cause of atherosclerotic cardiovascular diseases (ASCVD) in T2D patients. hsa-miR-33 (miR-33) serves as a regulator in lipid metabolism. We hypothesized that blood miR-33 associates with serum lipids in T2D patients at high risk of ASCVD events. METHODS We developed a branched rolling circle amplification (B-RCA) method and assessed its sensitivity and specificity with miR-33a/b standards by traditional TaqMan assay. Circulating miR-33a/b level was then determined with B-RCA in 30 T2D patients at high risk for developing ASCVD and 33 healthy controls. Pearson correlation coefficient was used to evaluate the correlation between circulating miR-33a/b and serum cholesterol. RESULTS Compared with TaqMan assay, B-RCA method showed a similar specificity and a 100-fold higher sensitivity for miR-33a detection. Circulating miR-33a/b level is positively correlated with serum total cholesterol (TC) (r = 0.364, p = 0.048) and low-density lipoprotein cholesterol (LDL-C) (r = 0.383, p = 0.037) in T2D patients at high risk for developing ASCVD. CONCLUSIONS Our B-RCA method provided an alternative strategy with specificity and high sensitivity for circulating miRNAs detection, and the results demonstrated that miR-33a/b might play an important role in cholesterol regulation.
Collapse
Affiliation(s)
- Xujing Deng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China.
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China.
| | - Huan-Yu Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China; Department of Clinical Medicine, Hubei University of Medicine, Hubei 442000, China.
| | - Erfeng Yuan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| |
Collapse
|
288
|
Effects of Rosuvastatin on the expression of the genes involved in cholesterol metabolism in rats: adaptive responses by extrahepatic tissues. Gene 2018; 661:45-50. [DOI: 10.1016/j.gene.2018.03.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
|
289
|
Lai SC, Phelps CA, Short AM, Dutta SM, Mu D. Thyroid transcription factor 1 enhances cellular statin sensitivity via perturbing cholesterol metabolism. Oncogene 2018; 37:3290-3300. [PMID: 29551766 PMCID: PMC6003839 DOI: 10.1038/s41388-018-0174-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 01/11/2023]
Abstract
We have discovered an unexpected connection between a critical lung development and cancer gene termed thyroid transcription factor 1 (TTF-1 also known as NKX2-1) and cholesterol metabolism. Our published work implicates that TTF-1 positively regulates miR-33a which is known to repress ATP-binding cassette transporter 1 (ABCA1) and thus its cholesterol efflux activity. We set out to demonstrate that a higher TTF-1 expression would presumably inhibit cholesterol efflux and consequently raise intracellular cholesterol level. Surprisingly, raising TTF-1 expression actually lowers intracellular cholesterol level, which, we believe, is attributed to a direct transactivation of ABCA1 by TTF-1. Subsequently, we show that lung cancer cells primed with a TTF-1-driven decrease of cholesterol were more vulnerable to simvastatin, a frequently prescribed cholesterol biosynthesis inhibitor. In view of the fact that pathologists routinely interrogate human lung cancers for TTF-1 immunopositivity to guide diagnosis and the prevalent use of statins, TTF-1 should be further investigated as a putative biomarker of lung cancer vulnerability to statins.
Collapse
Affiliation(s)
- Shao-Chiang Lai
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- bioAffinity Technologies Inc., San Antonio, TX, USA
| | - Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
| | - Aleena M Short
- Biotechnology Master's Program, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
| | - Sucharita M Dutta
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Beth Israel Deaconess Medical School, Boston, MA, USA
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
| |
Collapse
|
290
|
Zambrano T, Salazar LA. microRNAs and response to statins in patients with hypercholesterolemia: from basic research to precision medicine. Pharmacogenomics 2018; 19:748-751. [PMID: 29785870 DOI: 10.2217/pgs-2018-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Tomás Zambrano
- Center of Molecular Biology & Pharmacogenetics, Scientific & Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis A Salazar
- Center of Molecular Biology & Pharmacogenetics, Scientific & Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
291
|
Chen T, Yan D, Cheng X, Ji X, Bian J, Yin W. miR-1224-5p Enhances Hepatic Lipogenesis by Targeting Adenosine Monophosphate-Activated Protein Kinase α1 in Male Mice. Endocrinology 2018; 159:2008-2021. [PMID: 29474539 DOI: 10.1210/en.2017-03231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs are potential therapeutic targets for metabolic diseases. Here, miR-1224-5p was highly expressed in the livers of mice fed a high-fat diet (HFD) and in obese (ob/ob) mice. To examine the potential role of miR-1224-5p, we constructed liver-specific adenoviral vectors expressing either an miR-1224-5p inhibitor sequence or miR-1224-5p mimic sequences. After tail-vein vector injection, HFD-fed mice were examined for expression of lipogenic genes. We found that miR-1224-5p inhibitors significantly attenuated hepatic lipogenesis and steatosis in HFD-fed mice, whereas miR-1224-5p mimicked promoted lipid accumulation in the liver of chow-fed C57BL/6 mice. Additional in vitro studies demonstrated that downregulation of miR-1224-5p in HepG2 and primary hepatocytes led to a reduction of cellular triglycerides after treatment with an oleic acid and palmitic acid mixture. Importantly, this study also identified adenosine monophosphate-activated protein kinase (AMPK)-α1 as a direct target of miR-1224-5p. miR-1224-5p binding to the 3' untranslated region of AMPKα1 suppressed expression of the AMPKα1 protein and its downstream molecules. Metformin, an activator of AMPK, also inhibited hepatic expression of miR-1224-5p. Together, these findings indicate that miR-1224-5p promotes hepatic lipogenesis by suppressing AMPKα1 expression and suggest that miR-1224-5p inhibitors warrant further investigation as potential therapeutic tools in the treatment of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tianxing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Dong Yan
- Department of Cardiology, Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Xiaoying Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - XiaoJun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jinjun Bian
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wu Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
292
|
Zambrano T, Hirata RD, Hirata MH, Cerda Á, Salazar LA. Statins differentially modulate microRNAs expression in peripheral cells of hyperlipidemic subjects: A pilot study. Eur J Pharm Sci 2018; 117:55-61. [DOI: 10.1016/j.ejps.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/13/2023]
|
293
|
Chai J, Chen L, Luo Z, Zhang T, Chen L, Lou P, Sun W, Long X, Lan J, Wang J, Pu H, Qiu J, Shuai S, Guo Z. Spontaneous single nucleotide polymorphism in porcine microRNA-378 seed region leads to functional alteration. Biosci Biotechnol Biochem 2018; 82:1081-1089. [PMID: 29658390 DOI: 10.1080/09168451.2018.1459175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence variation in a microRNA (miRNA) seed region can influence its biogenesis and effects on target mRNAs; however, in mammals, few seed region mutations leading to functional alterations have been reported to date. Here, we report the identification of a single nucleotide polymorphism (SNP) with functional consequence located in the seed region of porcine miR-378. In vitro analysis of this rs331295049 A17G SNP showed significantly up-regulated expression of the mature miR-378 (miR-378/G). In silico target prediction indicated that the SNP would modulate secondary structure and result in functional loss affecting >85% of the known target genes of the wild-type miR-378 (miR-378/A), and functional gain affecting >700 new target genes, and dual-luciferase reporter assay verified this result. This report of a SNP in the seed region of miR-378 leads to functional alteration and indicates the potential for substantive functional consequences to the molecular physiology of a mammalian organism.
Collapse
Affiliation(s)
- Jie Chai
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Lei Chen
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Zonggang Luo
- c Department of Animal Science , Southwest University , Chongqing , China
| | - Tinghuan Zhang
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Li Chen
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Pengbo Lou
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Wenyang Sun
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Xi Long
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Jing Lan
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Jinyong Wang
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Hongzhou Pu
- d Agricultural Bureau of Nanjiang , Nanjiang , China
| | - Jinjie Qiu
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Surong Shuai
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Zongyi Guo
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| |
Collapse
|
294
|
Liu F, Gong R, Lv X, Li H. The expression profiling and ontology analysis of non-coding RNAs in dexamethasone induced steatosis in hepatoma cell. Gene 2018; 650:19-26. [PMID: 29409992 DOI: 10.1016/j.gene.2018.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis.
Collapse
Affiliation(s)
- Fengqiong Liu
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China; Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, Fujian, China
| | - Ruijie Gong
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China
| | - Xiaofei Lv
- Department of internal medicine, Guangdong Women and Children's hospital, Guangzhou Medical University, 521 Xingnan Road, Guangzhou, China
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fujian, China.
| |
Collapse
|
295
|
Abstract
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
Collapse
Affiliation(s)
- David H Wasserman
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas J Wang
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Brown
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
296
|
Kostyniuk DJ, Culbert BM, Mennigen JA, Gilmour KM. Social status affects lipid metabolism in rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2018; 315:R241-R255. [PMID: 29561648 DOI: 10.1152/ajpregu.00402.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Juvenile rainbow trout ( Oncorhynchus mykiss) confined in pairs form social hierarchies in which socially subordinate fish display characteristic traits, including reduced growth rates and altered glucose metabolism. These effects are, in part, mediated by chronically elevated cortisol levels and/or reduced feeding. To determine the effects of social status on lipid metabolism, trout were held in pairs for 4 days, following which organismal and liver-specific indexes of lipid metabolism were measured. At the organismal level, circulating triglycerides were elevated in dominant trout, whereas subordinate trout exhibited elevated concentrations of circulating free fatty acids (FFAs) and lowered plasma total cholesterol levels. At the molecular level, increased expression of lipogenic genes in dominant trout and cpt1a in subordinate trout was identified, suggesting a contribution of increased de novo lipogenesis to circulating triglycerides in dominant trout and reliance on circulating FFAs for β-oxidation in the liver of subordinates. Given the emerging importance of microRNAs (miRNA) in the regulation of hepatic lipid metabolism, candidate miRNAs were profiled, revealing increased expression of the lipogenic miRNA-33 in dominant fish. Because the Akt-TOR-S6-signaling pathway is an important upstream regulator of hepatic lipid metabolism, its signaling activity was quantified. However, the only difference detected among groups was a strong increase in S6 phosphorylation in subordinate trout. In general, the changes observed in lipid metabolism of subordinates were not mimicked by either cortisol treatment or fasting alone, indicating the existence of specific, emergent effects of subordinate social status itself on this fuel.
Collapse
Affiliation(s)
| | - Brett M Culbert
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | | |
Collapse
|
297
|
Anastasilakis AD, Makras P, Pikilidou M, Tournis S, Makris K, Bisbinas I, Tsave O, Yovos JG, Yavropoulou MP. Changes of Circulating MicroRNAs in Response to Treatment With Teriparatide or Denosumab in Postmenopausal Osteoporosis. J Clin Endocrinol Metab 2018; 103:1206-1213. [PMID: 29309589 DOI: 10.1210/jc.2017-02406] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/19/2017] [Indexed: 02/10/2023]
Abstract
CONTEXT Expression of microRNAs (miRs) related to bone metabolism in the serum may be affected by antiosteoporotic treatment. OBJECTIVE To investigate the effect of two antiosteoporotic agents with opposite effects on bone metabolism on miR expression profile in the serum. DESIGN Observational, open label, nonrandomized clinical trial. SETTING The outpatient clinics for Metabolic Bone Diseases of 424 General Military Hospital, Thessaloniki, Greece. PATIENTS AND INTERVENTIONS Postmenopausal women with low bone mass were treated with either teriparatide (TPTD; n = 30) or denosumab (n = 30) for 12 months. MAIN OUTCOME MEASURES Changes in the serum expression of selected miRs linked to bone metabolism at 3 and 12 months of treatment. Secondary measurements: associations of measured miRs with changes in bone mineral density (BMD) at 12 months and the bone turnover markers (BTMs) C-terminal cross-linking telopeptide of type I collagen and procollagen type I N-terminal propeptide at 3 and 12 months. RESULTS We found significantly decreased relative expression of miR-33-3p at 3 months (P = 0.03) and of miR-133a at 12 months (P = 0.042) of TPTD treatment. BMD values at 12 months of TPTD treatment were significantly and inversely correlated with miR-124-3p expression at 3 months (P = 0.008). Relative expression of miR-24-3p and miR-27a was correlated with changes in BTMs during TPTD treatment and of miR-21-5p, miR-23a-3p, miR-26a-5p, miR-27a, miR-222-5p, and miR-335-5p with changes in BTMs during denosumab treatment. CONCLUSIONS Circulating miRs are differentially affected by treatment with TPTD and denosumab. TPTD affects the relative expression of miRs related to the expression of RUNX-2 (miR-33) and DKK-1 gene (miR-133).
Collapse
Affiliation(s)
| | - Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Maria Pikilidou
- Laboratory of Clinical and Molecular Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Symeon Tournis
- Laboratory of Research of Musculoskeletal System "Th. Garofalidis," Medical School, University of Athens, KAT Hospital, Athens, Greece
| | - Konstantinos Makris
- Laboratory of Research of Musculoskeletal System "Th. Garofalidis," Medical School, University of Athens, KAT Hospital, Athens, Greece
| | - Ilias Bisbinas
- First Department of Orthopedics, 424 General Military Hospital, Thessaloniki, Greece
| | - Olga Tsave
- Laboratory of Clinical and Molecular Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John G Yovos
- Laboratory of Clinical and Molecular Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria P Yavropoulou
- Laboratory of Clinical and Molecular Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
298
|
Thanikachalam PV, Ramamurthy S, Wong ZW, Koo BJ, Wong JY, Abdullah MF, Chin YH, Chia CH, Tan JY, Neo WT, Tan BS, Khan WF, Kesharwani P. Current attempts to implement microRNA-based diagnostics and therapy in cardiovascular and metabolic disease: a promising future. Drug Discov Today 2018; 23:460-480. [DOI: 10.1016/j.drudis.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
|
299
|
DeBose-Boyd RA, Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 2018; 43:358-368. [PMID: 29500098 DOI: 10.1016/j.tibs.2018.01.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| |
Collapse
|
300
|
Chu M, Zhao Y, Yu S, Hao Y, Zhang P, Feng Y, Zhang H, Ma D, Liu J, Cheng M, Li L, Shen W, Cao H, Li Q, Min L. MicroRNA-221 may be involved in lipid metabolism in mammary epithelial cells. Int J Biochem Cell Biol 2018; 97:118-127. [PMID: 29474925 DOI: 10.1016/j.biocel.2018.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/27/2022]
Abstract
Milk lipids, important for infant growth and development, are produced and secreted by mammary gland under the regulation of steroid hormones, growth factors, and microRNAs (miRNAs). miR-221 has been identified in milk and adipocytes and it plays important roles in regulating normal mammary epithelial hierarchy and breast cancer stem cells; however, its roles in lipid metabolism in mammary epithelial cells (MECs), the cells of lipid synthesis and secretion, are as yet unknown. Through overexpression or inhibition of miR-221 expression, we found that it regulated lipid metabolism in MECs and was expressed differentially at various stages during murine mammary gland development. Inhibition of miR-221 expression increased lipid content in MECs through elevation of the lipid synthesis enzyme FASN, while overexpression of miR-221 reduced MEC lipid content. Moreover, the steroid hormones estradiol and progesterone decreased miR-221 expression with a subsequent increase in lipid formation in MECs. The expression of miR-221 was lower during lactation, which suggests that it may be involved in milk production. Therefore, miR-221 might be a useful target for influencing milk lipid production.
Collapse
Affiliation(s)
- Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuai Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanan Hao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pengfei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Dongxue Ma
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration, Qingdao, 266000, PR China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfang Cao
- Laiwu Veterinary and Livestock Administration, Laiwu, 271100, PR China
| | - Qiang Li
- Laiwu Veterinary and Livestock Administration, Laiwu, 271100, PR China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|