251
|
Mammel AE, Hatch EM. Genome instability from nuclear catastrophe and DNA damage. Semin Cell Dev Biol 2022; 123:131-139. [PMID: 33839019 PMCID: PMC8494860 DOI: 10.1016/j.semcdb.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
The nuclear envelope compartmentalizes the eukaryotic genome, provides mechanical resistance, and regulates access to the chromatin. However, recent studies have identified several conditions where the nuclear membrane ruptures during interphase, breaking down this compartmentalization leading to DNA damage, chromothripsis, and kataegis. This review discusses three major circumstances that promote nuclear membrane rupture, nuclear deformation, chromatin bridges, and micronucleation, and how each of these nuclear catastrophes results in DNA damage. In addition, we highlight recent studies that demonstrate a single chromosome missegregation can initiate a cascade of events that lead to accumulating damage and even multiple rounds of chromothripsis.
Collapse
Affiliation(s)
- Anna E. Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily M. Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
252
|
Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds. Int J Mol Sci 2022; 23:ijms23052415. [PMID: 35269558 PMCID: PMC8910162 DOI: 10.3390/ijms23052415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
The understanding of endothelium–extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates. Using two-photon polymerization, we generated 3D microstructures triggering endothelial phenotypes evocative of tip cell behaviour. Hexagonal lattices on pillars (“open”), but not “closed” hexagonal lattices, induced engagement from the endothelial monolayer with the generation of numerous filopodia. The development of image analysis tools for filopodia tracking allowed to probe the influence of the microtopography (pore size, regular vs. elongated structures, role of the pillars) on orientations, engagement and filopodia dynamics, and to identify MLCK (myosin light-chain kinase) as a key player for filopodia-based protrusive mode. Importantly, these events occurred independently of VEGF treatment, suggesting that the observed phenotype was induced through microtopography. These microstructures are proposed as a model research tool for understanding endothelial cell behaviour in 3D fibrillary networks.
Collapse
|
253
|
Mohammadalipour A, Diaz MF, Livingston M, Ewere A, Zhou A, Horton PD, Olamigoke LT, Lamar JM, Hagan JP, Lee HJ, Wenzel PL. RhoA-ROCK competes with YAP to regulate amoeboid breast cancer cell migration in response to lymphatic-like flow. FASEB Bioadv 2022; 4:342-361. [PMID: 35520391 PMCID: PMC9065582 DOI: 10.1096/fba.2021-00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
Lymphatic drainage generates force that induces prostate cancer cell motility via activation of Yes-associated protein (YAP), but whether this response to fluid force is conserved across cancer types is unclear. Here, we show that shear stress corresponding to fluid flow in the initial lymphatics modifies taxis in breast cancer, whereas some cell lines use rapid amoeboid migration behavior in response to fluid flow, a separate subset decrease movement. Positive responders displayed transcriptional profiles characteristic of an amoeboid cell state, which is typical of cells advancing at the edges of neoplastic tumors. Regulation of the HIPPO tumor suppressor pathway and YAP activity also differed between breast subsets and prostate cancer. Although subcellular localization of YAP to the nucleus positively correlated with overall velocity of locomotion, YAP gain- and loss-of-function demonstrates that YAP inhibits breast cancer motility but is outcompeted by other pro-taxis mediators in the context of flow. Specifically, we show that RhoA dictates response to flow. GTPase activity of RhoA, but not Rac1 or Cdc42 Rho family GTPases, is elevated in cells that positively respond to flow and is unchanged in cells that decelerate under flow. Disruption of RhoA or the RhoA effector, Rho-associated kinase (ROCK), blocked shear stress-induced motility. Collectively, these findings identify biomechanical force as a regulator amoeboid cell migration and demonstrate stratification of breast cancer subsets by flow-sensing mechanotransduction pathways.
Collapse
Affiliation(s)
- Amina Mohammadalipour
- Department of Integrative Biology & PharmacologyThe University of Texas Health Science Center at HoustonTexasUSA
| | - Miguel F. Diaz
- Department of Integrative Biology & PharmacologyThe University of Texas Health Science Center at HoustonTexasUSA,Children’s Regenerative Medicine ProgramDepartment of Pediatric SurgeryThe University of Texas Health Science Center at HoustonTexasUSA,Center for Stem Cell and Regenerative MedicineBrown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonTexasUSA
| | - Megan Livingston
- Department of Integrative Biology & PharmacologyThe University of Texas Health Science Center at HoustonTexasUSA,Children’s Regenerative Medicine ProgramDepartment of Pediatric SurgeryThe University of Texas Health Science Center at HoustonTexasUSA,Center for Stem Cell and Regenerative MedicineBrown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonTexasUSA,Biochemistry and Cell Biology ProgramMD Anderson UTHealth Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Adesuwa Ewere
- Children’s Regenerative Medicine ProgramDepartment of Pediatric SurgeryThe University of Texas Health Science Center at HoustonTexasUSA,Center for Stem Cell and Regenerative MedicineBrown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonTexasUSA,School of MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Allen Zhou
- Children’s Regenerative Medicine ProgramDepartment of Pediatric SurgeryThe University of Texas Health Science Center at HoustonTexasUSA,Center for Stem Cell and Regenerative MedicineBrown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonTexasUSA
| | - Paulina D. Horton
- Department of Integrative Biology & PharmacologyThe University of Texas Health Science Center at HoustonTexasUSA,Children’s Regenerative Medicine ProgramDepartment of Pediatric SurgeryThe University of Texas Health Science Center at HoustonTexasUSA,Center for Stem Cell and Regenerative MedicineBrown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonTexasUSA,Immunology ProgramMD Anderson UTHealth Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Loretta T. Olamigoke
- Vivian L. Smith Department of NeurosurgeryThe University of Texas Health Science Center at HoustonTexasUSA
| | - John M. Lamar
- Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNew YorkUSA
| | - John P. Hagan
- Vivian L. Smith Department of NeurosurgeryThe University of Texas Health Science Center at HoustonTexasUSA
| | - Hyun J. Lee
- Department of Anatomy and Cell BiologyCollege of MedicineChung‐Ang UniversitySeoulSouth Korea,Department of Global Innovative DrugsGraduate School of Chung‐Ang UniversitySeoulSouth Korea
| | - Pamela L. Wenzel
- Department of Integrative Biology & PharmacologyThe University of Texas Health Science Center at HoustonTexasUSA,Children’s Regenerative Medicine ProgramDepartment of Pediatric SurgeryThe University of Texas Health Science Center at HoustonTexasUSA,Center for Stem Cell and Regenerative MedicineBrown Foundation Institute of Molecular MedicineThe University of Texas Health Science Center at HoustonTexasUSA,Biochemistry and Cell Biology ProgramMD Anderson UTHealth Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA,Immunology ProgramMD Anderson UTHealth Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| |
Collapse
|
254
|
Das UN. Arachidonic Acid as Mechanotransducer of Renin Cell Baroreceptor. Nutrients 2022; 14:nu14040749. [PMID: 35215399 PMCID: PMC8874622 DOI: 10.3390/nu14040749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
For normal maintenance of blood pressure and blood volume a well-balanced renin-angiotensin-aldosterone system (RAS) is necessary. For this purpose, renin is secreted as the situation demands by the juxtaglomerular cells (also called as granular cells) that are in the walls of the afferent arterioles. Juxtaglomerular cells can sense minute changes in the blood pressure and blood volume and accordingly synthesize, store, and secrete appropriate amounts of renin. Thus, when the blood pressure and blood volume are decreased JGA cells synthesize and secrete higher amounts of renin and when the blood pressure and blood volume is increased the synthesis and secretion of renin is decreased such that homeostasis is restored. To decipher this important function, JGA cells (renin cells) need to sense and transmit the extracellular physical forces to their chromatin to control renin gene expression for appropriate renin synthesis. The changes in perfusion pressure are sensed by Integrin β1 that is transmitted to the renin cell’s nucleus via lamin A/C that produces changes in the architecture of the chromatin. This results in an alteration (either increase or decrease) in renin gene expression. Cell membrane is situated in an unique location since all stimuli need to be transmitted to the cell nucleus and messages from the DNA to the cell external environment can be conveyed only through it. This implies that cell membrane structure and integrity is essential for all cellular functions. Cell membrane is composed to proteins and lipids. The lipid components of the cell membrane regulate its (cell membrane) fluidity and the way the messages are transmitted between the cell and its environment. Of all the lipids present in the membrane, arachidonic acid (AA) forms an important constituent. In response to pressure and other stimuli, cellular and nuclear shape changes occur that render nucleus to act as an elastic mechanotransducer that produces not only changes in cell shape but also in its dynamic behavior. Cell shape changes in response to external pressure(s) result(s) in the activation of cPLA2 (cytosolic phospholipase 2)-AA pathway that stretches to recruit myosin II which produces actin-myosin cytoskeleton contractility. Released AA can undergo peroxidation and peroxidized AA binds to DNA to regulate the expression of several genes. Alterations in the perfusion pressure in the afferent arterioles produces parallel changes in the renin cell membrane leading to changes in renin release. AA and its metabolic products regulate not only the release of renin but also changes in the vanilloid type 1 (TRPV1) expression in renal sensory nerves. Thus, AA and its metabolites function as intermediate/mediator molecules in transducing changes in perfusion and mechanical pressures that involves nuclear mechanotransduction mechanism. This mechanotransducer function of AA has relevance to the synthesis and release of insulin, neurotransmitters, and other soluble mediators release by specialized and non-specialized cells. Thus, AA plays a critical role in diseases such as diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, sepsis, lupus, rheumatoid arthritis, and cancer.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
| |
Collapse
|
255
|
Das UN. Renin cell baroreceptor and arachidonic acid. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2021.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
256
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
257
|
Gandin A, Torresan V, Ulliana L, Panciera T, Contessotto P, Citron A, Zanconato F, Cordenonsi M, Piccolo S, Brusatin G. Broadly Applicable Hydrogel Fabrication Procedures Guided by YAP/TAZ-Activity Reveal Stiffness, Adhesiveness, and Nuclear Projected Area as Checkpoints for Mechanosensing. Adv Healthc Mater 2022; 11:e2102276. [PMID: 34825526 DOI: 10.1002/adhm.202102276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Indexed: 11/12/2022]
Abstract
Mechanical signals are pivotal ingredients in how cells perceive and respond to their microenvironments, and to synthetic biomaterials that mimic them. In spite of increasing interest in mechanobiology, probing the effects of physical cues on cell behavior remains challenging for a cell biology laboratory without experience in fabrication of biocompatible materials. Hydrogels are ideal biomaterials recapitulating the physical cues that natural extracellular matrices (ECM) deliver to cells. Here, protocols are streamlined for the synthesis and functionalization of cell adhesive polyacrylamide-based (PAA-OH) and fully-defined polyethyleneglycol-based (PEG-RGD) hydrogels tuned at various rigidities for mechanobiology experiments, from 0.3 to >10 kPa. The mechanosignaling properties of these hydrogels are investigated in distinct cell types by monitoring the activation state of YAP/TAZ. By independently modulating substrate stiffness and adhesiveness, it is found that although ECM stiffness represents an overarching mechanical signal, the density of adhesive sites does impact on cellular mechanosignaling at least at intermediate rigidity values, corresponding to normal and pathological states of living tissues. Using these tools, it is found that YAP/TAZ nuclear accumulation occurs when the projected area of the nucleus surpasses a critical threshold of approximatively 150 µm2 . This work suggests the existence of distinct checkpoints for cellular mechanosensing.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| | - Veronica Torresan
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| | - Lorenzo Ulliana
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Tito Panciera
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Paolo Contessotto
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Anna Citron
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Francesca Zanconato
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | | | - Stefano Piccolo
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
- IFOM the FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| |
Collapse
|
258
|
Moriarty RA, Mili S, Stroka KM. RNA localization in confined cells depends on cellular mechanical activity and contributes to confined migration. iScience 2022; 25:103845. [PMID: 35198898 PMCID: PMC8850802 DOI: 10.1016/j.isci.2022.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells experience mechanical confining forces during metastasis and, consequently, can alter their migratory mechanisms. Localization of numerous mRNAs to cell protrusions contributes to cell polarization and migration and is controlled by proteins that can bind RNA and/or cytoskeletal elements, such as the adenomatous polyposis coli (APC). Here, we demonstrate that peripheral localization of APC-dependent RNAs in cells within confined microchannels is cell type dependent. This varying phenotype is determined by the levels of a detyrosinated tubulin network. We show that this network is regulated by mechanoactivity and that cells with mechanosensitive ion channels and increased myosin II activity direct peripheral localization of the RAB13 APC-dependent RNA. Through specific mislocalization of the RAB13 RNA, we show that peripheral RNA localization contributes to confined cell migration. Our results indicate that a cell’s mechanical activity determines its ability to peripherally target RNAs and utilize them for movement in confinement. Peripheral localization of APC-dependent RNAs in confinement depends on cell type RNA localization in confined cells is controlled by the mechanoactivity of cells RNA localization phenotype is influenced by the detyrosinated tubulin network Peripheral RNA accumulation functionally contributes to confined cell migration
Collapse
Affiliation(s)
- Rebecca A. Moriarty
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
- Maryland Biophysics Program, University of Maryland College Park, College Park, MD 20742, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Corresponding author
| |
Collapse
|
259
|
Dickinson RB, Katiyar A, Dubell CR, Lele TP. Viscous shaping of the compliant cell nucleus. APL Bioeng 2022; 6:010901. [PMID: 35028490 PMCID: PMC8730821 DOI: 10.1063/5.0071652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
The cell nucleus is commonly considered to be a stiff organelle that mechanically resists changes in shape, and this resistance is thought to limit the ability of cells to migrate through pores or spread on surfaces. Generation of stresses on the cell nucleus during migration and nuclear response to these stresses is fundamental to cell migration and mechano-transduction. In this Perspective, we discuss our previous experimental and computational evidence that supports a dynamic model, in which the soft nucleus is irreversibly shaped by viscous stresses generated by the motion of cell boundaries and transmitted through the intervening cytoskeletal network. While the nucleus is commonly modeled as a stiff elastic body, we review how nuclear shape changes on the timescale of migration can be explained by simple geometric constraints of constant nuclear volume and constant surface area of the nuclear lamina. Because the lamina surface area is in excess of that of a sphere of the same volume, these constraints permit dynamic transitions between a wide range of shapes during spreading and migration. The excess surface area allows the nuclear shape changes to mirror those of the cell with little mechanical resistance. Thus, the nucleus can be easily shaped by the moving cell boundaries over a wide range of shape changes and only becomes stiff to more extreme deformations that would require the lamina to stretch or the volume to compress. This model explains how nuclei can easily flatten on surfaces during cell spreading or elongate as cells move through pores until the lamina smooths out and becomes tense.
Collapse
Affiliation(s)
- Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Aditya Katiyar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Christina R Dubell
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
260
|
Gaertner F, Reis-Rodrigues P, de Vries I, Hons M, Aguilera J, Riedl M, Leithner A, Tasciyan S, Kopf A, Merrin J, Zheden V, Kaufmann WA, Hauschild R, Sixt M. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev Cell 2022; 57:47-62.e9. [PMID: 34919802 PMCID: PMC8751638 DOI: 10.1016/j.devcel.2021.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.
Collapse
Affiliation(s)
- Florian Gaertner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | | | - Ingrid de Vries
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Juan Aguilera
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aglaja Kopf
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vanessa Zheden
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
261
|
Chi YH, Wang WP, Hung MC, Liou GG, Wang JY, Chao PHG. Deformation of the nucleus by TGFβ1 via the remodeling of nuclear envelope and histone isoforms. Epigenetics Chromatin 2022; 15:1. [PMID: 34983624 PMCID: PMC8725468 DOI: 10.1186/s13072-021-00434-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFβ1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFβ1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, clustering at the nuclear periphery and reintegrating into the nucleoplasm. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFβ1-induced compositional changes in the chromatin and nuclear lamina.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ming-Chun Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Gunn-Guang Liou
- National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pen-Hsiu Grace Chao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
262
|
A synergy between mechanosensitive calcium- and membrane-binding mediates tension-sensing by C2-like domains. Proc Natl Acad Sci U S A 2022; 119:2112390119. [PMID: 34969839 PMCID: PMC8740744 DOI: 10.1073/pnas.2112390119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
A cell must be able to measure whether the lipid membranes that surround its insides are stretched. Currently, mechanosensitive ion channels are the best-studied class of membrane tension sensors, but recent work suggests that peripheral membrane enzymes that gauge nuclear confinement or swelling during cell migration or upon tissue injury constitute a second class. The mechanosensitivity of these enzymes derives from their calcium-dependent (“C2-like”) membrane-interaction domains. Although these can be found in many important signaling proteins, they have remained virtually unstudied as mechanotransducers. How membrane tension controls these domains and what features render them mechanosensitive is unclear. Here, we show that membrane tension-sensing by C2-like domains is mediated by a synergy between mechanosensitive calcium-binding and membrane insertion. When nuclear membranes are stretched, the peripheral membrane enzyme cytosolic phospholipase A2 (cPLA2) binds via its calcium-dependent C2 domain (cPLA2-C2) and initiates bioactive lipid signaling and tissue inflammation. More than 150 C2-like domains are encoded in vertebrate genomes. How many of them are mechanosensors and quantitative relationships between tension and membrane recruitment remain unexplored, leaving a knowledge gap in the mechanotransduction field. In this study, we imaged the mechanosensitive adsorption of cPLA2 and its C2 domain to nuclear membranes and artificial lipid bilayers, comparing it to related C2-like motifs. Stretch increased the Ca2+ sensitivity of all tested domains, promoting half-maximal binding of cPLA2 at cytoplasmic resting-Ca2+ concentrations. cPLA2-C2 bound up to 50 times tighter to stretched than to unstretched membranes. Our data suggest that a synergy of mechanosensitive Ca2+ interactions and deep, hydrophobic membrane insertion enables cPLA2-C2 to detect stretched membranes with antibody-like affinity, providing a quantitative basis for understanding mechanotransduction by C2-like domains.
Collapse
|
263
|
Abstract
Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
264
|
Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem Sci 2022; 47:52-65. [PMID: 34556392 PMCID: PMC9943564 DOI: 10.1016/j.tibs.2021.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023]
Abstract
The nuclear envelope (NE) is a protective barrier to the genome, yet its membranes undergo highly dynamic remodeling processes that are necessary for cell growth and maintenance. While mechanisms by which proteins promote NE remodeling are emerging, the types of bilayer lipids and the lipid-protein interactions that define and sculpt nuclear membranes remain elusive. The NE is continuous with the endoplasmic reticulum (ER) and recent evidence suggests that lipids produced in the ER are harnessed to remodel nuclear membranes. In this review, we examine new roles for lipid species made proximally within the ER and locally at the NE to control NE dynamics. We further explore how the biosynthesis of lipids coordinates NE remodeling to ensure genome protection.
Collapse
|
265
|
Agrawal R, Windsor A, Lammerding J. Assembly and Use of a Microfluidic Device to Study Nuclear Mechanobiology During Confined Migration. Methods Mol Biol 2022; 2502:329-349. [PMID: 35412249 PMCID: PMC9862508 DOI: 10.1007/978-1-0716-2337-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer metastasis, that is, the spreading of tumor cells from the primary tumor to distant sites, requires cancer cells to travel through pores substantially smaller than their cross section . This "confined migration" requires substantial deformation by the relatively large and rigid nucleus, which can impact nuclear compartmentalization, trigger cellular mechanotransduction pathways, and increase genomic instability. To improve our understanding of how cells perform and respond to confined migration, we developed polydimethylsiloxane (PDMS) microfluidic devices in which cells migrate through a precisely controlled "field of pillars" that closely mimic the intermittent confinement of tumor microenvironments and interstitial spaces. The devices can be designed with various densities of pillars, ranging from a very low density that does not require nuclear deformation to high densities that present microenvironment conditions with severe confinement. The devices enable assessment of cellular fitness for confined migration based on the distance traveled through the constriction area over several days. In this protocol, we present two complementary techniques to generate silicon master molds for the device fabrication: (1) SU-8 soft lithography for rapid prototyping and for devices with relatively large features; and (2) reactive ion etching (RIE) to achieve finer features and more durable molds. In addition, we describe the production, use, and validation of the devices, along with the analysis pipeline for experiments using the devices with fluorescently labeled cells. Collectively, this protocol enables the study of confined migration and is readily amendable to investigate other aspects of confined migration mechanobiology, such as nuclear pore complex function in response to nuclear deformation.
Collapse
Affiliation(s)
- Richa Agrawal
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Aaron Windsor
- Cornell NanoScale Science and Technology Facility, Cornell University, Ithaca NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Engineering, Cornell University, Ithaca, NY 14853, USA,Correspondence should be addressed to
| |
Collapse
|
266
|
Fan Z, Li B, Wang YJ, Huang X, Li B, Wang S, Liu Y, Liu YJ, Liu B. Spatially resolved single-molecule profiling of microRNAs in migrating cells driven by microconfinement. Chem Sci 2022; 13:11197-11204. [PMID: 36320480 PMCID: PMC9517726 DOI: 10.1039/d2sc04132d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells utilize a range of migration modes to navigate through a confined tissue microenvironment in vivo, while regulatory roles of key microRNAs (miRNAs) remain unclear. Precisely engineered microconfinement and the high spatial-resolution imaging strategy offer a promising avenue for deciphering the molecular mechanisms that drive cell migration. Here, enzyme-free signal-amplification nanoprobes as an effective tool are developed for three-dimensional (3D) high-resolution profiling of key miRNA molecules in single migrating cells, where distinct migration modes are precisely driven by microconfinement-engineered microchips. The constructed nanoprobes exhibit intuitive and ultrasensitive miRNA characterization in vitro by virtue of a single-molecule imaging microscope, and the differential expression and intracellular locations in different cell lines are successfully monitored. Furthermore, 3D spatial distribution of miR-141 at high resolution in flexible phenotypes of migrating cells is reconstructed in the engineered biomimetic microenvironment. The results indicate that miR-141 may be involved in the metastatic transition from a slow to a fast migration state. This work offers a new opportunity for investigating regulatory mechanisms of intracellular key biomolecules during cell migration in biomimetic microenvironments, which may advance in-depth understanding of cancer metastasis in vivo. Spatially resolved profiling of miRNAs was realized in migrating cells using enzyme-free signal-amplification nanoprobes, in which distinct migration modes of single living cells are driven by precisely engineered microchips.![]()
Collapse
Affiliation(s)
- Zihui Fan
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bin Li
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Ya-Jun Wang
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Xuedong Huang
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Binxiao Li
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Shurong Wang
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yixin Liu
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
267
|
Takata T, Matsumura M. The LINC Complex Assists the Nuclear Import of Mechanosensitive Transcriptional Regulators. Results Probl Cell Differ 2022; 70:315-337. [PMID: 36348113 DOI: 10.1007/978-3-031-06573-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical forces play pivotal roles in directing cell functions and fate. To elicit gene expression, either intrinsic or extrinsic mechanical information are transmitted into the nucleus beyond the nuclear envelope via at least two distinct pathways, possibly more. The first and well-known pathway utilizes the canonical nuclear transport of mechanoresponsive transcriptional regulators through the nuclear pore complex, which is an exclusive route for macromolecular trafficking between the cytoplasm and nucleoplasm. The second pathway depends on the linker of the nucleoskeleton and cytoskeleton (LINC) complex, which is a molecular bridge traversing the nuclear envelope between the cytoskeleton and nucleoskeleton. This protein complex is a central component in mechanotransduction at the nuclear envelope that transmits mechanical information from the cytoskeleton into the nucleus to influence the nuclear structure, nuclear stiffness, chromatin organization, and gene expression. Besides the mechanical force transducing function, recent increasing evidence shows that the LINC complex plays a role in controlling nucleocytoplasmic transport of mechanoresponsive transcriptional regulators. Here we discuss recent findings regarding the contribution of the LINC complex to the regulation of intracellular localization of the most-notable mechanosensitive transcriptional regulators, β-catenin, YAP, and TAZ.
Collapse
Affiliation(s)
- Tomoyo Takata
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan
| | - Miki Matsumura
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan.
| |
Collapse
|
268
|
Nastały P, Maiuri P. Cellular Polarity Transmission to the Nucleus. Results Probl Cell Differ 2022; 70:597-606. [PMID: 36348123 DOI: 10.1007/978-3-031-06573-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polarity is an intrinsic and fundamental property of unicellular organisms and, as well, of single cells in multicellular ones. It can be defined as asymmetric cell organization that is self-reinforced and maintained by appropriate signaling. While cellular polarity is widely studied at the membrane and cytoplasmic level, if and how it is transmitted to the nucleus is still a matter of research and discussion. However, there is growing evidence of polarity transmission from the cell to the nucleus. In this chapter, we discuss recent reports on nuclear polarity and involvement of potential molecular players including emerin, nesprins, and nuclear F-actin which may play a significant role in establishment of this phenomenon.
Collapse
Affiliation(s)
- Paulina Nastały
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Paolo Maiuri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
269
|
Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success? Cancers (Basel) 2021; 14:cancers14010083. [PMID: 35008251 PMCID: PMC8750110 DOI: 10.3390/cancers14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ. The aim of this review is to highlight the role of physical compression in the success of metastasis. We will especially focus on nuclear squeezing and nuclear envelope rupture and explain how they can actively participate in the creation of genomic heterogeneity as well as supporting metastasis growth. Abstract During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.
Collapse
|
270
|
Marks P, Petrie R. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Phys Biol 2021; 19. [PMID: 34936999 DOI: 10.1088/1478-3975/ac45e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
As cells move from two-dimensional (2D) surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.
Collapse
Affiliation(s)
- Pragati Marks
- Department of Biology, Drexel University, 3245 CHESTNUT ST, PISB 401M1, PHILADELPHIA, Philadelphia, 19104-2816, UNITED STATES
| | - Ryan Petrie
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 419, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| |
Collapse
|
271
|
Zimmerli CE, Allegretti M, Rantos V, Goetz SK, Obarska-Kosinska A, Zagoriy I, Halavatyi A, Hummer G, Mahamid J, Kosinski J, Beck M. Nuclear pores dilate and constrict in cellulo. Science 2021; 374:eabd9776. [PMID: 34762489 DOI: 10.1126/science.abd9776] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Christian E Zimmerli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Matteo Allegretti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vasileios Rantos
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Sara K Goetz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
272
|
Wallis SS, Ventimiglia LN, Otigbah E, Infante E, Cuesta-Geijo MA, Kidiyoor GR, Carbajal MA, Fleck RA, Foiani M, Garcia-Manyes S, Martin-Serrano J, Agromayor M. The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair. Dev Cell 2021; 56:3192-3202.e8. [PMID: 34818527 PMCID: PMC8657813 DOI: 10.1016/j.devcel.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability. Cytoskeletal forces exerted on the nucleus can rupture its membrane BROX is recruited to sites of rupture by the ESCRT membrane remodeling machinery BROX ubiquitinates the LINC complex protein Nesprin-2G, targeting it for degradation BROX coordinates local relaxation of mechanical stress with membrane remodeling
Collapse
Affiliation(s)
- Samuel S Wallis
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Evita Otigbah
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Elvira Infante
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK
| | - Miguel Angel Cuesta-Geijo
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Gururaj Rao Kidiyoor
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK; the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| |
Collapse
|
273
|
Siemsen K, Rajput S, Rasch F, Taheri F, Adelung R, Lammerding J, Selhuber‐Unkel C. Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Adv Healthc Mater 2021; 10:e2100625. [PMID: 34668667 PMCID: PMC8743577 DOI: 10.1002/adhm.202100625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Indexed: 11/12/2022]
Abstract
Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.
Collapse
Affiliation(s)
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Florian Rasch
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Fereydoon Taheri
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Rainer Adelung
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNY14853USA
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
- Max Planck School Matter to LifeJahnstraße 29Heidelberg69120Germany
| |
Collapse
|
274
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
275
|
Amar K, Wei F, Chen J, Wang N. Effects of forces on chromatin. APL Bioeng 2021; 5:041503. [PMID: 34661040 PMCID: PMC8516479 DOI: 10.1063/5.0065302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Chromatin is a unique structure of DNA and histone proteins in the cell nucleus and the site of dynamic regulation of gene expression. Soluble factors are known to affect the chromatin structure and function via activating or inhibiting specific transcription factors. Forces on chromatin come from exogenous stresses on the cell surface and/or endogenous stresses, which are regulated by substrate mechanics, geometry, and topology. Forces on chromatin involve direct (via adhesion molecules, cytoskeleton, and the linker of nucleoskeleton and cytoskeleton complexes) and indirect (via diffusion and/or translocation processes) signaling pathways to modulate levels of chromatin folding and deformation to regulate transcription, which is controlled by histone modifications and depends on magnitude, direction, rate/frequency, duration, and modes of stresses. The rapid force transmission pathway activates multiple genes simultaneously, and the force may act like a "supertranscription factor." The indirect mechanotransduction pathways and the rapid force transmission pathway together exert sustained impacts on the chromatin, the nucleus, and cell functions.
Collapse
Affiliation(s)
- Kshitij Amar
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
276
|
Graziani V, Rodriguez-Hernandez I, Maiques O, Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol 2021; 32:228-242. [PMID: 34836782 DOI: 10.1016/j.tcb.2021.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Cell migration is essential for many biological processes, while abnormal cell migration is characteristic of cancer cells. Epithelial cells become motile by undergoing epithelial-to-mesenchymal transition (EMT), and mesenchymal cells increase migration speed by adopting amoeboid features. This review highlights how amoeboid behaviour is not merely a migration mode but rather a cellular state - within the EMT spectra - by which cancer cells survive, invade and colonise challenging microenvironments. Molecular biomarkers and physicochemical triggers associated with amoeboid behaviour are discussed, including an amoeboid associated tumour microenvironment. We reflect on how amoeboid characteristics support metastasis and how their liabilities could turn into therapeutic opportunities.
Collapse
Affiliation(s)
- Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
277
|
Martin-Cofreces NB, Sanchez-Madrid F, Roda-Navarro P. Editorial: Cytoskeleton Dynamics as Master Regulator of Organelle Reorganization and Intracellular Signaling for Cell-Cell Competition. Front Cell Dev Biol 2021; 9:782559. [PMID: 34778278 PMCID: PMC8581440 DOI: 10.3389/fcell.2021.782559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Noa B Martin-Cofreces
- Department of Immunology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sanchez-Madrid
- Department of Immunology, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (Imas12), Madrid, Spain
| |
Collapse
|
278
|
Cantwell H, Dey G. Nuclear size and shape control. Semin Cell Dev Biol 2021; 130:90-97. [PMID: 34776332 DOI: 10.1016/j.semcdb.2021.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022]
Abstract
The nucleus displays a wide range of sizes and shapes in different species and cell types, yet its size scaling and many of the key structural constituents that determine its shape are highly conserved. In this review, we discuss the cellular properties and processes that contribute to nuclear size and shape control, drawing examples from across eukaryotes and highlighting conserved themes and pathways. We then outline physiological roles that have been uncovered for specific nuclear morphologies and disease pathologies associated with aberrant nuclear morphology. We argue that a comparative approach, assessing and integrating observations from different systems, will be a powerful way to help us address the open questions surrounding functional roles of nuclear size and shape in cell physiology.
Collapse
Affiliation(s)
- Helena Cantwell
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany.
| |
Collapse
|
279
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
280
|
Halder D, Mallick D, Chatterjee A, Jana SS. Nonmuscle Myosin II in cancer cell migration and mechanotransduction. Int J Biochem Cell Biol 2021; 139:106058. [PMID: 34400319 DOI: 10.1016/j.biocel.2021.106058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Cell migration is a key step of cancer metastasis, immune-cell navigation, homing of stem cells and development. What adds complexity to it is the heterogeneity of the tissue environment that gives rise to a vast diversity of migratory mechanisms utilized by cells. A majority of cell motility mechanisms reported elsewhere largely converge in depicting the importance of the activity and complexity of actomyosin networks in the cell. In this review, we highlight the less discussed functional diversity of these actomyosin complexes and describe in detail how the major cellular actin-binding molecular motor proteins, nonmuscle myosin IIs are regulated and how they participate and mechanically reciprocate to changes in the microenvironment during cancer cell migration and tumor progression. Understanding the role of nonmuscle myosin IIs in the cancer cell is important for designing efficient therapeutic strategies to prevent cancer metastasis.
Collapse
Affiliation(s)
- Debdatta Halder
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel(2)
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Ananya Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
281
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
282
|
Floerchinger A, Murphy KJ, Latham SL, Warren SC, McCulloch AT, Lee YK, Stoehr J, Mélénec P, Guaman CS, Metcalf XL, Lee V, Zaratzian A, Da Silva A, Tayao M, Rolo S, Phimmachanh M, Sultani G, McDonald L, Mason SM, Ferrari N, Ooms LM, Johnsson AKE, Spence HJ, Olson MF, Machesky LM, Sansom OJ, Morton JP, Mitchell CA, Samuel MS, Croucher DR, Welch HCE, Blyth K, Caldon CE, Herrmann D, Anderson KI, Timpson P, Nobis M. Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Rep 2021; 36:109689. [PMID: 34525350 DOI: 10.1016/j.celrep.2021.109689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.
Collapse
Affiliation(s)
- Alessia Floerchinger
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sharissa L Latham
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew T McCulloch
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Cris S Guaman
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Xanthe L Metcalf
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Victoria Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sonia Rolo
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Monica Phimmachanh
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ghazal Sultani
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Susan M Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | | | - Heather J Spence
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto ON, M5B 2K3, Canada
| | - Laura M Machesky
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia; and the School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Cambridge CB223AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - C Elizabeth Caldon
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kurt I Anderson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Francis Crick Institute, London NW11AT, UK
| | - Paul Timpson
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| | - Max Nobis
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| |
Collapse
|
283
|
Gabbireddy SR, Vosatka KW, Chung AJ, Logue JS. Melanoma cells adopt features of both mesenchymal and amoeboid migration within confining channels. Sci Rep 2021; 11:17804. [PMID: 34493759 PMCID: PMC8423822 DOI: 10.1038/s41598-021-97348-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
For metastasis to occur, cancer cells must traverse a range of tissue environments. In part, this is accomplished by cells adjusting their migration mode to one that is best suited to the environment. Melanoma cells have been shown to be particularly plastic, frequently using both mesenchymal and amoeboid (bleb-based) modes of migration. It has been demonstrated that 2D confinement will promote the transition from mesenchymal to bleb-based migration. However, if melanoma cells similarly transition to bleb-based migration in response to 3D confinement, such as within narrow channels, is unknown. Here, using micro-fabricated channels, we demonstrate that metastatic, A375-M2, melanoma cells adopt features of both mesenchymal and bleb-based migration. In narrow (8 µm; height and width) channels coated with fibronectin, ~ 50% of melanoma cells were found to use either mesenchymal or bleb-based migration modes. In contrast, the inhibition of Src family kinases or coating channels with BSA, completely eliminated any features of mesenchymal migration. Detailed comparisons of migration parameters revealed that blebbing cells, particularly in the absence of adhesions, were faster than mesenchymal cells. In contrast to what has been previously shown under conditions of 2D confinement, pharmacologically inhibiting Arp2/3 promoted a fast filopodial-based mode of migration. Accordingly, we report that melanoma cells adopt a unique range of phenotypes under conditions of 3D confinement.
Collapse
Affiliation(s)
- Sairisheel R Gabbireddy
- Undergraduate Research Program, Rensselaer Polytechnic Institute (RPI), 110 8th St, Troy, NY, 12180, USA
| | - Karl W Vosatka
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Aram J Chung
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
- School of Biomedical Engineering, Korea University, 02841, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841, Seoul, Republic of Korea
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
284
|
Claude-Taupin A, Codogno P, Dupont N. Links between autophagy and tissue mechanics. J Cell Sci 2021; 134:271984. [PMID: 34472605 DOI: 10.1242/jcs.258589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Physical constraints, such as compression, shear stress, stretching and tension, play major roles during development, tissue homeostasis, immune responses and pathologies. Cells and organelles also face mechanical forces during migration and extravasation, and investigations into how mechanical forces are translated into a wide panel of biological responses, including changes in cell morphology, membrane transport, metabolism, energy production and gene expression, is a flourishing field. Recent studies demonstrate the role of macroautophagy in the integration of physical constraints. The aim of this Review is to summarize and discuss our knowledge of the role of macroautophagy in controlling a large panel of cell responses, from morphological and metabolic changes, to inflammation and senescence, for the integration of mechanical forces. Moreover, wherever possible, we also discuss the cell surface molecules and structures that sense mechanical forces upstream of macroautophagy.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université de Paris, 75015 Paris, France
| |
Collapse
|
285
|
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021; 21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Collective cancer invasion with leader-follower organization is increasingly recognized as a predominant mechanism in the metastatic cascade. Leader cells support cancer invasion by creating invasion tracks, sensing environmental cues and coordinating with follower cells biochemically and biomechanically. With the latest developments in experimental and computational models and analysis techniques, the range of specific traits and features of leader cells reported in the literature is rapidly expanding. Yet, despite their importance, there is no consensus on how leader cells arise or their essential characteristics. In this Perspective, we propose a framework for defining the essential aspects of leader cells and provide a unifying perspective on the varying cellular and molecular programmes that are adopted by each leader cell subtype to accomplish their functions. This Perspective can lead to more effective strategies to interdict a major contributor to metastatic capability.
Collapse
Affiliation(s)
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
286
|
Gupta S, Patteson AE, Schwarz JM. The role of vimentin-nuclear interactions in persistent cell motility through confined spaces. NEW JOURNAL OF PHYSICS 2021; 23:093042. [PMID: 35530563 PMCID: PMC9075336 DOI: 10.1088/1367-2630/ac2550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
287
|
Nader GPDF, Williart A, Piel M. Nuclear deformations, from signaling to perturbation and damage. Curr Opin Cell Biol 2021; 72:137-145. [PMID: 34461580 DOI: 10.1016/j.ceb.2021.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
During cell growth and motility in crowded tissues or interstitial spaces, cells must integrate multiple physical and biochemical environmental inputs. After a number of recent studies, the view of the nucleus as a passive object that cells have to drag along has become obsolete, placing the nucleus as a central player in sensing some of these inputs. In the present review, we will focus on changes in nuclear shape caused by external and internal forces. Depending on their magnitude, nuclear deformations can generate signaling events that modulate cell behavior and fate, or be a source of perturbations or even damage, having detrimental effects on cellular functions. On very large deformations, nuclear envelope rupture events become frequent, leading to uncontrolled nucleocytoplasmic mixing and DNA damage. We will also discuss the consequences of repeated compromised nuclear integrity, which can trigger DNA surveillance mechanisms, with critical consequences to cell fate and tissue homeostasis.
Collapse
Affiliation(s)
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France.
| |
Collapse
|
288
|
Miyamoto T, Uosaki H, Mizunoe Y, Han SI, Goto S, Yamanaka D, Masuda M, Yoneyama Y, Nakamura H, Hattori N, Takeuchi Y, Ohno H, Sekiya M, Matsuzaka T, Hakuno F, Takahashi SI, Yahagi N, Ito K, Shimano H. Rapid manipulation of mitochondrial morphology in a living cell with iCMM. CELL REPORTS METHODS 2021; 1:100052. [PMID: 35475143 PMCID: PMC9017203 DOI: 10.1016/j.crmeth.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/12/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Engineered synthetic biomolecular devices that integrate elaborate information processing and precisely regulate living cell behavior have potential in various applications. Although devices that directly regulate key biomolecules constituting inherent biological systems exist, no devices have been developed to control intracellular membrane architecture, contributing to the spatiotemporal functions of these biomolecules. This study developed a synthetic biomolecular device, termed inducible counter mitochondrial morphology (iCMM), to manipulate mitochondrial morphology, an emerging informative property for understanding physiopathological cellular behaviors, on a minute timescale by using a chemically inducible dimerization system. Using iCMM, we determined cellular changes by altering mitochondrial morphology in an unprecedented manner. This approach serves as a platform for developing more sophisticated synthetic biomolecular devices to regulate biological systems by extending manipulation targets from conventional biomolecules to mitochondria. Furthermore, iCMM might serve as a tool for uncovering the biological significance of mitochondrial morphology in various physiopathological cellular processes.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoi Goto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Yamanaka
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Kasama, Ibaraki 319-0206, Japan
| | - Masato Masuda
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yosuke Yoneyama
- Institute of Research, Division of Advanced Research, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hideki Nakamura
- Johns Hopkins University School of Medicine, Department of Cell Biology and Center for Cell Dynamics, MD 21205, USA
- Kyoto University Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Koichi Ito
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Kasama, Ibaraki 319-0206, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
289
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT changes actin cortex rheology in a cell-cycle-dependent manner. Biophys J 2021; 120:3516-3526. [PMID: 34022239 PMCID: PMC8391033 DOI: 10.1016/j.bpj.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/06/2023] Open
Abstract
The actin cortex is a key structure for cellular mechanics and cellular migration. Accordingly, cancer cells were shown to change their actin cytoskeleton and their mechanical properties in correlation with different degrees of malignancy and metastatic potential. Epithelial-mesenchymal transition (EMT) is a cellular transformation associated with cancer progression and malignancy. To date, a detailed study of the effects of EMT on the frequency-dependent viscoelastic mechanics of the actin cortex is still lacking. In this work, we have used an established atomic force microscope-based method of cell confinement to quantify the rheology of the actin cortex of human breast, lung, and prostate epithelial cells before and after EMT in a frequency range of 0.02-2 Hz. Interestingly, we find for all cell lines opposite EMT-induced changes in interphase and mitosis; whereas the actin cortex softens upon EMT in interphase, the cortex stiffens in mitosis. Our rheological data can be accounted for by a rheological model with a characteristic timescale of slowest relaxation. In conclusion, our study discloses a consistent rheological trend induced by EMT in human cells of diverse tissue origin, reflecting major structural changes of the actin cytoskeleton upon EMT.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
290
|
Record J, Saeed MB, Venit T, Percipalle P, Westerberg LS. Journey to the Center of the Cell: Cytoplasmic and Nuclear Actin in Immune Cell Functions. Front Cell Dev Biol 2021; 9:682294. [PMID: 34422807 PMCID: PMC8375500 DOI: 10.3389/fcell.2021.682294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mezida B. Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
291
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
292
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
293
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
294
|
Purkayastha P, Jaiswal MK, Lele TP. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken) 2021; 78:312-322. [PMID: 34291887 DOI: 10.1002/cm.21680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Alterations to the mechanical properties of the microenvironment are a hallmark of cancer. Elevated mechanical stresses exist in many solid tumors and elicit responses from cancer cells. Uncontrolled growth in confined environments gives rise to elevated solid compressive stress on cancer cells. Recruitment of leaky blood vessels and an absence of functioning lymphatic vessels causes a rise in the interstitial fluid pressure. Here we review the role of the cancer cell cytoskeleton and the nucleus in mediating both the initial and adaptive cancer cell response to these two types of mechanical stresses. We review how these mechanical stresses alter cancer cell functions such as proliferation, apoptosis, and migration.
Collapse
Affiliation(s)
- Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
295
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
296
|
Modelling Nuclear Morphology and Shape Transformation: A Review. MEMBRANES 2021; 11:membranes11070540. [PMID: 34357190 PMCID: PMC8304582 DOI: 10.3390/membranes11070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.
Collapse
|
297
|
Adams G, López MP, Cartagena-Rivera AX, Waterman CM. Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb-based migration. Mol Biol Cell 2021; 32:1772-1791. [PMID: 34260278 PMCID: PMC8684732 DOI: 10.1091/mbc.e21-04-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer cells migrating in confined microenvironments exhibit plasticity of migration modes. Confinement of contractile cells in a nonadhesive environment drives “leader bleb–based migration” (LBBM), morphologically characterized by a long bleb that points in the direction of movement separated from a cell body by a contractile neck. Although cells undergoing LBBM have been visualized within tumors, the organization of organelles and actin regulatory proteins mediating LBBM is unknown. We analyzed the localization of fluorescent organelle-specific markers and actin-associated proteins in human melanoma and osteosarcoma cells undergoing LBBM. We found that organelles from the endolysosomal, secretory, and metabolic systems as well as the vimentin and microtubule cytoskeletons localized primarily in the cell body, with some endoplasmic reticulum, microtubules, and mitochondria extending into the leader bleb. Overexpression of fluorescently tagged actin regulatory proteins showed that actin assembly factors localized toward the leader bleb tip, contractility regulators and cross-linkers in the cell body cortex and neck, and cross-linkers additionally throughout the leader bleb. Quantitative analysis showed that excess filamin-A and fascin-1 increased migration speed and persistence, while their depletion by small interfering RNA indicates a requirement in promoting cortical tension and pressure to drive LBBM. This indicates a critical role of specific actin crosslinkers in LBBM.
Collapse
Affiliation(s)
- Gregory Adams
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| | | | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| |
Collapse
|
298
|
Gauthier BR, Comaills V. Nuclear Envelope Integrity in Health and Disease: Consequences on Genome Instability and Inflammation. Int J Mol Sci 2021; 22:ijms22147281. [PMID: 34298904 PMCID: PMC8307504 DOI: 10.3390/ijms22147281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (B.R.G.); (V.C.)
| | - Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
- Correspondence: (B.R.G.); (V.C.)
| |
Collapse
|
299
|
Inman A, Smutny M. Feeling the force: Multiscale force sensing and transduction at the cell-cell interface. Semin Cell Dev Biol 2021; 120:53-65. [PMID: 34238674 DOI: 10.1016/j.semcdb.2021.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.
Collapse
Affiliation(s)
- Angus Inman
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK.
| |
Collapse
|
300
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|