251
|
Masenga SK, Muchaili L, Hamooya BM. Cardiovascular Outcomes Among Persons with HIV and Nonalcoholic Fatty Liver Disease. AIDS 2023; 37:1329-1331. [PMID: 37822712 PMCID: PMC10564394 DOI: 10.1097/qad.0000000000003562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Sepiso K. Masenga
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- School of Public Health, University of Zambia, Lusaka, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lweendo Muchaili
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Benson M. Hamooya
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| |
Collapse
|
252
|
Zhang Z, Zhu L, Wang Z, Hua N, Hu S, Chen Y. Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? A state-of-the-art review. Prog Lipid Res 2023; 91:101240. [PMID: 37473965 DOI: 10.1016/j.plipres.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Adipokines play a significant role in cardiometabolic diseases. Asprosin, a newly discovered adipokine, was first identified as a glucose-raising protein hormone. Asprosin also stimulates appetite and regulates glucose and lipid metabolism. Its identified receptors so far include Olfr734 and Ptprd. Clinical studies have found that asprosin may be associated with cardiometabolic diseases. Asprosin may have diagnostic and therapeutic potential in obesity, diabetes, metabolic syndrome and atherosclerotic cardiovascular diseases. Herein, the structure, receptors, and functions of asprosin and its relationship with cardiometabolic diseases are summarized based on recent findings.
Collapse
Affiliation(s)
- Zhengbin Zhang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Liwen Zhu
- Department of Cardiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Ziqian Wang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Ning Hua
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China
| | - Shunying Hu
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
253
|
Golabi P, Paik JM, Kumar A, Al Shabeeb R, Eberly KE, Cusi K, GunduRao N, Younossi ZM. Nonalcoholic fatty liver disease (NAFLD) and associated mortality in individuals with type 2 diabetes, pre-diabetes, metabolically unhealthy, and metabolically healthy individuals in the United States. Metabolism 2023:155642. [PMID: 37380016 DOI: 10.1016/j.metabol.2023.155642] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND The prevalence of nonalcoholic fatty liver disease (NAFLD) is high among subjects with type 2 diabetes (T2D). However, the prevalence and outcomes of NAFLD among individuals with pre-diabetes (PreD) and metabolically healthy and metabolically unhealthy individuals without T2D are not known. Our aim was to assess prevalence and mortality of NAFLD among these four groups. METHODS The Third National Health and Nutrition Examination Survey (NHANES) III (1988-1994) with mortality data (follow up to 2019) via linkage to the National Death Index was utilized. NAFLD was defined by ultrasound and absence of other liver diseases and excess alcohol use. Pre-D was defined as fasting plasma glucose values of 100-125 mg/dL and/or HbA1c level between 5.7 %-6.4 % in the absence of established diagnosis of T2D. Metabolically healthy (MH) was defined if all of the following criteria were absent: waist circumference of ≥102 cm (men) or ≥ 88 cm (women) or BMI of ≥30; blood pressure (BP) ≥ 130/85 mmHg or using BP-lowering medication; triglyceride level ≥ 150 mg/dL or using lipid-lowering medication; lipoprotein cholesterol level of <40 mg/dL (men) or < 50 mg/dL (women); homeostasis model assessment of insulin resistance (HOMA-IR) score ≥ 2.5; C-reactive protein (CRP) level of >2 mg/L; Pre-D and T2D. Metabolically unhealthy (MU) individuals were defined as the presence of any component of metabolic syndrome but not having Pre-D and T2D. Competing risk analyses of cause-specific mortality were performed. FINDINGS 11,231 adults (20-74y) were included: mean age 43.4 years; 43.9 % male; 75.4 % white, 10.8 % Black, and 5.4 % Mexican American, 18.9 % NAFLD, 7.8 % T2D; 24.7 % PreD; 44.3 % MU; and 23.3 % in MH individuals. In multivariable adjusted logistic model, as compared to MH individuals, the highest risk of having NAFLD were in T2D individuals (Odd Ratio [OR] = 10.88 [95 % confidence interval: 7.33-16.16]), followed by Pre-D (OR = 4.19 [3.02-5.81]), and MU (OR = 3.36 [2.39-4.71]). During a median follow up of 26.7 years (21.2-28.7 years), 3982 died. NAFLD subjects had significantly higher age-adjusted mortality than non-NAFLD (32.7 % vs. 28.7 %, p < .001). Among subjects with NAFLD, the highest age-standardized cumulative mortality was observed among those with T2D (41.3 %), followed by with Pre-D (35.1 %), MU subjects (30.0 %), and MH subjects (21.9 %) (pairwise p-values<.04 vs. ND with MH). Multivariable adjusted cox models showed that NAFLD with T2D had a higher risk of all-causes and cardiac-specific deaths (Hazard Ratio [HR] = 4.71 [2.23-9.96] and HR = 20.01 [3.00-133.61]), followed by NAFLD with Pre-D (HR = 2.91 [1.41-6.02] and HR = 10.35 [1.57-68.08]) and metabolically unhealthy NAFLD (HR = 2.59 [1.26-5.33] and HR = 6.74 [0.99-46.03]) compared to metabolically healthy NAFLD. In addition to older age, independent predictors of mortality among NAFLD with T2D included high CRP, CVD, CKD, high FIB-4, and active smoking. Similarly, among NAFLD with PreD, high CRP, CKD, CVD, hypertension, and active smoking were associated with mortality. Finally, CVD and active smoking were predictors of mortality among metabolically unhealthy NAFLD, and active smoking was the only mortality risk among metabolically healthy NAFLD subjects. INTERPRETATION Metabolic abnormality impacts both prevalence and outcomes of subjects with NAFLD.
Collapse
Affiliation(s)
- Pegah Golabi
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States
| | - James M Paik
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States
| | - Ameeta Kumar
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States
| | - Reem Al Shabeeb
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States
| | - Kathrine E Eberly
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, United States
| | - Nagashree GunduRao
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States; Inova Medicine, Inova Health System, Falls Church, VA, United States
| | - Zobair M Younossi
- Department of Medicine, Center for Liver Disease, Inova Fairfax Medical Campus, Falls Church, VA, United States; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States; Inova Medicine, Inova Health System, Falls Church, VA, United States.
| |
Collapse
|
254
|
Wei Z, Huang Z, Song Z, Zhao W, Zhao D, Tan Y, Chen S, Yang P, Li Y, Wu S. Metabolic Dysfunction-associated fatty liver disease and incident heart failure risk: the Kailuan cohort study. Diabetol Metab Syndr 2023; 15:137. [PMID: 37355613 DOI: 10.1186/s13098-023-01102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Recently, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed to replace non-alcoholic fatty liver disease (NAFLD) to emphasize the pathogenic association between fatty liver disease and metabolic dysfunction. Studies have found that MAFLD independently increases the risk of myocardial infarction and stroke. But the relationship between MAFLD and heart failure (HF) is not fully understood. OBJECTIVES This study aimed to explore the association between MAFLD and the risk of HF. METHODS The study included 98,685 participants without HF selected from the Kailuan cohort in 2006. All participants were divided into non-MAFLD group and MAFLD group according to MAFLD diagnostic criteria. After follow-up until December 31, 2020, the Cox regression analysis model was used to calculate the effect of MAFLD on the risk of HF. RESULTS During the median follow-up of 14.01 years,3260 cases of HF were defined, the HF incidence density of non-MAFLD group and MAFLD group was 2.19/1000pys and 3.29/1000pys, respectively. Compared with the non-MAFLD group, participants with MAFLD had an increased risk of HF (HR: 1.40, 95% CI: 1.30-1.50); in addition, an exacerbation of fatty liver disease was associated with an increased risk of HF in people with MAFLD. We also observed a higher risk of HF among the different metabolic dysfunction of MAFLD in people with both fatty liver disease and type 2 diabetes (HR, 1.95; 95% CI, 1.73-2.20). CONCLUSIONS Our findings suggest that the risk of HF was significantly increased in participants with MAFLD, and an exacerbation of fatty liver disease was associated with an increased risk of HF in people with MAFLD. In addition, we should pay more attention to people with MAFLD with type 2 diabetes.
Collapse
Affiliation(s)
- Zhihao Wei
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhe Huang
- Department of Cardiology, Kailuan General Hospital, 57 Xinhua East Rd, Tangshan, 063000, China
| | - Zongshuang Song
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Wenliu Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Dandan Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yizhen Tan
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, 57 Xinhua East Rd, Tangshan, 063000, China
| | - Peng Yang
- Department of Neurosurgery, Affiliated Hospital of North, China University of Science and Technology, Tangshan, 063000, China.
| | - Yun Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, 57 Xinhua East Rd, Tangshan, 063000, China.
| |
Collapse
|
255
|
Fadieienko G, Gridnyev O, Kurinna O, Chereliuk N. Gut microbiota changes in nonalcoholic fatty liver disease and concomitant coronary artery disease. COR ET VASA 2023; 65:489-495. [DOI: 10.33678/cor.2022.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
256
|
Hu J, Cai X, Zhu Q, Heizhati M, Wen W, Luo Q, Hong J, Dang Y, Yang W, Li N. Relationship Between Plasma Aldosterone Concentrations and Non-Alcoholic Fatty Liver Disease Diagnosis in Patients with Hypertension: A Retrospective Cohort Study. Diabetes Metab Syndr Obes 2023; 16:1625-1636. [PMID: 37304667 PMCID: PMC10257476 DOI: 10.2147/dmso.s408722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Objective To investigate the association between plasma aldosterone concentration (PAC) and non-alcoholic fatty liver disease (NAFLD) diagnosis in Chinese hypertensive patients. Methods We conducted a retrospective study of all patients diagnosed with hypertension between January 1, 2010, and December 31, 2021. We included 3713 hypertensive patients based on the criteria for inclusion and exclusion. PAC measurement was performed using a radioimmunoassay. NAFLD was diagnosed using abdominal ultrasonography. Cox regression analysis was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for univariable and multivariable models. A generalized additive model was used to identify nonlinear relationships between PAC and NAFLD diagnosis. Results A total of 3713 participants were included in the analysis. Over a median follow-up of 30 months, 1572 hypertensive individuals developed new-onset NAFLD. When PAC was used as a continuous variable, the risk of NAFLD increased by 1.04 and 1.24-fold for each 1 ng/dL and 5 ng/dL increase in PAC, respectively. When PAC was considered a categorical variable, the HR for tertile 3 was 1.71 (95% CI, 1.47-1.98, P < 0.001) compared to tertile 1. Overall, there was a J-shaped relationship between PAC and new-onset NAFLD. By fitting a two-piecewise linear regression model and using a recursive algorithm, we identified a PAC inflection point at 13 ng/dL (log-likelihood ratio test, P = 0.005). In adjusted model 3, for PAC ≥ 13 ng/dL, a 5 ng/dL increase in PAC was associated with a 30% increase in the risk of new-onset NAFLD (95% CI, 1.25-1.35, P < 0.001). Conclusion The study revealed a non-linear relationship between elevated PAC levels and the incidence of NAFLD in hypertensive patients. Notably, the risk of new-onset NAFLD was significantly increased when PAC levels were ≥13 ng/dL. Larger, prospective studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Junli Hu
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Xintian Cai
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Qing Zhu
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Mulalibieke Heizhati
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Wen Wen
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Qin Luo
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Yujie Dang
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Wenbo Yang
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Hypertension Institute, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- NHC Key Laboratory of Hypertension Clinical Research, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Key Laboratory of Xinjiang Uygur Autonomous Region, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
257
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
258
|
Guglielmi V, Bettini S, Sbraccia P, Busetto L, Pellegrini M, Yumuk V, Colao AM, El Ghoch M, Muscogiuri G. Beyond Weight Loss: Added Benefits Could Guide the Choice of Anti-Obesity Medications. Curr Obes Rep 2023; 12:127-146. [PMID: 37209215 PMCID: PMC10250472 DOI: 10.1007/s13679-023-00502-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE OF REVIEW To highlight the added benefits of approved and upcoming, centrally-acting, anti-obesity drugs, focusing not only on the most common metabolic and cardiovascular effects but also on their less explored clinical benefits and drawbacks, in order to provide clinicians with a tool for more comprehensive, pharmacological management of obesity. RECENT FINDINGS Obesity is increasingly prevalent worldwide and has become a challenge for healthcare systems and societies. Reduced life expectancy and cardiometabolic complications are some of the consequences of this complex disease. Recent insights into the pathophysiology of obesity have led to the development of several promising pharmacologic targets, so that even more effective drugs are on the horizon. The perspective of having a wider range of treatments increases the chance to personalize therapy. This primarily has the potential to take advantage of the long-term use of anti-obesity medication for safe, effective and sustainable weight loss, and to concomitantly address obesity complications/comorbidities when already established. The evolving scenario of the availability of anti-obesity drugs and the increasing knowledge of their added effects on obesity complications will allow clinicians to move into a new era of precision medicine.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Dept. of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Silvia Bettini
- Center for the Study and the Integrated Treatment of Obesity, Internal Medicine 3, Padua University Hospital, Padua, Italy
| | - Paolo Sbraccia
- Dept. of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Luca Busetto
- Center for the Study and the Integrated Treatment of Obesity, Internal Medicine 3, Padua University Hospital, Padua, Italy
| | - Massimo Pellegrini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism & Diabetes Istanbul University Cerrahpaşa Medical Faculty, Istanbul, Türkiye
| | - Anna Maria Colao
- Italian Centre for the Care and Well-Being of Patients With Obesity (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Università Federico II, 80131 Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco ”Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut, Lebanon
| | - Giovanna Muscogiuri
- Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco ”Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| |
Collapse
|
259
|
Sun DQ, Targher G, Byrne CD, Wheeler DC, Wong VWS, Fan JG, Tilg H, Yuan WJ, Wanner C, Gao X, Long MT, Kanbay M, Nguyen MH, Navaneethan SD, Yilmaz Y, Huang Y, Gani RA, Marzuillo P, Boursier J, Zhang H, Jung CY, Chai J, Valenti L, Papatheodoridis G, Musso G, Wong YJ, El-Kassas M, Méndez-Sánchez N, Sookoian S, Pavlides M, Duseja A, Holleboom AG, Shi J, Chan WK, Fouad Y, Yang J, Treeprasertsuk S, Cortez-Pinto H, Hamaguchi M, Romero-Gomez M, Al Mahtab M, Ocama P, Nakajima A, Dai C, Eslam M, Wei L, George J, Zheng MH. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. Hepatobiliary Surg Nutr 2023; 12:386-403. [PMID: 37351121 PMCID: PMC10282675 DOI: 10.21037/hbsn-22-421] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND With the rising global prevalence of fatty liver disease related to metabolic dysfunction, the association of this common liver condition with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the term non-alcoholic fatty liver disease (NAFLD). The observed association between MAFLD and CKD and our understanding that CKD can be a consequence of underlying metabolic dysfunction support the notion that individuals with MAFLD are at higher risk of having and developing CKD compared with those without MAFLD. However, to date, there is no appropriate guidance on CKD in individuals with MAFLD. Furthermore, there has been little attention paid to the link between MAFLD and CKD in the Nephrology community. METHODS AND RESULTS Using a Delphi-based approach, a multidisciplinary panel of 50 international experts from 26 countries reached a consensus on some of the open research questions regarding the link between MAFLD and CKD. CONCLUSIONS This Delphi-based consensus statement provided guidance on the epidemiology, mechanisms, management and treatment of MAFLD and CKD, as well as the relationship between the severity of MAFLD and risk of CKD, which establish a framework for the early prevention and management of these two common and interconnected diseases.
Collapse
Affiliation(s)
- Dan-Qin Sun
- Department of Nephrology, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and Southampton General Hospital, University of Southampton, Southampton, UK
| | - David C. Wheeler
- Department of Renal Medicine, University College London, London, UK
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Wei-Jie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine, Würzburg University Clinic, Würzburg, Germany
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Michelle T. Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine (M.K.), Koc University School of Medicine, Istanbul, Turkey
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| | - Sankar D. Navaneethan
- Section of Nephrology and Institute of Clinical and Translational Research, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Rino A. Gani
- Division of Hepatobiliary, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty Universitas Indonesia, Jakarta, Indonesia
| | - Pierluigi Marzuillo
- Department of Woman, Child and of General and Specialized Surgery, Università della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Jérôme Boursier
- HIFIH Laboratory, UPRES EA3859, Angers University, Angers, France
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chan-Young Jung
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jin Chai
- Cholestatic Liver Diseases Center, Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Università degli Studi di Milano, Milan, Italy
| | - George Papatheodoridis
- Department of Gastroenterology, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Giovanni Musso
- Emergency and Intensive Care Medicine, HUMANITAS Gradenigo Hospital;
| | - Yu-Jun Wong
- Department of Gastroenterology & Hepatology, Changi General Hospital, Singhealth, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | | | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Michael Pavlides
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wah-Kheong Chan
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya, Egypt
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Manuel Romero-Gomez
- UCM Digestive Diseases, University Hospital Virgen del Rocio, Institute of Biomedicine of Seville (CSIC/HUVR/US), Ciberehd, University of Seville, Sevilla, Spain
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Ponsiano Ocama
- Department of Medicine, Makerere University of College of Health Sciences, Kampala, Uganda
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
260
|
Purssell H, Bennett L, Street O, Hanley KP, Hanley N, Vasant DH, Athwal VS. The prevalence and burden of Rome IV bowel disorders of gut brain interaction in patients with non-alcoholic fatty liver disease: a cross-sectional study. Sci Rep 2023; 13:8769. [PMID: 37253969 DOI: 10.1038/s41598-023-35774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
Rome IV bowel disorders of gut brain interaction (DGBI) and non-alcoholic fatty liver disease (NAFLD) are highly prevalent entities with overlapping pathophysiology and risk factors. We aimed to evaluate the prevalence and burden of Rome IV irritable bowel syndrome (IBS) in patients with NAFLD. Patients diagnosed with NAFLD were recruited from a specialist liver clinic. All participants completed assessments to determine liver fibrosis severity, including liver stiffness measurement (LSM), completed the Rome IV diagnostic questionnaire for bowel disorders of gut brain interaction, the IBS symptom severity score (IBS-SSS), and the EQ-5D-5L to measure of quality-of-life (QoL). 142 patients with NAFLD (71 (50%) female, mean age 53.5 (SD ± 14.9), BMI 35.2 (SD ± 8.1) kg/M2) were recruited. 79 (55.6%) patients met criteria for a Rome IV bowel DGBI, including 50 patients (35.2%) who met the criteria for IBS (mean IBS-SSS 277.2 (SD ± 131.5)). There was no difference in liver fibrosis scores between those with and without Rome IV IBS (FIB-4 scores p = 0.14, LSM p = 0.68). Patients with NAFLD and Rome IV IBS had significantly worse QoL scores (EQ-VAS p = 0.005 and EQ-5D-5L index p = 0.0007), impairment of usual activities of daily living (p = 0.012) and were more likely to report anxiety or depression (p = 0.038). Rome IV bowel DGBI such as IBS are highly prevalent in patients with NAFLD attending liver clinics and are associated with impaired QoL and psychosocial distress.
Collapse
Affiliation(s)
- Huw Purssell
- Department of Gastroenterology and Hepatology, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lucy Bennett
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Oliver Street
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Neil Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dipesh H Vasant
- Department of Gastroenterology and Hepatology, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Varinder S Athwal
- Department of Gastroenterology and Hepatology, Manchester University NHS Foundation Trust, Manchester, UK.
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
261
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
262
|
Zhang Y, Wang L, Qi J, Yu B, Zhao J, Pang L, Zhang W, Bin L. Correlation between the triglyceride-glucose index and the onset of atrial fibrillation in patients with non-alcoholic fatty liver disease. Diabetol Metab Syndr 2023; 15:94. [PMID: 37158953 PMCID: PMC10169476 DOI: 10.1186/s13098-023-01012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with atrial fibrillation (AF). Insulin resistance (IR) is the main cause of the high prevalence of AF in NAFLD patients. The triglyceride-glucose index (TyG) is a novel IR-related indicator implicated in the incidence and severity of NAFLD. However, the role of TyG in determining the risk for AF in patients with NAFLD remains unclear. METHODS A retrospective study was conducted on 912 patients diagnosed with NAFLD via ultrasonography. These patients were divided into two groups: (1) NAFLD+ AF and (2) NAFLD+ non-AF. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to assess the correlation between the TyG index and the high risk for AF. A receiver operating characteristic (ROC) curve was constructed to evaluate the predictive value for the TyG index for AF. Restricted cubic splines (RCS) were used to test the linear correlation between TyG and the risk for AF. RESULTS A total of 204 patients with AF and 708 patients without AF were included in this study. The LASSO logistic regression analysis showed that TyG was an independent risk factor for AF (odds ratio [OR] = 4.84, 95% confidence interval [CI] 2.98-7.88, P < 0.001). The RCS showed that the risk for AF increased linearly with TyG over the entire TyG range; this risk was also evident when the patients were analyzed based on sex (P for nonlinear > 0.05). In addition, the correlation between TyG and AF was a consistent finding in subgroup analysis. Furthermore, ROC curve analysis showed that TyG levels combined with traditional risk factors improved the predictive value for atrial fibrillation. CONCLUSION The TyG index is useful in assessing the risk for atrial fibrillation in patients with NAFLD. Patients with NAFLD and increased TyG indices have higher risks for atrial fibrillation. Therefore, TyG indices should be assessed when managing patients with NAFLD.
Collapse
Affiliation(s)
- Yao Zhang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Leigang Wang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Jiaxin Qi
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Bing Yu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Jianqi Zhao
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Lin Pang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Wenjing Zhang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Liang Bin
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
263
|
Yoo TK, Lee MY, Kim SH, Zheng MH, Targher G, Byrne CD, Sung KC. Comparison of cardiovascular mortality between MAFLD and NAFLD: A cohort study. Nutr Metab Cardiovasc Dis 2023; 33:947-955. [PMID: 36746687 DOI: 10.1016/j.numecd.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS A new diagnostic criterion of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. However, only few studies have shown that MAFLD predicts cardiovascular disease (CVD) mortality better than non-alcoholic fatty liver disease (NAFLD). Therefore, a cohort study was conducted to assess this relationship. METHODS AND RESULTS Health examination data from health care centers in South Korea were assessed after excluding participants with missing covariates and cancer history (n = 701,664). Liver ultrasonography reports, laboratory and anthropometric data were extracted. Diagnoses of NAFLD and MAFLD were performed according to standard definitions. Participants were categorized based on the presence of NAFLD and MAFLD. In addition, participants were classified into five categories: no fatty liver disease (no FLD), NAFLD-only, MAFLD-only, both FLDs, and alcoholic FLD (AFLD) and non-MAFLD. Multivariable regression modeling was performed. The median follow-up duration was 8.77 years, and 52.56% of participants were men. After stratifying the cohort into no-MAFLD and MAFLD groups, MAFLD was associated with increased CVD mortality (adjusted HR 1.14, 95% CI 1.02-1.28). When participants were divided into no-NAFLD and NAFLD groups, there was a non-significant trend towards an increase in CVD mortality in NAFLD group (adjusted HR 1.07, 95% CI 0.95-1.21). When participants were divided into five categories, MAFLD-only group showed increased CVD mortality (adjusted HR 1.35, 95% CI 1.07-1.70) while NAFLD-only group showed no significant association with CVD mortality (adjusted HR 0.67, 95% CI 0.38-1.19). CONCLUSIONS In conclusion, MAFLD is associated with increased CVD mortality in a relatively young Korean population.
Collapse
Affiliation(s)
- Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Hwan Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of Hepatology, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; Southampton National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, UK
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
264
|
Weng SW, Wu JC, Shen FC, Chang YH, Su YJ, Lian WS, Tai MH, Su CH, Chuang JH, Lin TK, Liou CW, Chu TH, Kao YH, Wang FS, Wang PW. Chaperonin counteracts diet-induced non-alcoholic fatty liver disease by aiding sirtuin 3 in the control of fatty acid oxidation. Diabetologia 2023; 66:913-930. [PMID: 36692509 DOI: 10.1007/s00125-023-05869-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.
Collapse
Affiliation(s)
- Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Feng-Chih Shen
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yen-Hsiang Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Jiin-Haur Chuang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
265
|
Xiong S, Yin S, Deng W, Zhao Y, Li W, Wang P, Li Z, Yang H, Zhou Y, Yu S, Guo X, Sun Y. Predictive value of liver fibrosis scores in cardiovascular diseases among hypertensive population. J Hypertens 2023; 41:741-750. [PMID: 36883472 PMCID: PMC10090336 DOI: 10.1097/hjh.0000000000003394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/21/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE To explore the predictive value of liver fibrosis scores [fibrosis-4, AST/platelet ratio index, BAAT score (BMI Age ALT TG), and BARD score (BMI AST/ALT Ratio Diabetes)] for the risk of cardiovascular disease (CVD) in a hypertensive population. METHODS A total of 4164 hypertensive participants without history of CVD were enrolled in the follow-up. Four liver fibrosis scores (LFSs) were used, including the fibrosis-4 (FIB-4), APRI, BAAT score, and BARD score. The endpoint was CVD incidence which was defined as stroke or coronary heart disease (CHD) during the follow-up period. Cox regression analyses were used to calculate hazard ratios between LFSs and CVD. Kaplan-Meier curve was used to show the probability of CVD in different levels of LFSs. Restricted cubic spline further explored whether the relationship between LFSs and CVD was linear. Finally, we assessed the discriminatory ability of each LFS for CVD was assessed using C -statistics, net reclassification index (NRI), and integrated discrimination improvement (IDI). RESULTS During a median follow-up time of 4.66 years, 282 hypertensive participants had CVD. Kaplan-Meier curve showed that four LFSs were associated with CVD and high levels of LFSs significantly increase the probability of CVD in hypertensive population. In the multivariate Cox regression analysis, the adjusted hazard ratios for four LFSs were 3.13 in FIB-4, 1.66 in APRI, 1.47 in BAAT score, and 1.36 in BARD score. Moreover, after adding LFSs to original risk prediction model, we find that all four new models have higher C -statistics of CVD than the traditional model. Furthermore, the results of both NRI and IDI were positive, indicating that LFSs enhanced the effect on the prediction of CVD. CONCLUSIONS Our study showed that LFSs were associated with CVD in hypertensive populations in northeastern China. Furthermore, it suggested that LFSs could be a new tool for identifying patients at high risk of primary CVD in a hypertensive population.
Collapse
Affiliation(s)
- Shengjun Xiong
- Department of Cardiology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, People Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Ivan L, Uyy E, Suica VI, Boteanu RM, Cerveanu-Hogas A, Hansen R, Antohe F. Hepatic Alarmins and Mitochondrial Dysfunction under Residual Hyperlipidemic Stress Lead to Irreversible NAFLD. J Clin Transl Hepatol 2023; 11:284-294. [PMID: 36643050 PMCID: PMC9817060 DOI: 10.14218/jcth.2022.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) includes a range of progressive disorders generated by excess lipid accumulation in the liver leading to hepatic steatosis and eventually fibrosis. We aimed to identify by high performance mass spectrometry-based proteomics the main signaling pathways and liver proteome changes induced by hypercholesterolemia in a rabbit atherosclerotic model that induced high accumulation of lipids in the liver. METHODS The effect of combined lipid-lowering drugs (statins and anti-PCSK9 monoclonal antibody) were used after the interruption of the hypercholesterolemic diet to identify also the potential mediators, such as alarmins, responsible for the irreversible NAFLD build up under the hyperlipidemic sustained stress. RESULTS Proteomic analysis revealed a number of proteins whose abundance was altered. They were components of metabolic pathways including fatty-acid degradation, glycolysis/gluconeogenesis, and nonalcoholic fatty liver disease. Mitochondrial dysfunction indicated alteration at the mitochondrial respiratory chain level and down-regulation of NADH: ubiquinone oxidoreductase. The expression of a majority of cytochromes (P4502E1, b5, and c) were up-regulated by lipid-lowering treatment. Long-term hyperlipidemic stress, even with a low-fat diet and lipid-lowering treatment, was accompanied by alarmin release (annexins, galectins, HSPs, HMGB1, S100 proteins, calreticulin, and fibronectin) that generated local inflammation and induced liver steatosis and aggressive fibrosis (by high abundance of galectin 3, fibronectin, and calreticulin). CONCLUSIONS The novel findings of this study were related to the residual effects of hyperlipidemic stress with consistent, combined lipid-lowering treatment with statin and inhibitor of PCSK9.
Collapse
Affiliation(s)
- Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Viorel I. Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Raluca M. Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- Correspondence to: Felicia Antohe, Institute of Cellular Biology and Pathology “N. Simionescu” 8, B.P. Hasdeu Street, PO Box 35-14, Bucharest 050568, Romania. ORCID: https://orcid.org/0000-0002-3325-2867. Tel: +40-21-3194518, Fax: +40-21-3194519, E-mail:
| |
Collapse
|
267
|
Wang MX, Peng ZG. 17β-hydroxysteroid dehydrogenases in the progression of nonalcoholic fatty liver disease. Pharmacol Ther 2023; 246:108428. [PMID: 37116587 DOI: 10.1016/j.pharmthera.2023.108428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic and a major public health problem, with a prevalence of approximately 25%. The pathogenesis of NAFLD is complex and may be affected by the environment and susceptible genetic factors, resulting in a highly variable disease course and no approved drugs in the clinic. Notably, 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), which belongs to the 17β-hydroxysteroid dehydrogenase superfamily (HSD17Bs), is closely related to the clinical outcome of liver disease. HSD17Bs consists of fifteen members, most related to steroid and lipid metabolism, and may have the same biological function as HSD17B13. In this review, we highlight recent advances in basic research on the functional activities, major substrates, and key roles of HSD17Bs in the progression of NAFLD to develop innovative anti-NAFLD drugs targeting HSD17Bs.
Collapse
Affiliation(s)
- Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
268
|
Fan H, Liu X, Ren Z, Fei X, Luo J, Yang X, Xue Y, Zhang F, Liang B. Gut microbiota and cardiac arrhythmia. Front Cell Infect Microbiol 2023; 13:1147687. [PMID: 37180433 PMCID: PMC10167053 DOI: 10.3389/fcimb.2023.1147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
One of the most prevalent cardiac diseases is cardiac arrhythmia, however the underlying causes are not entirely understood. There is a lot of proof that gut microbiota (GM) and its metabolites have a significant impact on cardiovascular health. In recent decades, intricate impacts of GM on cardiac arrythmia have been identified as prospective approaches for its prevention, development, treatment, and prognosis. In this review, we discuss about how GM and its metabolites might impact cardiac arrhythmia through a variety of mechanisms. We proposed to explore the relationship between the metabolites produced by GM dysbiosis including short-chain fatty acids(SCFA), Indoxyl sulfate(IS), trimethylamine N-oxide(TMAO), lipopolysaccharides(LPS), phenylacetylglutamine(PAGln), bile acids(BA), and the currently recognized mechanisms of cardiac arrhythmias including structural remodeling, electrophysiological remodeling, abnormal nervous system regulation and other disease associated with cardiac arrythmia, detailing the processes involving immune regulation, inflammation, and different types of programmed cell death etc., which presents a key aspect of the microbial-host cross-talk. In addition, how GM and its metabolites differ and change in atrial arrhythmias and ventricular arrhythmias populations compared with healthy people are also summarized. Then we introduced potential therapeutic strategies including probiotics and prebiotics, fecal microbiota transplantation (FMT) and immunomodulator etc. In conclusion, the GM has a significant impact on cardiac arrhythmia through a variety of mechanisms, offering a wide range of possible treatment options. The discovery of therapeutic interventions that reduce the risk of cardiac arrhythmia by altering GM and metabolites is a real challenge that lies ahead.
Collapse
Affiliation(s)
- Hongxuan Fan
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuchang Liu
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyu Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoning Fei
- Clinical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Luo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyu Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaya Xue
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fenfang Zhang
- Department of Cardiology, Yangquan First People’s Hospital, Yangquan, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
269
|
Liu CF, Chien LW. Predictive Role of Neutrophil-Percentage-to-Albumin Ratio (NPAR) in Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in Nondiabetic US Adults: Evidence from NHANES 2017-2018. Nutrients 2023; 15:nu15081892. [PMID: 37111111 PMCID: PMC10141547 DOI: 10.3390/nu15081892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent globally and includes chronic liver diseases ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). The neutrophil-to-albumin ratio (NPAR) is a cost-effective, readily available biomarker of inflammation used to assess cancer and cardiovascular disease prognosis, and it may be of predictive value in NAFLD. This study was to evaluate the associations between the NPAR, the neutrophil-to-lymphocyte ratio (NLR), and the presence of NAFLD or advanced liver fibrosis, and to assess the predictive value of the NPAR in NAFLD in a nationally representative database. This population-based, cross-sectional, retrospective study analyzed the secondary data of adults with NAFLD or advanced liver fibrosis extracted from the National Health and Nutrition Examination Survey (NHANES) database 2017-2018. NHANES participants with complete information of vibration-controlled transient elastography (VCTE) and controlled attenuation parameter (CAP) were enrolled. A logistic regression analysis was used to determine the associations between the variables in the participants with and without NAFLD or advanced liver fibrosis. The mean values of the lymphocyte counts, neutrophil counts, NPAR, aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), total cholesterol, triglycerides, and HbA1c were significantly higher in the participants with NAFLD than in those without NAFLD or advanced liver fibrosis. The mean blood albumin levels of the subjects without NAFLD or advancing fibrosis were considerably greater than those of the individuals with these conditions. The mean values of the NLR, NPAR, AST, ALT, triglycerides, lymphocyte count, neutrophil count, and HbA1c were significantly higher in patients with advanced fibrosis than in those without advanced fibrosis. A multivariate analysis showed that per unit increases in both the NLR and NPAR were significantly associated with an increased risk of developing NAFLD, while neither the NLR nor NPAR was significantly associated with higher odds of advanced fibrosis. In conclusion, the novel biomarker NPAR demonstrates a good association with NAFLD, along with participants' clinical characteristics, in a nationwide population. The NPAR may serve as a biomarker for NAFLD and help clinicians refine the diagnosis and treatment of chronic liver disease.
Collapse
Affiliation(s)
- Chi-Feng Liu
- School of Nursing, National Taipei University of Nursing and Health Science, Taipei 112, Taiwan
| | - Li-Wei Chien
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 112, Taiwan
| |
Collapse
|
270
|
Krishnan A, Hadi Y, Alqahtani SA, Woreta TA, Fang W, Abunnaja S, Szoka N, Tabone LE, Thakkar S, Singh S. Cardiovascular Outcomes and Mortality After Bariatric Surgery in Patients With Nonalcoholic Fatty Liver Disease and Obesity. JAMA Netw Open 2023; 6:e237188. [PMID: 37027156 PMCID: PMC10082402 DOI: 10.1001/jamanetworkopen.2023.7188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
IMPORTANCE Bariatric surgery (BS) is associated with significantly reduced incidence of cardiovascular diseases and mortality in patients with obesity. However, whether BS can decrease major adverse cardiovascular events in patients with nonalcoholic fatty liver disease (NAFLD) remains poorly understood. OBJECTIVE To investigate the association of BS with the incidence of adverse cardiovascular events and all-cause mortality in patients with NAFLD and obesity. DESIGN, SETTING, AND PARTICIPANTS This was a large, population-based, retrospective cohort using data from the TriNetX platform. Adult patients with a body mass index (BMI, calculated as weight in kilograms divided by height in meters squared) of 35 or greater and NAFLD (without cirrhosis) who underwent BS between January 1, 2005, and December 31, 2021, were included. Patients in the BS group were matched with patients who did not undergo surgery (non-BS group) according to age, demographics, comorbidities, and medication by using 1:1 propensity matching. Patient follow-up ended on August 31, 2022, and data were analyzed in September 2022. EXPOSURES Bariatric surgery vs nonsurgical care. MAIN OUTCOMES AND MEASURES The primary outcomes were defined as the first incidence of new-onset heart failure (HF), composite cardiovascular events (unstable angina, myocardial infarction, or revascularization, including percutaneous coronary intervention or coronary artery bypass graft), composite cerebrovascular disease (ischemic or hemorrhagic stroke, cerebral infarction, transient ischemic attack, carotid intervention, or surgery), and a composite of coronary artery procedures or surgeries (coronary stenting, percutaneous coronary intervention, or coronary artery bypass). Cox proportional hazards models were used to estimate hazard ratios (HRs). RESULTS Of 152 394 eligible adults, 4693 individuals underwent BS; 4687 patients who underwent BS (mean [SD] age, 44.8 [11.6] years; 3822 [81.5%] female) were matched with 4687 individuals (mean [SD] age, 44.7 [13.2] years; 3883 [82.8%] years) who did not undergo BS. The BS group had significantly lower risk of new-onset of HF (HR, 0.60; 95% CI, 0.51-0.70), cardiovascular events (HR, 0.53; 95% CI, 0.44-0.65), cerebrovascular events (HR, 0.59; 95% CI, 0.51-0.69), and coronary artery interventions (HR, 0.47; 95% CI, 0.35-0.63) compared with the non-BS group. Similarly, all-cause mortality was substantially lower in the BS group (HR, 0.56; 95% CI, 0.42-0.74). These outcomes were consistent at follow-up duration of 1, 3, 5, and 7 years. CONCLUSIONS AND RELEVANCE These findings suggest that BS was significantly associated with lower risk of major adverse cardiovascular events and all-cause mortality in patients with NAFLD and obesity.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown
| | - Yousaf Hadi
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown
| | - Saleh A. Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tinsay A. Woreta
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Fang
- West Virginia Clinical & Translational Science Institute, Morgantown
| | - Salim Abunnaja
- WVU Medicine Center for Weight Management, Morgantown, West Virginia
- Department of Surgery, West Virginia University School of Medicine, Morgantown
| | - Nova Szoka
- West Virginia Clinical & Translational Science Institute, Morgantown
- Department of Surgery, West Virginia University School of Medicine, Morgantown
| | - Lawrence E. Tabone
- WVU Medicine Center for Weight Management, Morgantown, West Virginia
- Department of Surgery, West Virginia University School of Medicine, Morgantown
| | - Shyam Thakkar
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown
| | - Shailendra Singh
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, Morgantown
- WVU Medicine Center for Weight Management, Morgantown, West Virginia
| |
Collapse
|
271
|
Tang R, Abeysekera KWM, Howe LD, Hughes AD, Fraser A. Non-alcoholic fatty liver and fibrosis is associated with cardiovascular structure and function in young adults. Hepatol Commun 2023; 7:e0087. [PMID: 36995992 PMCID: PMC10069841 DOI: 10.1097/hc9.0000000000000087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/24/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease shares many risk factors with other metabolic disorders. We sought to establish whether non-alcoholic fatty liver disease may be associated with cardiovascular health independently of other known risk factors. METHODS In this prospective, population-based cohort of young adults, controlled attenuation parameter-defined liver steatosis, transient elastography-defined liver fibrosis, echocardiography, carotid ultrasonography, and pulse wave analysis were assessed at age 24 years. We examined associations between liver and cardiovascular measures, with and without accounting for demographics, body mass index, alcohol, smoking, blood pressure, lipidemia, glycemia, and inflammation. RESULTS We included 2047 participants (mean age 24.4 y; 36.2% female): 212 (10.4%) had steatosis, whereas 38 (1.9%) had fibrosis. Steatosis was associated with cardiovascular measures after adjusting for demographics, but with more comprehensive adjustment, steatosis only remained associated with stroke index [β (95% CI) of -1.85 (-3.29, -0.41) mL/m2] and heart rate [2.17 (0.58, 3.75) beats/min]. Fibrosis was associated with several measures of cardiovascular structure and function after full adjustment for risk factors, including left ventricular mass index [2.46 (0.56, 4.37) g/m2.7], E/A ratio [0.32 (0.13, 0.50)], tricuspid annular plane systolic excursion [0.14 (0.01, 0.26) cm], carotid intima-media thickness [0.024 (0.008, 0.040) mm], pulse wave velocity [0.40 (0.06, 0.75) m/s], cardiac index [-0.23 (-0.41, -0.06) L/min⋅m2], and heart rate [-7.23 (-10.16, -4.29) beats/min]. CONCLUSIONS Steatosis was not associated with measures of cardiovascular structure and function nor with subclinical atherosclerosis after adjusting for known cardiovascular risk factors. Fibrosis, however, was associated with several cardiovascular measures, including indicators of subclinical atherosclerosis, even after full adjustment. Further follow-up will help determine whether cardiovascular health worsens later with steatosis alone.
Collapse
Affiliation(s)
- Rosalind Tang
- Guy’s & St Thomas’ NHS Foundation Trust, London, UK
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Keenan Research Centre for Biomedical Science, St Michael’s Hospital, Toronto, Ontario, Canada
| | - Kushala W. M. Abeysekera
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Liver Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Laura D. Howe
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Alun D. Hughes
- Population Science & Experimental Medicine, Institute of Cardiovascular Science, University College, London, London, UK
| | - Abigail Fraser
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
272
|
Cong F, Zhu L, Deng L, Xue Q, Wang J. Correlation between nonalcoholic fatty liver disease and left ventricular diastolic dysfunction in non-obese adults: a cross-sectional study. BMC Gastroenterol 2023; 23:90. [PMID: 36973654 PMCID: PMC10041784 DOI: 10.1186/s12876-023-02708-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is associated with a greater risk of developing cardiovascular disease and have adverse impacts on the cardiac structure and function. Little is known about the effect of non-obese NAFLD upon cardiac function. We aimed to compare the echocardiographic parameters of left ventricle (LV) between non-obese NAFLD group and control group, and explore the correlation of non-obese NAFLD with LV diastolic dysfunction. METHODS AND RESULTS In this cross-sectional study, 316 non-obese inpatients were enrolled, including 72 participants with NAFLD (non-obese NAFLD group) and 244 participants without NAFLD (control group). LV structural and functional indices of two groups were comparatively analyzed. LV diastolic disfunction was diagnosed and graded using the ratio of the peak velocity of the early filling (E) wave to the atrial contraction (A) wave and E value. Compared with control group, the non-obese NAFLD group had the lower E/A〔(0.80 ± 0.22) vs (0.88 ± 0.35), t = 2.528, p = 0.012〕and the smaller LV end-diastolic diameter〔(4.51 ± 0.42)cm vs (4.64 ± 0.43)cm, t = 2.182, p = 0.030〕. And the non-obese NAFLD group had a higher prevalence of E/A < 1 than control group (83.3% vs 68.9%, X2 = 5.802, p = 0.016) while two groups had similar proportions of LV diastolic dysfunction (58.3% vs 53.7%, X2 = 0.484, p = 0.487). Multivariate logistic regression analysis showed that non-obese NAFLD was associated with an increase in E/A < 1 (OR = 6.562, 95%CI 2.014, 21.373, p = 0.002). CONCLUSIONS Non-obese NAFLD was associated with decrease of E/A, while more research will be necessary to evaluate risk of non-obese NAFLD for LV diastolic dysfunction in future.
Collapse
Affiliation(s)
- Fangyuan Cong
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Luying Zhu
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Lihua Deng
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Qian Xue
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Jingtong Wang
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
273
|
Zhu Y, Zhang H, Jiang P, Xie C, Luo Y, Chen J. Transcriptional and Epigenetic Alterations in the Progression of Non-Alcoholic Fatty Liver Disease and Biomarkers Helping to Diagnose Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:970. [PMID: 36979950 PMCID: PMC10046227 DOI: 10.3390/biomedicines11030970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH), and its global prevalence continues to rise. NASH, the progressive form of NAFLD, has higher risks of liver and non-liver related adverse outcomes compared with those patients with NAFL alone. Therefore, the present study aimed to explore the mechanisms in the progression of NAFLD and to develop a model to diagnose NASH based on the transcriptome and epigenome. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) among the three groups (normal, NAFL, and NASH) were identified, and the functional analysis revealed that the development of NAFLD was primarily related to the oxidoreductase-related activity, PPAR signaling pathway, tight junction, and pathogenic Escherichia coli infection. The logistic regression (LR) model, consisting of ApoF, THOP1, and BICC1, outperformed the other five models. With the highest AUC (0.8819, 95%CI: 0.8128-0.9511) and a sensitivity of 97.87%, as well as a specificity of 64.71%, the LR model was determined as the diagnostic model, which can differentiate NASH from NAFL. In conclusion, several potential mechanisms were screened out based on the transcriptome and epigenome, and a diagnostic model was built to help patient stratification for NAFLD populations.
Collapse
Affiliation(s)
| | | | | | | | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
274
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
275
|
Simon TG, Roelstraete B, Alkhouri N, Hagström H, Sundström J, Ludvigsson JF. Cardiovascular disease risk in paediatric and young adult non-alcoholic fatty liver disease. Gut 2023; 72:573-580. [PMID: 36522149 DOI: 10.1136/gutjnl-2022-328105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Longitudinal evidence is lacking regarding the long-term risk of major adverse cardiovascular events (MACE) in children and young adults with non-alcoholic fatty liver disease (NAFLD). DESIGN This nationwide cohort study included all Swedish children and young adults ≤25 years old with histologically confirmed NAFLD and without underlying cardiovascular disease (CVD) at baseline (1966-2016; n=699). NAFLD was defined from prospectively recorded histopathology, and further categorised as simple steatosis or non-alcoholic steatohepatitis (NASH). NAFLD patients were matched to ≤5 population controls without NAFLD or CVD (n=3353). Using Cox proportional hazards modelling, we calculated multivariable-adjusted HRs (aHRs) and 95% CIs for incident MACE (ie, ischaemic heart disease, stroke, congestive heart failure or cardiovascular mortality). In secondary analyses, we also explored rates of incident cardiac arrhythmias. RESULTS Over a median follow-up of 16.6 years, incident MACE was confirmed in 33 NAFLD patients and 52 controls. NAFLD patients had significantly higher rates of MACE than controls (3.1 vs 0.9/1000 person-years (PY); difference=2.1/1000 PY; aHR=2.33, 95% CI=1.43 to 3.78), including higher rates of ischaemic heart disease (difference=1.4/1000 PY; aHR=3.07, 95% CI 1.62 to 5.83) and congestive heart failure (difference=0.5/1000 PY; aHR=3.89, 95% CI=1.20 to 12.64). Rates of incident MACE outcomes appeared to be further augmented with NASH (aHR=5.27, 95% CI=1.96 to 14.19). In secondary analyses, NAFLD patients also had significantly higher rates of cardiac arrythmias (aHR=3.16, 95% CI=1.49 to 6.68). CONCLUSION Compared with matched population controls, children and young adults with biopsy-proven NAFLD had significantly higher rates of incident MACE, including ischaemic heart disease and congestive heart failure. Research to better characterise cardiovascular risk in children and young adults with NAFLD should be prioritised.
Collapse
Affiliation(s)
- Tracey G Simon
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Naim Alkhouri
- Hepatology, Arizona Liver Health, Chandler, Arizona, USA
| | - Hannes Hagström
- Karolinska Institute, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI Diseases, Karolinska Hospital, Stockholm, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Örebro University, Örebro, Sweden
| |
Collapse
|
276
|
Sung KC, Yoo TK, Lee MY, Byrne CD, Zheng MH, Targher G. Comparative Associations of Nonalcoholic Fatty Liver Disease and Metabolic Dysfunction-Associated Fatty Liver Disease With Coronary Artery Calcification: A Cross-Sectional and Longitudinal Cohort Study. Arterioscler Thromb Vasc Biol 2023; 43:482-491. [PMID: 36727522 DOI: 10.1161/atvbaha.122.318661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND In cross-sectional and retrospective cohort studies, we examined comparative associations between nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) and risk of having or developing coronary artery calcification (CAC). METHODS Participants who had health examinations between 2010 and 2019 were analyzed. Liver ultrasonography and coronary artery computed tomography were used to diagnose fatty liver and CAC. Participants were divided into a MAFLD and no-MAFLD group and then NAFLD and no-NAFLD groups. Participants were further divided into no fatty liver disease (reference), NAFLD-only, MAFLD-only, and both NAFLD and MAFLD groups. Logistic regression modeling was performed. Cox proportional hazard model was used to examine the risk of incident CAC in participants without CAC at baseline and who had at least two CAC measurements. RESULTS In cross-sectional analyses, 162 180 participants were included. Compared with either the no-NAFLD or no-MAFLD groups, the NAFLD and MAFLD groups were associated with a higher risk of prevalent CAC (NAFLD: adjusted odds ratio [OR], 1.34 [95% CI, 1.29-1.39]; MAFLD: adjusted OR, 1.44 [95% CI, 1.39-1.48]). Among the 4 groups, the MAFLD-only group had the strongest association with risk of prevalent CAC (adjusted OR, 1.60 [95% CI, 1.52-1.69]). Conversely, the NAFLD-only group was associated with a lower risk of prevalent CAC (adjusted OR, 0.76 [95% CI, 0.66-0.87]). In longitudinal analyses, 34 233 participants were included. Compared with either the no-NAFLD or no-MAFLD groups, the NAFLD and MAFLD groups were associated with a higher risk of incident CAC (NAFLD: adjusted hazard ratio, 1.68 [95% CI, 1.43-1.99]; MAFLD: adjusted hazard ratio, 1.82 [95% CI, 1.56-2.13]). Among these 4 groups, the MAFLD-only group had the strongest associations with risk of incident CAC (adjusted hazard ratio, 2.03,[95% CI, 1.62-2.55]). The NAFLD-only group was not independently associated with risk of incident CAC (adjusted hazard ratio, 0.88 [95% CI, 0.44-1.78]) Conclusions: Both NAFLD and MAFLD are significantly associated with an increased prevalence and incidence of CAC. These associations tended to be stronger for MAFLD.
Collapse
Affiliation(s)
- Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine (K.-C.S.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA (T.K.Y.)
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management (M.Y.L.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK; Southampton National Institute for Health and Care Research, Biomedical Research Centre, University Hospital Southampton, United Kingdom (C.D.B.)
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, China (M.-H.Z.)
- Wenzhou Key Laboratory of Hepatology, China (M.-H.Z.)
- Institute of Hepatology, Wenzhou Medical University, China (M.-H.Z.)
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China (M.-H.Z.)
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Italy (G.T.)
| |
Collapse
|
277
|
Farrugia MA, Le Garf S, Chierici A, Piche T, Gual P, Iannelli A, Anty R. Therapeutic Physical Exercise Programs in the Context of NASH Cirrhosis and Liver Transplantation: A Systematic Review. Metabolites 2023; 13:330. [PMID: 36984770 PMCID: PMC10053873 DOI: 10.3390/metabo13030330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, various physical exercise interventions have been developed with a view to reducing comorbidity and morbidity rates among patients with chronic diseases. Regular physical exercise has been shown to reduce hypertension and mortality in patients with type 2 diabetes. Diabetes and obesity are often associated with the development of nonalcoholic fatty liver disease, which can lead to liver fibrosis and then (in some cases) nonalcoholic steatohepatitis cirrhosis. We searched the literature for publications on personalized physical exercise programs in cirrhotic patients before and after liver transplantation. Eleven studies in cirrhotic patients and one study in liver transplant recipients were included in the systematic review, the results of which were reported in compliance with the preferred reporting items for systematic reviews and meta-analyses guidelines. The personalized physical exercise programs lasted for 6 to 16 weeks. Our review evidenced improvements in peak oxygen consumption and six-minute walk test performance and a reduction in the hepatic venous pressure gradient. In cirrhotic patients, personalized physical exercise programs improve quality of life, are not associated with adverse effects, and (for transplant recipients) might reduce the 90-day hospital readmission rate. However, none of the literature data evidenced reductions in the mortality rates before and after transplantation. Further prospective studies are needed to evaluate the benefit of long-term physical exercise programs in cirrhotic patients before and after liver transplantation.
Collapse
Affiliation(s)
- Marwin A. Farrugia
- Digestive Center, Centre Hospitalier Universitaire, Archet 2 Hospital, Université Côte d’Azur, 06000 Nice, France
| | - Sebastien Le Garf
- CSO PACA-Est, INSERM, C3M, Université Côte d’Azur, CEDEX 3, 06000 Nice, France
| | - Andrea Chierici
- Centre Hospitalier Universitaire de Nice—Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, Université Côte d’Azur, 06000 Nice, France
| | - Thierry Piche
- Centre Hospitalier Universitaire, INSERM, U1065, C3M, Université Côte d’Azur, 06000 Nice, France
| | - Philippe Gual
- INSERM, U1065, C3M, Université Côte d’Azur, 06000 Nice, France
| | - Antonio Iannelli
- Centre Hospitalier Universitaire de Nice—Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, INSERM U1065, Team 8 “Hepatic complications of obesity and alcohol”, Université Côte d’Azur, 06000 Nice, France
| | - Rodolphe Anty
- Digestive Center, Centre Hospitalier Universitaire, Archet 2 Hospital, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
278
|
Song XH, Liu B, Lei F, Liu YM, Zhang X, Chen Z, Zhang P, Zhang XJ, She ZG, Cai J, Wang JH, Li H. The Association Between Metabolic Dysfunction-Associated Fatty Liver Disease and Peripheral Arterial Disease in the Chinese Population. Diabetes Metab Syndr Obes 2023; 16:373-384. [PMID: 36798909 PMCID: PMC9926992 DOI: 10.2147/dmso.s394414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
PURPOSE Emerging evidence suggested that metabolic dysfunction-associated fatty liver disease (MAFLD) was significantly associated with atherosclerotic diseases. Atherosclerosis in the peripheral arteries is the most common cause of peripheral arterial disease (PAD), which has not been substantially controlled in the past. We aimed to investigate the association between MAFLD and PAD in the Chinese population. PATIENTS AND METHODS This observational study covered 102,115 participants who underwent health checkups with detailed examinations for PAD and MAFLD. PAD was measured by ankle-brachial index, and MAFLD was diagnosed by abdominal ultrasound. The generalized linear mixed models and random-effects Cox proportional hazards models were used to analyze the relationship between MAFLD and PAD. RESULTS The baseline characteristics showed that patients with MAFLD had higher prevalence of PAD compared with those without MAFLD (2.7% vs 2.2%). Compared to non-MAFLD, the individuals with MAFLD were associated with a higher risk of the presence of PAD (adjusted odds ratio: 1.30, 95% confidence interval (CI): 1.19-1.42, P < 0.001). In the prospective cohort study, 6833 participants underwent a follow-up of 2.76 (standard deviation: 1.36) years, and MAFLD at baseline was a higher risk of associated with incident PAD (adjusted hazards ratio: 1.67, 95% CI: 1.17-2.38, P = 0.005). Moreover, with the accumulation of metabolic abnormalities, the risk of the PAD was increased in the individuals with MAFLD. Furthermore, MAFLD attributed risk of PAD was more evident in participants without metabolic comorbidities. CONCLUSION MAFLD was associated with a significantly higher risk for the prevalence and incidence of PAD in the Chinese population. The finding suggested that individuals with MAFLD are not only have a higher risk of coronary heart diseases but also have an increased risk of atherosclerosis in peripheral arteries.
Collapse
Affiliation(s)
- Xiao-Hui Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Bo Liu
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- School of Basic Medical Science, Wuhan University, Wuhan, People’s Republic of China
| | - Ye-Mao Liu
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, People’s Republic of China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, People’s Republic of China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- School of Basic Medical Science, Wuhan University, Wuhan, People’s Republic of China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- School of Basic Medical Science, Wuhan University, Wuhan, People’s Republic of China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- School of Basic Medical Science, Wuhan University, Wuhan, People’s Republic of China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jin-Hua Wang
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Hubei, People’s Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Model Animal, Wuhan University, Wuhan, People’s Republic of China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, People’s Republic of China
| |
Collapse
|
279
|
Significant Association between Subclinical Left Cardiac Dysfunction and Liver Stiffness in Metabolic Syndrome Patients with Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020328. [PMID: 36837528 PMCID: PMC9961822 DOI: 10.3390/medicina59020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Background and Objectives: Diabetes mellitus (DM) is connected to both cardiovascular disease and non-alcoholic fatty liver disease (NAFLD), and is an important component of metabolic syndrome (MetS). NAFLD can be detected and quantified using the vibration controlled transient elastography (VCTE) and the controlled attenuation parameter (CAP), whereas traditional and two-dimensional speckle tracking echocardiography (2D-STE) can reveal subclinical abnormalities in heart function. We sought to see if there was a link between left cardiac dysfunction and different levels of hepatic fibrosis in MetS patients with DM and NAFLD. Patients and Methods: We recruited successive adult subjects with MetS and a normal left ventricular ejection fraction, who were divided into two groups according to the presence or absence of DM. The presence of NAFLD was established by CAP and VCTE, while conventional and 2D-STE were used to assess left heart's systolic and diastolic function. The mean age of the MetS subjects was 62 ± 10 years, 82 (55%) were men. The distribution of liver steatosis severity was similar among diabetics and non-diabetics, while liver fibrosis grade 2 and 3 was significantly more frequent in diabetics (p = 0.02, respectively p = 0.001). LV diastolic dysfunction was found in 52% of diabetic and in 36% of non-diabetic MetS patients (p = 0.04). 2D-STE identified in the diabetic subjects increased LA stiffness (40% versus 24%, p = 0.03) and reduced global left ventricular longitudinal strain (47% versus 16%, p < 0.0001). Liver fibrosis grade ≥ 2 was identified as an independent predictor of both subclinical LV systolic dysfunction and of LA dysfunction in MetS patients with DM (p < 0.0001). Conclusions: The current investigation confirms the link between liver stiffness and subclinical cardiac dysfunction as detected by 2D-STE in MetS patients with DM. The novel parameters derived from LA and LV 2D-STE have demonstrated greater sensitivity compared to the older measurements, and a substantial connection with hepatic fibrosis.
Collapse
|
280
|
Yin X, Guo X, Liu Z, Wang J. Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032844. [PMID: 36769165 PMCID: PMC9917647 DOI: 10.3390/ijms24032844] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that affects approximately one-quarter of the global adult population, posing a significant threat to human health with wide-ranging social and economic implications. The main characteristic of NAFLD is considered that the excessive fat is accumulated and deposited in hepatocytes without excess alcohol intake or some other pathological causes. NAFLD is a progressive disease, ranging from steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma, liver transplantation, and death. Therefore, NAFLD will probably emerge as the leading cause of end-stage liver disease in the coming decades. Unlike other highly prevalent diseases, NAFLD has received little attention from the global public health community. Liver biopsy is currently considered the gold standard for the diagnosis and staging of NAFLD because of the absence of noninvasive and specific biomarkers. Due to the complex pathophysiological mechanisms of NAFLD and the heterogeneity of the disease phenotype, no specific pharmacological therapies have been approved for NAFLD at present, although several drugs are in advanced stages of development. This review summarizes the current evidence on the pathogenesis, diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangyu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|
281
|
Lin H, Yip TCF, Zhang X, Li G, Tse YK, Hui VWK, Liang LY, Lai JCT, Chan SL, Chan HLY, Wong GLH, Wong VWS. Age and the relative importance of liver-related deaths in nonalcoholic fatty liver disease. Hepatology 2023; 77:573-584. [PMID: 35790018 DOI: 10.1002/hep.32633] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS It is unclear if the leading causes of death in patients with NAFLD differ by age. We aimed to investigate if the relative importance of liver-related deaths is lower and overshadowed by cardiovascular and cancer-related deaths in the elderly population. APPROACH AND RESULTS We conducted a territory-wide retrospective cohort study of adult patients with NAFLD between 2000 and 2021 in Hong Kong. The outcomes of interest were all-cause and cause-specific mortality. Age groups at death were studied at 10-year intervals. During 662,471 person-years of follow-up of 30,943 patients with NAFLD, there were 2097 deaths. The top three causes of death were pneumonia, extrahepatic cancer, and cardiovascular diseases. Liver disease was the sixth leading cause of death in patients aged 70-79 and 80-89 years, accounting for 5.1% and 5.9% of deaths, respectively, but only accounted for 3% or fewer of the deaths in the other age groups. Nonetheless, liver disease was the leading cause of death in patients with NAFLD-related cirrhosis, accounting for 36.8% of all deaths. The incidence of liver-related death was higher in men younger than age 70 but higher in women afterwards. The incidence of liver-related death in women increased from 0.62 to 7.14 per 10,000 person-years from age 60-69 to 70-79 years. CONCLUSION The relative importance of liver-related death increases with age in patients with NAFLD, especially among women. In patients with cirrhosis, liver disease is the leading cause of death.
Collapse
Affiliation(s)
- Huapeng Lin
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Terry Cheuk-Fung Yip
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Xinrong Zhang
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Guanlin Li
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Yee-Kit Tse
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Vicki Wing-Ki Hui
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Lilian Yan Liang
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Jimmy Che-To Lai
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Stephen Lam Chan
- Department of Clinical Oncology , Sir YK Pao Centre for Cancer , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Translational Oncology , The Chinese University of Hong Kong , Hong Kong , China
| | - Henry Lik-Yuen Chan
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- Union Hospital , Hong Kong , China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong , China
- Medical Data Analytics Centre , The Chinese University of Hong Kong , Hong Kong , China
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong , China
| |
Collapse
|
282
|
Wu A, Ye M, Ma T, She Z, Li R, Shi H, Yang L, Yi M, Li H. TBC1D25 alleviates nonalcoholic steatohepatitis by inhibiting abnormal lipid accumulation and inflammation. J Cell Physiol 2023; 238:393-406. [PMID: 36710714 DOI: 10.1002/jcp.30934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia-reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Anding Wu
- Department of General Surgery, Huanggang Central Hospital, Huanggang, China
| | - Mao Ye
- Department of Cardiology, HuangGang Central Hospital, Huanggang, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Ling Yang
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Maolin Yi
- Surgery of Mammary Gland and Thyroid Gland, Huanggang Central Hospital, Huanggang, China
| | - Huoping Li
- Department of Cardiology, HuangGang Central Hospital, Huanggang, China
| |
Collapse
|
283
|
Cholankeril G, El-Serag HB. Current Challenges and Future Direction in Surveillance for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2023; 43:89-99. [PMID: 36216350 DOI: 10.1055/a-1957-8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The burden for hepatocellular carcinoma (HCC) attributed to nonalcoholic fatty liver disease (NAFLD) continues to grow in parallel with rising global trends in obesity. The risk of HCC is elevated among patients with NAFLD-related cirrhosis to a level that justifies surveillance based on cost-effectiveness argument. The quality of current evidence for HCC surveillance in all patients with chronic liver disease is poor, and even lower in those with NAFLD. For a lack of more precise risk-stratification tools, current approaches to defining a target population in noncirrhotic NAFLD are limited to noninvasive tests for liver fibrosis, as a proxy for liver-related morbidity and mortality. Beyond etiology and severity of liver disease, traditional and metabolic risk factors, such as diabetes mellitus, older age, male gender and tobacco smoking, are not enough for HCC risk stratification for surveillance efficacy and effectiveness in NAFLD. There is an association between molecular and genetic factors and HCC risk in NAFLD, and risk models integrating both clinical and genetic factors will be key to personalizing HCC risk. In this review, we discuss concerns regarding defining a target population, surveillance test accuracy, surveillance underuse, and other cost-effective considerations for HCC surveillance in individuals with NAFLD.
Collapse
Affiliation(s)
- George Cholankeril
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Hashem B El-Serag
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
284
|
Ko E, Yoon EL, Jun DW. Risk factors in nonalcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S79-S85. [PMID: 36517003 PMCID: PMC10029944 DOI: 10.3350/cmh.2022.0398] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, with a global prevalence estimated at approximately 25%. NAFLD is also the leading cause of liver cirrhosis, hepatocellular carcinoma, and death. Additionally, the risk of cardiovascular disease increases with greater NAFLD severity. The liver- and cardiovascular disease-related mortality incident rate ratios among the NAFLD population were 0.77 and 4.79 per 1,000 person-years, respectively. We intend to discuss the risk factors associated with NAFLD in terms of development and progression. Obesity or higher body mass index is closely associated with NAFLD in a dose-dependent manner, but growing evidence suggests that central obesity plays a more important role in the development of NAFLD. Saturated fat and fructose have been reported to be closely related to NAFLD. Fructose intake promotes lipogenesis and impairs mitochondria fat oxidation. The presence of type 2 diabetes is the most powerful predictive risk factor for hepatic fibrosis in patients with NAFLD. Single nucleotide polymorphism is not only associated with the prevalence of NAFLD but also associated with increased liver disease mortality. Obstructive sleep apnea, intestinal dysbiosis, and sarcopenia are associated with the development of NAFLD.
Collapse
Affiliation(s)
- Eunji Ko
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Eileen L. Yoon
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
285
|
Manikat R, Nguyen MH. Nonalcoholic fatty liver disease and non-liver comorbidities. Clin Mol Hepatol 2023; 29:s86-s102. [PMID: 36603574 PMCID: PMC10029963 DOI: 10.3350/cmh.2022.0442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by excess fat accumulation in the liver. It is closely associated with metabolic syndrome, and patients with NAFLD often have comorbidities such as obesity, type 2 diabetes mellitus, and dyslipidemia. In addition to liver-related complications, NAFLD has been associated with a range of non-liver comorbidities, including cardiovascular disease, chronic kidney disease, and sleep apnea. Cardiovascular disease is the most common cause of mortality in patients with NAFLD, and patients with NAFLD have a higher risk of developing cardiovascular disease than the general population. Chronic kidney disease is also more common in patients with NAFLD, and the severity of NAFLD is associated with a higher risk of developing chronic kidney disease. Sleep apnea, a disorder characterized by breathing interruptions during sleep, is also more common in patients with NAFLD and is associated with the severity of NAFLD. The presence of non-liver comorbidities in patients with NAFLD has important implications for the management of this disease. Treatment of comorbidities such as obesity, type 2 diabetes mellitus, and dyslipidemia may improve liver-related outcomes in patients with NAFLD. Moreover, treatment of non-liver comorbidities may also improve overall health outcomes in patients with NAFLD. Therefore, clinicians should be aware of the potential for non-liver comorbidities in patients with NAFLD and should consider the management of these comorbidities as part of the overall management of this disease.
Collapse
Affiliation(s)
- Richie Manikat
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
286
|
Soni A, Yekula A, Singh Y, Sood N, Dahiya DS, Bansal K, Abraham GM. Influence of non-alcoholic fatty liver disease on non-variceal upper gastrointestinal bleeding: A nationwide analysis. World J Hepatol 2023; 15:79-88. [PMID: 36744164 PMCID: PMC9896500 DOI: 10.4254/wjh.v15.i1.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease globally with an estimated prevalence of 25%, with the clinical and economic burden expected to continue to increase. In the United States, non-variceal upper gastrointestinal bleeding (NVUGIB) has an estimated incidence of 61-78 cases per 100000 people with a mortality rate of 2%-15% based on co-morbidity burden. AIM To identify the outcomes of NVUGIB in NAFLD hospitalizations in the United States. METHODS We utilized the National Inpatient Sample from 2016-2019 to identify all NVUGIB hospitalizations in the United States. This population was divided based on the presence and absence of NAFLD. Hospitalization characteristics, outcomes and complications were compared. RESULTS The total number of hospitalizations for NVUGIB was 799785, of which 6% were found to have NAFLD. NAFLD and GIB was, on average, more common in younger patients, females, and Hispanics than GIB without NAFLD. Interestingly, GIB was less common amongst blacks with NAFLD. Multivariate logistic regression analysis was conducted, controlling for the multiple covariates. The primary outcome of interest, mortality, was found to be significantly higher in patients with NAFLD and GIB [adjusted odds ratio (aOR) = 1.018 (1.013-1.022)]. Secondary outcomes of interest, shock [aOR = 1.015 (1.008-1.022)], acute respiratory failure [aOR = 1.01 (1.005-1.015)] and acute liver failure [aOR = 1.016 (1.013-1.019)] were all more likely to occur in this cohort. Patients with NAFLD were also more likely to incur higher total hospital charges (THC) [$2148 ($1677-$2618)]; however, were less likely to have a longer length of stay [0.27 d (0.17-0.38)]. Interestingly, in our study, the patients with NAFLD were less likely to suffer from acute myocardial infarction [aOR = 0.992 (0.989-0.995)]. Patients with NAFLD were not more likely to suffer acute kidney injury, sepsis, blood transfusion, intubation, or dialysis. CONCLUSION NVUGIB in NAFLD hospitalizations had higher inpatient mortality, THC, and complications such as shock, acute respiratory failure, and acute liver failure compared to those without NAFLD.
Collapse
Affiliation(s)
- Aakriti Soni
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Anuroop Yekula
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Yuvaraj Singh
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States.
| | - Nitish Sood
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dushyant Singh Dahiya
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Kannu Bansal
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - G M Abraham
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| |
Collapse
|
287
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
288
|
Belfort-DeAguiar R, Lomonaco R, Cusi K. Approach to the Patient With Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2023; 108:483-495. [PMID: 36305273 DOI: 10.1210/clinem/dgac624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/13/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and type 2 diabetes (T2D), causing substantial burden from hepatic and extrahepatic complications. However, endocrinologists often follow people who are at the highest risk of its more severe form with nonalcoholic steatohepatitis or NASH (i.e., T2D or obesity with cardiometabolic risk factors). Endocrinologists are in a unique position to prevent cirrhosis in this population with early diagnosis and treatment. OBJECTIVE This work aims to offer endocrinologists a practical approach for the management of patients with NAFLD, including diagnosis, fibrosis risk stratification, and referral to hepatologists. PATIENTS (1) An asymptomatic patient with obesity and cardiometabolic risk factors, found to have hepatic steatosis; (2) a patient with T2D and NASH with clinically significant liver fibrosis; and (3) a liver transplant recipient with a history of NASH cirrhosis, with significant weight regain and with recurrent NAFLD on the transplanted organ. CONCLUSION NASH can be reversed with proper management of obesity and of T2D. While no agents are currently approved for the treatment of NASH, treatment should include lifestyle changes and a broader use of structured weight-loss programs, obesity pharmacotherapy, and bariatric surgery. Diabetes medications such as pioglitazone and some glucagon-like peptide 1 receptor agonists may also improve liver histology and cardiometabolic health. Sodium-glucose cotransporter-2 inhibitors and insulin may ameliorate steatosis, but their effect on steatohepatitis remains unclear. Awareness by endocrinologists about, establishing an early diagnosis of fibrosis (ie, FIB-4, liver elastography) in patients at high-risk of cirrhosis, long-term monitoring, and timely referral to the hepatologist are all critical to curve the looming epidemic of cirrhosis from NAFLD.
Collapse
Affiliation(s)
- Renata Belfort-DeAguiar
- Internal Medicine Department, Endocrinology Section, Yale University, New Haven, Connecticut 06520, USA
| | - Romina Lomonaco
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
289
|
Yabut JM, Drucker DJ. Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease. Endocr Rev 2023; 44:14-32. [PMID: 35907261 DOI: 10.1210/endrev/bnac018] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 01/14/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) controls islet hormone secretion, gut motility, and body weight, supporting development of GLP-1 receptor agonists (GLP-1RA) for the treatment of type 2 diabetes (T2D) and obesity. GLP-1RA exhibit a favorable safety profile and reduce the incidence of major adverse cardiovascular events in people with T2D. Considerable preclinical data, supported by the results of clinical trials, link therapy with GLP-RA to reduction of hepatic inflammation, steatosis, and fibrosis. Mechanistically, the actions of GLP-1 on the liver are primarily indirect, as hepatocytes, Kupffer cells, and stellate cells do not express the canonical GLP-1R. GLP-1RA reduce appetite and body weight, decrease postprandial lipoprotein secretion, and attenuate systemic and tissue inflammation, actions that may contribute to attenuation of metabolic-associated fatty liver disease (MAFLD). Here we discuss evolving concepts of GLP-1 action that improve liver health and highlight evidence that links sustained GLP-1R activation in distinct cell types to control of hepatic glucose and lipid metabolism, and reduction of experimental and clinical nonalcoholic steatohepatitis (NASH). The therapeutic potential of GLP-1RA alone, or in combination with peptide agonists, or new small molecule therapeutics is discussed in the context of potential efficacy and safety. Ongoing trials in people with obesity will further clarify the safety of GLP-1RA, and pivotal studies underway in people with NASH will define whether GLP-1-based medicines represent effective and safe therapies for people with MAFLD.
Collapse
Affiliation(s)
- Julian M Yabut
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
290
|
Barcelos STA, Silva-Sperb AS, Moraes HA, Longo L, de Moura BC, Michalczuk MT, Uribe-Cruz C, Cerski CTS, da Silveira TR, Dall'Alba V, Álvares-da-Silva MR. Oral 24-week probiotics supplementation did not decrease cardiovascular risk markers in patients with biopsy proven NASH: A double-blind placebo-controlled randomized study. Ann Hepatol 2023; 28:100769. [PMID: 36216309 DOI: 10.1016/j.aohep.2022.100769] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION AND OBJECTIVES Cardiovascular disease (CVD) is the major cause of death in non-alcoholic fatty liver disease (NAFLD), a clinical condition without any approved pharmacological therapy. Probiotics are often indicated for the disease, but their results are controversial in part due to the poor quality of studies. Thus, we investigated the impact of 24-week probiotics supplementation on cardiovascular risk (CVR) in biopsy-proven non-alcoholic steatohepatitis (NASH) patients. PATIENTS AND METHODS Double-blind, placebo-controlled, single-center study (NCT03467282), adult NASH, randomized for 24 weeks daily sachets of probiotic mix (109CFU of Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus paracasei and Bifidobacterium lactis) or placebo. Clinical scores (atherogenic indexes, atherosclerotic cardiovascular disease-ASCVD and systematic coronary risk evaluation-SCORE), biochemistry, miR-122, miR-33a, plasminogen activator inhibitor-1 (PAI-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), were determined before and after the intervention. RESULTS Forty-six patients were enrolled (23 received probiotics and 23 placebo), with a mean age of 51.7 years, most of them females and whites. Clinical and demographic features were similar between the groups at the baseline. The Median NAFLD activity score was 4.13 in both groups. Fibrosis was mild in most patients (15.2% and 65.2% F0 and F1, respectively). Treatment did not promote any clinically significant changes in body mass index or laboratory, including lipid and glucose profile. High CVR patients through atherogenic indexes decreased from baseline in both groups, as well as PAI-1 and miR-122 levels, although there was no difference between probiotics and placebo. CONCLUSIONS A 24-week probiotic mix administration was not superior to placebo in reducing CVR markers in patients with NASH.
Collapse
Affiliation(s)
- Samantha Thifani Alrutz Barcelos
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Amanda Souza Silva-Sperb
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Helena Abadie Moraes
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Bruna Concheski de Moura
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Matheus Truccolo Michalczuk
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Division of Gastroenterology, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Unit of Surgical Pathology, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Themis Reverbel da Silveira
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Valesca Dall'Alba
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil; Division of Nutrition, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Rio Grande do Sul, Brazil; Division of Gastroenterology, HCPA, Porto Alegre 90035-903, Rio Grande do Sul, Brazil.
| |
Collapse
|
291
|
Fei N, Miyoshi S, Hermanson JB, Miyoshi J, Xie B, DeLeon O, Hawkins M, Charlton W, D’Souza M, Hart J, Sulakhe D, Martinez-Guryn KB, Chang EB, Charlton MR, Leone VA. Imbalanced gut microbiota predicts and drives the progression of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in a fast-food diet mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523249. [PMID: 36712061 PMCID: PMC9882021 DOI: 10.1101/2023.01.09.523249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is multifactorial in nature, affecting over a billion people worldwide. The gut microbiome has emerged as an associative factor in NAFLD, yet mechanistic contributions are unclear. Here, we show fast food (FF) diets containing high fat, added cholesterol, and fructose/glucose drinking water differentially impact short- vs. long-term NAFLD severity and progression in conventionally-raised, but not germ-free mice. Correlation and machine learning analyses independently demonstrate FF diets induce early and specific gut microbiota changes that are predictive of NAFLD indicators, with corresponding microbial community instability relative to control-fed mice. Shotgun metagenomics showed FF diets containing high cholesterol elevate fecal pro-inflammatory effectors over time, relating to a reshaping of host hepatic metabolic and inflammatory transcriptomes. FF diet-induced gut dysbiosis precedes onset and is highly predictive of NAFLD outcomes, providing potential insights into microbially-based pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Na Fei
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Sawako Miyoshi
- Department of General Medicine, Kyorin University School of Medicine, Tokyo 1818611, Japan
| | - Jake B. Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo 1818611, Japan
| | - Bingqing Xie
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Orlando DeLeon
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Maximilian Hawkins
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - William Charlton
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Mark D’Souza
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637, USA
| | - John Hart
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Dinanath Sulakhe
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637, USA
| | | | - Eugene B. Chang
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Michael R. Charlton
- Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, 60637, USA
| | - Vanessa A. Leone
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
292
|
Hansen CD, Gram-Kampmann EM, Hansen JK, Hugger MB, Madsen BS, Jensen JM, Olesen S, Torp N, Rasmussen DN, Kjærgaard M, Johansen S, Lindvig KP, Andersen P, Thorhauge KH, Brønd JC, Hermann P, Beck-Nielsen H, Detlefsen S, Hansen T, Højlund K, Thiele MS, Israelsen M, Krag A. Effect of Calorie-Unrestricted Low-Carbohydrate, High-Fat Diet Versus High-Carbohydrate, Low-Fat Diet on Type 2 Diabetes and Nonalcoholic Fatty Liver Disease : A Randomized Controlled Trial. Ann Intern Med 2023; 176:10-21. [PMID: 36508737 DOI: 10.7326/m22-1787] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It remains unclear if a low-carbohydrate, high-fat (LCHF) diet is a possible treatment strategy for type 2 diabetes mellitus (T2DM), and the effect on nonalcoholic fatty liver disease (NAFLD) has not been investigated. OBJECTIVE To investigate the effect of a calorie-unrestricted LCHF diet, with no intention of weight loss, on T2DM and NAFLD compared with a high-carbohydrate, low-fat (HCLF) diet. DESIGN 6-month randomized controlled trial with a 3-month follow-up. (ClinicalTrials.gov: NCT03068078). SETTING Odense University Hospital in Denmark from November 2016 until June 2020. PARTICIPANTS 165 participants with T2DM. INTERVENTION Two calorie-unrestricted diets: LCHF diet with 50 to 60 energy percent (E%) fat, less than 20E% carbohydrates, and 25E% to 30E% proteins and HCLF diet with 50E% to 60E% carbohydrates, 20E% to 30E% fats, and 20E% to 25E% proteins. MEASUREMENTS Glycemic control, serum lipid levels, metabolic markers, and liver biopsies to assess NAFLD. RESULTS The mean age was 56 years (SD, 10), and 58% were women. Compared with the HCLF diet, participants on the LCHF diet had greater improvements in hemoglobin A1c (mean difference in change, -6.1 mmol/mol [95% CI, -9.2 to -3.0 mmol/mol] or -0.59% [CI, -0.87% to -0.30%]) and lost more weight (mean difference in change, -3.8 kg [CI, -6.2 to -1.4 kg]). Both groups had higher high-density lipoprotein cholesterol and lower triglycerides at 6 months. Changes in low-density lipoprotein cholesterol were less favorable in the LCHF diet group than in the HCLF diet group (mean difference in change, 0.37 mmol/L [CI, 0.17 to 0.58 mmol/L] or 14.3 mg/dL [CI, 6.6 to 22.4 mg/dL]). No statistically significant between-group changes were detected in the assessment of NAFLD. Changes were not sustained at the 9-month follow-up. LIMITATION Open-label trial, self-reported adherence, unintended weight loss, and lack of adjustment for multiple comparisons. CONCLUSION Persons with T2DM on a 6-month, calorie-unrestricted, LCHF diet had greater clinically meaningful improvements in glycemic control and weight compared with those on an HCLF diet, but the changes were not sustained 3 months after intervention. PRIMARY FUNDING SOURCE Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Camilla Dalby Hansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Eva-Marie Gram-Kampmann
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark (E.M.G., H.B., K.H.)
| | - Johanne Kragh Hansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Mie Balle Hugger
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Bjørn Stæhr Madsen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Jane Møller Jensen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Sara Olesen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Nikolaj Torp
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Ditlev Nytoft Rasmussen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Maria Kjærgaard
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Stine Johansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Katrine Prier Lindvig
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense SV, Denmark (K.P.L.)
| | - Peter Andersen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Katrine Holtz Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Jan Christian Brønd
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark (J.C.B.)
| | - Pernille Hermann
- Department of Medical Endocrinology, Odense University Hospital, Odense, Denmark (P.H.)
| | - Henning Beck-Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark (E.M.G., H.B., K.H.)
| | - Sönke Detlefsen
- Institute of Clinical Research, University of Southern Denmark, and Department of Pathology, Odense University Hospital, Odense, Denmark (S.D.)
| | - Torben Hansen
- Novo Nordisk Foundation, Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark (T.H.)
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark (E.M.G., H.B., K.H.)
| | - Maja Sofie Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark (C.D.H., M.B.H., N.T., M.K., S.J., K.H.T., M.S.T.)
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark (J.K.H., B.S.M., J.M.J., S.O., D.N.R., P.A., M.I.)
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, and Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark (A.K.)
| |
Collapse
|
293
|
Mankieva E, Kukhareva E. Non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. DOKAZATEL'NAYA GASTROENTEROLOGIYA 2023; 12:103. [DOI: 10.17116/dokgastro202312041103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
294
|
Gheorghe L, Iacob S. Nonalcoholic Fatty Liver Disease Within Other Causes of Chronic Liver Diseases. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:133-147. [DOI: 10.1007/978-3-031-33548-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
295
|
Fu CE, Ng CH, Yong JN, Chan KE, Xiao J, Nah B, Bong SHS, Win KM, Bwa AH, Lim WH, Tan DJH, Zeng RW, Chew N, Teng MLP, Siddiqui MS, Oben JA, Sanyal AJ, Wong VWS, Noureddin M, Muthiah M. A Meta-analysis on Associated Risk of Mortality in Nonalcoholic Fatty Liver Disease. Endocr Pract 2023; 29:33-39. [PMID: 36273685 DOI: 10.1016/j.eprac.2022.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) affects much of the worldwide population and poses a significant burden to the global healthcare. The rising numbers of individuals with NAFLD and instances of mortality point toward the importance of understanding the association causes of mortality in NAFLD. This meta-analysis aimed to seek the associations of NAFLD with all-cause, cardiovascular disease (CVD)-related, liver-related, and cancer-related mortality. METHODS MEDLINE and Embase were searched for articles relating to causes of mortality between NAFLD and non-NAFLD. The DerSimonian and Laird random-effects model was used to analyze adjusted hazard ratios (HR), and a sensitivity analysis was conducted to reduce heterogeneity through a graphical display of study heterogeneity. RESULTS Fifteen studies involving 10 286 490 patients were included. Individuals with NAFLD exhibited an increased risk of all-cause mortality (HR, 1.32; 95% CI, 1.09-1.59; P < .01; I2 = 96.00%), CVD-related mortality (HR, 1.22; 95% CI, 1.06-1.41; P < .01; I2 = 81.00%), and cancer-related mortality (HR, 1.67; 95% CI, 1.15-2.41; P < .01; I2 = 95.00%). However, no significant association was found between liver-related mortality and NAFLD (HR, 3.58; 95% CI, 0.69-18.46; P =.13; I2 = 96.00%). The sensitivity analysis conducted with graphic display of heterogeneity and only population-based studies found similar results. CONCLUSION NAFLD was associated with an increased risk of all-cause, CVD-related, and cancer-related mortality but not liver-related mortality. The finding is likely because of low fibrosis prevalence in the community. However, the significant burden in other causes of mortality beyond the liver points to a need for multidisciplinary efforts to reduce the mortality risks.
Collapse
Affiliation(s)
- Clarissa Elysia Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Benjamin Nah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Shirley Huey Shin Bong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | | | | | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Nicholas Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Margaret L P Teng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Virginia
| | - Jude A Oben
- Institute for Liver and Digestive Health, University College London, London, United Kingdom; Department of Gastroenterology and Hepatology, Guy's and St Thomas' Hospital, NHS Foundation Trust, London, United Kingdom
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Virginia
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mazen Noureddin
- Houston Research Institute, Houston Liver Institute, Houston, Texas
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.
| |
Collapse
|
296
|
Tian H, Zhang K, Hui Z, Ren F, Ma Y, Han F, Sun X, Kan C, Hou N. Global burden of non-alcoholic fatty liver disease in 204 countries and territories from 1990 to 2019. Clin Res Hepatol Gastroenterol 2023; 47:102068. [PMID: 36513252 DOI: 10.1016/j.clinre.2022.102068] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a growing epidemic linked to metabolic disease and is the most prevalent cause of chronic liver disease. We, therefore, designed the study to analyze the global and regional burden of NAFLD from 1990 to 2019. METHODS We collected data on NAFLD from the Global Burden of Disease study 2019, aiming to conduct a systematic assessment of the changes and trends in NAFLD in 204 countries. Secondary analysis of NAFLD was conducted using age-standardized rates (ASRs) and estimated annual percentage changes (EAPCs) to show the changing trends and development characteristics. Data statistics and visualization were executed with the R program. RESULTS Globally, incidence, deaths and disability-adjusted life years (DALYs) of NAFLD all showed an upward trend. Between 1990 and 2019, the incidence of NAFLD increased by 95.4%, from 88,177 to 172,330 cases. Meanwhile, the ASIR of the middle SDI region had the highest increase, followed by the low-middle SDI region. Of all countries, the most incident cases were in China, which accounted for approximately 23.6% of NAFLD. China was also the country with the largest cases of deaths and DALYs. And behavioral risk, metabolic factors, smoking and high fasting plasma glucose were the critical risk factors associated with the mortality and DALYs of NAFLD. CONCLUSION NAFLD has become a considerable health burden in many countries. Therefore, we should control the risk factors of NAFLD and take corresponding measures to achieve its early prevention and treatment.
Collapse
Affiliation(s)
- Hongzhan Tian
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
297
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
298
|
Yi J, Wang L, Guo J, Ren X. Novel metabolic phenotypes for extrahepatic complication of nonalcoholic fatty liver disease. Hepatol Commun 2023; 7:e0016. [PMID: 36633488 PMCID: PMC9833442 DOI: 10.1097/hc9.0000000000000016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND AIMS Phenotypic heterogeneity among patients with NAFLD is poorly understood. We aim to identify clinically important phenotypes within NAFLD patients and assess the long-term outcomes among different phenotypes. METHODS We analyzed the clinical data of 2311 participants from the Third National Health and Nutrition Examination Survey (NHANES III) and their linked mortality data through December 2019. NAFLD was diagnosed by ultrasonographic evidence of hepatic steatosis without other liver diseases and excess alcohol use. A 2-stage cluster analysis was applied to identify clinical phenotypes. We used Cox proportional hazard models to explore all-cause and cause-specific mortality between clusters. RESULTS We identified 3 NAFLD phenotypes. Cluster 1 was characterized by young female patients with better metabolic profiles and lower prevalence of comorbidities; Cluster 2 by obese females with significant insulin resistance, diabetes, inflammation, and advanced fibrosis and Cluster 3 by male patients with hypertension, atherogenic dyslipidemia, and liver and kidney damage. In a median follow-up of 26 years, 989 (42.8%) all-cause mortality occurred. Cluster 1 patients presented the best prognosis, whereas Cluster 2 and 3 had higher risks of all-cause (Cluster 2-adjusted HR: 1.48, 95% CI: 1.16-1.90; Cluster 3-adjusted HR: 1.29, 95% CI: 1.01-1.64) and cardiovascular (Cluster 2-adjusted HR: 2.01, 95% CI: 1.18-3.44; Cluster 3-adjusted HR: 1.75, 95% CI: 1.03-2.97) mortality. CONCLUSIONS Three phenotypically distinct and clinically meaningful NAFLD subgroups have been identified with different characteristics of metabolic profiles. This study reveals the substantial disease heterogeneity that exists among NAFLD patients and underscores the need for granular assessments to define phenotypes and improve clinical practice.
Collapse
Affiliation(s)
- Jiayi Yi
- Department of Biochemistry, Medical College, Jiaxing University, Jiaxing, China
| | - Lili Wang
- Department of Biochemistry, Medical College, Jiaxing University, Jiaxing, China
| | - Jiajun Guo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangpeng Ren
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
299
|
Koning M, Herrema H, Nieuwdorp M, Meijnikman AS. Targeting nonalcoholic fatty liver disease via gut microbiome-centered therapies. Gut Microbes 2023; 15:2226922. [PMID: 37610978 PMCID: PMC10305510 DOI: 10.1080/19490976.2023.2226922] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Humans possess abundant amounts of microorganisms, including bacteria, fungi, viruses, and archaea, in their gut. Patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in their gut microbiome and an impaired gut barrier function. Preclinical studies emphasize the significance of the gut microbiome in the pathogenesis of NAFLD. In this overview, we explore how adjusting the gut microbiome could serve as an innovative therapeutic strategy for NAFLD. We provide a summary of current information on untargeted techniques such as probiotics and fecal microbiota transplantation, as well as targeted microbiome-focused therapies including engineered bacteria, prebiotics, postbiotics, and phages for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mijra Koning
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| |
Collapse
|
300
|
Shi YW, Fan JG. Metabolic-associated fatty liver disease: pharmacological management. COMPREHENSIVE GUIDE TO HEPATITIS ADVANCES 2023:319-341. [DOI: 10.1016/b978-0-323-98368-6.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|