251
|
Dykens JA, Marroquin LD, Will Y. Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Rev Mol Diagn 2007; 7:161-75. [PMID: 17331064 DOI: 10.1586/14737159.7.2.161] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondrial dysfunction is increasingly implicated in the etiology of drug-induced toxicities and negative side-effect profiles. Early identification of mitochondrial liabilities for new chemical entities is therefore crucial for avoiding late-stage attrition during drug development. Limitations of traditional methods for assessing mitochondrial dysfunction have discouraged routine evaluation of mitochondrial liabilities. To circumvent this bottleneck, a high-throughput screen has been developed that measures oxygen consumption; one of the most informative parameters for the assessment of mitochondrial status. This technique has revealed that some, but not all, members of many major drug classes have mitochondrial liabilities. This dichotomy encourages optimism that efficacy can be disassociated from mitochondrial toxicity, resulting in safer drugs in the future.
Collapse
Affiliation(s)
- James A Dykens
- Pfizer DSRD, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
252
|
Halila GC, de Oliveira MBM, Echevarria A, Belém AC, Rocha MEM, Carnieri EGS, Martinez GR, Noleto GR, Cadena SMSC. Effect of sydnone SYD-1, a mesoionic compound, on energy-linked functions of rat liver mitochondria. Chem Biol Interact 2007; 169:160-70. [PMID: 17644080 DOI: 10.1016/j.cbi.2007.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/06/2007] [Accepted: 06/09/2007] [Indexed: 11/22/2022]
Abstract
An important antitumour effect of SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) has been shown. We now report the effects of this mesoionic compound on mitochondrial metabolism. SYD-1 (1.5 micromol mg(-1) protein) dose-dependently inhibited the respiratory rate by 65% and 40% in state 3 using sodium glutamate and succinate, respectively, as substrates. Phosphorylation efficiency was depressed by SYD-1, as evidenced by stimulation of the state 4 respiratory rate, which was more accentuated with glutamate ( approximately 180%) than with succinate ( approximately 40%), with 1.5 micromol mg(-1) protein of SYD-1. As a consequence of the effects on states 3 and 4, the RCC and ADP/O ratios were lowered by SYD-1 using both substrates, although this effect was stronger with glutamate. The formation of membrane electrical potential was inhibited by approximately 50% (1.5 micromol SYD-1mg(-1) protein). SYD-1 interfered with the permeability of the inner mitochondrial membrane, as demonstrated by assays of mitochondrial swelling in the presence of sodium acetate and valinomycin +K(+). SYD-1 (1.5 micromol mg(-1) protein) inhibited glutamate completely and succinate energized-mitochondrial swelling by 80% in preparations containing sodium acetate. The swelling of de-energized mitochondria induced by K(+) and valinomycin was inhibited by 20% at all concentrations of SYD-1. An analysis of the segments of the respiratory chain suggested that the SYD-1 inhibition site goes beyond the complex I and includes complexes III and IV. Glutamate dehydrogenase was inhibited by 20% with SYD-1 (1.5 micromol mg(-1) protein). The hydrolytic activity of complex F(1)F(o) ATPase in intact mitochondria was greatly increased ( approximately 450%) in the presence of SYD-1. Our results show that SYD-1 depresses the efficiency of electron transport and oxidative phosphorylation, suggesting that these effects may be involved in its antitumoural effect.
Collapse
Affiliation(s)
- Gerusa Clazer Halila
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Nadanaciva S, Bernal A, Aggeler R, Capaldi R, Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol In Vitro 2007; 21:902-11. [PMID: 17346924 DOI: 10.1016/j.tiv.2007.01.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/13/2007] [Accepted: 01/15/2007] [Indexed: 11/23/2022]
Abstract
Mitochondrial dysfunction has been shown to be a pharmacotoxicological response to a variety of currently-marketed drugs. In order to reduce attrition due to mitochondrial toxicity, high throughput-applicable screens are needed for early stage drug discovery. We describe, here, a set of immunocapture based assays to identify compounds that directly inhibit four of the oxidative phosphorylation (OXPHOS) complexes: I, II, IV, and V. Intra- and inter-assay variation were determined and specificity tested by using classical mitochondrial inhibitors. Twenty drugs, some with known mitochondrial toxicity and others with no known mitochondrial liability, were studied. Direct inhibition of one or more of the OXPHOS complexes was identified for many of the drugs. Novel information was obtained for several drugs including ones with previously unknown effects on oxidative phosphorylation. A major advantage of the immunocapture approach is that it can be used throughout drug screening from early compound evaluation to clinical trials.
Collapse
|
254
|
Horobin RW, Trapp S, Weissig V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release 2007; 121:125-36. [PMID: 17658192 DOI: 10.1016/j.jconrel.2007.05.040] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Since compounds targeting mitochondria exhibit diverse accumulation mechanisms and chemical features, various questions arise. Do such "mitochondriotropics" have a characteristic chemistry? What are mitochondrial uptake mechanisms? Do mitochondriotropics necessarily accumulate in mitochondria or merely have access? Is the concept "mitochondriotropic" of any practical value? To seek answers, a non-biased sample of >100 mitochondriotropics was generated from the review literature. This dataset was examined using: physicochemical classification; quantitative structure-activity relations (QSAR) models; and a Fick-Nernst-Planck physicochemical model. The ability of the latter two approaches to predict mitochondriotropic behaviour was assessed, and comparisons made between methods, and with current assumptions. All approaches provided instructive pictures of the nature of mitochondriotropics. Thus although lipophilic cations are regarded as the commonest structural type, only a third were such. Much the same proportion were acids, potentially or actually anions. Many mitochondriotropics were electrically neutral compounds. All categorizations involved overall molecular properties, not the presence of "mitochondriotropic tags"--again contrary to literature concepts. Selective mitochondrial accumulation involved electric potential, ion-trapping, and complex formation with cardiolipin; non-specific accumulation involved membrane partitioning. Non-specific access required only low lipophilicity. Mitochondrial targeting did not preclude additional accumulation sites, e.g. lysosomes. The concept "mitochondriotropic" remains useful, although may imply access, not accumulation. QSAR and Fick-Nernst-Planck approaches are complementary--neither is universally applicable. Using both approaches enabled the mitochondriotropic behavior of >80% of the dataset to be predicted, and the physicochemistry of mitochondriotropics to be specified in some detail. This can facilitate guided syntheses and selection of optimal mitochondriotropic structures.
Collapse
Affiliation(s)
- Richard W Horobin
- Division of Neurosciences and Biomedical Systems, IBLS, University of Glasgow, Glasgow, Scotland, UK.
| | | | | |
Collapse
|
255
|
Scatena R, Bottoni P, Botta G, Martorana GE, Giardina B. The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic. Am J Physiol Cell Physiol 2007; 293:C12-21. [PMID: 17475665 DOI: 10.1152/ajpcell.00314.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to their well-known critical role in energy metabolism, mitochondria are now recognized as the location where various catabolic and anabolic processes, calcium fluxes, various oxygen-nitrogen reactive species, and other signal transduction pathways interact to maintain cell homeostasis and to mediate cellular responses to different stimuli. It is important to consider how pharmacological agents affect mitochondrial biochemistry, not only because of toxicological concerns but also because of potential therapeutic applications. Several potential targets could be envisaged at the mitochondrial level that may underlie the toxic effects of some drugs. Recently, antiviral nucleoside analogs have displayed mitochondrial toxicity through the inhibition of DNA polymerase-γ (pol-γ). Other drugs that target different components of mitochondrial channels can disrupt ion homeostasis or interfere with the mitochondrial permeability transition pore. Many known inhibitors of the mitochondrial electron transfer chain act by interfering with one or more of the respiratory chain complexes. Nonsteroidal anti-inflammatory drugs (NSAIDs), for example, may behave as oxidative phosphorylation uncouplers. The mitochondrial toxicity of other drugs seems to depend on free radical production, although the mechanisms have not yet been clarified. Meanwhile, drugs targeting mitochondria have been used to treat mitochondrial dysfunctions. Importantly, drugs that target the mitochondria of cancer cells have been developed recently; such drugs can trigger apoptosis or necrosis of the cancer cells. Thus the aim of this review is to highlight the role of mitochondria in pharmacotoxicology, and to describe whenever possible the main molecular mechanisms underlying unwanted and/or therapeutic effects.
Collapse
Affiliation(s)
- Roberto Scatena
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
256
|
Mingatto FE, Dorta DJ, dos Santos AB, Carvalho I, da Silva CHTP, da Silva VB, Uyemura SA, dos Santos AC, Curti C. Dehydromonocrotaline inhibits mitochondrial complex I. A potential mechanism accounting for hepatotoxicity of monocrotaline. Toxicon 2007; 50:724-30. [PMID: 17669457 DOI: 10.1016/j.toxicon.2007.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
Monocrotaline is a pyrrolizidine alkaloid present in plants of the Crotalaria species, which causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline. We evaluated the effects of monocrotaline and its metabolite on respiration, membrane potential and ATP levels in isolated rat liver mitochondria, and on respiratory chain complex I NADH oxidase activity in submitochondrial particles. Dehydromonocrotaline, but not the parent compound, showed a concentration-dependent inhibition of glutamate/malate-supported state 3 respiration (respiratory chain complex I), but did not affect succinate-supported respiration (complex II). Only dehydromonocrotaline dissipated mitochondrial membrane potential, depleted ATP, and inhibited complex I NADH oxidase activity (IC50=62.06 microM) through a non-competitive type of inhibition (K(I)=8.1 microM). Therefore, dehydromonocrotaline is an inhibitor of the activity of respiratory chain complex I NADH oxidase, an action potentially accounting for the well-documented monocrotaline's hepatotoxicity to animals and humans. The mechanism probably involves change of the complex I conformation resulting from modification of cysteine thiol groups by the metabolite.
Collapse
Affiliation(s)
- Fábio E Mingatto
- Laboratório de Bioquímica, Faculdade de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Dracena, 17900-000 Dracena, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 2007; 102:1713-1726. [PMID: 17555547 PMCID: PMC3600610 DOI: 10.1111/j.1471-4159.2007.04675.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.
Collapse
Affiliation(s)
- Kelly L. Drew
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - C. Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Brian M. Barnes
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Sherri L. Christian
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Brian T. Rasley
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Michael B. Harris
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
258
|
Midzak AS, Liu J, Zirkin BR, Chen H. Effect of myxothiazol on Leydig cell steroidogenesis: inhibition of luteinizing hormone-mediated testosterone synthesis but stimulation of basal steroidogenesis. Endocrinology 2007; 148:2583-90. [PMID: 17332065 DOI: 10.1210/en.2006-1488] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies of MA-10 Leydig cells have shown that intact mitochondria with active respiration are essential for LH-induced Leydig cell steroidogenesis. To further elucidate the role played by mitochondria in steroidogenesis, we examined the effects of the perturbation of the mitochondrial electron transport chain with myxothiazol (MYX) on testosterone production by primary cultures of Brown Norway rat Leydig cells. Analysis of the steroidogenic pathway revealed that cAMP production and the activities of each of 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase/C17-20 lyase, and 17beta-hydroxysteroid dehydrogenase were inhibited by MYX and that LH-stimulated testosterone production was suppressed. In contrast to the inhibition of LH-stimulated testosterone production by MYX, the incubation of Leydig cells with MYX in the absence of LH stimulated testosterone production. Although testosterone production was increased, steroidogenic acute regulatory protein was decreased in response to MYX, not increased as could be expected. Additional electron transport chain inhibitors had stimulatory effects on testosterone production that were similar to those of MYX, strongly suggesting that the effect of MYX on basal testosterone production is related to its effect on the mitochondrial electron transport chain. Finally, incubation of the cells with a combination of MYX and the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid tetrakis acetoxymethyl ester suppressed MYX-mediated increased basal steroidogenesis but had no effect on hydroxycholesterol-mediated steroidogenesis. Taken together, these results indicate that inhibition of the mitochondrial electron transport chain can block LH-stimulated testosterone production through suppression of a number of steps of the steroidogenic pathway but also stimulates basal testosterone production through a calcium-mediated mechanism.
Collapse
Affiliation(s)
- Andrew S Midzak
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
259
|
Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, Kaufmann SH. Inhibition of Mitochondrial Respiration as a Source of Adaphostin-induced Reactive Oxygen Species and Cytotoxicity. J Biol Chem 2007; 282:8860-72. [PMID: 17213201 DOI: 10.1074/jbc.m611777200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adaphostin is a dihydroquinone derivative that is undergoing extensive preclinical testing as a potential anticancer drug. Previous studies have suggested that the generation of reactive oxygen species (ROS) plays a critical role in the cytotoxicity of this agent. In this study, we investigated the source of these ROS. Consistent with the known chemical properties of dihydroquinones, adaphostin simultaneously underwent oxidation to the corresponding quinone and generated ROS under aqueous conditions. Interestingly, however, this quinone was not detected in intact cells. Instead, high performance liquid chromatography demonstrated that adaphostin was concentrated by up to 300-fold in cells relative to the extracellular medium and that the highest concentration of adaphostin (3000-fold over extracellular concentrations) was detected in mitochondria. Consistent with a mitochondrial site for adaphostin action, adaphostin-induced ROS production was diminished by >75% in MOLT-4 rho(0) cells, which lack mitochondrial electron transport, relative to parental MOLT-4 cells. In addition, inhibition of oxygen consumption was observed when intact cells were treated with adaphostin. Loading of isolated mitochondria to equivalent adaphostin concentrations caused inhibition of uncoupled oxygen consumption in mitochondria incubated with the complex I substrates pyruvate and malate or the complex II substrate succinate. Further analysis demonstrated that adaphostin had no effect on pyruvate or succinate dehydrogenase activity. Instead, adaphostin inhibited reduced decylubiquinone-induced cytochrome c reduction, identifying complex III as the site of inhibition by this agent. Moreover, adaphostin enhanced the production of ROS by succinate-charged mitochondria. Collectively, these observations demonstrate that mitochondrial respiration rather than direct redox cycling of the hydroquinone moiety is a source of adaphostin-induced ROS and identify complex III as a potential target for antineoplastic agents.
Collapse
Affiliation(s)
- Son B Le
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
261
|
Moreno AJM, Serafim TL, Oliveira PJ, Madeira VMC. Inhibition of mitochondrial bioenergetics by carbaryl is only evident for higher concentrations -- Relevance for carbaryl toxicity mechanisms. CHEMOSPHERE 2007; 66:404-11. [PMID: 16860847 DOI: 10.1016/j.chemosphere.2006.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
Although pesticides have been useful in agriculture pest control, there is a considerable risk for human health and damage to ecosystems. Carbaryl is a carbamate often taken as a safe insecticide, although data on metabolic activities is still scarce, viz. mitochondrial toxicity. Therefore, it is the goal of this work to assay the compound on isolated mitochondria, a biochemical model already used with other pesticides. Mitochondria isolated from the livers of Wistar rats were assayed for bioenergetic parameters, namely mitochondrial respiration, membrane potential, membrane integrity and enzyme activities. For higher concentrations, it was observed that carbaryl has a depressive effect on mitochondrial respiration and on the generation of mitochondrial membrane potential, but with preservation of membrane integrity. A locus between Complex II and III appears particularly affected and the mitochondrial phosphorylation system relatively insensitive. Therefore, carbaryl inhibits mitochondrial respiration without affecting the phosphorylation complex. Carbaryl is toxic for mitochondria, although at concentrations higher as compared with other insecticide compounds. Mitochondrial toxicity should be excluded as one of the primary causes for carbaryl immediate toxicity, as concluded from the range of concentrations where carbaryl shows effective mitochondrial toxicity.
Collapse
Affiliation(s)
- Antonio J M Moreno
- Institute of Marine Research (IMAR), Department of Zoology, School of Sciences and Technology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
262
|
Moreno AJ, Oliveira PJ, Nova CD, Alvaro AR, Moreira RA, Santos SMD, Macedo T. Unaltered hepatic oxidative phosphorylation and mitochondrial permeability transition in wistar rats treated with nimesulide: Relevance for nimesulide toxicity characterization. J Biochem Mol Toxicol 2007; 21:53-61. [PMID: 17427176 DOI: 10.1002/jbt.20159] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nonsteroidal anti-inflammatory drugs have been associated with hepatotoxicity in susceptible patients. One such example is nimesulide, a preferential cyclooxygenase 2-inhibitor, widely used for the treatment of inflammation and pain. It was suggested that nimesulide could exert its hepatotoxicity by altering hepatic mitochondrial function, which was demonstrated in vitro. The objective of this study was to verify whether liver mitochondria isolated from rats treated with doses of nimesulide well above therapeutic levels possessed decreased calcium tolerance and oxidative phosphorylation, which indicates in vivo nimesulide mitochondrial toxicity. Male and female rats received nimesulide or its vehicle twice daily, for 5 days, and were killed on the seventh day for the isolation of liver mitochondria. Mitochondrial respiration, transmembrane electric potential, and calcium tolerance were characterized in all experimental groups. Nimesulide had no effect on liver mitochondrial function. Indexes of mitochondrial integrity, calcium loading capacity, and oxidative phosphorylation efficiency were unchanged between liver mitochondria from treated and control animals. In the animals tested, no evidence of degraded mitochondrial function due to nimesulide administration could be found. The results corroborate the notion that despite recognized in vitro mitochondrial toxicity, nimesulide does not cause detectable mitochondrial dysfunction in Wistar rats, even when administered in much higher concentrations than those known to have anti-inflammatory effects.
Collapse
Affiliation(s)
- António J Moreno
- Institute of Marine Research, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
263
|
Boelsterli UA, Lim PLK. Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 2006; 220:92-107. [PMID: 17275868 DOI: 10.1016/j.taap.2006.12.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 12/17/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a major clinical problem and poses a considerable challenge for drug development as an increasing number of successfully launched drugs or new potential drugs have been implicated in causing DILI in susceptible patient subsets. Although the incidence for a particular drug is very low (yet grossly underestimated), the outcome of DILI can be serious. Unfortunately, prediction has remained poor (both for patients at risk and for new chemical entities). The underlying mechanisms and the determinants of susceptibility have largely remained ill-defined. The aim of this review is to provide both clinical and experimental evidence for a major role of mitochondria both as a target of drugs causing idiosyncratic DILI and as mediators of delayed liver injury. We develop a unifying hypothesis that involves underlying genetic or acquired mitochondrial abnormalities as a major determinant of susceptibility for a number of drugs that target mitochondria and cause DILI. The mitochondrial hypothesis, implying gradually accumulating and initially silent mitochondrial injury in heteroplasmic cells which reaches a critical threshold and abruptly triggers liver injury, is consistent with the findings that typically idiosyncratic DILI is delayed (by weeks or months), that increasing age and female gender are risk factors and that these drugs are targeted to the liver and clearly exhibit a mitochondrial hazard in vitro and in vivo. New animal models (e.g., the Sod2(+/-) mouse) provide supporting evidence for this concept. However, genetic analyses of DILI patient samples are needed to ultimately provide the proof-of-concept.
Collapse
Affiliation(s)
- Urs A Boelsterli
- Molecular Toxicology Lab, Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore.
| | | |
Collapse
|
264
|
Soto-Castro D, Evangelista-Lara A, Guadarrama P. Theoretical design of dendrimeric fractal patterns for the encapsulation of a family of drugs: salicylanilides. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.08.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
265
|
Yao LX, Wu ZC, Ji ZL, Chen YZ, Chen X. Internet resources related to drug action and human response: a review. ACTA ACUST UNITED AC 2006; 5:131-9. [PMID: 16922594 DOI: 10.2165/00822942-200605030-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It has been demonstrated that numerous proteins interact with drugs or their metabolites. Knowledge of these proteins is necessary to understand the mechanisms of drug action and human response. Progress in modern genetics, molecular biology, biochemistry and pharmacology is generating a comprehensive mechanistic understanding of drug-target interaction on the molecular level. This is valuable for researchers and pharmaceutical companies in their efforts to improve the efficacy of existing drugs and to discover new ones. Most recently, the integration of a systems biology approach into drug discovery processes calls for more holistic knowledge and easily accessible resources of the proteins that are important in drug action and human response. We have reviewed many publicly accessible internet resources of these proteins, according to their roles in drug action and human response, such as therapeutic effect, adverse reaction, absorption, distribution, metabolism and excretion.
Collapse
Affiliation(s)
- L X Yao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
266
|
|
267
|
Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 2006; 41:389-405. [PMID: 16879835 DOI: 10.1016/j.yjmcc.2006.06.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/08/2006] [Accepted: 06/14/2006] [Indexed: 12/21/2022]
Abstract
Cardiotoxic side-effects represent a serious complication of anticancer therapy with anthracyclines, in particular with doxorubicin (DXR) being the leading drug of the group. Different hypotheses, accentuating various mechanisms and/or targets, have been proposed to explain DXR-induced cardiotoxicity. This review focuses on the myocardial energetic network as a target of DXR toxic action in heart and highlights the recent advances in understanding its role in development of the DXR related cardiac dysfunction. We present a survey of DXR-induced defects in different steps of cardiac energy metabolism, including reduction of oxidative capacity of mitochondria, changes in the profile of energy substrate utilization, disturbance of energy transfer between sites of energy production and consumption, as well as defects in energy signaling. Considering the wide spectrum and diversity of the changes reported, we attempt to integrate these facts into a common framework and to discuss important functional and temporal relationships between DXR-induced events and the possible underlying molecular mechanisms.
Collapse
|
268
|
Lannig G, Cherkasov AS, Sokolova IM. Temperature-dependent effects of cadmium on mitochondrial and whole-organism bioenergetics of oysters (Crassostrea virginica). MARINE ENVIRONMENTAL RESEARCH 2006; 62 Suppl:S79-82. [PMID: 16690114 DOI: 10.1016/j.marenvres.2006.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Intertidal mollusks are exposed to multiple stressors in estuaries, including temperature and trace metals such as cadmium, which may interactively affect their physiology. We have studied the combined effects of temperature and cadmium stress on metabolism of oysters at the whole animal and mitochondrial levels. In vivo exposure to 50 microg L(-1) Cd led to a significant increase in basal metabolic rate (BMR) in 20 degrees C-acclimated but not in 28 degrees C-acclimated oysters. Cadmium exposure resulted in a fast decrease in mitochondrial capacity to synthesize ATP in 28 degrees C-acclimated but not 20 degrees C-acclimated oysters indicating that mitochondria may be functioning closer to their capacity limits in the former group. This agrees with elevated mortality in Cd-exposed oysters at 28 degrees C but not 20 degrees C. In general, elevated temperature increased sensitivity of oysters to cadmium at mitochondrial and whole-organism levels suggesting that oyster populations may become more susceptible to trace metal pollution during seasonal warming and/or global climate change.
Collapse
Affiliation(s)
- G Lannig
- Biology Department, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
269
|
Silva Freitas EM, Fagian MM, da Cruz Höfling MA. Effects of veratrine and veratridine on oxygen consumption and electrical membrane potential of isolated rat skeletal muscle and liver mitochondria. Toxicon 2006; 47:780-7. [PMID: 16626771 DOI: 10.1016/j.toxicon.2006.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 11/28/2022]
Abstract
We have previously shown that veratrine, a mixture of alkaloids known as Veratrum alkaloids, produces skeletal muscle toxicity, and there is evidence that veratrine interferes with the energetics of various systems, including cardiomyocytes and synaptosomes. In this work, we explored the effects of veratrine and veratridine, a component of this mixture, in rat skeletal muscle mitochondria and compared the results with those seen in liver mitochondria. Veratrine and veratridine alkaloids caused a significant concentration-dependent decrease in the rate of state 3 respiration, respiratory control (RCR) and ADP/O ratios in isolated rat skeletal muscle mitochondria (RMM), but not in rat liver mitochondria (RLM) supported by either NADH-linked substrates or succinate. The oxygen consumption experiments showed that RMM were more susceptible to the toxic action of Veratrum alkaloids than RLM. The addition of veratrine (250 microg/ml) to RMM caused dissipation of the mitochondrial electrical membrane potential during succinate oxidation, but this effect was totally reversed by adding ATP. These results indicate that there are chemical- and tissue-specific toxic effects of veratrine and veratridine on mitochondrial respiratory chain complexes. Identification of the specific respiratory chain targets involved should provide a better understanding of the molecular mechanisms of the toxicity of these agents.
Collapse
Affiliation(s)
- Erika Maria Silva Freitas
- Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | | | | |
Collapse
|
270
|
Li HR, Liu Y, Dai J, Qin CQ, Zhang ZH, Qu SS. Investigation of the Inhibition of Cyanide on Metabolism of Fish Liver Mitochondria by Microcalorimetry. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
271
|
Starkov AA. Protein-mediated energy-dissipating pathways in mitochondria. Chem Biol Interact 2006; 161:57-68. [PMID: 16584718 DOI: 10.1016/j.cbi.2006.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Mitochondrial production of reactive oxygen species (ROS) is a well-established fact of fundamental importance to aging and etiology of many pathologies with serious public health implications. The ROS production is an innate property of mitochondrial biochemistry inseparable from the oxidative metabolism. Recent discoveries indicate that in addition to several ROS-detoxifying enzyme systems, which remove ROS, mitochondria may also be able to limit their ROS production by the mechanism comprising several protein-mediated energy-dissipating ("uncoupling") pathways. Although the physiological significance and in vivo modus operandi of these pathways remain to be elucidated, several proteins potentially capable of energy dissipation are known. This mini-review addresses the identity of mitochondrial protein-mediated energy-dissipating pathways and the experimental evidence to their role in controlling ROS production.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, Room A-501, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
272
|
Abstract
Normal thermogenesis requires a complex interaction between systems that generate and dissipate heat. Serving as director of thermogenesis, the hypothalamus activates the sympathetic nervous system along with the thyroid and adrenal glands to respond to changes in body temperature. Working in concert, these systems result in heat generation by uncoupling of oxidative phosphorylation, combined with impaired heat dissipation through vasoconstriction. In this article, the authors discuss serotonin and sympathomimetic syndromes, neuroleptic malignant syndrome,and malignant hyperthermia and how these syndromes affect the hypothalamic and sympathetic nervous systems, resulting at times in severe hyperthermia. Current treatment recommendations and future trends in treatment are also discussed.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Division of Medical Toxicology, Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
273
|
Moreira PI, Custódio J, Moreno A, Oliveira CR, Santos MS. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 2006; 281:10143-52. [PMID: 16410252 DOI: 10.1074/jbc.m510249200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluated the action of tamoxifen and estradiol on the function of isolated liver mitochondria. We observed that although tamoxifen and estradiol per se did not affect mitochondrial complexes II, III, or IV, complex I is affected, this effect being more drastic (except for state 4 of respiration) when mitochondria were coincubated with both drugs. Furthermore, using two respiratory chain inhibitors, rotenone and diphenyliodonium chloride, we identified the flavin mononucleotide site of complex I as the target of tamoxifen and/or estradiol action(s). Tamoxifen (25 microm) per se induced a significant increase in hydrogen peroxide production and state 4 of respiration. Additionally, a significant decrease in respiratory control ratio, transmembrane, and depolarization potentials were observed. Estradiol per se decreased carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)-stimulated respiration, state 3 of respiration, and respiratory control ratio and increased lag phase of repolarization. With the exception of state 4 of respiration whose increase induced by tamoxifen was reversed by the presence of estradiol, the effects of tamoxifen were highly exacerbated when estradiol was present. We observed that 10 microm tamoxifen in the presence of estradiol affected mitochondria significantly by decreasing FCCP-stimulated respiration, state 3 of respiration, respiratory control ratio, and ADP depolarization and increasing the lag phase of repolarization. All of the deleterious effects induced by 25 microm tamoxifen were highly exacerbated in the presence of estradiol. Furthermore, we observed that the effects of both compounds were independent of estrogen receptors because the pure estrogen antagonist ICI 182,780 did not interfere with tamoxifen and/or estradiol detrimental effects. Altogether, our data provide a mechanistic explanation for the multiple cytotoxic effects of tamoxifen including its capacity to destroy tamoxifen-resistant breast cancer cells in the presence of estradiol. This new piece of information provides a basis for the development of new and promising anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Paula I Moreira
- Center for Neuroscience and Cell Biology, Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
274
|
Newton APN, Cadena SMSC, Rocha MEM, Carnieri EGS, Martinelli de Oliveira MB. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Toxicol Lett 2005; 160:49-59. [PMID: 16023799 DOI: 10.1016/j.toxlet.2005.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 11/22/2022]
Abstract
Bisphenols are a class of compounds that exhibit a broad spectrum of antimicrobial activity. One of the most widely used member of this group is triclosan (TRN). TRN is a synthetic, non-ionic, broad-spectrum antimicrobial agent, which is incorporated into several products, including hand soaps and detergents and those of skin care and oral hygiene. The effects of TRN on mitochondrial respiratory parameters and the inner mitochondrial membrane potential (DeltaPsi) are described. That of TRN (up to 60 nmol mg(-1) protein) on isolated liver mitochondria decreased oxygen consumption of state 3 respiration, as well as DeltaPsi, but increased oxygen consumption of state 4 respiration, characteristic of an uncoupler effect. Analysis of segments of the respiratory chain suggested that the TRN inhibition site is located between complexes II and III. Mitochondrial swelling, energized or driven by the K+ diffusion potential using valinomycin, was also inhibited by TRN, the former being completely inhibited at concentrations greater than 10 nmol TRN mg(-1) protein, suggesting that it is also able to interfere with fluidity of the inner mitochondrial membrane. These results suggest that, besides its antibacterial effect, TRN can also impair the mitochondrial function of animal cells.
Collapse
Affiliation(s)
- Ana Paula Negrelo Newton
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, C.P. 19046, CEP 81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | |
Collapse
|
275
|
Merten KE, Feng W, Zhang L, Pierce W, Cai J, Klein JB, Kang YJ. Modulation of cytochrome C oxidase-va is possibly involved in metallothionein protection from doxorubicin cardiotoxicity. J Pharmacol Exp Ther 2005; 315:1314-9. [PMID: 16144979 DOI: 10.1124/jpet.105.089763] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies using a cardiac-specific metallothionein (MT)-overexpressing transgenic (MT-TG) mouse model have demonstrated that MT protects from doxorubicin (DOX)-induced oxidative heart injury. The molecular mechanisms that underlie this cardioprotection, however, have yet to be defined. In the present study, we tested the hypothesis that MT overexpression activates cytoprotective mechanisms, leading to cardiac protection from DOX toxicity. MT-TG mice and nontransgenic wild-type (WT) controls were treated i.p. with DOX at a single dose of 20 mg/kg and sacrificed on the third day after the treatment. An expression proteomic analysis involving two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to identify MT-induced changes in cytoprotection-related proteins. We identified 18 proteins that were modified by DOX treatment in the heart. These proteins included those involved in cellular antioxidant defense, enzymes of the mitochondrial electron transport chain, enzymes involved in beta-oxidation of fatty acids and glycolysis, and proteins involved in regulation of cardiac muscle contraction. However, the most dominant modification by MT is the cytochrome c oxidase subunit Va (CCO-Va). In response to DOX treatment, a specific isoform of CCO-Va was enhanced in the MT-TG but not in the WT mouse hearts. Because CCO-Va is a critical component in the mitochondrial electron transport chain, the results suggest that the cardioprotective effect of MT may be related to an increased expression or a differential modification of CCO-Va.
Collapse
Affiliation(s)
- Kevyn E Merten
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 511 South Floyd Street, MDR 530, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
276
|
Spycher S, Escher BI, Gasteiger J. A Quantitative Structure−Activity Relationship Model for the Intrinsic Activity of Uncouplers of Oxidative Phosphorylation. Chem Res Toxicol 2005; 18:1858-67. [PMID: 16359176 DOI: 10.1021/tx050166j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A quantitative structure-activity relationship (QSAR) has been derived for the prediction of the activity of phenols in uncoupling oxidative and photophosphorylation. Twenty-one compounds with experimental data for uncoupling activity as well as for the acid dissociation constant, pKa, and for partitioning constants of the neutral and the charged species into model membranes were analyzed. From these measured data, the effective concentration in the membrane was derived, which allowed the study of the intrinsic activity of uncouplers within the membrane. A linear regression model for the intrinsic activity could be established using the following three descriptors: solvation free energies of the anions, an estimate for heterodimer formation describing transport processes, and pKa values describing the speciation of the phenols. In a next step, the aqueous effect concentrations were modeled by combining the model for the intrinsic uncoupling activity with descriptors accounting for the uptake into membranes. Results obtained with experimental membrane-water partitioning data were compared with the results obtained with experimental octanol-water partition coefficients, log Kow, and with calculated log Kow values. The properties of these different measures of lipophilicity were critically discussed.
Collapse
Affiliation(s)
- Simon Spycher
- Computer-Chemie-Centrum and Institute of Organic Chemistry, University of Erlangen-Nürnberg, Nägelsbachstrasse 25, D-91052 Erlangen, Germany
| | | | | |
Collapse
|
277
|
Abstract
Toxin-induced hyperthermic syndromes are important to consider in the differential diagnosis of patients presenting with fever and muscle rigidity. If untreated, toxin-induced hyperthermia may result in fatal hyperthermia with multisystem organ failure. All of these syndromes have at their center the disruption of normal thermogenic mechanisms, resulting in the activation of the hypothalamus and sympathetic nervous systems.The result of this thermogenic dysregulation is excess heat generation combined with impaired heat dissipation. Although many similarities exist among the clinical presentations and pathophysiologies of toxin-induced hyperthermic syndromes, important differences exist among their triggers and treatments. Serotonin syndrome typically occurs within hours of the addition ofa new serotonergic agent or the abuse of stimulants such as MDMA or methamphetamine. Treatment involves discontinuing the offending agent and administering either a central serotonergic antagonist, such as cyproheptadine or chlorpromazine, a benzodiazepine, or a combination of the two. NMS typically occurs over hours to days in a patient taking a neuroleptic agent; its recommended treatment is generally the combination of a central dopamine agonist, bromocriptine or L-dopa, and dantrolene. In those patients in whom it is difficult to differentiate between serotonin and neuroleptic malignant syndromes, the physical examination may be helpful:clonus and hyperreflexia are more suggestive of serotonin syndrome,whereas lead-pipe rigidity is suggestive of NMS. In patients in whom serotonin syndrome and NMS cannot be differentiated, benzodiazepines represent the safest therapeutic option. MH presents rapidly with jaw rigidity, hyperthermia, and hypercarbia. Although it almost always occurs in the setting of surgical anesthesia, cases have occurred in susceptible individuals during exertion. The treatment of MH involves the use of dantrolene. Future improvements in understanding the pathophysiology and clinical presentations of these syndromes will undoubtedly result in earlier recognition and better treatment strategies.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Division of Medical Toxicology, Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
278
|
Johnson KM, Chen X, Boitano A, Swenson L, Opipari AW, Glick GD. Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. ACTA ACUST UNITED AC 2005; 12:485-96. [PMID: 15850986 DOI: 10.1016/j.chembiol.2005.02.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 02/03/2005] [Accepted: 02/28/2005] [Indexed: 11/16/2022]
Abstract
Bz-423 is a 1,4-benzodiazepine that suppresses disease in lupus-prone mice by selectively killing pathogenic lymphocytes, and it is less toxic compared to current lupus drugs. Cells exposed to Bz-423 rapidly generate O(2)(-) within mitochondria, and this reactive oxygen species is the signal initiating apoptosis. Phage display screening revealed that Bz-423 binds to the oligomycin sensitivity conferring protein (OSCP) component of the mitochondrial F(1)F(0)-ATPase. Bz-423 inhibited the F(1)F(0)-ATPase in vitro, and reconstitution experiments demonstrated that inhibition was mediated by the OSCP. This target was further validated by generating cells with reduced OSCP expression using RNA interference and studying the sensitivity of these cells to Bz-423. Our findings help explain the efficacy and selectivity of Bz-423 for autoimmune lymphocytes and highlight the OSCP as a target to guide the development of novel lupus therapeutics.
Collapse
Affiliation(s)
- Kathryn M Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
279
|
Abstract
The mitochondria have emerged as a novel target for anticancer chemotherapy. This tenet is based on the observations that several conventional and experimental chemotherapeutic agents promote the permeabilization of mitochondrial membranes in cancerous cells to initiate the release of apoptogenic mitochondrial proteins. This ability to engage mitochondrial-mediated apoptosis directly using chemotherapy may be responsible for overcoming aberrant apoptosis regulatory mechanisms commonly encountered in cancerous cells. Interestingly, several putative cancer chemopreventive agents also possess the ability to trigger apoptosis in transformed, premalignant, or malignant cells in vitro via mitochondrial membrane permeabilization. This process may occur through the regulation of Bcl-2 family members, or by the induction of the mitochondrial permeability transition. Thus, by exploiting endogenous mitochondrial-mediated apoptosis-inducing mechanisms, certain chemopreventive agents may be able to block the progression of premalignant cells to malignant cells or the dissemination of malignant cells to distant organ sites as means of modulating carcinogenesis in vivo. This review will examine cancer chemoprevention with respect to apoptosis, carcinogenesis, and the proapoptotic activity of various chemopreventive agents observed in vitro. In doing so, I will construct a paradigm supporting the notion that the mitochondria are a novel target for the chemoprevention of cancer.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
280
|
Dias N, Bailly C. Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 2005; 70:1-12. [PMID: 15907809 DOI: 10.1016/j.bcp.2005.03.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 03/22/2005] [Indexed: 02/07/2023]
Abstract
Mitochondria, the power houses of the cell, are at the cross-road of many cellular pathways. They play a central role in energy metabolism, regulate calcium flux and are implicated in apoptosis. Mitochondrial dysfunctions have been associated with various physiopathological disorders, especially neurodegenerative diseases and cancer. Structurally diverse pharmacological agents have shown direct effects on mitochondria ultra-structures and functions, either at the DNA level or upon targeting proteins located in the inner or outer mitochondrial membranes. The brief review deals with the molecular targets and mechanisms of action of chemically diverse small molecules acting on specific mitochondrial loci, such as the respiratory chain, DNA biogenesis, potassium channels, the Bcl-2 protein and the permeability transition pores (PTP). Drugs, which specifically compromise the structural and functional integrity of mitochondria, may provide novel opportunities to combat cancer cell proliferation, providing that these molecules can be selectively delivered to tumor sites. Different examples reported here show that mitochondrial insult or failure can rapidly lead to inhibition of cell survival and proliferation. Mitochondrial impairment may be a successful anti-cancer strategy.
Collapse
Affiliation(s)
- Nathalie Dias
- INSERM U-524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, 59045 Lille, France
| | | |
Collapse
|
281
|
Martin EJ, Forkert PG. 1,1-Dichloroethylene-induced mitochondrial damage precedes apoptotic cell death of bronchiolar epithelial cells in murine lung. J Pharmacol Exp Ther 2005; 313:95-103. [PMID: 15626720 DOI: 10.1124/jpet.104.079392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1,1-Dichloroethylene (DCE) causes pulmonary injury that is characterized by necrosis of bronchiolar Clara cells. Mitochondria have been identified as an early target in the toxic response. Because mitochondria have been implicated in both necrotic and apoptotic cell death, we have undertaken studies to test the hypothesis that DCE induces apoptosis, in addition to necrosis, in murine lung. A primary objective is to identify the biochemical events associated with pulmonary apoptosis. Groups of female CD-1 mice were treated with DCE (75 mg/kg i.p.) or corn oil. Using an antibody directed against DCE-cysteine conjugates, adducts were detected primarily in association with mitochondria in the apices of bronchiolar Clara cells. Furthermore, morphological studies demonstrated early mitochondrial alterations in Clara cells that included severe swelling and disruption of cristae. Western blotting of lung cytosolic proteins showed greater immunoreactivity for cytochrome c in fractions from mice treated with DCE for 4 h than in controls. Immunohistochemical studies with an antibody to activated caspase-3 and terminal deoxynucleotidyl transferase dUTP nick-end labeling were used to detect apoptotic cells. In both experiments, positive reactivities were observed in the bronchiolar epithelium at 12 and 24 h after DCE treatment, whereas reactivities were absent in tissues from control animals. Finally, bronchiolar epithelial cells showing morphological criteria of apoptosis (chromatin condensation and margination) were observed at 24 h after 75 and 125 mg/kg DCE. Apoptotic-like cells were more abundant in larger bronchioles. These data suggested that DCE produces pulmonary bronchiolar apoptosis by inducing mitochondrial perturbations, causing release of cytochrome c into the cytosol and caspase activation.
Collapse
Affiliation(s)
- Erik J Martin
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | |
Collapse
|
282
|
Abstract
Cataract, a leading cause of blindness worldwide, is a multifactorial eye disease. In developing countries the incidence of cataract among young generations is not uncommon due to malnutrition, excess exposure to ultraviolet radiation and so on. In developed countries, age-related cataract affecting the population over 65 years of age is a major concern. Oxidative stress was suggested to inflict damage to the lens and induce opacification, and a variety of antioxidant nutrients were tested for the prevention or delay of cataract development. Although promising results were obtained in animal studies of various antioxidants, epidemiological studies on human populations do not seem to support their protective effects unequivocally. It is unlikely that age-related cataract in man, similar to the ageing process itself, will be prevented or delayed by therapeutic drugs in the foreseeable future. At present, keeping a health-conscious life style (i.e., no smoking) may be the most effective and least expensive strategy to prevent the onset of age-related cataract.
Collapse
Affiliation(s)
- Hitoshi Shichi
- Kresge Eye Institute, Department of Ophthalmology, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
283
|
Ji ZL, Han LY, Zheng CJ, Cao ZW, Chen YZ. Prediction of Putative Adverse Drug Reaction-Related Proteins from Primary Sequence by Support Vector Machines. ACTA ACUST UNITED AC 2005. [DOI: 10.2165/00124363-200519050-00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
284
|
Mills EM, Rusyniak DE, Sprague JE. The role of the sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine. J Mol Med (Berl) 2004; 82:787-99. [PMID: 15602689 DOI: 10.1007/s00109-004-0591-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Body temperature regulation involves a homeostatic balance between heat production and dissipation. Sympathetic agents such as 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) can disrupt this balance and as a result produce an often life-threatening hyperthermia. The hyperthermia induced by MDMA appears to result from the activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-thyroid/adrenal axis. Norepinephrine release mediated by MDMA creates a double-edged sword of heat generation through activation of uncoupling protein (UCP3) along with alpha1- and beta3-adrenoreceptors and loss of heat dissipation through SNS-mediated vasoconstriction. This review examines cellular mechanisms involved in MDMA-induced thermogenesis from UCP activation to vasoconstriction and how these mechanisms are related to other thermogenic conditions and potential treatment modalities.
Collapse
Affiliation(s)
- Edward M Mills
- The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892-1770, USA
| | | | | |
Collapse
|
285
|
Negrelo Newton AP, Cadena SMSC, Merlin Rocha ME, Skäre Carnieri EG, Martinelli de Oliveira MB. New data on biological effects of chlorhexidine: Fe2+ induced lipid peroxidation and mitochondrial permeability transition. Toxicol Lett 2004; 151:407-16. [PMID: 15261985 DOI: 10.1016/j.toxlet.2004.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 02/24/2004] [Accepted: 02/24/2004] [Indexed: 11/20/2022]
Abstract
Chlorhexidine (CHX) is a bis-bis-guanide with anphipatic and antiseptic properties and is largely used in dentistry, mainly for management of periodontal problems and in oral pre-operatory procedures. The present study concerns the effect of CHX on lipid peroxidation, mitochondrial permeability transition (MPT), and the interaction of CHX with ferritin (HoSF). CHX (100 microM) increased iron release from HoSF by approximately 13-fold when compared to control values. CHX also increased iron-dependent lipid peroxidation. MPT induced by CHX was protected by ethylene glycol-bis(beta-aminoethyl-ether)-N,N,N',N'-tetraacetic acid (EGTA), dithiothreitol (DTT), and cyclosporin A (CsA), showing a Ca2+-dependent effect, in which oxidation of thiol groups is involved, as well as the involvement of the transmembrane proteinaceous pore. BHT, catalase or o-phenanthroline did not protect MPT induced by CHX. This suggests that a ROS-independent mechanism is involved in the induction of MPT.
Collapse
Affiliation(s)
- Ana Paula Negrelo Newton
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, C.P. 19046, CEP 81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | |
Collapse
|
286
|
Cardoso CMP, Moreno AJM, Almeida LM, Custódio JBA. Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen. Toxicol In Vitro 2004; 17:663-70. [PMID: 14599460 DOI: 10.1016/s0887-2333(03)00106-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antiestrogen tamoxifen (TAM) inhibits the growth of different estrogen receptor (ER)-negative cells. Recently, multiple effects of TAM on mitochondrial bioenergetic functions have been pointed to explain its ER-independent cell death mechanisms. We have shown that TAM and its major active metabolite 4-hydroxytamoxifen (OHTAM) induce depolarization of the mitochondrial membrane potential (DeltaPsi) and uncouple the mitochondrial respiration, depressing the oxidative phosphorylation efficiency. To clarify the biochemical mechanisms underlying the changes in the regulation of ATP synthesis and yield, in this work we evaluated the alterations of mitochondrial adenine nucleotides induced by both drugs and ascertained whether such changes could reflect a specific inhibition of either the adenine nucleotide translocase (ANT) or the phosphate carrier, as well as the activation of ATP hydrolysis due to DeltaPsi depolarization. We found that both antiestrogens caused a concentration-dependent decrease in mitochondrial ATP levels. Mitochondrial ADP and AMP were concomitantly increased with a subsequent decrease in the ATP/ADP or ATP/AMP ratios. The total concentration of adenine nucleotides also changed. Additionally, both drugs decreased the ANT content of mitochondria, inhibited the phosphate carrier and induced ATP hydrolysis. However, the effects of TAM were more drastic than those induced by OHTAM. Therefore, the depletion of ATP might result from an activation of ATP catabolism, as well as from a decrease in the mitochondrial content of ANT and partial inhibition of the phosphate carrier. Our data may explain the ER-independent effects and cytotoxicity of both drugs and, in agreement with other previous studies, suggest that OHTAM is much less toxic to mitochondria than TAM.
Collapse
Affiliation(s)
- Carla M P Cardoso
- Laboratório de Bioquímica, Faculdade de Farmácia, Couraça dos Apóstolos, 51 r/c, 3000-295 Coimbra, Portugal
| | | | | | | |
Collapse
|
287
|
Sokolova IM. Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin(Bivalvia: Ostreidae). J Exp Biol 2004; 207:2639-48. [PMID: 15201296 DOI: 10.1242/jeb.01054] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SUMMARY
Marine intertidal mollusks, such as oysters, are exposed to multiple stressors in estuaries, including varying environmental temperature and levels of trace metals, which may interactively affect their physiology. In order to understand the combined effects of cadmium and elevated temperature on mitochondrial bioenergetics of marine mollusks, respiration rates and mitochondrial volume changes were studied in response to different cadmium levels (0–1000 μmol l–1) and temperatures (15, 25 and 35°C) in isolated mitochondria from the eastern oyster Crassostrea virginica acclimated at 15°C. It was found that both cadmium and temperature significantly affect mitochondrial function in oysters. Elevated temperature had a rate-enhancing effect on state 3 (ADP-stimulated) and states 4 and 4+ (representative of proton leak) respiration, and the rate of temperature-dependent increase was higher for states 4 and 4+ than for state 3 respiration. Exposure of oyster mitochondria to 35°C resulted in a decreased respiratory control and phosphorylation efficiency (P/O ratio)compared to that of the acclimation temperature (15°C), while an intermediate temperature (25°C) had no effect. Cadmium exposure did not lead to a significant volume change in oyster mitochondria in vitro. Low levels of cadmium (1–5 μmol l–1) stimulated the rate of proton leak in oyster mitochondria, while not affecting ADP-stimulated state 3 respiration. In contrast, higher cadmium levels (10–50 μmol l–1) had little or no effect on proton leak, but significantly inhibited state 3 respiration by 40–80% of the control rates. Elevated temperature increased sensitivity of oyster mitochondria to cadmium leading to an early inhibition of ADP-stimulated respiration and an onset of complete mitochondrial uncoupling at progressively lower cadmium concentrations with increasing temperature. Enhancement of cadmium effects by elevated temperatures suggests that oyster populations subjected to elevated temperatures due to seasonal warming or global climate change may become more susceptible to trace metal pollution, and vice versa.
Collapse
Affiliation(s)
- I M Sokolova
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte NC 28223, USA.
| |
Collapse
|
288
|
Armand R, Channon JY, Kintner J, White KA, Miselis KA, Perez RP, Lewis LD. The effects of ethidium bromide induced loss of mitochondrial DNA on mitochondrial phenotype and ultrastructure in a human leukemia T-cell line (MOLT-4 cells). Toxicol Appl Pharmacol 2004; 196:68-79. [PMID: 15050409 DOI: 10.1016/j.taap.2003.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 12/11/2003] [Indexed: 11/26/2022]
Abstract
Mitochondrial DNA-deficient (rho(0)) cells were generated following a 26-day incubation of MOLT-4 lymphoblastoid T cells in ethidium bromide (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide). The absence of mitochondrial DNA (mtDNA) in the resultant MOLT-4 rho(0) cells was confirmed by Southern analysis and quantitative polymerase chain reaction (PCR). MOLT-4 rho(0) cells proliferated more slowly than parental cells (wild type) and produced significantly more lactate (approximately fourfold increase; P < 0.001) with concomitantly reduced oxygen consumption (12.3% vs. 100%; P < 0.001) compared with the wild type. MOLT-4 rho(0) cells also showed reduced cytochrome c oxidase activity and a reduced cytochrome c oxidase/citrate synthase activity ratio compared to parental wild-type MOLT-4 cells (P < 10(-11)). Electron microscopy showed elongated mitochondria with parallel cristae in MOLT-4 cells although the mitochondria in MOLT-4 rho(0) cells appeared enlarged, some were vacuolated with either an absent or a grossly distorted cristae pattern. Vital staining with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) was used to image mitochondria in intact cells and study mitochondrial transmembrane potential (Deltapsi(m)). Flow cytometry using JC-1 indicated that MOLT-4 rho(0) had a lower Deltapsi(m) than MOLT-4. Sodium fluoride (an inhibitor of the glycolytic pathway) at a concentration of 20 mM further reduced the Deltapsi(m) in MOLT-4-rho(0) cells. This data suggested that a glycolytic pathway product, possibly ATP, was required for the maintenance of Deltapsi(m) in MOLT-4 rho(0) cells.
Collapse
Affiliation(s)
- Ray Armand
- Section of Clinical Pharmacology, Department of Medicine, Dartmouth Medical School and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | | | | | | | | | |
Collapse
|
289
|
Weissig V, Cheng SM, D'Souza GGM. Mitochondrial pharmaceutics. Mitochondrion 2004; 3:229-44. [PMID: 16120357 DOI: 10.1016/j.mito.2003.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Revised: 11/18/2003] [Accepted: 11/20/2003] [Indexed: 11/29/2022]
Abstract
Since the end of the 1980s, key discoveries have been made which have significantly revived the scientific interest in a cell organelle, which has been studied continuously and with steady success for the last 100 years. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the 1990s, mitochondria, the 'power house' of the cell, have also become accepted as the cell's 'arsenals' reflecting their increasingly acknowledged key role during apoptosis. Based on these recent developments in mitochondrial research, increased pharmacological and pharmaceutical efforts have lead to the emergence of 'Mitochondrial Medicine' as a whole new field of biomedical research. Targeting of biologically active molecules to mitochondria in living cells will open up avenues for manipulating mitochondrial functions, which may result in the selective protection, repair or eradication of cells. This review gives a brief synopsis over current strategies of mitochondrial targeting and their possible therapeutic applications.
Collapse
Affiliation(s)
- Volkmar Weissig
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, 360 Huntington Avenue, Mugar 211, Boston, MA 02115, USA.
| | | | | |
Collapse
|
290
|
Ji ZL, Han LY, Yap CW, Sun LZ, Chen X, Chen YZ. Drug Adverse Reaction Target Database (DART) : proteins related to adverse drug reactions. Drug Saf 2003; 26:685-90. [PMID: 12862503 DOI: 10.2165/00002018-200326100-00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An adverse drug reaction (ADR) often results from interaction of a drug or its metabolites with specific protein targets important in normal cellular function. Knowledge about these targets is both important in facilitating the study of the mechanisms of ADRs and in new drug discovery. It is also useful in the development and testing of rational drug design and safety evaluation tools. The Drug Adverse Reaction Database (DART) is intended to provide comprehensive information about adverse effect targets of drugs described in the literature. Moreover, proteins involved in adverse effect targets of chemicals not yet confirmed as ADR targets are also included as potential targets. This database gives physiological function of each target, binding drugs/agonists/antagonists/activators/inhibitors, IC(50) values of the inhibitors, corresponding adverse effects, and type of ADR induced by drug binding to a target. Cross-links to other databases are also introduced to facilitate the access of information about the sequence, 3-dimensional structure, function, and nomenclature of each target along with drug/ligand binding properties, and related literature. The database currently contains entries for 147 ADR targets and 89 potential targets. A total of 187 adverse reaction conditions, 257 drugs, and 1080 ligands known to bind to each of these targets are also currently described. Each entry can be retrieved through multiple search methods including target name, target physiological function, adverse effect, ligand name, and biological pathways. A special page is provided for contribution of new or additional information. This database can be accessed at http://xin.cz3.nus.edu.sg/group/drt/dart.asp.
Collapse
Affiliation(s)
- Zhi Liang Ji
- Department of Computational Science, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
291
|
Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2003; 2:812-22. [PMID: 14526384 DOI: 10.1038/nrd1201] [Citation(s) in RCA: 358] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Highly active antiretroviral therapy (HAART) regimes based on nucleoside reverse transcriptase inhibitors (NRTIs) have revolutionized the treatment of AIDS in recent years. Although HAART can successfully suppress viral replication in the long term, it is not without significant toxicity, which can seriously compromise treatment effectiveness. A major toxicity that has been recognized for more than a decade is NRTI-related mitochondrial toxicity, which manifests as serious side effects such as hepatic failure and lactic acidosis. However, a lack of understanding of the mechanisms underlying mitochondrial toxicity has hampered efforts to develop novel drugs with better side-effect profiles. This review characterizes the pharmacological mechanisms and pathways that are involved in mitochondrial dysfunction caused by NRTIs, and suggests opportunities for future pharmacological research.
Collapse
Affiliation(s)
- William Lewis
- Emory University, Department of Pathology, 1639 Pierce Drive, Room 7117, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
292
|
Dorta DJ, Leite S, DeMarco KC, Prado IMR, Rodrigues T, Mingatto FE, Uyemura SA, Santos AC, Curti C. A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 2003; 97:251-7. [PMID: 14511887 DOI: 10.1016/s0162-0134(03)00314-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cadmium is a very important environmental toxicant, the cytotoxicity mechanism of which is likely to involve mitochondria as a target. In the present study we addressed the cause/effect relationship between the multiple cadmium-induced responses involving the mitochondrial energetic and oxidative status. Assays were performed with succinate-energized rat liver mitochondria incubated with 5 microM CdCl(2) for 0-25 min, in the absence or presence, respectively, of N-ethylmaleimide (NEM), butylhydroxytoluene (BHT), ruthenium red (RR), and cyclosporine A+ADP. A sequence of events accounting for cadmium-induced mitochondrial impairment is proposed, beginning with an apparent interaction of Cd(2+) with specific protein thiols in the mitochondrial membrane, which stimulates the cation's uptake via the Ca(2+) uniporter, and is followed by the onset of mitochondrial permeability transition (MPT); both effects dissipate the transmembrane electrical potential (Deltapsi), causing uncoupling, followed by an early depression of mitochondrial ATP levels. The respiratory chain subsequently undergoes inhibition, generating reactive oxygen species which together with iron mobilized by the cation, cause late, gradual mitochondrial membrane lipid peroxidation.
Collapse
Affiliation(s)
- Daniel J Dorta
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Boitano A, Emal CD, Leonetti F, Blatt NB, Dineen TA, Ellman JA, Roush WR, Opipari AW, Glick GD. Structure activity studies of a novel cytotoxic benzodiazepine. Bioorg Med Chem Lett 2003; 13:3327-30. [PMID: 12951119 DOI: 10.1016/s0960-894x(03)00683-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of Bz-423, a pro-apoptotic 1,4-benzodiazepine with potent activity in animal models of systemic lupus erythematosus and rheumatoid arthritis, have been designed, synthesized, and evaluated in cell-culture assays. The results of these experiments have defined the structural elements of this new cytotoxic agent required for activity.
Collapse
Affiliation(s)
- Anthony Boitano
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Ji ZL, Sun LZ, Chen X, Zheng CJ, Yao LX, Han LY, Cao ZW, Wang JF, Yeo WK, Cai CZ, Chen YZ. Internet resources for proteins associated with drug therapeutic effects, adverse reactions and ADME. Drug Discov Today 2003; 8:526-9. [PMID: 12821296 DOI: 10.1016/s1359-6446(03)02742-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Zhi L Ji
- Department of Computational Science, National University of Singapore, SOC1, Level 7, 3 Science Drive 2, Singapore 117543
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM. Chenodeoxycholate induction of mitochondrial permeability transition pore is associated with increased membrane fluidity and cytochrome c release: protective role of carvedilol. Mitochondrion 2003; 2:305-11. [PMID: 16120330 DOI: 10.1016/s1567-7249(03)00007-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Revised: 01/02/2003] [Accepted: 01/03/2003] [Indexed: 01/24/2023]
Abstract
Chenodeoxycholate (CDCA) is a primary bile acid mostly implicated in cholestatic liver injury. In this study, we have investigated the involvement of membrane fluidity and cytochrome c release in CDCA-induced mitochondrial permeability transition (MPT), and the preventive role of carvedilol. Treatment of calcium-loaded hepatic mitochondria with CDCA was found to cause osmotic swelling and release of cytochrome c, associated with an increase in membrane fluidity, in both protein and lipid regions. Carvedilol and cyclosporine A (CyA) reduced both cytochrome c release and alterations in membrane fluidity induced by CDCA. The hydroxylated metabolite of carvedilol, BM-910228, had no effect. Thus, modulation of membrane fluidity, plays an important role in MPT pore opening promoted by CDCA. As a result, we have delineated a pathway for the preventive role of carvedilol in mitochondrial dysfunction induced by CDCA.
Collapse
Affiliation(s)
- Anabela P Rolo
- Department of Zoology, Center for Neurosciences and Cell Biology of Coimbra, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
296
|
Rolo AP, Palmeira CM, Wallace KB. Mitochondrially mediated synergistic cell killing by bile acids. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:127-32. [PMID: 12527417 DOI: 10.1016/s0925-4439(02)00224-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of endogenous bile acids contributes to hepatocellular damage during cholestatic liver disease. To examine the controversy regarding the therapeutic use of ursodeoxycholate (UDCA) in cholestatic patients, we investigated the possible cytoprotection or synergistic effects of UDCA against chenodeoxycholate (CDCA)-induced injury to isolated rat hepatocytes. Our aim was to investigate the role of the mitochondrial permeability transition (MPT) in the mechanism of cytotoxicity caused by UDCA plus CDCA. Although not toxic by itself, UDCA potentiated the mitochondrial depolarization, ATP depletion and cell killing caused by CDCA. Fructose maintained ATP levels and prevented bile acid-induced cell killing. Cyclosporine A (CyA), a potent inhibitor of the MPT, substantially reduced mitochondrial depolarization, ATP depletion and cell killing caused by CDCA. Our results demonstrate that the synergistic cytotoxicity by UDCA plus CDCA is mediated by impairment of mitochondrial function, an event that is expressed via induction of the MPT.
Collapse
Affiliation(s)
- Anabela P Rolo
- Center for Neurosciences and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, 3004-517, Coimbra, Portugal
| | | | | |
Collapse
|
297
|
Chen YZ, Ung CY. Computer automated prediction of potential therapeutic and toxicity protein targets of bioactive compounds from Chinese medicinal plants. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2002; 30:139-54. [PMID: 12067089 DOI: 10.1142/s0192415x02000156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the molecular mechanism and pharmacology of bioactive compounds from Chinese medicinal plants (CMP) is important in facilitating scientific evaluation of novel therapeutic approaches in traditional Chinese medicine. It is also of significance in new drug development based on the mechanism of Chinese medicine. A key step towards this task is the determination of the therapeutic and toxicity protein targets of CMP compounds. In this work, newly developed computer software INVDOCK is used for automated identification of potential therapeutic and toxicity targets of several bioactive compounds isolated from Chinese medicinal plants. This software searches a protein database to find proteins to which a CMP compound can bind or weakly bind. INVDOCK results on three CMP compounds (allicin, catechin and camptotecin) show that 60% of computer-identified potential therapeutic protein targets and 27% of computer-identified potential toxicity targets have been implicated or confirmed by experiments. This software may potentially be used as a relatively fast-speed and low-cost tool for facilitating the study of molecular mechanism and pharmacology of bioactive compounds from Chinese medicinal plants and natural products from other sources.
Collapse
Affiliation(s)
- Y Z Chen
- Department of Computational Science, National University of Singapore, Singapore.
| | | |
Collapse
|
298
|
Abstract
The heart is highly dependent for its function on oxidative energy generated in mitochondria, primarily by fatty acid beta-oxidation, respiratory electron chain and oxidative phosphorylation. Defects in mitochondrial structure and function have been found in association with cardiovascular diseases such as dilated and hypertrophy cardiomyopathy, cardiac conduction defects and sudden death, ischemic and alcoholic cardiomyopathy, as well as myocarditis. While a subset of these mitochondrial abnormalities have a defined genetic basis (e.g. mitochondrial DNA changes leading to oxidative phosphorylation dysfunction,fatty acid beta-oxidation defects due to specific nuclear DNA mutations), other abnormalities appear to be due to a more sporadic or environmental cardiotoxic insult or have not yet been characterized.This review focuses on abnormalities in mitochondrial bioenergetic function and mitochondrial DNA defects associated with cardiovascular diseases, their significance in cardiac pathogenesis as well as on the available diagnostic and therapeutic options. A concise background concerning mitochondrial biogenesis and bioenergetic pathways during cardiac growth,development and aging will also be provided.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute. Highland Park, NJ 08904, USA.
| | | |
Collapse
|
299
|
Mingatto FE, Rodrigues T, Pigoso AA, Uyemura SA, Curti C, Santos AC. The critical role of mitochondrial energetic impairment in the toxicity of nimesulide to hepatocytes. J Pharmacol Exp Ther 2002; 303:601-7. [PMID: 12388641 DOI: 10.1124/jpet.102.038620] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We described the effects of nimesulide (N-[4-nitro-2-phenoxyphenyl]-methanesulfonamide) and its reduced metabolite in isolated rat hepatocytes. Nimesulide stimulated the succinate-supported state 4 respiration of mitochondria, indicating an uncoupling effect of the drug. Incubation of hepatocytes with nimesulide (0.1-1 mM) elicited a concentration- and time-dependent decrease in cell viability as assessed by lactate dehydrogenase leakage, a decrease of mitochondrial membrane potential as assessed by rhodamine 123 retention, and cell ATP depression. Nimesulide also decreased the levels of NAD(P)H and glutathione in hepatocytes, but the extent of the effects was less pronounced in relation to the energetic parameters; in addition, these effects did not imply the peroxidation of membrane lipids. The decrease in the viability of hepatocytes was prevented by fructose and, to a larger extent, by fructose plus oligomycin; it was stimulated by proadifen, a cytochrome P450 inhibitor. In contrast, the reduced metabolite of nimesulide did not present any of the effects observed for the parent drug. These results indicate that: 1) nimesulide causes injury to the isolated rat liver cells, 2) this effect is mainly mediated by impairment of ATP production by mitochondria due to uncoupling, and 3) on account of the activity of its nitro group, the parent drug by itself is the main factor responsible for its toxicity to the hepatocytes.
Collapse
Affiliation(s)
- Fábio E Mingatto
- Departamento de Física e Química, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
300
|
Mechanisms of cytotoxicity and antitumor activity of gold(I) phosphine complexes: the possible role of mitochondria. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(02)00048-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|