251
|
Combination of p38 MAPK inhibitor with PD-L1 antibody effectively prolongs survivals of temozolomide-resistant glioma-bearing mice via reduction of infiltrating glioma-associated macrophages and PD-L1 expression on resident glioma-associated microglia. Brain Tumor Pathol 2021; 38:189-200. [PMID: 34231121 DOI: 10.1007/s10014-021-00404-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Current conventional treatment strategies for glioblastoma (GBM) have limited efficacy due to the rapid development of resistance to temozolomide (TMZ). It is particularly urgent to develop novel therapeutic strategies that can overcome TMZ resistance and provide patients with better prognoses. Here, a TMZ-resistant GBM cell strain and a mouse model of TMZ resistance are established as valuable tools to explore novel therapeutic strategies against TMZ resistance. Experimentally, p38MAPK inhibitor reduces the accumulation of F4/80+/CD11b+ macrophages/microglia in glioma and prolongs the survivals of glioma-bearing mice. Glioma-associated macrophages/microglia have a significanct expression of PD-L1. p38MAPK inhibitor in combination with PD-L1 antibody can effectively prolongs the survivals of TMZ-resistant GBM-bearing hosts, and differentially reduces the accumulation of circulating monocytes-derived tumor-associated macrophages and PD-L1 abundances of resident glioma-associated microglia. This combination therapy could be a treatment option for patients at the recurrence or chronic TMZ maintenance stages. A clinical study to confirm the safety and effectiveness of this combination therapy is warranted.
Collapse
|
252
|
Chang WI, Han MG, Kang MH, Park JM, Kim EE, Bae J, Ahn S, Kim IA. PI3Kαδ Inhibitor Combined With Radiation Enhances the Antitumor Immune Effect of Anti-PD1 in a Syngeneic Murine Triple-Negative Breast Cancer Model. Int J Radiat Oncol Biol Phys 2021; 110:845-858. [PMID: 33642128 DOI: 10.1016/j.ijrobp.2021.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 07/15/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The poor response of breast cancer to immune checkpoint blockade might result from low immunogenicity and the immune-suppressive tumor microenvironment. We hypothesized that in situ tumor vaccination via radiation therapy (RT) and suppression of immune tolerance via phosphoinositide 3-kinase δ (PI3Kδ) inhibition would enhance the efficacy of immune checkpoint blockade. METHODS AND MATERIALS 4T1 murine breast cancer cells were grown in both immune-competent and -deficient BALB/c mice, and tumors were irradiated with 24 Gy in 3 fractions. A PD-1 blockade and a PI3Kαδ inhibitor were then administered every other day for 2 weeks. Fluorescence-activated cell sorting and immunohistochemistry served to monitor subsequent changes in immune cell repertoire. RESULTS The triple combination of RT, PD-1 blockade, and PI3Kαδ inhibitor significantly delayed tumor growth. The immune-deficient syngeneic 4T1 murine tumor model failed to show this tumor growth delay. Use of RT and PI3Kαδ inhibitor increased the proportions of CD8+ T cells; PI3Kαδ inhibitor led to a decrease in regulatory T cells and polymorphonuclear myeloid-derived suppressor cells. The triple combination resulted in a remarkable increase in cytotoxic CD8+ T cells, suggesting a prominent immune-modulatory effect. The abscopal effect was most prominent in the triple-combination therapy group, and it correlated with splenic CD8+ T cell accumulation. CONCLUSIONS These findings collectively indicate that combining RT, PI3Kαδ inhibitor, and PD-1 blockade could be a viable approach, helping to overcome the therapeutic resistance of immunologically cold tumors, such as breast cancer, with an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Won Ick Chang
- Department of Radiation Oncology, Seoul National University, School of Medicine, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Min Guk Han
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea; Cancer Research Institute and Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ji Min Park
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea; Cancer Research Institute and Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eric Eunshik Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Junhyung Bae
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University, School of Medicine, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seoul, Republic of Korea; Cancer Research Institute and Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
253
|
Ma Y, Yang Z, Huntoon K, Jiang W, Kim BYS. Advanced Immunotherapy Approaches for Glioblastoma. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yifan Ma
- Department of Biomedical Engineering The Ohio State University Columbus OH 43210 USA
| | - Zhaogang Yang
- Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas TX 75235 USA
| | - Kristin Huntoon
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Department of Bioengineering University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - Betty Y. S. Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
254
|
Hermanowicz JM, Pawlak K, Sieklucka B, Czarnomysy R, Kwiatkowska I, Kazberuk A, Surazynski A, Mojzych M, Pawlak D. MM-129 as a Novel Inhibitor Targeting PI3K/AKT/mTOR and PD-L1 in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133203. [PMID: 34206937 PMCID: PMC8268553 DOI: 10.3390/cancers13133203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary MM-129 (1,2,4-triazine derivative) is a novel promising drug candidate against colon cancer. It has the ability to inhibit intracellular pathways promoting tumorigenesis with a simultaneous reduction of PD-L1 expression, a key element of the cancer immune escape axis. MM-129 may also act as a chemosensitizer, overcoming chemoresistance against 5-FU, the first-line agent in the chemother-apy of colon cancer. Our results significantly expand knowledge and help better understand the process of tumorigenesis, the intracellular pathways involved, and the mutual interactions of in-dividual proteins, and create the possibility of their pharmacological blockade. There is a real chance that the obtained results and the conclusions drawn on their basis will help in the development of a new, effective therapy, which could be an attractive alternative to the already existing methods of colon cancer treatment. Abstract Background and aims: The purpose of the present study was to examine the pharmacodynamics features of MM-129 (1,2,4-triazine derivative) as a novel promising drug candidate against colon cancer. Methods: MM-129 was assessed for antitumor activity through an in vivo study on Cby.Cg-Foxn1nu/cmdb mice. The mechanistic studies investigated cellular affinity of a new 1,2,4-triazine derivative by measuring levels of intracellular/extracellular signal molecules participating in tumorigenesis. Results: The results revealed that MM-129 significantly reduced tumor growth in mice challenged with DLD-1 and HT-29 cells. It exerted the ability to inhibit intracellular molecules promoting tumorigenesis and inducing cell cycle arrest, like Akt, mTOR, and CDK2. Simultaneously, it was able to downregulate PD-L1 expression, which involves immunological self-tolerance. Combined administration of MM-129 and 5-fluorouracil (5-FU) additionally amplified these effects, which were manifest as an increase population of cells in the G0/G1 phase. Conclusions: A novel 1,2,4-triazine derivative with a dual mechanism of antitumor activity—MM-129, may act as a chemosensitizer, overcoming chemoresistance against 5-FU, the first-line agent in the chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
| | - Adam Kazberuk
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (A.K.); (A.S.)
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (A.K.); (A.S.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
| |
Collapse
|
255
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
256
|
Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Front Oncol 2021; 11:639745. [PMID: 34211836 PMCID: PMC8240591 DOI: 10.3389/fonc.2021.639745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) has faced a therapeutic revolution with the advent of tyrosine kinase inhibitors (TKIs) and immune checkpoints inhibitors (ICIs) approved for first and subsequent therapies. CIMAvax-EGF is a chemical conjugate between human-recombinant EGF and P64, a recombinant protein from Neisseria meningitides, which induces neutralizing antibodies against EGF. In the last 15 years, it has been extensively evaluated in advanced NSCLC patients. CIMAvax-EGF is safe, even after extended use, and able to keep EGF serum concentration below detectable levels. In a randomized phase III study, CIMAvax-EGF increased median overall survival of advanced NSCLC patients with at least stable disease after front-line chemotherapy. Patients bearing squamous-cell or adenocarcinomas and serum EGF concentration above 870 pg/ml had better survival compared to control patients treated with best supportive care as maintenance, confirming tumors' sensitivity to the EGF depletion. This manuscript reviews the state-of-the-art NSCLC therapy and proposes the most promising scenarios for evaluating CIMAvax-EGF, particularly in combination with TKIs or ICIs. We hypothesize that the optimal combination of CIMAvax-EGF with established therapies can further contribute to transform advanced cancer into a manageable chronic disease, compatible with years of good quality of life.
Collapse
Affiliation(s)
| | | | - Grace K. Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | | |
Collapse
|
257
|
Koh V, Chakrabarti J, Torvund M, Steele N, Hawkins JA, Ito Y, Wang J, Helmrath MA, Merchant JL, Ahmed SA, Shabbir A, Yan So JB, Yong WP, Zavros Y. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Lett 2021; 518:59-71. [PMID: 34126195 DOI: 10.1016/j.canlet.2021.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023]
Abstract
Tumors evade immune surveillance by expressing Programmed Death-Ligand 1 (PD-L1), subsequently inhibiting CD8+ cytotoxic T lymphocyte function. Response of gastric cancer to immunotherapy is relatively low. Our laboratory has reported that Helicobacter pylori-induced PD-L1 expression within the gastric epithelium is mediated by the Hedgehog (Hh) signaling pathway. The PI3K/AKT/mTOR pathway is activated in gastric cancer and may have immunomodulatory potential. We hypothesize that Hh signaling mediates mTOR-induced PD-L1 expression. Patient-derived organoids (PDOs) were generated from gastric biopsies and resected tumor tissues. Autologous organoid/immune cell co-cultures were used to study the immunosuppressive function of MDSCs. NanoString Digital Spatial Profiling (DSP) of immune-related protein markers using FFPE slide-mounted tissues from gastric cancer patients was performed. DSP analysis showed infiltration of immunosuppressive MDSCs expressing Arg1, CD66b, VISTA and IDO1 within cancer tissues. Orthotopic transplantation of patient derived organoids (PDOs) resulted in the engraftment of organoids and the development of histology similar to that observed in the patient's tumor tissue. PDO/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of PMN-MDSCs within these co-cultures sensitized the organoids to anti-PD-1/PD-L1-induced cancer cell death. Rapamycin decreased phosphorylated S6K, Gli2 and PD-L1 expression in PDO/immune cell co-cultures. Transcriptional regulation of PD-L1 by GLI1 and GLI2 was blocked by rapamycin. In conclusion, the PDO/immune cell co-cultures may be used to study immunosuppressive MDSC function within the gastric tumor microenvironment. The mTOR signaling pathway mediates GLI-induced PD-L1 expression in gastric cancer.
Collapse
Affiliation(s)
- Vivien Koh
- National University Cancer Institute Singapore, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Nina Steele
- Department of Cell and Developmental Biology and Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Hawkins
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Helmrath
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Syed A Ahmed
- Department of Surgery, University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore
| | - Jimmy Bok Yan So
- National University Cancer Institute Singapore, National University Health System, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- National University Cancer Institute Singapore, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
258
|
Chi A, He X, Hou L, Nguyen NP, Zhu G, Cameron RB, Lee JM. Classification of Non-Small Cell Lung Cancer's Tumor Immune Micro-Environment and Strategies to Augment Its Response to Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:cancers13122924. [PMID: 34208113 PMCID: PMC8230820 DOI: 10.3390/cancers13122924] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Immune checkpoint blockade (ICB) has become a major treatment for lung cancer. Better understanding of the tumor immune micro-environment (TIME) in non-small cell lung cancer (NSCLC) is urgently needed to better treat it with this type of therapy. In this review, we describe and explore how NSCLC’s TIME relates to response to ICB, as well as how to treat those with unresponsive types of TIME, which will significantly impact future research in lung cancer immunotherapy. Abstract Immune checkpoint blockade (ICB) with checkpoint inhibitors has led to significant and durable response in a subset of patients with advanced stage EGFR and ALK wild-type non-small cell lung cancer (NSCLC). This has been consistently shown to be correlated with the unique characteristics of each patient’s tumor immune micro-environment (TIME), including the composition and distribution of the tumor immune cell infiltrate; the expression of various checkpoints by tumor and immune cells, such as PD-L1; and the presence of various cytokines and chemokines. In this review, the classification of various types of TIME that are present in NSCLC and their correlation with response to ICB in NSCLC are discussed. This is conducted with a focus on the characteristics and identifiable biomarkers of different TIME subtypes that may also be used to predict NSCLC’s clinical response to ICB. Finally, treatment strategies to augment response to ICB in NSCLC with unresponsive types of TIME are explored.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Beijing Chest Hospital, Capital Medical University, Beijing 101100, China
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing 210009, China
- Correspondence: (A.C.); (X.H.)
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing 210009, China
- Correspondence: (A.C.); (X.H.)
| | - Lin Hou
- Center for Statistical Science, Tsinghua University, Beijing 100084, China;
| | - Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA;
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Robert B. Cameron
- Division of Thoracic Surgery, Department of Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA; (R.B.C.); (J.M.L.)
| | - Jay M. Lee
- Division of Thoracic Surgery, Department of Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA; (R.B.C.); (J.M.L.)
| |
Collapse
|
259
|
Almasabi S, Ahmed AU, Boyd R, Williams BRG. A Potential Role for Integrin-Linked Kinase in Colorectal Cancer Growth and Progression via Regulating Senescence and Immunity. Front Genet 2021; 12:638558. [PMID: 34163519 PMCID: PMC8216764 DOI: 10.3389/fgene.2021.638558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 01/10/2023] Open
Abstract
Integrin-linked kinase (ILK) has been implicated as a molecular driver and mediator in both inflammation and tumorigenesis of the colon. ILK functions as an adaptor and mediator protein linking the extracellular matrix with downstream signaling pathways. ILK is broadly expressed in many human tissues and cells. It is also overexpressed in many cancers, including colorectal cancer (CRC). Inflammation, as evidenced by inflammatory bowel disease (IBD), is one of the highest risk factors for initiating CRC. This has led to the hypothesis that targeting ILK therapeutically could have potential in CRC, as it regulates different cellular processes associated with CRC development and progression as well as inflammation in the colon. A number of studies have indicated an ILK function in senescence, a cellular process that arrests the cell cycle while maintaining active metabolism and transcription. Senescent cells produce different secretions collectively known as the senescence-associated secretory phenotype (SASP). The SASP secretions influence infiltration of different immune cells, either positively for clearing senescent cells or negatively for promoting tumor growth, reflecting the dual role of senescence in cancer. However, a role for ILK in senescence and immunity in CRC remains to be determined. In this review, we discuss the possible role for ILK in senescence and immunity, paying particular attention to the relevance of ILK in CRC. We also examine how activating Toll-like receptors (TLRs) and their agonists in CRC could trigger immune responses against cancer, as a combination therapy with ILK inhibition.
Collapse
Affiliation(s)
- Saleh Almasabi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Cartherics, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Clinical Laboratory Sciences, Applied Medical Sciences, Najran University, Najran, Saudi Arabia.,Department of Molecular and Translational Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Richard Boyd
- Cartherics, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Bryan R G Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
260
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
261
|
Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, Zhang Z, Xu K, Duan J, He S, Zhang J, Wan L, Liu T, Zhou X, Hung MC, Freeman GJ, Wei W. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell 2021; 81:2317-2331.e6. [PMID: 33909988 PMCID: PMC8178223 DOI: 10.1016/j.molcel.2021.03.037] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.
Collapse
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Hu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
262
|
Bozinovski S, Vannitamby A, Rangamuwa K, Aujla S, Wang H, Aloe C, Irving L, Leong TT, Steinfort DP. Integrating endobronchial ultrasound bronchoscopy with molecular testing of immunotherapy biomarkers in non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:2779-2787. [PMID: 34295677 PMCID: PMC8264344 DOI: 10.21037/tlcr-20-781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapy has transformed treatment of advanced non-small-cell lung cancer (NSCLC) patients leading to remarkable long-term survival benefit. However, only about 20% of advanced NSCLC patients typically respond to immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway. The only validated biomarker for ICI therapy is the PD-L1 immunohistochemistry (IHC) test, which is considered an imperfect assay due to several variables including availability and integrity of tumour tissue, variability in staining/scoring techniques and heterogeneity in PD-L1 protein expression within and across tumour biopsies. Herein, we discuss integrating minimally invasive EBUS bronchoscopy procedures with novel molecular approaches to improve accuracy and sensitivity of PD-L1 testing. EBUS guided bronchoscopy facilitates repeated sampling of tumour tissue to increase the probability of detecting PD-L1 positive tumours. Since intra-tumoural PD-L1 (CD274) copy number is reported to be less heterogeneous than PD-L1 protein detection, quantifying PD-L1 transcript levels may increase detection of PD-L1 positive tumours. PD-L1 transcript levels show excellent concordance with PD-L1 IHC scoring and multiplex digital droplet PCR (ddPCR) assays that quantify absolute PD-L1 transcript copy number have been developed. ddPCR can also be automated for high throughput detection of low abundant variants with excellent sensitivity and accuracy to improve the broader application of diagnostic cut-off values. Optimizing diagnostic workflows that integrate optimal EBUS bronchoscopy procedures with emerging molecular ICI biomarker assays may improve the selection criteria for ICI therapy benefit.
Collapse
Affiliation(s)
- Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Amanda Vannitamby
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Savreet Aujla
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Tracy T Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
263
|
Luu K, Schwarz H, Lundqvist A. B7-H7 Is Inducible on T Cells to Regulate Their Immune Response and Serves as a Marker for Exhaustion. Front Immunol 2021; 12:682627. [PMID: 34140952 PMCID: PMC8205074 DOI: 10.3389/fimmu.2021.682627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
The discovery of immune checkpoints highlights the complexity of T cell signalling during an immune response. Upon activation, T cells express several molecules to regulate their function and to prevent overactivation. B7 homolog 7 (B7-H7) is expressed in tumours and associated with a worse prognosis. However, conflicting data regarding its function suggest that it can be both stimulatory and inhibitory. In this study we report that B7-H7 is also expressed on T cells upon cross-linking of CD3 and CD28 and that additional stimulation via CD137 further enhances the expression of B7-H7. B7-H7 is preferentially expressed on exhausted Th1 and Tc1 cells with an impaired secretion of TNF-α and IFN-γ. Blockade of B7-H7 with its natural receptor, recombinant CD28H, enhances T cell proliferation and activation. Thus, B7-H7 represents another target for immunotherapy and a biomarker to select for active effector T cells with relevance for adoptive cell transfer therapy.
Collapse
Affiliation(s)
- Khang Luu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
264
|
Messeha SS, Zarmouh NO, Soliman KFA. Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients 2021; 13:nu13051718. [PMID: 34069461 PMCID: PMC8159140 DOI: 10.3390/nu13051718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Investigating dietary polyphenolic compounds as antitumor agents are rising due to the growing evidence of the close association between immunity and cancer. Cancer cells elude immune surveillance for enhancing their progression and metastasis utilizing various mechanisms. These mechanisms include the upregulation of programmed death-ligand 1 (PD-L1) expression and Epithelial-to-Mesenchymal Transition (EMT) cell phenotype activation. In addition to its role in stimulating normal embryonic development, EMT has been identified as a critical driver in various aspects of cancer pathology, including carcinogenesis, metastasis, and drug resistance. Furthermore, EMT conversion to another phenotype, Mesenchymal-to-Epithelial Transition (MET), is crucial in developing cancer metastasis. A central mechanism in the upregulation of PD-L1 expression in various cancer types is EMT signaling activation. In breast cancer (BC) cells, the upregulated level of PD-L1 has become a critical target in cancer therapy. Various signal transduction pathways are involved in EMT-mediated PD-L1 checkpoint overexpression. Three main groups are considered potential targets in EMT development; the effectors (E-cadherin and Vimentin), the regulators (Zeb, Twist, and Snail), and the inducers that include members of the transforming growth factor-beta (TGF-β). Meanwhile, the correlation between consuming flavonoid-rich food and the lower risk of cancers has been demonstrated. In BC, polyphenols were found to downregulate PD-L1 expression. This review highlights the effects of polyphenols on the EMT process by inhibiting mesenchymal proteins and upregulating the epithelial phenotype. This multifunctional mechanism could hold promises in the prevention and treating breast cancer.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan National Board for Technical & Vocational Education, Misrata LY72, Libya;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
- Correspondence: ; Tel.: +1-850-599-3306; Fax: +1-850-599-3667
| |
Collapse
|
265
|
Yuan W, Deng D, Li H, Hu X, Shang X, Hou X, Jiang H, He H. IFNγ/PD-L1 Signaling Improves the Responsiveness of Anti-PD-1 Therapy in Colorectal Cancer: An in vitro Study. Onco Targets Ther 2021; 14:3051-3062. [PMID: 33994797 PMCID: PMC8114827 DOI: 10.2147/ott.s294136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Programmed cell death 1 ligand 1 (PD-L1) can be upregulated in cancer cells via interferon gamma (IFNγ) in the tumor microenvironment. IFNγ/PD-L1 signaling is associated with the response to immune checkpoint blockade in melanoma patients. Our previous investigation indicated that the microsatellite instability-high (MSI-H) cell line might exhibit selective hyperresponsiveness to IFNγ treatment, which contributes to increased PD-L1 expression and may be a mechanism of response to anti-PD-1 therapy in colorectal cancer. Methods The present study evaluated the expression of PD-L1 in a set of MSI and microsatellite stability (MSS) cell lines with IFNγ treatment. The differential signaling molecules associated with signal transducer and activator of transcription (STAT) contributing to hyperresponsiveness to IFNγ exposure were also investigated. Furthermore, we established a coculture assay containing CT26 cells with higher expression of PD-L1 and peripheral blood mononuclear cells (PBMCs) in vitro. Changes in cancer cell viability as well as apoptosis status in response to anti-PD-1 therapy were demonstrated. We further observed changes in the percentage of CD4+ and CD8+ lymphocytes after PD-1 immunotherapy in the coculture assay. Finally, the average extent of inflammation and adaptive immunity factors in the assay was also investigated. Results This in vitro study revealed that the MSI cell line might exhibit hyperresponsiveness to IFNγ exposure, and IFNγ induced upregulation of PD-L1 mainly through increased STAT1 and decreased STAT3 signaling. IFNγ/PD-L1 signaling participated in the response to anti-PD-1 therapy mainly through the CTL profile. Discussion Our findings reinforce previous knowledge of the fact that the response to immune checkpoint blockade occurs mainly in patients with a preexisting intratumoral IFNγ/PD-L1 signal, thus suggesting potential therapeutic strategies to enhance responsiveness to PD-1 blockade immunotherapy in most patients with colorectal cancer.
Collapse
Affiliation(s)
- Wenli Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Deyao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Hanyu Li
- Department of General Surgery, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Xinghui Hu
- Department of General Surgery, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Xueqin Shang
- Department of Oncology, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Xia Hou
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Hongchao Jiang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan Province, People's Republic of China
| | - Hongchun He
- Department of General Surgery, The Affiliated Hospital of Yunnan University, The Second Hospital of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
266
|
Zhu Q, Fu Y, Li L, Liu CH, Zhang L. The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev 2021; 67:101303. [PMID: 33609777 DOI: 10.1016/j.arr.2021.101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins Otubain1 (OTUB1) and Otubain2 (OTUB2) were initially identified as OTU deubiquitinases (DUBs). Recently, Otubains have emerged as essential regulators of diverse physiological processes, such as immune signaling and DNA damage response. Dysregulation of those processes is likely to increase the risk in multiple aspects of aging-related diseases, including cancers, neurodegenerative disorders, chronic kidney diseases, bone dysplasia and pulmonary fibrosis. Consistently, Otubains are aberrantly expressed in cancers and have been identified to be both tumor suppressors and tumor promoters in different types of cancers. Therefore, the regulatory mechanism of the activity and expression of Otubains is very important for better understanding of Otubains-associated biological networks and human diseases. This review provides a comprehensive description of functions and regulatory axis of Otubains, highlighting experimental evidences indicating Otubains as potential therapeutic targets against aging-related disorders.
Collapse
Affiliation(s)
- Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lei Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
267
|
Dunn GP, Cloughesy TF, Maus MV, Prins RM, Reardon DA, Sonabend AM. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro Oncol 2021; 22:1425-1438. [PMID: 32615600 DOI: 10.1093/neuonc/noaa154] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As immunotherapy assumes a central role in the management of many cancers, ongoing work is directed at understanding whether immune-based treatments will be successful in patients with glioblastoma (GBM). Despite several large studies conducted in the last several years, there remain no FDA-approved immunotherapies in this patient population. Nevertheless, there are a range of exciting new approaches being applied to GBM, all of which may not only allow us to develop new treatments but also help us understand fundamental features of the immune response in the central nervous system. In this review, we summarize new developments in the application of immune checkpoint blockade, from biomarker-driven patient selection to the timing of treatment. Moreover, we summarize novel work in personalized immune-oncology by reviewing work in cancer immunogenomics-driven neoantigen vaccine studies. Finally, we discuss cell therapy efforts by reviewing the current state of chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Marcela V Maus
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Robert M Prins
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - David A Reardon
- Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
268
|
De Wispelaere W, Annibali D, Tuyaerts S, Lambrechts D, Amant F. Resistance to Immune Checkpoint Blockade in Uterine Leiomyosarcoma: What Can We Learn from Other Cancer Types? Cancers (Basel) 2021; 13:cancers13092040. [PMID: 33922556 PMCID: PMC8122870 DOI: 10.3390/cancers13092040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
The onset of immune checkpoint blockade (ICB) therapy over the last decade has transformed the therapeutic landscape in oncology. ICB has shown unprecedented clinical activity and durable responses in a variety of difficult-to-treat cancers. However, despite these promising long-term responses, a majority of patients fail to respond to single-agent therapy, demonstrating primary or acquired resistance. Uterine leiomyosarcoma (uLMS) is a rare high-risk gynecological cancer with very limited treatment options. Despite research indicating a strong potential for ICB in uLMS, a clinical trial assessing the response to immunotherapy with single-agent nivolumab in advanced-stage uLMS showed no clinical benefit. Many mechanisms of resistance to ICB have been characterized in a variety of tumor types, and many more continue to be uncovered. However, the mechanisms of resistance to ICB in uLMS remain largely unexplored. By elucidating and targeting mechanisms of resistance, treatments can be tailored to improve clinical outcomes. Therefore, in this review we will explore what is known about the immunosuppressive microenvironment of uLMS, link these data to possible resistance mechanisms extrapolated from other cancer types, and discuss potential therapeutic strategies to overcome resistance.
Collapse
Affiliation(s)
- Wout De Wispelaere
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
| | - Daniela Annibali
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
- Division of Oncogenomics, Antoni Van Leeuwenhoek—Netherlands Cancer Institute (AvL-NKI), 1066 CX Amsterdam, The Netherlands
| | - Sandra Tuyaerts
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven (University of Leuven), 3000 Leuven, Belgium;
- VIB Center for Cancer Biology, Flemish Institute for Biotechnology (VIB), 3000 Leuven, Belgium
| | - Frédéric Amant
- Department of Oncology, KU Leuven (University of Leuven) and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (W.D.W.); (D.A.); (S.T.)
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek—Netherlands Cancer Institute, University Medical Center (UMC), 1066 CX Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
269
|
ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nat Commun 2021; 12:2346. [PMID: 33879767 PMCID: PMC8058344 DOI: 10.1038/s41467-021-22467-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
Cancer expression of PD-L1 suppresses anti-tumor immunity. PD-L1 has emerged as a remarkable therapeutic target. However, the regulation of PD-L1 degradation is not understood. Here, we identify several compounds as inducers of PD-L1 degradation using a high-throughput drug screen. We find EGFR inhibitors promote PD-L1 ubiquitination and proteasomal degradation following GSK3α-mediated phosphorylation of Ser279/Ser283. We identify ARIH1 as the E3 ubiquitin ligase responsible for targeting PD-L1 to degradation. Overexpression of ARIH1 suppresses tumor growth and promotes cytotoxic T cell activation in wild-type, but not in immunocompromised mice, highlighting the role of ARIH1 in anti-tumor immunity. Moreover, combining EGFR inhibitor ES-072 with anti-CTLA4 immunotherapy results in an additive effect on both tumor growth and cytotoxic T cell activation. Our results delineate a mechanism of PD-L1 degradation and cancer escape from immunity via EGFR-GSK3α-ARIH1 signaling and suggest GSK3α and ARIH1 might be potential drug targets to boost anti-tumor immunity and enhance immunotherapies.
Collapse
|
270
|
Marcucci F, Rumio C. Depleting Tumor Cells Expressing Immune Checkpoint Ligands-A New Approach to Combat Cancer. Cells 2021; 10:872. [PMID: 33921301 PMCID: PMC8069236 DOI: 10.3390/cells10040872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies against inhibitory immune checkpoint molecules (ICPMs), referred to as immune checkpoint inhibitors (ICIs), have gained a prominent place in cancer therapy. Several ICIs in clinical use have been engineered to be devoid of effector functions because of the fear that ICIs with preserved effector functions could deplete immune cells, thereby curtailing antitumor immune responses. ICPM ligands (ICPMLs), however, are often overexpressed on a sizeable fraction of tumor cells of many tumor types and these tumor cells display an aggressive phenotype with changes typical of tumor cells undergoing an epithelial-mesenchymal transition. Moreover, immune cells expressing ICPMLs are often endowed with immunosuppressive or immune-deviated functionalities. Taken together, these observations suggest that compounds with the potential of depleting cells expressing ICPMLs may become useful tools for tumor therapy. In this article, we summarize the current state of the art of these compounds, including avelumab, which is the only ICI targeting an ICPML with preserved effector functions that has gained approval so far. We also discuss approaches allowing to obtain compounds with enhanced tumor cell-depleting potential compared to native antibodies. Eventually, we propose treatment protocols that may be applied in order to optimize the therapeutic efficacy of compounds that deplete cells expressing ICPMLs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy;
| | | |
Collapse
|
271
|
Zhang L, Zhao Y, Tu Q, Xue X, Zhu X, Zhao KN. The Roles of Programmed Cell Death Ligand-1/ Programmed Cell Death-1 (PD-L1/PD-1) in HPV-induced Cervical Cancer and Potential for their Use in Blockade Therapy. Curr Med Chem 2021; 28:893-909. [PMID: 32003657 DOI: 10.2174/0929867327666200128105459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but the outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months. METHODS We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies. RESULTS One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signalling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and microRNA, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in the immune escape of cervical cancer through inhibition of host immune response. Creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for the therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PDL1/ PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment. CONCLUSION Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body's immune system to fight cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.
Collapse
Affiliation(s)
- Lifang Zhang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Quanmei Tu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiangyang Xue
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Kong-Nan Zhao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| |
Collapse
|
272
|
Zhang J, An L, Zhou X, Shi R, Wang H. Analysis of tumor mutation burden combined with immune infiltrates in endometrial cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:551. [PMID: 33987249 PMCID: PMC8105813 DOI: 10.21037/atm-20-6049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tumor mutational burden (TMB) is widely regarded as a predictor of response to immunotherapy. Few researchers have focused on the activity and prognosis of TMB in endometrial cancer (EC) and immune cells. Our study aimed to identify the prognostic role of TMB in EC. METHODS We downloaded transcriptome data from The Cancer Genome Atlas (TCGA) database. Kaplan-Meier analysis with log-rank test was conducted to assess the difference in overall survival (OS) between the high and low TMB groups. The "CIBERSORT" scripts were performed to evaluate the immune compositions of EC patients. Cox regression analysis and survival analysis were used to verify the prognostic value prognosis of TMB. RESULTS We obtained the single nucleotide mutation data for 529 EC patients. A missense mutation was the most common mutation type. TMB was associated with survival outcome, tumor grades, and pathological types. We identified 10 hub TMB-related signature and found that elevated T-cell subsets infiltrating density in the high TMB group revealed improved survival outcomes. According to Kaplan-Meier analysis, T cells gamma delta and T cells regulatory were prognostic immune cells in EC samples. Moreover, many top gene set enrichment analysis (GSEA) results, including amino sugar and nucleotide sugar metabolism, nucleotide excision repair, or p53 signaling pathway, were enriched significantly with TMB level as phenotype. CONCLUSIONS TMB is an important prognostic factor for EC, and TMB-related genes may be potential therapeutic targets for EC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
273
|
Sun SY. mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why? Front Med 2021; 15:221-231. [PMID: 33165737 DOI: 10.1007/s11684-020-0812-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, 30322, USA.
| |
Collapse
|
274
|
Iseda N, Itoh S, Yoshizumi T, Yugawa K, Morinaga A, Tomiyama T, Toshima T, Kohashi K, Oda Y, Mori M. ARID1A Deficiency Is Associated With High Programmed Death Ligand 1 Expression in Hepatocellular Carcinoma. Hepatol Commun 2021; 5:675-688. [PMID: 33860125 PMCID: PMC8034578 DOI: 10.1002/hep4.1659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The clinicopathological features of carcinomas expressing AT-rich interaction domain 1a (ARID1A) and programmed death ligand 1 (PD-L1) in HCC are poorly understood. Here, we examined ARID1A and PD-L1 expression in surgically resected primary hepatocellular carcinoma (HCC) and the association of ARID1A and PD-L1 expression with clinicopathological features and patient outcomes. Their association with ARID1A expression and tumor-associated CD68-positive macrophage was further explored. Using a database of 255 patients who underwent hepatic resection for HCC, immunohistochemical staining of ARID1A, PD-L1, and CD68 was performed. We also analyzed the expression PD-L1 after ARID1A knockdown in HCC cell lines. Samples from 81 patients (31.7%) were negative for ARID1A. Negative ARID1A expression was significantly associated with male sex, high alpha-fetoprotein, high des-gamma-carboxyprothrombin, large tumor size, high rate of poor differentiation, microscopic intrahepatic metastasis, and PD-L1 expression. In addition, negative ARID1A expression was an independent predictor for recurrence-free survival, overall survival, and positive PD-L1 expression. Stratification based on ARID1A and PD-L1 expression in cancer cells was also significantly associated with unfavorable outcomes. PD-L1 protein expression levels were increased through phosphoinositide 3-kinase/AKT signaling after ARID1A knockdown in HCC cells. HCC with ARID1A-low expression was significantly correlated with high levels of tumor-associated CD68-positive macrophage. Conclusion: Our large cohort study showed that ARID1A expression in cancer cells was associated with a poor clinical outcome in patients with HCC, PD-L1 expression in cancer cells, and tumor microenvironment. Therefore, ARID1A may be a potential molecular biomarker for the selection of patients with HCC for anti-programmed death 1/PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Norifumi Iseda
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shinji Itoh
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kyohei Yugawa
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Akinari Morinaga
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takahiro Tomiyama
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Toshima
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Kohashi
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masaki Mori
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
275
|
Zhang T, Zheng S, Liu Y, Li X, Wu J, Sun Y, Liu G. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer. DNA Repair (Amst) 2021; 102:103112. [PMID: 33838550 DOI: 10.1016/j.dnarep.2021.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Ovarian cancer has a poor prognosis due to drug resistance, relapse and metastasis. In recent years, immunotherapy has been applied in numerous cancers clinically. However, the effect of immunotherapy monotherapy in ovarian cancer is limited. DNA damage response (DDR) is an essential factor affecting the efficacy of tumor immunotherapy. Defective DNA repair may lead to carcinogenesis and tumor genomic instability, but on the other hand, it may also portend particular vulnerability of tumors and can be used as biomarkers for immunotherapy patient selection. Programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway mediates tumor immune escape, which may be a promising target for immunotherapy. Therefore, further understanding of the mechanism of PD-L1 expression after DDR may help guide the development of immunotherapy in ovarian cancer. In this review, we present the DNA damage repair pathway and summarize how DNA damage repair affects the PD-1/PD-L1 pathway in cancer cells. And then we look for biomarkers that affect efficacy or prognosis. Finally, we review the progress of PD-1/PD-L1-based immunotherapy in combination with other therapies that may affect the DDR pathway in ovarian cancer.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Shuangshuang Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yang Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| |
Collapse
|
276
|
Lawal B, Lee CY, Mokgautsi N, Sumitra MR, Khedkar H, Wu ATH, Huang HS. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 Are Druggable Candidates for N-(2,4-Difluorophenyl)-2',4'-Difluoro-4-Hydroxybiphenyl-3-Carboxamide (NSC765598), With Consequent Anticancer Implications. Front Oncol 2021; 11:656738. [PMID: 33842373 PMCID: PMC8034425 DOI: 10.3389/fonc.2021.656738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background The application of computational and multi-omics approaches has aided our understanding of carcinogenesis and the development of therapeutic strategies. NSC765598 is a novel small molecule derivative of salicylanilide. This study aims to investigate the ligand-protein interactions of NSC765598 with its potential targets and to evaluate its anticancer activities in vitro. Methods We used multi-computational tools and clinical databases, respectively, to identify the potential drug target for NSC765598 and analyze the genetic profile and prognostic relevance of the targets in multiple cancers. We evaluated the in vitro anticancer activities against the National Cancer Institute 60 (NCI60) human tumor cell lines and used molecular docking to study the ligand-protein interactions. Finally, we used the DTP-COMPARE algorithm to compare the NSC765598 anticancer fingerprints with NCI standard agents. Results We identified mammalian target of rapamycin (mTOR)/epidermal growth factor receptor (EGFR)/inducible nitric oxide synthase (iNOS)/mitogen-activated protein 2 kinase 1 (MAP2K1)/fibroblast growth factor receptor (FGFR)/transforming growth factor-β1 (TGFB1) as potential targets for NSC765598. The targets were enriched in cancer-associated pathways, were overexpressed and were of prognostic relevance in multiple cancers. Among the identified targets, genetic alterations occurred most frequently in EGFR (7%), particularly in glioblastoma, esophageal squamous cell cancer, head and neck squamous cell cancer, and non–small-cell lung cancer, and were associated with poor prognoses and survival of patients, while other targets were less frequently altered. NSC765598 displayed selective antiproliferative and cytotoxic preferences for NSCLC (50% growth inhibition (GI50) = 1.12–3.95 µM; total growth inhibition (TGI) = 3.72–16.60 μM), leukemia (GI50 = 1.20–3.10 µM; TGI = 3.90–12.70 μM), melanoma (GI50 = 1.45–3.59 µM), and renal cancer (GI50 = 1.38–3.40 µM; TGI = 4.84–13.70 μM) cell lines, while panels of colon, breast, ovarian, prostate, and central nervous system (CNS) cancer cell lines were less sensitive to NSC765598. Interestingly, NSC765598 docked well into the binding cavity of the targets by conventional H-bonds, van der Waal forces, and a variety of π-interactions, with higher preferences for EGFR (ΔG = −11.0 kcal/mol), NOS2 (ΔG = −11.0 kcal/mol), and mTOR (ΔG = −8.8 kcal/mol). NSC765598 shares similar anti-cancer fingerprints with NCI standard agents displayed acceptable physicochemical values and met the criteria of drug-likeness. Conclusion NSC765598 displayed significant anticancer and potential multi-target properties, thus serve as a novel candidate worthy of further preclinical studies.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Harshita Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
277
|
Vekens K, Everaert H, Neyns B, Ilsen B, Decoster L. The Value of 18F-FDG PET/CT in Predicting the Response to PD-1 Blocking Immunotherapy in Advanced NSCLC Patients with High-Level PD-L1 Expression. Clin Lung Cancer 2021; 22:432-440. [PMID: 33879398 DOI: 10.1016/j.cllc.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The objective of this study was to evaluate if 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT)-derived parameters are useful in predicting response and survival after programmed cell death protein 1 (PD-1) blocking immunotherapy in patients with advanced NSCLC characterized by a high programmed death-ligand 1 (PD-L1) expression (≥50%) on immunohistochemistry. PATIENTS AND METHODS In 30 patients with advanced stage IV non-small-cell lung cancer (NSCLC) and high PD-L1 expression, 18F-FDG PET/CT parameters before start of treatment with PD-1 blocking immunotherapy were evaluated retrospectively. In 24 out of the 30 patients, 18F-FDG PET/CT was available 8 to 9 weeks after start of the treatment. Response Evaluation Criteria in Solid Tumors (RECIST 1.1) and metabolic responses assessed on 18F-FDG PET/CT were compared. RESULTS Median follow-up was 20 months (range, 4.2-37.6). Median PD-L1 expression was 80%. The objective response rate with RECIST 1.1 was 53.3%. Median progression-free survival (PFS) was 12.4 months (95% confidence interval [CI], 1.0-37.8), and median overall survival (OS) was 14.9 months (95% CI, 2.4-38.2). Baseline 18F-FDG PET/CT parameters did not differ between responders and non-responders (all P > .05). The maximum standardized uptake value (SUVmax) was the only 18F-FDG PET/CT parameter associated with PFS (P = .04), with a trend for OS (P = .06). At first evaluation, response according to total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) were associated with PFS and OS (both P < .0001). This was not the case for RECIST 1.1 (P = .29 for PFS and P = .38 for OS). CONCLUSION Clinical response and survival were independent from metabolic tumor volume at baseline. Reduction of metabolic tumor volume after 8 to 9 weeks of treatment was a better predictor for prolonged survival than RECIST 1.1.
Collapse
Affiliation(s)
- Karolien Vekens
- Respiratory Division, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Hendrik Everaert
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Ilsen
- Radiology Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lore Decoster
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
278
|
eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochem J 2021; 477:4367-4381. [PMID: 33094805 DOI: 10.1042/bcj20200697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Emerging advances in cancer therapy have transformed the landscape towards cancer immunotherapy regimens. Recent discoveries have resulted in the development of clinical immune checkpoint inhibitors that are 'game-changers' for cancer immunotherapy. Here we show that eEF2K, an atypical protein kinase that negatively modulates the elongation stage of protein synthesis, promotes the synthesis of PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance. Ablation of eEF2K in prostate and lung cancer cells markedly reduced the expression levels of the PD-L1 protein. We show that eEF2K promotes the association of PD-L1 mRNAs with translationally active polyribosomes and that translation of the PD-L1 mRNA is regulated by a uORF (upstream open reading-frame) within its 5'-UTR (5'-untranslated region) which starts with a non-canonical CUG as the initiation codon. This inhibitory effect is attenuated by eEF2K thereby allowing higher levels of translation of the PD-L1 coding region and enhanced expression of the PD-L1 protein. Moreover, eEF2K-depleted cancer cells are more vulnerable to immune attack by natural killer cells. Therefore, control of translation elongation can modulate the translation of this specific mRNA, one which contains an uORF that starts with CUG, and perhaps others that contain a similar feature. Taken together, our data reveal that eEF2K regulates PD-L1 expression at the level of the translation of its mRNA by virtue of a uORF in its 5'-region. This, and other roles of eEF2K in cancer cell biology (e.g. in cell survival and migration), may be exploited for the design of future therapeutic strategies.
Collapse
|
279
|
Curran CS, Kopp JB. PD-1 immunobiology in glomerulonephritis and renal cell carcinoma. BMC Nephrol 2021; 22:80. [PMID: 33676416 PMCID: PMC7936245 DOI: 10.1186/s12882-021-02257-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Programmed cell death protein (PD)-1 receptors and ligands on immune cells and kidney parenchymal cells help maintain immunological homeostasis in the kidney. Dysregulated PD-1:PD-L1 binding interactions occur during the pathogenesis of glomerulopathies and renal cell carcinoma (RCC). The regulation of these molecules in the kidney is important to PD-1/PD-L1 immunotherapies that treat RCC and may induce glomerulopathies as an adverse event. METHODS The expression and function of PD-1 molecules on immune and kidney parenchymal cells were reviewed in the healthy kidney, PD-1 immunotherapy-induced nephrotoxicity, glomerulopathies and RCC. RESULTS PD-1 and/or its ligands are expressed on kidney macrophages, dendritic cells, lymphocytes, and renal proximal tubule epithelial cells. Vitamin D3, glutathione and AMP-activated protein kinase (AMPK) regulate hypoxic cell signals involved in the expression and function of PD-1 molecules. These pathways are altered in kidney disease and are linked to the production of vascular endothelial growth factor, erythropoietin, adiponectin, interleukin (IL)-18, IL-23, and chemokines that bind CXCR3, CXCR4, and/or CXCR7. These factors are differentially produced in glomerulonephritis and RCC and may be important biomarkers in patients that receive PD-1 therapies and/or develop glomerulonephritis as an adverse event CONCLUSION: By comparing the functions of the PD-1 axis in glomerulopathies and RCC, we identified similar chemokines involved in the recruitment of immune cells and distinct mediators in T cell differentiation. The expression and function of PD-1 and PD-1 ligands in diseased tissue and particularly on double-negative T cells and parenchymal kidney cells needs continued exploration. The possible regulation of the PD-1 axis by vitamin D3, glutathione and/or AMPK cell signals may be important to kidney disease and the PD-1 immunotherapeutic response.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, NIH, BG 10 RM 2C135, 10 Center Drive, Bethesda, MD, 20814, USA.
| | | |
Collapse
|
280
|
Ahn R, Ursini-Siegel J. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors. Int J Mol Sci 2021; 22:ijms22052608. [PMID: 33807608 PMCID: PMC7961781 DOI: 10.3390/ijms22052608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Oncogenic kinases contribute to immunosuppression and modulate the tumor microenvironment in solid tumors. Increasing evidence supports the fundamental role of oncogenic kinase signaling networks in coordinating immunosuppressive tumor microenvironments. This has led to numerous studies examining the efficacy of kinase inhibitors in inducing anti-tumor immune responses by increasing tumor immunogenicity. Kinase inhibitors are the second most common FDA-approved group of drugs that are deployed for cancer treatment. With few exceptions, they inevitably lead to intrinsic and/or acquired resistance, particularly in patients with metastatic disease when used as a monotherapy. On the other hand, cancer immunotherapies, including immune checkpoint inhibitors, have revolutionized cancer treatment for malignancies such as melanoma and lung cancer. However, key hurdles remain to successfully incorporate such therapies in the treatment of other solid cancers. Here, we review the recent literature on oncogenic kinases that regulate tumor immunogenicity, immune suppression, and anti-tumor immunity. Furthermore, we discuss current efforts in clinical trials that combine kinase inhibitors and immune checkpoint inhibitors to treat breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, 546 Pine Avenue West, Montréal, QC H2W 1S6, Canada
- Correspondence: ; Tel.: +514-340-8222 (ext. 26557); Fax: +514-340-7502
| |
Collapse
|
281
|
Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21:181-197. [PMID: 33462501 DOI: 10.1038/s41568-020-00322-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Aberrant signalling of ERBB family members plays an important role in tumorigenesis and in the escape from antitumour immunity in multiple malignancies. Molecular-targeted agents against these signalling pathways exhibit robust clinical efficacy, but patients inevitably experience acquired resistance to these molecular-targeted therapies. Although cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have shown durable antitumour response in a subset of the treated patients in multiple cancer types, clinical efficacy is limited in cancers harbouring activating gene alterations of ERBB family members. In particular, ICI treatment of patients with non-small cell lung cancers with epidermal growth factor receptor (EGFR) alterations and breast cancers with HER2 alterations failed to show clinical benefits, suggesting that EGFR and HER2 signalling may have an essential role in inhibiting antitumour immune responses. Here, we discuss the mechanisms by which the signalling of ERBB family members affects not only autonomous cancer hallmarks, such as uncontrolled cell proliferation, but also antitumour immune responses in the tumour microenvironment and the potential application of immune-genome precision medicine into immunotherapy and molecular-targeted therapy focusing on the signalling of ERBB family members.
Collapse
Affiliation(s)
- Shogo Kumagai
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
| |
Collapse
|
282
|
Insights into non-peptide small-molecule inhibitors of the PD-1/PD-L1 interaction: Development and perspective. Bioorg Med Chem 2021; 33:116038. [PMID: 33517226 DOI: 10.1016/j.bmc.2021.116038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
The development of immune checkpoint inhibitors has become a research hotspot in cancer immunotherapy in recent years. Anti-PD-1/PD-L1 monoclonal antibodies (mAbs), such as pembrolizumab and nivolumab have been approved for treating different types of cancer. Many peptides, peptidomimetics and non-peptide small-molecule inhibitors targeting the PD-1/PD-L1 axis have been published so far. In comparison with mAbs, small-molecule inhibitors have the potential to overcome inherent shortcomings of mAbs, such as poor oral bioavailability, low tumor penetration, and high manufacturing costs. In this article, we mainly review non-peptide small-molecule inhibitors of the PD-1/PD-L1 interaction, their cocrystal structures, docking studies, and biological activities are also included to guide future study. In addition, we propose several strategies for designing more effective small-molecule modulators of the PD-1/PD-L1 pathway.
Collapse
|
283
|
Ma Y, Qiu M, Guo H, Chen H, Li J, Li X, Yang F. Comprehensive Analysis of the Immune and Prognostic Implication of COL6A6 in Lung Adenocarcinoma. Front Oncol 2021; 11:633420. [PMID: 33747955 PMCID: PMC7968342 DOI: 10.3389/fonc.2021.633420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Collagen type VI alpha 6 chain (COL6A6), a novel collagen, has been considered as a tumor suppressor and therapeutic target in several tumors. However, the functional role of COL6A6 in immune cell infiltration and prognostic value in lung adenocarcinoma (LUAD) remains unknown. Here, we evaluated COL6A6 expression and its impact on survival among LUAD patients from The Cancer Genome Atlas (TCGA) and several other databases. COL6A6 was downregulated in LUAD tissues compared to normal tissues at both mRNA and protein levels. COL6A6 expression was negatively associated with pathological stage, tumor stage, and lymph node metastasis. High COL6A6 expression was a favorable prognostic factor in LUAD. Next, we explored the associations between COL6A6 expression and immune cell infiltration. COL6A6 expression was positively associated with the infiltration of B cells, T cells, neutrophils and dendritic cells. Additionally, the immune cell infiltration levels were associated with COL6A6 gene copy number in LUAD. Consistently, gene set enrichment analysis showed that various immune pathways were enriched in the LUAD samples with high COL6A6 expression, including pathways related to T cell activation and T cell receptor signaling. The impacts of COL6A6 on immune activity were further assessed by enrichment analysis of 50 COL6A6-associated immunomodulators. Thereafter, using Cox regression, we identified a seven-gene risk prediction signature based on the COL6A6-associated immunomodulators. The resulting risk score was an independent prognostic predictor in LUAD. Receiver operating characteristic curve analysis confirmed that the seven-gene signature had good prognostic accuracy in the TCGA-LUAD cohort and a Gene Expression Omnibus dataset. Finally, we constructed a clinical nomogram to predict long-term survival probabilities, and calibration curves verified its accuracy. Our findings highlight that COL6A6 is involved in tumor immunity, suggesting COL6A6 may be a potential immunotherapeutic target in LUAD. The proposed seven-gene signature is a promising prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Yi Ma
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Haifa Guo
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Haiming Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jiawei Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Xiao Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
284
|
Cai W, Ni W, Jin Y, Li Y. TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark 2021; 30:237-248. [PMID: 33136091 DOI: 10.3233/cbm-200039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a primary cause of cancer-patient mortality throughout the world. Thyroid hormone receptor interactor 13 (TRIP13) is a gene that expresses a protein involved in cell division, including tumorigenesis. Its expression is high in various human tumors; however, its role in LUAD cells remains undetermined. OBJECTIVE To investigate the TRIP13's role in the development of LUAD. METHODS Bioinformation analysis was used to analyze the expression of TRIP13 in LUAD tissues and the impact on the prognosis of LUAD; CRISPR/Cas9 was used to construct the cell lines; CCK-8 was used to explore the cell proliferation; Transwell assays was applied to exam the cell migration and cell invasion abilities; Western blot and immunoprecipitation was used to explore the relation between TRIP13 and AKT/mTORC1/c-Myc signaling pathway. RESULTS By analyzing LUAD data from The Cancer Genome Atlas and the Gene Expression Omnibus databases, we determined that TRIP13 is highly expressed in LUAD tissues and that this expression level has a negative impact on the patient mortality. TRIP13 has also proved to promote LUAD cell proliferation, migration, and invasion. In this study, we demonstrated that TRIP13 activates AKT/mTORC1/c-Myc signaling in these cells. CONCLUSION Our results have identified the role and potential mechanism by which TRIP13 affects LUAD cells, which may provide a useful marker for helping to diagnose this disease and create new therapies against it.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Ni
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yin Jin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Li
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
285
|
Lewinsky H, Gunes EG, David K, Radomir L, Kramer MP, Pellegrino B, Perpinial M, Chen J, He TF, Mansour AG, Teng KY, Bhattacharya S, Caserta E, Troadec E, Lee P, Feng M, Keats J, Krishnan A, Rosenzweig M, Yu J, Caligiuri MA, Cohen Y, Shevetz O, Becker-Herman S, Pichiorri F, Rosen S, Shachar I. CD84 is a regulator of the immunosuppressive microenvironment in multiple myeloma. JCI Insight 2021; 6:141683. [PMID: 33465053 PMCID: PMC7934939 DOI: 10.1172/jci.insight.141683] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) within the BM. The BM microenvironment supports survival of the malignant cells and is composed of cellular fractions that foster myeloma development and progression by suppression of the immune response. Despite major progress in understanding the biology and pathophysiology of MM, this disease is still incurable and requires aggressive treatment with significant side effects. CD84 is a self-binding immunoreceptor belonging to the signaling lymphocyte activation molecule (SLAM) family. Previously, we showed that CD84 bridges between chronic lymphocytic leukemia cells and their microenvironment, and it regulates T cell function. In the current study, we investigated the role of CD84 in MM. Our results show that MM cells express low levels of CD84. However, these cells secrete the cytokine macrophage migration inhibitory factor (MIF), which induces CD84 expression on cells in their microenvironment. Its activation leads to an elevation of expression of genes regulating differentiation to monocytic/granulocytic-myeloid-derived suppressor cells (M-MDSCs and G-MDSCs, respectively) and upregulation of PD-L1 expression on MDSCs, which together suppress T cell function. Downregulation of CD84 or its blocking reduce MDSC accumulation, resulting in elevated T cell activity and reduced tumor load. Our data suggest that CD84 might serve as a novel therapeutic target in MM.
Collapse
Affiliation(s)
- Hadas Lewinsky
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Emine G. Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Keren David
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P. Kramer
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Bianca Pellegrino
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Perpinial
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ting-fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | | - Kun-Yu Teng
- Department of Hematologic Malignancies Translational Science and
| | - Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USA
| | - Enrico Caserta
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Estelle Troadec
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Peter Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jonathan Keats
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Amrita Krishnan
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Michael Rosenzweig
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Jianhua Yu
- Department of Hematologic Malignancies Translational Science and
| | | | - Yosef Cohen
- Sanz Medical Center, Laniado Medical Center, Netanya, Israel
| | - Olga Shevetz
- Hematology Institute, Kaplan Medical Center, Rehovot, Israel
| | - Shirly Becker-Herman
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Steven Rosen
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, California, USA
- Department of Hematologic Malignancies Translational Science and
| | - Idit Shachar
- Department of Immunology, Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
286
|
Yang Y, Yang L, Wang Y. [Immunotherapy for Lung Cancer: Mechanisms of Resistance and Response Strategy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:112-123. [PMID: 33626853 PMCID: PMC7936078 DOI: 10.3779/j.issn.1009-3419.2021.101.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of immune checkpoints is at the forefront of immunotherapy for lung cancer. However, a high percentage of lung cancer patients do not respond to these immunotherpy or their responses are transient, indicating the existence of immune resistance. Emerging evidence suggested that the interactions between cancer cells and immune system were continuous and dynamic. Here, we review how a range of cancer-cell-autonomous characteristics, tumor-microenvironment factors, and host-related influences account for heterogenous responses. Furthermore, with the identification of new targets of immunotherapy and development of immune-based combination therapy, we elucidate the methods might useful to overcome resistance.
Collapse
Affiliation(s)
- Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lu Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
287
|
Choi BBR, Choi JH, Kim UK, Hwang DS, Kim GC. Gold nanoparticles conjugated with programmed death-ligand 1 antibodies induce apoptosis of SCC-25 oral squamous cell carcinoma cells via programmed death-ligand 1/signal transducer and transcription 3 pathway. Arch Oral Biol 2021; 125:105085. [PMID: 33667957 DOI: 10.1016/j.archoralbio.2021.105085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Objective of this study is to test the anti-cancer effect of the gold nanoparticles conjugated with programmed death-ligand 1 (PD-L1) specific antibodies (PDL1-GNP), on oral squamous cell carcinoma. DESIGN To test the effect of PDL1-GNP on oral squamous cell carcinoma, SCC-25 cells, a type of human oral squamous cell carcinoma which were isolated from human tongue, and HaCaT human keratinocytes as normal cell control, were used. Cell viability was tested by the water-soluble tetrazolium-1 and live/dead assays, while apoptotic cell death of SCC-25 cells were monitored by immunofluorescent staining and flow cytometry. The molecular changes during PDL1-GNP-mediated apoptosis were analyzed using Western blot analysis. RESULTS PDL1-GNP treatment effectively decreased the growth of SCC-25 cells but not HaCaT cells. The results of the confocal microscopic assay showed that PDL1-GNP specifically bound to the SCC-25 cell membrane. Furthermore, the results of the live/dead, cytochrome c release assays and flow cytometry indicated PDL1-GNP-mediated apoptotic cell death of SCC-25 cells. PDL1-GNP-treated SCC-25 cells showed a phenotype with increased apoptotic proteins, including cleaved form of caspase-3, caspase-9, and poly (ADP-ribose) polymerase 1 (PARP1). PDL1-GNP treatment also effectively decreased B-cell lymphoma 2 (Bcl-2) and PD-L1 protein expression. Phosphorylation of signal transducer and transcription 3 (STAT3) was significantly increased after PDL1-GNP treatment on SCC-25 cells. CONCLUSIONS PDL1-GNP treatment induced SCC-25 cell apoptosis possibly by inhibiting the function of the PD-L1 protein, since PD-L1 blocks STAT3 phosphorylation, which promotes apoptotic cell death.
Collapse
Affiliation(s)
| | | | - Uk Kyu Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dae Seok Hwang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Gyoo Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
288
|
Chen CJ, Liu YP. MERTK Inhibition: Potential as a Treatment Strategy in EGFR Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020130. [PMID: 33562150 PMCID: PMC7915726 DOI: 10.3390/ph14020130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor tyrosine kinase inhibitors (EGFR-TKIs) are currently the most effective treatment for non-small cell lung cancer (NSCLC) patients, who carry primary EGFR mutations. However, the patients eventually develop drug resistance to EGFR-TKIs after approximately one year. In addition to the acquisition of the EGFR T790M mutation, the activation of alternative receptor-mediated signaling pathways is a common mechanism for conferring the insensitivity of EGFR-TKI in NSCLC. Upregulation of the Mer receptor tyrosine kinase (MERTK), which is a member of the Tyro3-Axl-MERTK (TAM) family, is associated with a poor prognosis of many cancers. The binding of specific ligands, such as Gas6 and PROS1, to MERTK activates phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) cascades, which are the signaling pathways shared by EGFR. Therefore, the inhibition of MERTK can be considered a new therapeutic strategy for overcoming the resistance of NSCLC to EGFR-targeted agents. Although several small molecules and monoclonal antibodies targeting the TAM family are being developed and have been described to enhance the chemosensitivity and converse the resistance of EGFR-TKI, few have specifically been developed as MERTK inhibitors. The further development and investigation of biomarkers which can accurately predict MERTK activity and the response to MERTK inhibitors and MERTK-specific drugs are vitally important for obtaining appropriate patient stratification and increased benefits in clinical applications.
Collapse
Affiliation(s)
- Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
289
|
Chen Y, Zhang Y, Song W, Zhang Y, Dong X, Tan M. Ginsenoside Rh2 Improves the Cisplatin Anti-tumor Effect in Lung Adenocarcinoma A549 Cells via Superoxide and PD-L1. Anticancer Agents Med Chem 2021; 20:495-503. [PMID: 31814556 DOI: 10.2174/1871520619666191209091230] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ginsenoside Rh2 (Rh2) is a major biological component of ginseng that exerts antitumor activities in multiple cancers including Non-Small Cell Lung Cancers (NSCLCs). Rh2 also enhances the anti-tumor effects of various chemotherapy drugs including cisplatin at relatively low concentrations. Here, the mechanistic role of Rh2 in chemotherapy-treated NSCLCs will be investigated. METHODS In this study, FACS, western blot and siRNA addition were used to analyze the role of Rh2 in cisplatin- treated lung adenocarcinoma A549 and H1299 cells. RESULTS Subsequent observations indicated that Rh2 enhanced cisplatin-induced NSCLCs A549 and H1299 cells apoptosis. Cisplatin-induced productive autophagy was repressed by Rh2 in A549 cells. Rh2 also enhanced cisplatin cytotoxicity by elevating superoxide dismutase activity and repressing cisplatin-induced superoxide generation. Conversely, Rh2 was found to repress cisplatin-induced phosphorylation of epidermal growth factor receptor, phosphoinositide 3-kinase, protein kinase B, and autophagy. Cisplatin-induced Programmed Death- Ligand 1 (PD-L1) expression was repressed by Rh2 via the superoxide. CONCLUSION These findings suggest that Rh2 enhanced the function of cisplatin by repressing superoxide generation, PD-L1 expression, and autophagy in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Yuqiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Ying Zhang
- Oncology Medicine Department, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Xiu Dong
- School of Preclinical Medicine, Liaoning University of Traditional Chinese Medicine, 79 Chong Shan Dong Lu, Huanggu District, Shenyang, Liaoning, 110847, China
| | - Mingqi Tan
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| |
Collapse
|
290
|
Siraj AK, Parvathareddy SK, Pratheeshkumar P, Divya SP, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. PD-L1 Is an Independent Prognostic Marker in Middle Eastern PTC and Its Expression Is Upregulated by BRAFV600E Mutation. Cancers (Basel) 2021; 13:cancers13030555. [PMID: 33535609 PMCID: PMC7867170 DOI: 10.3390/cancers13030555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary This study was conducted to investigate the prognostic significance of programmed death-ligand 1 (PD-L1) expression in a large cohort of Middle Eastern papillary thyroid carcinoma (PTC) patients and to explore the correlation of PD-L1 and BRAFV600E mutations in PTC tumors and cell lines. We found PD-L1 over-expression in PTC patients and it was significantly associated with aggressive clinico-pathological parameters and BRAF mutation. PTC patients with co-existing PD-L1 over-expression and BRAF mutation had a poor disease-free survival. In vitro studies showed that BRAF inhibition induces PD-L1 expression in BRAF-mutated PTC cell lines via mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) pathway activation. Silencing of PD-L1 in BRAF-mutated cell lines significantly attenuated cell growth. Our data suggest that PD-L1 could represent a useful prognostic marker for risk stratification in Middle Eastern PTC and that a programmed cell death protein 1 (PD-1)/PD-L1 inhibitor could be a potential therapeutic option for aggressive PTC cancers, such as the tall cell variant, BRAF mutation-positive patients that are unresponsive to standard PTC treatment. Abstract PD-L1 inhibition is a promising therapeutic target whose efficacy has been demonstrated in several cancers. Immunohistochemistry was performed to assess PD-L1 protein expression in PTC. We further conducted in vitro analysis to investigate the role of PD-L1 in regulating BRAFV600E in PTC cell lines. PD-L1 over-expression was noted in 32.4% (473/1458) of cases and significantly associated with aggressive clinico-pathological parameters. Importantly, PD-L1 was found to be an independent poorer prognostic marker. We also found PD-L1 to be significantly associated with BRAF mutation and patients with co-existing PD-L1 over-expression and BRAF mutation had a poor disease-free survival compared to patients with BRAF mutation alone. In vitro analysis showed high expression of PD-L1 in BRAF-mutated PTC cell lines compared to a BRAF wild-type cell line. Inhibition of BRAF using vemurafenib induced PD-L1 expression in BRAF-mutated cell lines without affecting cell growth. Knockdown of PD-L1 in BRAF-mutated cell lines significantly decreased the cell growth and induced apoptosis. Our data suggest that PD-L1 might represent a useful prognostic marker in Middle Eastern PTC and PD-L1 inhibition could be a potential therapeutic option for aggressive PTC cancers, such as the tall cell variant, BRAF mutation-positive patients that are unresponsive to standard treatment.
Collapse
Affiliation(s)
- Abdul K. Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.P.); (S.P.D.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.P.); (S.P.D.)
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.P.); (S.P.D.)
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.P.); (S.P.D.)
| | - Saif S. Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.P.); (S.P.D.)
- Correspondence: ; Tel.: +966-11-205-5167
| |
Collapse
|
291
|
Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer. Int Immunopharmacol 2021; 93:107395. [PMID: 33529916 DOI: 10.1016/j.intimp.2021.107395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023]
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule, that is overexpressed in non-small cell lung cancer (NSCLC) and has been associated with the response to anti-PD-1/PD-L1 immunotherapy. Z-guggulsterone (Z-GS), an active compound extracted from the gumresin of the Commiphora mukul tree, has been shown to have anti-tumor effects in NSCLC in our previous study. However, whether Z-GS could affect PD-L1 expression levels in tumor cells remains unknown. In this study, we verified the inhibitory effects of Z-GS on NSCLC cell viability and cell cycle progression in vitro, and mouse Lewis lung carcinoma (LLC) tumor growth in vivo. Notably, Z-GS treatment increased PD-L1 surface and mRNA expression levels, and gene transcription in NSCLC cells, in a dose- and time-dependent manner. Mechanistic experiments showed that the upregulation of PD-L1 was mediated, partly by farnesoid X receptor inhibition, and partly by the activation of the Akt and Erk1/2 signaling pathways in Z-GS-treated NSCLC cells. In vivo, Z-GS treatment dose-dependently increased PD-L1 expression levels in mouse LLC tumor models. Overall, our findings demonstrated a promoting role for Z-GS in PD-L1 expression in NSCLC and provided mechanistic insights, that may be used for further investigation into synergistic combined therapies.
Collapse
|
292
|
Siozopoulou V, Domen A, Zwaenepoel K, Van Beeck A, Smits E, Pauwels P, Marcq E. Immune Checkpoint Inhibitory Therapy in Sarcomas: Is There Light at the End of the Tunnel? Cancers (Basel) 2021; 13:360. [PMID: 33478080 PMCID: PMC7835811 DOI: 10.3390/cancers13020360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Soft tissue and bone sarcomas are a very heterogeneous group of tumors with many subtypes for which diagnosis and treatment remains a very challenging task. On top of that, the treatment choices are limited, and the prognosis of aggressive sarcomas remains poor. Immune checkpoint inhibitors (ICIs) have drawn a lot of attention last years because of their promising response rates and their durable effects. ICIs are currently widely used in the daily routine practice for the treatment of a different malignancies, such as melanoma, Hodgkin lymphoma, and non-small cell lung carcinoma. Still, ICIs are not included in the standard treatment protocols of the different sarcoma types. However, a plethora of clinical trials investigates the clinical benefit of ICIs in sarcomas. There is clear need to develop predictive biomarkers to determine which sarcoma patients are most likely to benefit from immune checkpoint blockade. This review will focus on (i) the clinical trial results on the use of ICIs in different sarcoma types; and on (ii) possible biomarkers predictive for the effectiveness of these drugs in sarcomas.
Collapse
Affiliation(s)
- Vasiliki Siozopoulou
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium; (K.Z.); (P.P.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| | - Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium; (K.Z.); (P.P.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| | - Annelies Van Beeck
- Department of Orthopedics, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Patrick Pauwels
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium; (K.Z.); (P.P.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| |
Collapse
|
293
|
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14:10. [PMID: 33413496 PMCID: PMC7792099 DOI: 10.1186/s13045-020-01027-5] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 therapies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, we discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
294
|
Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 2021; 40:6748-6758. [PMID: 34663877 PMCID: PMC8677623 DOI: 10.1038/s41388-021-02054-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
Recent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.
Collapse
|
295
|
Genomics and the Immune Landscape of Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:21-36. [PMID: 32767232 DOI: 10.1007/978-3-030-43085-6_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Conventional osteosarcoma (OS) is a high-grade intraosseous malignancy with production of osteoid matrix; however, a deeper dive into the underlying genetics reveals genomic complexity and instability that result in significant tumor heterogeneity. While early karyotyping studies demonstrated aneuploidy with chromosomal complexity and structural rearrangements, further investigations have identified few recurrent genetic alterations with the exception of the tumor suppressors TP53 and RB1. More recent studies utilizing next-generation sequencing (NGS; whole-exome sequencing, WES; and whole-genome sequencing, WGS) reveal a genomic landscape predominantly characterized by somatic copy number alterations rather than point/indel mutations. Despite its genomic complexity, OS has shown variable immune infiltrate and limited immunogenicity. In the current chapter, we review the hallmarks of OS genomics across recent NGS studies and the immune profile of OS including a large institutional cohort of OS patients with recurrent and metastatic disease. Understanding the genomic and immune landscape of OS may provide opportunities for translation in both molecularly targeted therapies and novel immuno-oncology approaches.
Collapse
|
296
|
Zhao Q, Guo J, Zhao Y, Shen J, Kaboli PJ, Xiang S, Du F, Wu X, Li M, Wan L, Li X, Wen Q, Li J, Zou C, Xiao Z. Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics 2020; 12:2155-2171. [PMID: 33337915 DOI: 10.2217/epi-2020-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.
Collapse
Affiliation(s)
- Qijie Zhao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jinan Guo
- The department of urology, The Second Clinical Medical college of Jinan University (Shenzhen people's Hospital), The First Affiliated Hospital of South University of Science & Technology of China, Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Lin Wan
- Department of Hematology & Oncology, The Children's Hospital of Soochow, Jiangsu, PR China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jing Li
- Department of Oncology & Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| |
Collapse
|
297
|
Jayathilake AG, Veale MF, Luwor RB, Nurgali K, Su XQ. Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression. BMC Complement Med Ther 2020; 20:372. [PMID: 33287803 PMCID: PMC7720407 DOI: 10.1186/s12906-020-03160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth. Our previous studies have shown that the free fatty acid extract (FFAE) of krill oil exhibits anti-proliferative and pro-apoptotic properties. This study determines the effects of krill oil extract on the migration of human CRC cells, and its potential role in modulating EGFR signalling pathway and the expression of programmed death ligand 1 (PD-L1). METHODS Human CRC cells, DLD-1 and HT-29 were treated with FFAE of KO at 0.03 and 0.12 μL/100 μL for 8 or 24 h. Cell migration was determined by Boyden chamber migration assay. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), phosphorylated AKT (pAKT), extracellular signal regulated kinase (ERK1/2), phosphorylated ERK1/2 (pERK1/2) as well as PD-L1 were assessed by western blotting and immunohistochemistry. RESULTS The FFAE of krill oil significantly inhibited cell migration compared to ethanol-treated (vehicle control) cells (P < 0.01 to P < 0.001). At the molecular level, krill oil extract reduced the expression of EGFR, pEGFR (P < 0.001 for both) and their downstream signalling, pERK1/2 and pAKT (P < 0.01 to P < 0.001) without altering total ERK 1/2 and AKT levels. In addition, the expression of PD-L1 was reduced by 67 to 72% (P < 0.001) following the treatment with krill oil extract. CONCLUSION This study has demonstrated that krill oil may be a potential therapeutic/adjunctive agent for CRC attributed to its anti-migratory effects.. The potential anti-cancer properties of krill oil are likely to be associated with the downregulation of EGFR, pEGFR and their downstream pERK/ERK1/2 and pAKT/AKT signalling pathways along with the downregulation of PD-L1.
Collapse
Affiliation(s)
- Abilasha G. Jayathilake
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Margaret F. Veale
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, Australia
| | - Xiao Q. Su
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| |
Collapse
|
298
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|
299
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
300
|
Sun SY. Searching for the real function of mTOR signaling in the regulation of PD-L1 expression. Transl Oncol 2020; 13:100847. [PMID: 32854033 PMCID: PMC7451686 DOI: 10.1016/j.tranon.2020.100847] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR), via forming two important complexes: mTOR complex 1 (mTORC1) and complex 2 (mTORC2), plays an important role in the regulation of immunity in addition to exerting many other biological funcions. Beyond its regulatory effects on immune cells, the mTOR axis also regulates the expression of programmed death-ligand 1 (PD-L1) in cancer cells; accordingly, inhibition of mTOR alters PD-L1 levels in different cancer cell types. However, the currently published studies on mTOR inhibition-induced PD-L1 alteration have generated conflicting results. This review will focus on summarizing current findings in this regard and discussing possible reasons for the discrepancies and their potential implications for PD-L1 modulation in cancer therapy.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University of School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America.
| |
Collapse
|