251
|
Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D. Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31:50-7. [PMID: 20966403 PMCID: PMC3034636 DOI: 10.1161/atvbaha.110.210971] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 10/08/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Atherosclerosis encompasses a conspicuously maladaptive inflammatory response that might involve innate immunity. Here, we compared the role of Toll-like receptor 4 (TLR4) with that of TLR2 in intimal foam cell accumulation and inflammation in apolipoprotein E (ApoE) knockout (KO) mice in vivo and determined potential mechanisms of upstream activation and downstream action. METHODS AND RESULTS We measured lipid accumulation and gene expression in the lesion-prone lesser curvature of the aortic arch. TLR4 deficiency reduced intimal lipid by ≈75% in ApoE KO mice, despite unaltered total serum cholesterol and triglyceride levels, whereas TLR2 deficiency reduced it by ≈45%. TLR4 deficiency prevented the increased interleukin-1α (IL-1α) and monocyte chemoattractant protein-1 mRNA levels seen within lesional tissue, and it also lowered serum IL-1α levels. Smooth muscle cells (SMC) were present within the intima of the lesser curvature of the aortic arch at this early lesion stage, and they enveloped and permeated nascent lesions, which consisted of focal clusters of foam cells. Cholesterol enrichment of SMC in vitro stimulated acyl-coenzyme A:cholesterol acyltransferase-1 mRNA expression, cytoplasmic cholesterol ester accumulation, and monocyte chemoattractant protein-1 mRNA and protein expression in a TLR4-dependent manner. CONCLUSIONS TLR4 contributes to early-stage intimal foam cell accumulation at lesion-prone aortic sites in ApoE KO mice, as does TLR2 to a lesser extent. Intimal SMC surround and penetrate early lesions, where TLR4 signaling within them may influence lesion progression.
Collapse
Affiliation(s)
- Mie Higashimori
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Jeffrey B. Tatro
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Kathryn J. Moore
- Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology Program, New York University School of Medicine, New York, NY
| | | | - Jonas B. Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Debbie Beasley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| |
Collapse
|
252
|
Tanaskovic I, Lackovic V, Gluvic Z, Lackovic M, Nesic V, Stankovic V, Labudovic-Borovic M, Radovic S, Asanin B. The influence of extracellular matrix composition on the pathogenesis of coronary atherosclerosis. ARCH BIOL SCI 2011; 63:333-343. [DOI: 10.2298/abs1102333t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The modern concept of the development of atherosclerosis implies that the
underlying pathogenesis of this disease is vascular remodeling as a response
of the vessel wall to hypertension associated with hyperlipidemia and
subsequent inflammation. However, even though this disease has been
investigated for decades, both from a basic and clinical research aspect,
there are still many doubts as to what the initial phase of the disease is.
In contemporary literature there are an increasing number of papers that
stress the importance of the extracellular matrix (ECM) of the blood vessels
connective tissue, particularly proteoglycans, in the formation of early
atherosclerotic lesions of human coronary arteries.
Collapse
Affiliation(s)
- Irena Tanaskovic
- Institute of Histology and Embryology, Medical Faculty Kragujevac, Kragujevac
| | - Vesna Lackovic
- Institute of Histology and Embryology, Medical Faculty Belgrade, Belgrade
| | - Z. Gluvic
- Clinical Hospital Center Zemun, Belgrade
| | | | - Vesna Nesic
- Institute of Histology and Embryology, Medical Faculty Kragujevac, Kragujevac
| | - Vesna Stankovic
- Institute of Pathology, Medical Faculty Kragujevac, Kragujevac
| | | | - S. Radovic
- Institute of Histology and Embryology, Medical Faculty Podgorica, Podgorica, Montenegro
| | - B. Asanin
- Clinic of Neurosurgery, Clinical-hospital centre of Montenegro, Podgorica, Montenegro
| |
Collapse
|
253
|
Mangat R, Su JW, Lambert JE, Clandinin MT, Wang Y, Uwiera RR, Forbes JM, Vine DF, Cooper ME, Mamo JC, Proctor SD. Increased risk of cardiovascular disease in Type 1 diabetes: arterial exposure to remnant lipoproteins leads to enhanced deposition of cholesterol and binding to glycated extracellular matrix proteoglycans. Diabet Med 2011; 28:61-72. [PMID: 21166847 DOI: 10.1111/j.1464-5491.2010.03138.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS To determine fasting and postprandial metabolism of apolipoprotein B48 (apoB48) remnant lipoproteins in subjects with Type 1 diabetes and the relationship to progressive cardiovascular disease, and to investigate the impact of remnant lipoprotein cholesterol accumulation associated with arterial wall biglycan using a rodent model of Type 1 diabetes. METHODS Normolipidaemic subjects (n = 9) with long-standing Type 1 diabetes (and advanced cardiovascular disease) and seven healthy control subjects were studied. Fasting and postprandial apoB48 concentration was determined following a sequential meal challenge. A rodent model of streptozotocin-induced diabetes was used to investigate the ex vivo retention of fluorescent-conjugated remnants. Binding of remnant lipoproteins to human recombinant biglycan was assessed in vitro. RESULTS A significantly higher concentration of fasting plasma apoB48 remnants was observed in patients with Type 1 diabetes compared with control subjects. Patients with Type 1 diabetes exhibited a greater total plasma apoB48 area under the curve (AUC) and an increased incremental AUC following a second sequential meal compared with control subjects. The arterial retention of remnants ex vivo and associated cholesterol was increased sevenfold in Type 1 diabetes rats relative to controls. Remnants were shown to bind with significant affinity to human biglycan in vitro and a further 2.3-fold increased binding capacity was observed with glycated biglycan. Remnants were shown to colocalize with both arterial biglycan and glycated matrix proteins in the Type 1 diabetes rodent model. CONCLUSION Impaired metabolism of remnant lipoproteins associated with enhanced binding to proteoglycans appears to contribute to the arterial cholesterol deposition in Type 1 diabetes. Our findings support the hypothesis that impaired remnant metabolism may contribute to accelerated progression of atherosclerosis in the hyperglycaemic and insulin-deficient state.
Collapse
Affiliation(s)
- R Mangat
- Alberta Institute for Human Nutrition, Alberta Diabetes Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol (Lausanne) 2011; 2:75. [PMID: 22654825 PMCID: PMC3356063 DOI: 10.3389/fendo.2011.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 01/06/2023] Open
Abstract
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, "regulate" the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway's involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms.
Collapse
Affiliation(s)
- John B. Allard
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
- *Correspondence: Cunming Duan, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109, USA. e-mail:
| |
Collapse
|
255
|
Yang SNY, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ. Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. J Diabetes 2010; 2:233-42. [PMID: 20923499 DOI: 10.1111/j.1753-0407.2010.00089.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is accelerated in the setting of diabetes, but the factors driving this phenomenon remain elusive. Hyperglycemia leads to elevated levels of transforming growth factor (TGF)-β and TGF-β has been implicated as a factor in atherosclerosis. Given the established association between hyperglycemia and elevated TGF-β, it is plausible that elevated TGF-β levels in diabetes play a pathogenic role in the development of accelerated atherosclerosis. TGF-β is a potent regulator of extracellular matrix synthesis, including many actions on proteoglycan synthesis that lead to increased binding to low-density lipoprotein and therefore potentially increased lipid retention in the vessel wall and accelerated atherosclerosis. TGF-β signals through the canonical TGF-β receptor I-mediated phosphorylation of Smad transcription factors and TGF-β signaling is also known to involve, positively and negatively, interactions with the mitogen-activated protein kinase pathways. The focus of the present review is on the effects of TGF-β on proteoglycan synthesis in vascular smooth muscle and particularly the signaling pathways through which TGF-β exerts its effects, because those pathways may be therapeutic targets for the prevention of pathological modifications in the proteoglycan component of the vessel wall in the vascular diseases of diabetes.
Collapse
Affiliation(s)
- Sundy N Y Yang
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Monash University School of Medicine (Alfred Hospital), Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
256
|
Getachew R, Ballinger ML, Burch ML, Reid JJ, Khachigian LM, Wight TN, Little PJ, Osman N. PDGF beta-receptor kinase activity and ERK1/2 mediate glycosaminoglycan elongation on biglycan and increases binding to LDL. Endocrinology 2010; 151:4356-67. [PMID: 20610572 DOI: 10.1210/en.2010-0027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The initiation of atherosclerosis involves the subendothelial retention of lipoproteins by proteoglycans (PGs). Structural characteristics of glycosaminoglycan (GAG) chains on PGs influence lipoprotein binding and are altered adversely by platelet-derived growth factor (PDGF). The signaling pathway for PDGF-mediated GAG elongation via the PDGF receptor (PDGFR) was investigated. In human vascular smooth muscle cells, PDGF significantly increased (35)S-sulfate incorporation into PGs and GAG chain size. PGs from PDGF-stimulated cells showed increased binding low-density lipoprotein (P < 0.001) in gel mobility shift assays. Knockdown of PDGFRbeta using small interfering RNA demonstrated that PDGF mediated changes in PGs via PDGFRbeta. GAG synthesis and hyperelongation was blocked by inhibition of receptor tyrosine kinase autophosphorylation site Tyr857 activity using Ki11502 or imatinib. Downstream signaling to GAG hyperelongation was mediated through ERK MAPK and not phosphatidylinositol-3 kinase or phospholipase Cgamma. In high-fat-fed apolipoprotein E(-/-) mice, inhibition of PDGFRbeta activity by imatinib reduced aortic total lipid staining area by 35% (P < 0.05). Inhibition of PDGFRbeta tyrosine kinase activity leads to inhibition of GAG synthesis on vascular PGs and aortic lipid area in vivo. PDGFRbeta and its signaling pathways are potential targets for novel therapeutic agents to prevent the earliest stages atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Benzamides
- Biglycan
- Cells, Cultured
- Dietary Fats/administration & dosage
- Extracellular Matrix Proteins/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glycosaminoglycans/metabolism
- Humans
- Imatinib Mesylate
- Lipids/analysis
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/pharmacology
- Protein Binding/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proteoglycans/metabolism
- Pyrimidines/pharmacology
- RNA Interference
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Robel Getachew
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, St. Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Hageman J, Herrema H, Groen AK, Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1519-28. [PMID: 20631352 DOI: 10.1161/atvbaha.109.197897] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti- and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jurre Hageman
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 EZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
258
|
Kennett EC, Rees MD, Malle E, Hammer A, Whitelock JM, Davies MJ. Peroxynitrite modifies the structure and function of the extracellular matrix proteoglycan perlecan by reaction with both the protein core and the heparan sulfate chains. Free Radic Biol Med 2010; 49:282-93. [PMID: 20416372 PMCID: PMC2892749 DOI: 10.1016/j.freeradbiomed.2010.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/21/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Abstract
The heparan sulfate (HS) proteoglycan perlecan is a major component of basement membranes, plays a key role in extracellular matrix (ECM) structure, interacts with growth factors and adhesion molecules, and regulates the adhesion, differentiation and proliferation of vascular cells. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials within lesions, with the majority of protein damage present on ECM, rather than cell, proteins. Weakening of ECM structure plays a key role in lesion rupture, the major cause of heart attacks and strokes. In this study peroxynitrite, a putative lesion oxidant, is shown to damage perlecan structurally and functionally. Exposure of human perlecan to peroxynitrite decreases recognition by antibodies raised against both the core protein and heparan sulfate chains; dose-dependent formation of 3-nitrotyrosine was also detected. These effects were modulated by bicarbonate and reaction pH. Oxidant exposure resulted in aggregate formation, consistent with oxidative protein crosslinking. Peroxynitrite treatment modified functional properties of perlecan that are dependent on both the protein core (decreased binding of human coronary artery endothelial cells), and the HS chains (diminished fibroblast growth factor-2 (FGF-2) receptor-mediated proliferation of Baf-32 cells). The latter is consistent with a decrease in FGF-2 binding to the HS chains of modified perlecan. Immunofluorescence of advanced human atherosclerotic lesions provided evidence for the presence of perlecan and extensive formation of 3-nitrotyrosine epitopes within the intimal region; these materials showing marked co-localization. These data indicate that peroxynitrite induces major structural and functional changes to perlecan and that damage to this material occurs within human atherosclerotic lesions.
Collapse
Key Words
- abts, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- donoo, decomposed peroxynitrite
- ecm, extracellular matrix
- fgf-2, fibroblast growth factor 2
- hcaec, human coronary artery endothelial cells
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- mtt, 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan
- 3-nitrotyr, 3-nitrotyrosine
- onoo-, peroxynitrous acid anion
- onooh, peroxynitrous acid
- tca, trichloroacetic acid
- atherosclerosis
- extracellular matrix
- perlecan
- peroxynitrite
- heparan sulfate proteoglycans
- plaque rupture
- cell adhesion
- cell proliferation
- inflammation
Collapse
Affiliation(s)
- Eleanor C. Kennett
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - Martin D. Rees
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - John M. Whitelock
- The Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Michael J. Davies
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
- Faculty of Medicine, University of Sydney, NSW 2006, Australia
- Corresponding author. The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia. Fax: + 61 2 9565 5584.
| |
Collapse
|
259
|
Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of Vulnerable/Unstable Plaque. Arterioscler Thromb Vasc Biol 2010; 30:1282-92. [DOI: 10.1161/atvbaha.108.179739] [Citation(s) in RCA: 859] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today’s concept of vulnerable plaque has evolved primarily from the early pioneering work uncovering the pivotal role of plaque rupture and coronary thrombosis as the major cause of acute myocardial infarction and sudden cardiac death. Since the first historical description of plaque rupture in 1844, several key studies by leading researchers and clinicians have lead to the current accepted views on lesion instability. Important to the complex paradigm of plaque destabilization and thrombosis are many discoveries beginning with the earliest descriptions of advanced plaques, reminiscent of abscesses encapsulated by fibrous tissue capable of rupture. It was not until the late 1980s that studies of remodeling provided keen insight into the growth of advanced plaques, beyond the simple accumulation of lipid. The emphasis in the next decade, however, was on a focused shift toward the mechanisms of lesion vulnerability based on the contribution of tissue proteolysis by matrix metalloproteinases as an essential factor responsible for thinning and rupture of the fibrous cap. In an attempt to unify the understanding of what constitutes a vulnerable plaque, morphological studies, mostly from autopsy, suggest the importance of necrotic core size, inflammation, and fibrous cap thickness. Definitive proof of the vulnerable plaque, however, remains elusive because animal or human data supporting a cause-and-effect relationship are lacking. Although emerging imagining technologies involving optical coherence tomography, high-resolution MRI, molecular biomarkers, and other techniques have far surpassed the limits of the early days of angiography, advancing the field will require establishing relevant translational animal models that produce vulnerable plaques at risk for rupture and further testing of these modalities in large prospective clinical trials.
Collapse
Affiliation(s)
- Aloke V. Finn
- From CVPath Institute, Inc, Gaithersburg, Md (F.D.K., M.N., R.V.); Department of Internal Medicine, Emory University School of Medicine, Atlanta, Ga (A.V.F.); School of Medicine, University of California, Irvine (J.N.)
| | - Masataka Nakano
- From CVPath Institute, Inc, Gaithersburg, Md (F.D.K., M.N., R.V.); Department of Internal Medicine, Emory University School of Medicine, Atlanta, Ga (A.V.F.); School of Medicine, University of California, Irvine (J.N.)
| | - Jagat Narula
- From CVPath Institute, Inc, Gaithersburg, Md (F.D.K., M.N., R.V.); Department of Internal Medicine, Emory University School of Medicine, Atlanta, Ga (A.V.F.); School of Medicine, University of California, Irvine (J.N.)
| | - Frank D. Kolodgie
- From CVPath Institute, Inc, Gaithersburg, Md (F.D.K., M.N., R.V.); Department of Internal Medicine, Emory University School of Medicine, Atlanta, Ga (A.V.F.); School of Medicine, University of California, Irvine (J.N.)
| | - Renu Virmani
- From CVPath Institute, Inc, Gaithersburg, Md (F.D.K., M.N., R.V.); Department of Internal Medicine, Emory University School of Medicine, Atlanta, Ga (A.V.F.); School of Medicine, University of California, Irvine (J.N.)
| |
Collapse
|
260
|
Neufeld EB, Yu ZX, Springer D, Yu Q, Balaban RS. The renal artery ostium flow diverter: structure and potential role in atherosclerosis. Atherosclerosis 2010; 211:153-8. [PMID: 20149375 PMCID: PMC2892638 DOI: 10.1016/j.atherosclerosis.2010.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 02/02/2023]
Abstract
Initiation of renal atherosclerosis occurs primarily at the caudal region of the renal artery ostium. To date, no mechanism for initiation of atherosclerosis at this site has been substantiated. Herein, we identify a renal artery flow diverter on the caudal wall of the renal artery ostium that directs flow into the renal artery and selectively retains LDL, an initial step in atherosclerosis. High-resolution ultrasound revealed the generation of flow eddies by the caudal diverter in vivo, consistent with a role in directing aortic flow to the renal artery. Two-photon excitation en face microscopy of the diverter revealed a substantial reduction in the elastic lamina exposing potential retention sites for LDL. Fluorescent LDL was selectively retained by the renal artery diverter, consistent with its molecular structure. We propose that the rigid macromolecular structure of the renal artery ostium diverter is required for its vascular function and contributes to the initiation of renal atherosclerosis by the retention of LDL.
Collapse
Affiliation(s)
- Edward B Neufeld
- Laboratory of Cardiac Energetics, NHLBI, NIH, Bethesda, MD 20892, United States.
| | | | | | | | | |
Collapse
|
261
|
Burch ML, Ballinger ML, Yang SNY, Getachew R, Itman C, Loveland K, Osman N, Little PJ. Thrombin stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by protease-activated receptor-1 transactivation of the transforming growth factor beta type I receptor. J Biol Chem 2010; 285:26798-26805. [PMID: 20571025 DOI: 10.1074/jbc.m109.092767] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors modify the structure of the glycosaminoglycan (GAG) chains on biglycan leading to enhanced LDL binding. G-protein receptor-coupled agonists such as thrombin, signal changes the structure of proteoglycans produced by vascular smooth muscle cells (VSMCs). One component of classical G-protein-coupled receptor (GPCR) signaling invokes transactivation of protein tyrosine kinase receptors such as the epidermal growth factor receptor. Serine/threonine receptor growth factors such as transforming growth factor-(TGF)-beta are potent activators of proteoglycan synthesis. We have used the model of proteoglycan synthesis to demonstrate that the signaling paradigm of GPCR signaling can be extended to include the transactivation of serine/threonine receptor, specifically the TGF-beta type I receptor (TbetaRI) also known as activin-like kinase (ALK) V. Thrombin stimulated elongation of GAG chains and increased proteoglycan core protein expression and these responses were blocked by the TbetaRI antagonist, SB431542 and TbetaRI siRNA knockdown, as well as several protease-activated receptor (PAR)-1 antagonists. The canonical downstream response to TGF-beta is increased C-terminal phosphorylation of the transcription factor Smad2 generating phospho-Smad2C (phosphorylation of Smad2 C-terminal region). Thrombin stimulated increased phospho-Smad2C levels, and the response was blocked by SB431542 and JNJ5177094. The proteolytically inactive thrombin mimetic thrombin-receptor activating peptide also stimulated an increase in cytosolic phospho-Smad2C. Signaling pathways for growth factor regulated proteoglycan synthesis represent therapeutic targets for the prevention of atherosclerosis, but the novel finding of a GPCR-mediated transactivation of a serine/threonine growth factor receptor almost certainly has implications well beyond the synthesis of proteoglycans.
Collapse
Affiliation(s)
- Micah L Burch
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia; Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Hospital, Monash University, Melbourne, 3004 Victoria, Australia
| | - Mandy L Ballinger
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia
| | - Sundy N Y Yang
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia
| | - Robel Getachew
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia
| | - Catherine Itman
- Departments of Biochemistry & Molecular Biology and Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kate Loveland
- Departments of Biochemistry & Molecular Biology and Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Narin Osman
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia; Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Hospital, Monash University, Melbourne, 3004 Victoria, Australia
| | - Peter J Little
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia; Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Hospital, Monash University, Melbourne, 3004 Victoria, Australia.
| |
Collapse
|
262
|
Burch ML, Yang SNY, Ballinger ML, Getachew R, Osman N, Little PJ. TGF-beta stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad2. Cell Mol Life Sci 2010; 67:2077-90. [PMID: 20213272 PMCID: PMC11115902 DOI: 10.1007/s00018-010-0315-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/06/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Transforming growth factor (TGF)-beta treatment of human vascular smooth-muscle cells increases the expression of biglycan and causes marked elongation of its glycosaminoglycan (GAG) chains. We investigated the role of MAP kinases and Smad transcription factors in this response. TGF-beta-stimulated phosphorylation of p38, ERK, and JNK as well as Smad2 at both its carboxy terminal (phospho-Smad2C) and in the linker region (phospho-Smad2L). Pharmacological inhibition of ERK and p38 blocked TGF-beta-mediated GAG elongation and expression of biglycan whereas inhibition of JNK had no effect. Inhibition of ERK and p38 but not JNK attenuated the effect of TGF-beta to increase phospho-Smad2L. High levels of phospho-Smad2L were detected in a nuclear fraction of TGF-beta treated cells. Thus, MAP kinase signaling through ERK and p38 and via phosphorylation of the linker region of Smad2 mediates the effects of TGF-beta on biglycan synthesis in vascular smooth-muscle cells.
Collapse
Affiliation(s)
- Micah L. Burch
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004 Australia
- Departments of Medicine and Immunology, Monash University School of Medicine (Alfred Hospital), Prahran, VIC 3004 Australia
| | - Sundy N. Y. Yang
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004 Australia
| | - Mandy L. Ballinger
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004 Australia
- Present Address: Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002 Australia
| | - Robel Getachew
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004 Australia
| | - Narin Osman
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004 Australia
- Departments of Medicine and Immunology, Monash University School of Medicine (Alfred Hospital), Prahran, VIC 3004 Australia
| | - Peter J. Little
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004 Australia
- Departments of Medicine and Immunology, Monash University School of Medicine (Alfred Hospital), Prahran, VIC 3004 Australia
- Diabetes and Cell Biology Laboratory, Baker IDI Heart and Diabetes Institute, St. Kilda Rd Central, PO Box 6492, Melbourne, VIC 8008 Australia
| |
Collapse
|
263
|
Cardoso LEM, Little PJ, Ballinger ML, Chan CK, Braun KR, Potter-Perigo S, Bornfeldt KE, Kinsella MG, Wight TN. Platelet-derived growth factor differentially regulates the expression and post-translational modification of versican by arterial smooth muscle cells through distinct protein kinase C and extracellular signal-regulated kinase pathways. J Biol Chem 2010; 285:6987-95. [PMID: 20042606 PMCID: PMC2844148 DOI: 10.1074/jbc.m109.088674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The synthesis of proteoglycans involves steps that regulate both protein and glycosaminoglycan (GAG) synthesis, but it is unclear whether these two pathways are regulated by the same or different signaling pathways. We therefore investigated signaling pathways involved in platelet-derived growth factor (PDGF)-mediated increases in versican core protein and GAG chain synthesis in arterial smooth muscle cells (ASMCs). PDGF treatment of ASMCs resulted in increased versican core protein synthesis and elongation of GAG chains attached to the versican core protein. The effects of PDGF on versican mRNA were blocked by inhibiting either protein kinase C (PKC) or the ERK pathways, whereas the GAG elongation effect of PDGF was blocked by PKC inhibition but not by ERK inhibition. Interestingly, blocking protein synthesis in the presence of cycloheximide abolished the PDGF effect, but not in the presence of xyloside, indicating that GAG synthesis that results from PKC activation is independent from de novo protein synthesis. PDGF also stimulated an increase in the chondroitin-6-sulfate to chondroitin-4-sulfate ratio of GAG chains on versican, and this effect was blocked by PKC inhibitors. These data show that PKC activation is sufficient to cause GAG chain elongation, but both PKC and ERK activation are required for versican mRNA core protein expression. These results indicate that different signaling pathways control different aspects of PDGF-stimulated versican biosynthesis by ASMCs. These data will be useful in designing strategies to interfere with the synthesis of this proteoglycan in various disease states.
Collapse
Affiliation(s)
- Luiz E M Cardoso
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Tavora F, Cresswell N, Li L, Ripple M, Burke A. Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology 2010; 42:15-22. [PMID: 20025475 DOI: 10.3109/00313020903434348] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Intraplaque haemorrhage has been shown to be important in necrotic core enlargement. Immunolocalisation of fibrin within progressive stages of plaque progression has not been extensively studied. METHODS Histological sections (n = 74) of human coronary arteries were stained immunohistochemically for fibrin II, red blood cell antigen (glycophorin A), and CD31. Plaques were chosen to represent a range of lesions [6 adaptive intimal thickening, AIT (AHA grade I); 4 intimal xanthomas (AHA grade II), 19 pathologic intimal thickening, PIT (AHA grade III, or pre-atheroma); 34 fibroatheromas, FA (AHA grade IV and V); and 11 thin cap fibroatheromas (TCFA, AHA grade IV)]. RESULTS Fibrin was generally absent in the intima of AIT and PIT, with moderate staining in cores of early FA (2.6 +/- 0.3). All late FA and TCFA demonstrated intracore fibrin, with mean scores of 2.9 +/- 0.3 and 3.0 +/- 0.3, respectively. Intimal vasa vasorum counts increased with intimal fibrin score (p < 0.0001); in 68% of cores with fibrin staining, there was minimal or no evidence of red cell breakdown. CONCLUSIONS Fibrin in necrotic cores is present proportional to intraplaque vasa vasorum and before red cells, suggesting leakage of vessels before frank intraplaque haemorrhage. Fibrin may play a role in the bridge between pre-atheroma and atheroma.
Collapse
Affiliation(s)
- Fabio Tavora
- Armed Forces Institute of Pathology, Washington, DC, USA
| | | | | | | | | |
Collapse
|
265
|
Camejo G. Lysophospholipids: effectors mediating the contribution of dyslipidemia to calcification associated with atherosclerosis. Atherosclerosis 2010; 211:36-7. [PMID: 20197191 DOI: 10.1016/j.atherosclerosis.2010.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Germán Camejo
- AstraZeneca Cardiovascular Discovery, Mölndal S-431 83, Sweden.
| |
Collapse
|
266
|
Beilvert A, Cormode DP, Chaubet F, Briley-Saebo KC, Mani V, Mulder WJM, Vucic E, Toussaint JF, Letourneur D, Fayad ZA. Tyrosine polyethylene glycol (PEG)-micelle magnetic resonance contrast agent for the detection of lipid rich areas in atherosclerotic plaque. Magn Reson Med 2010; 62:1195-201. [PMID: 19780153 DOI: 10.1002/mrm.22103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vulnerable or high-risk atherosclerotic plaques often exhibit large lipid cores and thin fibrous caps that can lead to deadly vascular events when they rupture. In this study, polyethylene glycol (PEG)-micelles that incorporate a gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) amphiphile were used as an MR contrast agent. In an approach inspired by lipoproteins, the micelles were functionalized with tyrosine residues, an aromatic, lipophilic amino acid, to reach the lipid-rich areas of atherosclerotic plaque in a highly efficient manner. These micelles were applied to apolipoprotein E(-/-) (ApoE(-/-)) mice as a model of atherosclerosis. The abdominal aortas of the animals were imaged using T(1)-weighted (T(1)W) high-resolution MRI at 9.4T before and up to 48 h after the administration of the micelles. PEG-micelles modified with 15% tyrosine residues yielded a significant enhancement of the abdominal aortic wall at 6 and 24 h postinjection (pi) as compared to unmodified micelles. Fluorescence microscopy on histological sections of the abdominal aorta showed a correlation between lipid-rich areas and the distribution of the functionalized contrast agent in plaque. Using a simple approach, we demonstrated that lipid-rich areas in atherosclerotic plaque of ApoE(-/-) mice can be detected by MRI using Gd-DTPA micelles.
Collapse
Affiliation(s)
- Anne Beilvert
- INSERM U698, Cardiovascular Bioengineering, CHU X. Bichat, University Paris 7, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Characterisation of Ki11502 as a potent inhibitor of PDGF β receptor-mediated proteoglycan synthesis in vascular smooth muscle cells. Eur J Pharmacol 2010; 626:186-92. [DOI: 10.1016/j.ejphar.2009.09.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 02/02/2023]
|
268
|
Milei J, Grana DR, Navari C, Azzato F, Guerri-Guttenberg RA, Ambrosio G. Coronary Intimal Thickening in Newborn Babies and ≤1-Year-Old Infants. Angiology 2009; 61:350-6. [DOI: 10.1177/0003319709352487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We performed a morphological characterization of intimal thickenings in coronary arteries in the very early stages of life to obtain insights into initial coronary atherogenesis. We examined specimens from 67 infants who had died of noncardiac causes within their first year of life. Serially cut sections were stained with hematoxylin-eosin, Azan, Alcian blue, acetic orceine, and immunotypified for CD68, CD34, and α-smooth muscle (SM) actin. Substantial changes were detected in about 1 of 3 participants. Alterations ranged from focal areas with mild myointimal thickening to diffuse moderate thickening. In those lesions, smooth muscle cells (SMCs) showed loss of polarity, infiltrating the subendothelium, mostly with rupture of the internal elastic lamina and without neoangiogenesis. Morphometrically, in musculoelastic intimal thickenings, neointimal thickness averaged 58.3 ± 17.8 µm, affecting 46% of the internal elastic membrane perimeter; lumen stenosis averaged 13.7% ± 5.0%. These lesions can be present very early in life and SMCs seem to play an essential role.
Collapse
Affiliation(s)
- José Milei
- Instituto de Investigaciones Cardiológicas (ININCA), University of Buenos Aires - Conicet, Buenos Aires, Argentina,
| | - Daniel R. Grana
- Instituto de Investigaciones Cardiológicas (ININCA), University of Buenos Aires - Conicet, Buenos Aires, Argentina
| | - Carlos Navari
- Instituto de Investigaciones Cardiológicas (ININCA), University of Buenos Aires - Conicet, Buenos Aires, Argentina
| | - Francisco Azzato
- Instituto de Investigaciones Cardiológicas (ININCA), University of Buenos Aires - Conicet, Buenos Aires, Argentina
| | - Roberto A. Guerri-Guttenberg
- Instituto de Investigaciones Cardiológicas (ININCA), University of Buenos Aires - Conicet, Buenos Aires, Argentina
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, Perugia, Italy
| |
Collapse
|
269
|
Tavora F, Cresswell N, Li L, Ripple M, Fowler D, Burke A. Sudden coronary death caused by pathologic intimal thickening without atheromatous plaque formation. Cardiovasc Pathol 2009; 20:51-7. [PMID: 19913444 DOI: 10.1016/j.carpath.2009.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/11/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Atherosclerotic plaques progress from early lesions with little free cholesterol and lipid to late fibroatheromas with necrotic cores that may rupture. The frequency of severe coronary atherosclerosis without core formation in any artery in sudden coronary death is not known. METHODS We studied 314 hearts from 253 men and 61 women who died suddenly from severe coronary stenosis (≥ 1 epicardial artery with ≥ 75% luminal area narrowing) and with no other cause of death. If no section demonstrated any necrotic core, the designation was nonatheromatous atherosclerosis; if there was ≥ 1 necrotic core, the designation was atheromatous atherosclerosis. Plaques were scored for the presence of calcification, intimal inflammation, and neovasculature on a 5-point scale. Plaque burden was estimated semiquantitatively. RESULTS In 22 men (9%) and 14 women (23%), there were no necrotic cores in any plaque (nonatheromatous atherosclerosis). Fourteen of these 36 nonatheromatous atherosclerosis cases had focal acute thrombus due to erosion (39%). Of the remaining 278 cases (atheromatous atherosclerosis), acute erosions were present in 25 (9%; P<.0001). Sudden death due to nonatheromatous atherosclerosis occurred more frequently in women (P<.001), in Blacks (20%; P=.003), and at a younger age (44± 12 years) than atheromatous atherosclerosis (52 ± 12 years; P=.0003). On multivariate analysis, nonatheromatous atherosclerosis was associated with younger age (P=.001), female gender (P=.004), and Black race (P=.006). CONCLUSIONS Nonatheromatous atherosclerosis constitutes slightly >10% of sudden coronary deaths and is more frequent in young Black women. Nonatheromatous atherosclerosis is a relatively infrequent pathway for coronary plaque progression, leading to severe disease and sudden death that may involve plaque erosion.
Collapse
Affiliation(s)
- Fabio Tavora
- Armed Forces Institute of Pathology, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
270
|
Tavora F, Li L, Ripple M, Fowler D, Burke A. Morphologic characteristic of coronary artery disease, with emphasis on thromboses, in patients younger than 40 years of age. PATHOLOGY RESEARCH INTERNATIONAL 2009; 2010:628247. [PMID: 21151510 PMCID: PMC2989747 DOI: 10.4061/2010/628247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/18/2009] [Indexed: 11/30/2022]
Abstract
There are few pathologic descriptions of fatal coronary artery disease in the young. The morphologic characteristics of sudden coronary deaths in 47 hearts from patients younger than 40 years were studied. Numbers of plaques with necrotic cores were quantitated in each heart. Compared to 194 sudden coronary deaths >40 years, heart weight was lower, acute plaque erosions more frequent, and extent of disease less in the ≤40 years group. Plaque burden was less in hearts with erosions, and healed infarcts more common in hearts with stable plaque. The numbers of fibroatheromas increased with age until the 6th decade (P < .0001) as well as the proportion of total plaques that were atheromatous. Plaques in younger patients have fewer lipid-rich cores. Most thrombi show areas of organization, with layering frequent in erosions, suggesting a possible method of plaque enlargement in the absence of necrotic core formation.
Collapse
Affiliation(s)
- Fabio Tavora
- Deparment of Cardiovascular Pathology, Armed Forces Institute of Pathology, 6825 16th Street NW, Building 54, Washington, DC 20306, USA
| | | | | | | | | |
Collapse
|
271
|
Abstract
PURPOSE OF REVIEW The varied behaviour of macrophages and foam cells during atherosclerosis and its clinical sequelae prompt the question whether all these activities can be the property of a single cell population. RECENT FINDINGS Subsets of monocytes with distinct patterns of surface markers and behaviours during inflammation have recently been characterized and shown to have complementary roles during progression of atherosclerosis. A variety of macrophage phenotypes derived from these monocyte subsets in response to mediators of innate and acquired immunity have also been found in plaques. Based on functional properties and genomic signatures, they may have different impacts on facets of plaque development, including fibrous cap and lipid core formation. SUMMARY Monocyte and macrophage phenotypic diversity is important in atherogenesis. More work is needed to define consistent marker sets for the different foam cell phenotypes in experimental animals and humans. Cell tracking studies are needed to establish their relationship with monocyte subtypes. In addition, genetic and pharmacological manipulation of phenotypes will be useful to define their functions and exploit the resulting therapeutic potential.
Collapse
Affiliation(s)
- Jason L Johnson
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | |
Collapse
|
272
|
Oörni K, Kovanen PT. Lipoprotein modification by secretory phospholipase A(2) enzymes contributes to the initiation and progression of atherosclerosis. Curr Opin Lipidol 2009; 20:421-7. [PMID: 19593123 DOI: 10.1097/mol.0b013e32832fa14d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Secretory phospholipase A2s (sPLA2s) are considered to be important enzymes in the initiation and progression of atherosclerosis. In this review, we discuss the various mechanisms by which the direct action of the sPLA2s on LDL particles in the arterial intima may contribute to atherogenesis. RECENT FINDINGS A wealth of evidence, both in vitro and in vivo, supports a role for the sPLA2s in atherogenesis. Very recently, systemic inhibition of sPLA2s was found to reduce measures of arterial inflammation. The mechanisms behind this inhibition, however, are largely unknown. Here, we discuss the consequences of sPLA2 action on LDL in the arterial intima and address the recent findings regarding the effects of the lipolytic products of sPLA2, lysophosphatidylcholine, and fatty acids on intimal cells. LDL modified by sPLA2 can accumulate in the arterial intima both extracellularly and intracellularly. Importantly, the lipolytic products promote atherosclerosis by monocyte/macrophage recruitment, by enhancing the production of proretentive molecules by vascular smooth muscle cells, and by inducing cell death. SUMMARY Recent findings on sPLA2s support the idea that the enzymes contribute to human atherogenesis not only as initiating agents but also in maintaining plaque inflammation.
Collapse
|
273
|
Ballinger ML, Osman N, Hashimura K, de Haan JB, Jandeleit-Dahm K, Allen T, Tannock LR, Rutledge JC, Little PJ. Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo. J Cell Mol Med 2009; 14:1408-18. [PMID: 19754668 PMCID: PMC3033015 DOI: 10.1111/j.1582-4934.2009.00902.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ‘response to retention’ hypothesis of atherogenesis proposes that proteoglycans bind and retain low-density lipoproteins (LDL) in the vessel wall. Platelet-derived growth factor (PDGF) is strongly implicated in atherosclerosis and stimulates proteoglycan synthesis. Here we investigated the action of the PDGF receptor inhibitor imatinib on PDGF-mediated proteoglycan biosynthesis in vitro, lipid deposition in the aortic wall in vivo and the carotid artery ex vivo. In human vSMCs, imatinib inhibited PDGF mediated 35S-SO4 incorporation into proteoglycans by 31% (P < 0.01) and inhibited PDGF-mediated size increases in both chemically cleaved and xyloside associated glycosaminoglycan (GAG) chains by 19%, P < 0.05 and 27%, P < 0.05, respectively. Imatinib decreased PDGF stimulation of the 6:4 position sulphation ratio of disaccharides. The half maximal saturation value for LDL binding for proteoglycans from PDGF stimulated cells in the presence of imatinib was approximately 2.5-fold higher than for PDGF treatment alone. In high fat fed ApoE−/– mice, imatinib reduced total lipid staining area by ∼31% (P < 0.05). Carotid artery lipid accumulation in imatinib treated mice was also reduced. Furthermore, we demonstrate that imatinib inhibits phosphorylation of tyrosine 857, the autophosphorylation site of the PDGF receptor, in vSMCs. Thus imatinib inhibits GAG synthesis on vascular proteoglycans and reduces LDL binding in vitro and in vivo and this effect is mediated via the PDGF receptor. These findings validate a novel mechanism to prevent cardiac disease.
Collapse
Affiliation(s)
- Mandy L Ballinger
- Diabetes & Cell Biology, BakerIDI Heart & Diabetes Institute, Prahran, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Arora S, Husain M, Kumar D, Patni H, Pathak S, Mehrotra D, Reddy VK, Reddy LR, Salhan D, Yadav A, Mathieson PW, Saleem MA, Chander PN, Singhal PC. Human immunodeficiency virus downregulates podocyte apoE expression. Am J Physiol Renal Physiol 2009; 297:F653-61. [PMID: 19553347 PMCID: PMC2739717 DOI: 10.1152/ajprenal.90668.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 06/22/2009] [Indexed: 01/19/2023] Open
Abstract
Apolipoprotein E (apoE) has been demonstrated to play an important role in providing protection against mesangial cell injury. In the present study, we evaluated the role of apoE and its associated downstream effects in human immunodeficiency virus (HIV)-associated nephropathy (HIVAN). Control (n = 6) and age- and sex-matched HIV-1 transgenic mice (Tg26, n = 6) were evaluated for their renal cortical expression of apoE. Renal tissue from Tg26 mice not only showed decreased apoE expression but also displayed downregulation of perlecan mRNA expression. In in vitro studies, conditionally immortalized human podocytes (CIHPs) were transduced with either NL4-3HIV (an HIV-1 construct lacking gag and pol, used for the development of Tg26 mouse model; NL4-3/CIHP) or empty vector (EV/CIHP); NL4-3/CIHPs and EV/CIHPs were studied for apoE mRNA expression. NL4-3/CIHPs showed reduction in apoE expression compared with EV/CIHPs. To evaluate the role of HIV-1 genes in the modulation of apoE expression, conditionally immortalized mouse podocytes (CIMPs) were transduced with individual HIV-1 gene constructs. Only nef-transduced CIMPs showed a decrease in apoE expression. To confirm this effect of nef in CIHPs, microarray analysis was performed in stable colonies of nef/CIHPs and EV/CIHPs. nef/CIHPs showed a 60% decrease in apoE and a 90% reduction in heparan sulfate mRNA expression. Moreover, nef transgenic mice showed a decrease in renal tissue expression of both apoE and perlecan. Both Tg26 and nef transgenic mice also showed areas of mesangial cell proliferation. These findings suggest that HIV-1-induced reduction in podocyte apoE expression and associated downregulation of podocyte perlecan might be contributing to mesangial cell (MC) phenotype in HIVAN.
Collapse
Affiliation(s)
- Shitij Arora
- Immunology Center, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Medical Center, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Long-term treatment with the AT1-receptor antagonist telmisartan inhibits biglycan accumulation in murine atherosclerosis. Basic Res Cardiol 2009; 105:29-38. [DOI: 10.1007/s00395-009-0051-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/06/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
|
276
|
Transcriptional and posttranscriptional regulators of biglycan in cardiac fibroblasts. Basic Res Cardiol 2009; 105:99-108. [PMID: 19701788 DOI: 10.1007/s00395-009-0049-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/15/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022]
Abstract
Biglycan, a small leucine-rich proteoglycan, is essential for scar formation and preservation of hemodynamic function after myocardial infarction, as shown in biglycan-knockout mice. Because of this important role in cardiac pathophysiology, we aimed to identify regulators of biglycan expression and posttranslational modifications in cardiac fibroblasts. Cardiac fibroblasts were isolated from neonatal Wistar-Kyoto rats and used in the first passage. Expression of biglycan was analyzed after metabolic labeling with [(35)S]-sulfate by SDS-polyacrylamide gel electrophoresis and molecular sieve chromatography; mRNA expression was examined by Northern analysis and real-time RT-PCR. Serum, thrombin, transforming growth factor beta1 (TGFbeta 1) and platelet-derived growth factor BB (PDGF-BB) strongly increased [(35)S]-labeled proteoglycan levels. Tumor necrosis factor alpha further increased the stimulatory effect of PDGF-BB. PDGF-BB increased glycosaminoglycan (GAG) chain length as shown by molecular sieve chromatography after beta-elimination to release GAG chains. Nitric oxide was the only negative regulator of biglycan as evidenced by marked downregulation in response to DETA-NO ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long acting nitric oxide donor and SNAP (S-nitroso-N-acetyl-l,l-penicillamine), which completely inhibited PDGF-BB-induced secretion of total [(35)S]-labeled proteoglycans and biglycan mRNA expression. Of note, the molecular weight of biglycan GAG chains was even further increased by NO donors compared to control and PDGF-BB stimulation. The current results suggest that in cardiac fibroblasts, biglycan is induced by a variety of stimuli including serum, thrombin and growth factors such as PDGF-BB and TGFbeta1. This response is counteracted by NO and enhanced by TNFalpha. Interestingly, both up- and downregulation were associated with posttranslational increase of GAG chain length.
Collapse
|
277
|
Yang SNY, Osman N, Burch ML, Little PJ. Factors affecting proteoglycan synthesis and structure that modify the interaction with lipoproteins. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
278
|
Ballinger ML, Ivey ME, Osman N, Thomas WG, Little PJ. Endothelin-1 activates ETA receptors on human vascular smooth muscle cells to yield proteoglycans with increased binding to LDL. Atherosclerosis 2009; 205:451-7. [DOI: 10.1016/j.atherosclerosis.2009.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 11/28/2022]
|
279
|
Yang SNY, Burch ML, Getachew R, Ballinger ML, Osman N, Little PJ. Growth factor-mediated hyper-elongation of glycosaminoglycan chains on biglycan requires transcription and translation. Arch Physiol Biochem 2009; 115:147-54. [PMID: 19580379 DOI: 10.1080/13813450903110754] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanism through which growth factors cause glycosaminoglycan (GAG) hyper-elongation is unclear. We have investigated the role of transcription and translation on the GAG hyper-elongation effect of platelet-derived growth factor (PDGF) in human vascular smooth muscle cells (VSMCs). To determine if the response involves specific signalling pathways or the process of GAG hyper-elongation we have also investigated the effects of epidermal growth factor (EGF), transforming growth factor-beta (TGF-beta) and thrombin. We report that both actinomycin D and cycloheximide completely abolished the ability of PDGF to stimulate radiosulphate incorporation and GAG elongation into secreted proteoglycans, and to increase the size of xyloside GAGs. Blocking de novo protein synthesis completely prevented the action of all growth factors tested to elongate GAG chains. These results lay a foundation for further investigation into the genes and proteins implicated in this response.
Collapse
Affiliation(s)
- Sundy N Y Yang
- BakerIDI Heart and Diabetes Institute, Diabetes and Cell Biology Laboratory, Melbourne, VIC, 3004, Australia
| | | | | | | | | | | |
Collapse
|
280
|
Adventitial lymphocytic inflammation in human coronary arteries with intimal atherosclerosis. Cardiovasc Pathol 2009; 19:e61-8. [PMID: 19375947 DOI: 10.1016/j.carpath.2009.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/04/2009] [Accepted: 02/09/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The relationship between adventitial inflammation, plaque type, and culprit plaque morphology in the epicardial arterial circulation has not been studied in detail. METHODS We studied semiserial sections of coronary arteries at autopsy from patients dying with severe coronary disease, 81 men (age 50 + or - 12 years) and 13 women (age 52 + or - 13 years). Lesions were classified at 3- to 5-mm segments according to modified AHA criteria. Adventitial lymphocyte aggregates were assessed at every 5-mm interval and graded semiquantitatively. Macrophage density in the adventitial fat and intima was assessed with anti-CD68 staining. RESULTS Adventitial lymphocytic inflammation increased with percent stenosis (P<.0001) and not calcification (P>.2). Hemorrhage into late core, rupture, erosion, and thin caps all had greater adventitial lymphocytic inflammation independent of percent stenosis (P<.0001). Peri-adventitial adipose macrophage density was increased in plaques with atheromas (206 + or - 22 mm(2) vs. 121 + or - 15 mm(2) in fibrous plaques; P=.02) and correlated positively with adventitial lymphocytes (P<.0001) and intimal macrophage content (P<.0001). CONCLUSIONS Features associated with plaque instability are associated with significantly greater degrees of adventitial lymphocytic inflammation, both as lymphocyte aggregates and as adipocyte-derived macrophages. Further study is required to determine the nature of the association between intimal and adventitial lymphocytic inflammation.
Collapse
|
281
|
Sallo FB, Bereczki E, Csont T, Luthert PJ, Munro P, Ferdinandy P, Sántha M, Lengyel I. Bruch's membrane changes in transgenic mice overexpressing the human biglycan and apolipoprotein b-100 genes. Exp Eye Res 2009; 89:178-86. [PMID: 19324038 DOI: 10.1016/j.exer.2009.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 11/18/2022]
Abstract
Age-Related Macular Degeneration (AMD) is characterized by the accumulation of lipid- and protein-rich deposits in Bruch's Membrane (BrM). A consequent decrease in hydraulic conductivity and impairment of transport through BrM may play a central role in the pathogenesis of AMD. The mechanism of deposit formation in AMD had been suggested to show similarities to the formation of atherosclerotic plaques in which the interactions of extracellular matrix proteoglycans with apolipoprotein-B 100 (apoB-100) play an important role. A prime candidate for this interaction is the small leucin-rich proteoglycan biglycan. The aim of our study was to test the effect of the simultaneous overexpression of human apoB-100 and biglycan genes in combination with a high-cholesterol diet on BrM morphology in transgenic mice. Six-weeks-old homozygous apoB-100 or biglycan, hemizygous apoB-100/biglycan transgenic and wild-type C57Bl/6 mice were fed either a standard chow or a diet supplemented with 2% cholesterol for 17 weeks. Animals were sacrificed, serum lipid levels were measured and eyes were processed for transmission electron microscopy (TEM) according to standard protocol. Morphometric analysis of digitally acquired TEM images of BrM showed that in apoB-100 and double transgenic animals fed a high-cholesterol diet, the BrM thickness was significantly increased compared to wild-type animals. Both groups had electron-lucent profiles in clusters, scattered throughout the collagenous layers of BrM, and focal nodules of an amorphous material of intermediate electron-density between the plasma and basement membranes of the retinal pigment epithelium (RPE). BrM thickness in these two groups correlated well with elevated cholesterol levels. Unexpectedly, animals overexpressing biglycan alone showed a marked, diet-independent increase in BrM thickness associated with a layer of a basement membrane-like material in outer BrM. The effects of biglycan overexpression are intriguing and further investigations are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ferenc B Sallo
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, Saito Y, Yasue H. Coronary spasm preferentially occurs at branch points: an angiographic comparison with atherosclerotic plaque. Circ Cardiovasc Interv 2009; 2:97-104. [PMID: 20031702 DOI: 10.1161/circinterventions.108.803767] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coronary spasm plays an important role in the pathogenesis of ischemic heart disease. However, similarities and differences between coronary spasm and atherosclerosis are not known. We examined the angiographic characteristics of coronary spasm in comparison with those of atherosclerosis. METHODS AND RESULTS Thirty-two left anterior descending arteries, 11 left circumflex arteries, and 23 right coronary arteries with spasm and atherosclerotic plaque were analyzed for the localization of spasm in comparison with that of plaque in 47 patients (38 men and 9 women, mean age 66.8+/-10.3 yrs). Spasm predominantly occurred at the branch point as compared with plaque in each of the 3 arteries (76.7% versus 23.3%, P<0.0001; 72.7% versus 9.1%, P<0.039; and 60.0% versus 10.0%, P=0.002, in the left anterior descending, left circumflex, and right coronary arteries, respectively). Spasm involved the proximal segment less frequently as compared with plaque in each of the 3 arteries (56.7% versus 93.3%, P<0.0001; 18.2% versus 81.8%, P=0.016; and 15.0% versus 75.0%, P<0.0001 in the left anterior descending, left circumflex, and right coronary arteries, respectively). Most spasms occurred at the nonplaque site in each of the 3 arteries (73.3%, P=0.018; 100%, P<0.0001; and 75.0%, P=0.041 in the left anterior descending, left circumflex, and right coronary arteries, respectively). CONCLUSIONS Coronary spasm preferentially occurred at branch points and nonplaque sites, whereas the atherosclerotic lesion was predominantly localized at the nonbranch points of the curved proximal segments. Coronary spasm may thus be a manifestation of a distinct type of arteriosclerosis different from the lipid-laden coronary atherosclerosis.
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto University Hospital, 6-8-1 Yamamuro, Kumamoto City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Torzewski M, Navarro B, Cheng F, Canisius A, Schmidt T, Bhakdi S, Urban R, Lackner KJ. Investigation of Sudan IV staining areas in aortas of infants and children: possible prelesional stages of atherogenesis. Atherosclerosis 2009; 206:159-67. [PMID: 19268943 DOI: 10.1016/j.atherosclerosis.2009.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/16/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVES/METHODS Although atherosclerosis in infants and children is generally acknowledged, the temporal and spatial sequence of LDL insudation, modification and intimal monocyte accumulation has not been systematically studied. We have investigated herein very early stages of lesion formation in human aortas of individuals up to the age of 15 years. Aortic specimens from 61 cases (37 male, 24 female) were examined. 34 cases were <1 year old, 16 cases were between 1 and 5 years old, and 11 cases were between 6 and 15 years old. Areas preselected under a dissection microscope after Sudan IV staining were investigated in depth by immunohistochemical staining for apolipoprotein B, monocytes/macrophages, smooth muscle cells (SMCs), enzymatically and oxidatively modified lipoproteins, C-reactive protein and complement components. RESULTS (i) Lipoprotein accumulation in the intima before macrophage infiltration, (ii) virtually no extracellular lipoprotein modification, either enzymatic or oxidative, within intimal lesions in infancy (<1 year), (iii) onset of extracellular enzymatic modification of low-density lipoprotein (LDL) in the age group between 6 and 15 years and (iv) no coincidence of lipoprotein accumulation in the intima with activation of the terminal complement cascade as known from early atherosclerotic lesions in adults. CONCLUSIONS The present study indicates the existence of hitherto undescribed prelesional stages in atherogenesis characterized by 'inert' lipoprotein insudation in individuals <1 year of age without lipoprotein modification, monocyte/macrophage infiltration and/or inflammation on the one hand and the onset of extracellular enzymatic rather than oxidative lipoprotein modification in individuals between 6 and 15 years of age on the other hand. Further investigations of these stages should advance understanding of events underlying initiation, progression and regression of intimal lesions developing in early atherogenesis.
Collapse
Affiliation(s)
- Michael Torzewski
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Tannock LR, King VL. Proteoglycan mediated lipoprotein retention: a mechanism of diabetic atherosclerosis. Rev Endocr Metab Disord 2008; 9:289-300. [PMID: 18584330 DOI: 10.1007/s11154-008-9078-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 12/25/2022]
Abstract
The response to retention hypothesis outlines the initial stages of atherosclerotic lesion formation. The central theme of the hypothesis is that proteoglycan mediated lipoprotein retention plays a critical step in the initiation of atherosclerosis development. Recent research using human arterial specimens, transgenic mouse models and molecular biology techniques have added to our understanding of atherosclerosis development, and provided experimental data in support of the response to retention hypothesis. In this review we summarize the recent data, in particular that which addresses mechanisms by which diabetes can accelerate atherosclerosis formation, with a focus on proteoglycan-mediated LDL retention.
Collapse
Affiliation(s)
- Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY, 40511, USA.
| | | |
Collapse
|
285
|
Thrombin regulates vascular smooth muscle cell proteoglycan synthesis via PAR-1 and multiple downstream signalling pathways. Thromb Res 2008; 123:288-97. [DOI: 10.1016/j.thromres.2008.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/08/2008] [Accepted: 04/21/2008] [Indexed: 11/30/2022]
|
286
|
Wilson PG, Thompson JC, Webb NR, de Beer FC, King VL, Tannock LR. Serum amyloid A, but not C-reactive protein, stimulates vascular proteoglycan synthesis in a pro-atherogenic manner. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1902-10. [PMID: 18974302 PMCID: PMC2626400 DOI: 10.2353/ajpath.2008.080201] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
Abstract
Inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) are predictive of cardiac disease and are proposed to play causal roles in the development of atherosclerosis, in which the retention of lipoproteins by vascular wall proteoglycans is critical. The purpose of this study was to determine whether SAA and/or CRP alters vascular proteoglycan synthesis and lipoprotein retention in a pro-atherogenic manner. Vascular smooth muscle cells were stimulated with either SAA or CRP (1 to 100 mg/L) and proteoglycans were then isolated and characterized. SAA, but not CRP, increased proteoglycan sulfate incorporation by 50 to 100% in a dose-dependent manner (P < 0.0001), increased glycosaminoglycan chain length, and increased low-density lipoprotein (LDL) binding affinity (K(d), 29 microg/ml LDL versus 90 microg/ml LDL for SAA versus control proteoglycans; P < 0.005). Furthermore, SAA up-regulated biglycan via the induction of endogenous transforming growth factor (TGF)-beta. To determine whether SAA stimulated proteoglycan synthesis in vivo, ApoE(-/-) mice were injected with an adenovirus expressing human SAA-1, a null virus, or saline. Mice that received adenovirus expressing SAA had increased TGF-beta concentrations in plasma and increased aortic biglycan content compared with mice that received either null virus or saline. Thus, SAA alters vascular proteoglycans in a pro-atherogenic manner via the stimulation of TGF-beta and may play a causal role in the development of atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Atherosclerosis/metabolism
- Biglycan
- C-Reactive Protein/metabolism
- Cells, Cultured
- Extracellular Matrix Proteins/metabolism
- Glycosaminoglycans/chemistry
- Glycosaminoglycans/metabolism
- Haplorhini
- Humans
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/chemistry
- Proteoglycans/metabolism
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/metabolism
- Serum Amyloid A Protein/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | | | | | | | |
Collapse
|
287
|
Little PJ, Ballinger ML, Burch ML, Osman N. Biosynthesis of natural and hyperelongated chondroitin sulfate glycosaminoglycans: new insights into an elusive process. Open Biochem J 2008; 2:135-42. [PMID: 19238187 PMCID: PMC2627520 DOI: 10.2174/1874091x00802010135] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/10/2008] [Accepted: 09/14/2008] [Indexed: 11/24/2022] Open
Abstract
Proteoglycans are important components of the extracellular matrix of all tissues. Proteoglycans are comprised of a core protein and one or more covalently attached glycosaminoglycan (GAG) chains. The major chondroitin sulfate (CS) and dermatan sulfate (DS) proteoglycans are aggrecan, versican, biglycan and decorin. Cells synthesize GAGs of natural or basal lengths and the GAG chains are subject to considerable growth factor, hormonal and metabolic regulation to yield longer GAG chains with altered structure and function. The mechanism by which the CS/DS GAG chains are polymerized is unknown. Recent work has identified several monosaccharide transferases which when co-expressed yield GAG polymers and the length of the polymers depends upon the pair of enzymes coexpressed. The further extension of these chains is regulated by signaling pathways. Inhibition of these latter pathways may be a therapeutic target to prevent the elongation which is associated with increased binding of atherogenic lipids and the disease process of atherosclerosis.
Collapse
Affiliation(s)
- Peter J Little
- Diabetes and Cell Biology Laboratory, Vascular and Hypertension Division, BakerIDI Heart and Diabetes Institute, Melbourne, VIC, Australia 3004 and
| | | | | | | |
Collapse
|
288
|
Williams KJ. Molecular processes that handle -- and mishandle -- dietary lipids. J Clin Invest 2008; 118:3247-59. [PMID: 18830418 DOI: 10.1172/jci35206] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Overconsumption of lipid-rich diets, in conjunction with physical inactivity, disables and kills staggering numbers of people worldwide. Recent advances in our molecular understanding of cholesterol and triglyceride transport from the small intestine to the rest of the body provide a detailed picture of the fed/fasted and active/sedentary states. Key surprises include the unexpected nature of many pivotal molecular mediators, as well as their dysregulation - but possible reversibility - in obesity, diabetes, inactivity, and related conditions. These mechanistic insights provide new opportunities to correct dyslipoproteinemia, accelerated atherosclerosis, insulin resistance, and other deadly sequelae of overnutrition and underexertion.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5005, USA.
| |
Collapse
|
289
|
Pyrido-Pyrimidine Derivative CYC10424 Inhibits Glycosaminoglycan Changes on Vascular Smooth Muscle-derived Proteoglycans and Reduces Lipoprotein Binding. J Cardiovasc Pharmacol 2008; 52:403-12. [DOI: 10.1097/fjc.0b013e31818a8907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
290
|
Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 2008; 4:575-96. [PMID: 18827908 PMCID: PMC2515418 DOI: 10.2147/vhrm.s1991] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is characterized by a lack of insulin causing elevated blood glucose, often with associated insulin resistance. Over time, especially in genetically susceptible individuals, such chronic hyperglycemia can cause tissue injury. One pathological response to tissue injury is the development of fibrosis, which involves predominant extracellular matrix (ECM) accumulation. The main factors that regulate ECM in diabetes are thought to be pro-sclerotic cytokines and protease/anti-protease systems. This review will examine the key markers and regulators of tissue fibrosis in diabetes and whether their levels in biological fluids may have clinical utility.
Collapse
Affiliation(s)
- Camelia R Ban
- Discipline of Medicine and Department of Endocrinology, The University of Sydney and Royal Prince Alfred Hospital Sydney, New South Wales, 2006, Australia
| | | |
Collapse
|
291
|
Abstract
PURPOSE OF REVIEW To outline a role for the dermatan sulfate proteoglycan biglycan and specifically its growth factor modified form having elongated glycosaminoglycan chains as being a primary initiator of atherosclerosis. RECENT FINDINGS Antiatherosclerotic therapies have mostly targeted epidemiologically identified, experimentally confirmed risk factors. The efficacy of such therapies is less than optimal, and rates of cardiovascular disease remain stubbornly high. A variety of targets have been actively pursued, but as yet no new therapy has emerged that specifically targets the vessel wall. One area concerns the role of proteoglycans in the trapping of atherogenic lipoproteins as an early and initiating step in atherogenesis. On the basis of studies in human coronary arteries, the prime proteoglycan for lipoprotein retention is biglycan. The glycosaminoglycan chains on biglycan are subject to regulation that yields several structural changes, but most prominently elongation of the chains to form 'hyperelongated biglycan'. Multiple animal studies and a recent human disorder study have demonstrated the colocalization of atherogenic lipoproteins with biglycan in atherosclerotic lesions. Moreover, in the human atherosclerosis, the deposition of lipid appears to precede the chronic inflammatory response typical of atherosclerotic lesions. SUMMARY The process of biglycan-associated glycosaminoglycan elongation represents a novel potential therapeutic target worthy of full investigation for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Peter J Little
- Cell Biology of Diabetes Laboratory, Baker Heart Research Institute, Melbourne, Australia.
| | | | | |
Collapse
|
292
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
293
|
Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun 2008; 14:63-87. [PMID: 18713724 DOI: 10.1177/1753425908091246] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Martin-Luther-Universität Halle-Wittenberg, Universitätsklinik und Poliklinik für Innere Medizin , Halle (Saale), Germany.
| | | | | |
Collapse
|
294
|
He F, Zhang Q, Kuruba R, Gao X, Li J, Li Y, Gong W, Jiang Y, Xie W, Li S. Upregulation of decorin by FXR in vascular smooth muscle cells. Biochem Biophys Res Commun 2008; 372:746-51. [PMID: 18514055 PMCID: PMC2526039 DOI: 10.1016/j.bbrc.2008.05.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 12/31/2022]
Abstract
Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.
Collapse
MESH Headings
- Cells, Cultured
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/metabolism
- Decorin
- Extracellular Matrix Proteins/genetics
- Gene Expression Regulation
- Humans
- Isoxazoles/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repetitive Sequences, Nucleic Acid
- Response Elements/drug effects
- Sequence Analysis, DNA
- Transcription Factors/agonists
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Fengtian He
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qiuhong Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramalinga Kuruba
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Gao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yong Li
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wei Gong
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yu Jiang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
295
|
Nigro J, Potter-Perigo S, Ivey ME, de Dios ST, Evanko SP, Wight TN, Little PJ. The effect of PPAR ligands to modulate glucose metabolism alters the incorporation of metabolic precursors into proteoglycans synthesized by human vascular smooth muscle cells. Arch Physiol Biochem 2008; 114:171-7. [PMID: 18629682 DOI: 10.1080/13813450802181013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PPAR ligands are important effectors of energy metabolism and can modify proteoglycan synthesis by vascular smooth muscle cells (VSMCs). Describing the cell biology of these important clinical agents is important for understanding their full clinical potential, including toxicity. Troglitazone (10 microM) and fenofibrate (30 microM) treatment of VSMCs reduces ((35)S)-sulphate incorporation into proteoglycans due to a reduction of glycosaminoglycan (GAG) chain length. Conversely, under physiological glucose conditions (5.5 mM), the same treatment increases ((3)H)-glucosamine incorporation into GAGs. This apparent paradox is the consequence of an increase in the intracellular ((3)H)-galactosamine specific activity from 48.2 +/- 3.2 microCi/ micromol to 90.7 +/- 11.0 microCi/ micromol (P < 0.001) and 57.1 +/- 2.6 microCi/ micromol (P < 0.05) when VSMCs were treated with troglitazone and fenofibrate, respectively. The increased specific activity observed with troglitazone (10 microM) treatment correlates with a two-fold increase in glucose consumption, while fenofibrate (50 microM) treatment showed a modest (14.6%) increase in glucose consumption. We conclude that the sole use of glucosamine precursors to assess GAG biosynthesis results in misleading conclusions when assessing the effect of PPAR ligands on VSMC proteoglycan biosynthesis.
Collapse
Affiliation(s)
- Julie Nigro
- CSIRO, Molecular and Health Technologies, Bayview Avenue, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
296
|
Marso SP, Mehta SK, Frutkin A, House JA, McCrary JR, Kulkarni KR. Low adiponectin levels are associated with atherogenic dyslipidemia and lipid-rich plaque in nondiabetic coronary arteries. Diabetes Care 2008; 31:989-94. [PMID: 18252902 DOI: 10.2337/dc07-2024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether an association exists between adiponectin and plaque composition in human coronary arteries. RESEARCH DESIGN AND METHODS Adiponectin is an adipocyte-derived protein with antiatherogenic and insulin-sensitizing properties. To date, the relationship between adiponectin and plaque composition is unknown. Fasting blood samples were collected from 185 patients undergoing coronary angiography and intravascular ultrasound (IVUS). Plaque composition was categorized as fibrous, fibrofatty, necrotic core, or dense calcium and further classified as IVUS-derived adaptive or pathological intimal thickening, fibroatheroma, fibrocalcific, or thin cap fibroatheroma. RESULTS Adiponectin correlated with normalized plaque volume (r = -0.16, P = 0.025) and atheroma lipid content as measured by normalized fibrofatty volume (r = -0.19, P = 0.009). Low adiponectin levels were associated with IVUS-derived pathological intimal thickening (r = -0.18, P = 0.01). With increasing quartiles (Q) of adiponectin, the normalized volume of fibrofatty plaque decreased (P = 0.03), which was driven by reductions in the nondiabetic cohort (Q1 44.2 mm(3); Q2 28.2 mm(3); Q3 24.7 mm(3); and Q4 23.4 mm(3); P = 0.01). No similar association was present in diabetic patients. Low adiponectin levels were also associated with IVUS-derived pathological intimal thickening in nondiabetic (r = -0.20, P = 0.03) but not diabetic patients. CONCLUSIONS Low adiponectin levels are associated with atherogenic lipoproteins (elevated triglycerides, small dense LDL cholesterol, and low HDL cholesterol), increased plaque volume, lipid-rich plaque, and IVUS-derived pathological intimal thickening in the total cohort that was driven by the nondiabetic population, suggesting an antiatherogenic role in the early stages of lesion development.
Collapse
Affiliation(s)
- Steven P Marso
- Mid America Heart Institute, University of Missouri Kansas City, Kansas City, Missouri 64111, USA.
| | | | | | | | | | | |
Collapse
|
297
|
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by accumulation of oxidized lipoproteins, increased cell death and hypertrophic degeneration of the arterial intima. The disease process is associated with local formation of modified self antigens that are targeted by both innate and adaptive immune responses. Although it remains to be firmly established it is likely that these autoimmune responses initially have a beneficial effect facilitating the removal of potentially harmful rest products from oxidized LDL and dying cells. However, studies performed on hypercholesterolaemic mice deficient in different components of the immune system uniformly suggest that the net effect of immune activation is pro-atherogenic and that atherosclerosis, at least to some extent, should be regarded as an autoimmune disease. These observations point to the possibility of developing new treatments for atherosclerosis based on modulation of immune responses against plaque antigens, an approach presently tested clinically for several other chronic inflammatory diseases with autoimmune components. Pilot studies in animals have provided promising results for both parental and oral vaccines based on oxidized LDL antigens. The time when this concept is ready for clinical testing is rapidly approaching but it will be important not to underestimate the difficulties that will be encountered in transferring the promising results from experimental animals into humans.
Collapse
Affiliation(s)
- J Nilsson
- Department of Clinical Sciences, Malmö University Hospital, Lund University, Malmö, Sweden
| | | |
Collapse
|
298
|
Little PJ, Drennon KD, Tannock LR. Glucosamine inhibits the synthesis of glycosaminoglycan chains on vascular smooth muscle cell proteoglycans by depletion of ATP. Arch Physiol Biochem 2008; 114:120-6. [PMID: 18484279 DOI: 10.1080/13813450802033909] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Glucosamine via GlcNAc is a precursor for the synthesis of glycosaminoglycan (GAG) chains on proteoglycans. We previously found that proteoglycans synthesized and secreted by vascular smooth muscle cells (VSMC) in the presence of supplementary glucosamine had GAG of decreased not increased size. We investigated the possibility that the inhibition of GAG chains synthesis on proteoglycans might be related to cellular ATP depletion. Confluent primate VSMCs were exposed to glucosamine, azide, or 2-deoxyglucose (2-DG). Each of these agents depleted cell ATP content by 25-30%. All agents decreased (35)S-SO(4) incorporation and reduced the size of the proteoglycans, decorin and biglycan as assessed by SDS-PAGE. On withdrawal of the glucosamine, azide or 2-DG ATP levels and proteoglycan synthesis returned towards baseline values. Glucosamine decreased glucose uptake and consumption suggesting that ATP depletion was due preferential phosphorylation of glucosamine over glucose. Thus, glucosamine inhibition of proteoglycan synthesis is due, at least in part, to depletion of cellular ATP content.
Collapse
Affiliation(s)
- Peter J Little
- Baker Heart Research Institute, Cell Biology of Diabetes Laboratory, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|
299
|
Homma S, Troxclair DA, Zieske AW, Malcom GT, Strong JP, Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Histological topographical comparisons of atherosclerosis progression in juveniles and young adults. Atherosclerosis 2008; 197:791-8. [PMID: 17869259 PMCID: PMC2696014 DOI: 10.1016/j.atherosclerosis.2007.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND The histologically topographic comparisons on atherosclerosis progression among three anatomical sites, mid-thoracic and lower abdominal aorta and left anterior descending coronary artery (LAD) were performed using a young population (age 15-34 years) from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. METHODS AND RESULTS The histological classification based on the American Heart Association grading scheme showed that in the thoracic aorta type 2 lesions (numerous macrophage foam cells with fine particles but no pools of extracellular lipid) appeared in the first 10-year age group, with no significant change in prevalence in the next 10 years. Lesions greater than type 2 were rarely seen in the thoracic aorta. Although type 2 lesions appeared later in the LAD than in the aorta, the lesions within the LAD progressed rapidly to more advanced lesions (types 4 and 5) or atheroma. Lesion development in the abdominal aorta was intermediate to lesion development in the thoracic aorta and the LAD. CONCLUSIONS The most striking topographic difference on lesion progression among the three anatomical sites was the vulnerability of type 2 lesions to progress into advanced lesions. The histology study, including immunohistochemistry limited to the type 2 lesions suggested that lesion progression was related to the intimal thickness and the amount of collagen but not to the number of macrophage foam cells.
Collapse
Affiliation(s)
- Satoki Homma
- Louisiana State University Health Sciences Center, Pathology, New Orleans, LA, USA.
| | | | | | | | | | | |
Collapse
|
300
|
Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 2008; 79:14-23. [DOI: 10.1093/cvr/cvn099] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|