251
|
Reis M, Willis GR, Fernandez-Gonzalez A, Yeung V, Taglauer E, Magaletta M, Parsons T, Derr A, Liu X, Maehr R, Kourembanas S, Mitsialis SA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol 2021; 12:640595. [PMID: 33936055 PMCID: PMC8082426 DOI: 10.3389/fimmu.2021.640595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Treating premature infants with high oxygen is a routine intervention in the context of neonatal intensive care. Unfortunately, the increase in survival rates is associated with various detrimental sequalae of hyperoxia exposure, most notably bronchopulmonary dysplasia (BPD), a disease of disrupted lung development. The effects of high oxygen exposure on other developing organs of the infant, as well as the possible impact such disrupted development may have on later life remain poorly understood. Using a neonatal mouse model to investigate the effects of hyperoxia on the immature immune system we observed a dramatic involution of the thymic medulla, and this lesion was associated with disrupted FoxP3+ regulatory T cell generation and T cell autoreactivity. Significantly, administration of mesenchymal stromal cell-derived extracellular vesicles (MEx) restored thymic medullary architecture and physiological thymocyte profiles. Using single cell transcriptomics, we further demonstrated preferential impact of MEx treatment on the thymic medullary antigen presentation axis, as evidenced by enrichment of antigen presentation and antioxidative-stress related genes in dendritic cells (DCs) and medullary epithelial cells (mTECs). Our study demonstrates that MEx treatment represents a promising restorative therapeutic approach for oxygen-induced thymic injury, thus promoting normal development of both central tolerance and adaptive immunity.
Collapse
Affiliation(s)
- Monica Reis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Taglauer
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Margaret Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teagan Parsons
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Alan Derr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rene Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
252
|
Tolomeo AM, Castagliuolo I, Piccoli M, Grassi M, Magarotto F, De Lazzari G, Malvicini R, Caicci F, Franzin C, Scarpa M, Macchi V, De Caro R, Angriman I, Viola A, Porzionato A, Pozzobon M, Muraca M. Extracellular Vesicles Secreted by Mesenchymal Stromal Cells Exert Opposite Effects to Their Cells of Origin in Murine Sodium Dextran Sulfate-Induced Colitis. Front Immunol 2021; 12:627605. [PMID: 33927713 PMCID: PMC8076641 DOI: 10.3389/fimmu.2021.627605] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Several reports have described a beneficial effect of Mesenchymal Stromal Cells (MSCs) and of their secreted extracellular vesicles (EVs) in mice with experimental colitis. However, the effects of the two treatments have not been thoroughly compared in this model. Here, we compared the effects of MSCs and of MSC-EV administration in mice with colitis induced by dextran sulfate sodium (DSS). Since cytokine conditioning was reported to enhance the immune modulatory activity of MSCs, the cells were kept either under standard culture conditions (naïve, nMSCs) or primed with a cocktail of pro-inflammatory cytokines, including IL1β, IL6 and TNFα (induced, iMSCs). In our experimental conditions, nMSCs and iMSCs administration resulted in both clinical and histological worsening and was associated with pro-inflammatory polarization of intestinal macrophages. However, mice treated with iEVs showed clinico-pathological improvement, decreased intestinal fibrosis and angiogenesis and a striking increase in intestinal expression of Mucin 5ac, suggesting improved epithelial function. Moreover, treatment with iEVs resulted in the polarization of intestinal macrophages towards and anti-inflammatory phenotype and in an increased Treg/Teff ratio at the level of the intestinal lymph node. Collectively, these data confirm that MSCs can behave either as anti- or as pro-inflammatory agents depending on the host environment. In contrast, EVs showed a beneficial effect, suggesting a more predictable behavior, a safer therapeutic profile and a higher therapeutic efficacy with respect to their cells of origin.
Collapse
Affiliation(s)
- Anna Maria Tolomeo
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | | | - Martina Piccoli
- Laboratory of Tissue Engineering, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Michele Grassi
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Stem Cells and Regenerative Medicine, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Giada De Lazzari
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| | - Ricardo Malvicini
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Instituto de medicina traslacional, trasplante y bioingenieria (IMeTTyB-CONICET), Buenos Aires, Argentina
| | | | - Chiara Franzin
- Laboratory of Tissue Engineering, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV–IRCCS, Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Raffaele De Caro
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Imerio Angriman
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Andrea Porzionato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Stem Cells and Regenerative Medicine, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Maurizio Muraca
- Department of Women’s and Children’s Health, University of Padova, Padua, Italy
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Padua, Italy
| |
Collapse
|
253
|
Zheng Q, Zhang S, Guo WZ, Li XK. The Unique Immunomodulatory Properties of MSC-Derived Exosomes in Organ Transplantation. Front Immunol 2021; 12:659621. [PMID: 33889158 PMCID: PMC8055852 DOI: 10.3389/fimmu.2021.659621] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Methods for suppressing the host immune system over the long term and improving transplantation tolerance remain a primary issue in organ transplantation. Cell therapy is an emerging therapeutic strategy for immunomodulation after transplantation. Mesenchymal stem cells (MSCs) are adult multipotent stem cells with wide differentiation potential and immunosuppressive properties, which are mostly used in regenerative medicine and immunomodulation. In addition, emerging research suggests that MSC-derived exosomes have the same therapeutic effects as MSCs in many diseases, while avoiding many of the risks associated with cell transplantation. Their unique immunomodulatory properties are particularly important in the immune system-overactive graft environment. In this paper, we review the effects of MSC-derived exosomes in the immune regulation mechanism after organ transplantation and graft-versus-host disease (GvHD) from various perspectives, including immunosuppression, influencing factors, anti-inflammatory properties, mediation of tissue repair and regeneration, and the induction of immune tolerance. At present, the great potential of MSC-derived exosomes in immunotherapy has attracted a great deal of attention. Furthermore, we discuss the latest insights on MSC-derived exosomes in organ transplantation and GvHD, especially its commercial production concepts, which aim to provide new strategies for improving the prognosis of organ transplantation patients.
Collapse
Affiliation(s)
- Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
254
|
Therapeutic prospects of MicroRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci 2021; 277:119458. [PMID: 33831424 DOI: 10.1016/j.lfs.2021.119458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases (ADs) are a class of chronic disease conditions with impaired tolerance to autoantigens. Currently, there is no effective treatment for ADs, and the existing medications have limitations due to non-specific targets and side effects. Accumulating evidence has shown that mesenchymal stem cells (MSCs) play a role in ADs treatment. These beneficial effects mainly rely on cell-to-cell communication through the secretion of extracellular vesicles (EVs) and soluble factors. MSC-derived EVs (MSC-EVs) could modulate adjacent and distinct cells by transferring various DNA, mRNA, non-coding RNAs, proteins, and lipids from parent cells to recipient cells. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate multiple target genes at the post-transcriptional level and are involved in chronic inflammatory and immune processes. Compared to fluid, MSC-EVs delivery can protect miRNAs from the degradation of ribonucleases, ensuring that miRNAs are able to perform their respective crucial roles in AD recipient cells. In this review, we discussed the therapeutic prospects and challenges of miRNAs secreted by MSC-EVs (MSC-EV-miRNAs) by reviewing the experimentally verified therapeutic outcomes of MSC-EV-miRNAs for several ADs, including rheumatoid arthritis (RA), autoimmune hepatitis (AIH), asthma, colitis, systemic sclerosis (SSc) and graft-versus-host disease (GVHD).
Collapse
|
255
|
Guo H, Su Y, Deng F. Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives. Stem Cell Rev Rep 2021; 17:440-458. [PMID: 33211245 PMCID: PMC7675022 DOI: 10.1007/s12015-020-10085-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) as a kind of pluripotent adult stem cell have shown great therapeutic potential in relation to many diseases in anti-inflammation and regeneration. The results of preclinical experiments and clinical trials have demonstrated that MSC-derived secretome possesses immunoregulatory and reparative abilities and that this secretome is capable of modulating innate and adaptive immunity and reprograming the metabolism of recipient cells via paracrine mechanisms. It has been recognized that MSC-derived secretome, including soluble proteins (cytokines, chemokines, growth factors, proteases), extracellular vesicles (EVs) and organelles, plays a key role in tissue repair and regeneration in bronchopulmonary dysplasia, acute respiratory distress syndrome (ARDS), bronchial asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension, and silicosis. This review summarizes the known functions of MSC-EV modulation in lung diseases, coupled with the future challenges of MSC-EVs as a new pharmaceutical agent. The identification of underlying mechanisms for MSC-EV might provide a new direction for MSC-centered treatment in lung diseases.Graphical abstract.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT9 7BL UK
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Hefei City, Anhui Province 230022 People’s Republic of China
| |
Collapse
|
256
|
α1,3-Fucosyltransferase-IX, an enzyme of pulmonary endogenous lung stem cell marker SSEA-1, alleviates experimental bronchopulmonary dysplasia. Pediatr Res 2021; 89:1126-1135. [PMID: 32303051 DOI: 10.1038/s41390-020-0891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Endogenous pulmonary stem cells (PSCs) play an important role in lung development and repair; however, little is known about their role in bronchopulmonary dysplasia (BPD). We hypothesize that an endogenous PSC marker stage-specific embryonic antigen-1 (SSEA-1) and its enzyme, α1,3-fucosyltransferase IX (FUT9) play an important role in decreasing inflammation and restoring lung structure in experimental BPD. METHODS We studied the expression of SSEA-1, and its enzyme FUT9, in wild-type (WT) C57BL/6 mice, in room air and hyperoxia. Effects of intraperitoneal administration of recombinant human FUT9 (rhFUT9) on lung airway and parenchymal inflammation, alveolarization, and apoptosis were evaluated. RESULTS On hyperoxia exposure, SSEA-1 significantly decreased at postnatal day 14 in hyperoxia-exposed BPD mice, accompanied by a decrease in FUT9. BPD and respiratory distress syndrome (RDS) in human lungs showed decreased expression of SSEA-1 as compared to their term controls. Importantly, intraperitoneal administration of FUT9 in the neonatal BPD mouse model resulted in significant decrease in pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leakage, alveolar simplification, and cell death in the hyperoxia-exposed BPD mice. CONCLUSIONS An important role of endogenous PSC marker SSEA-1 and its enzyme FUT9 is demonstrated, indicating early systemic intervention with FUT9 as a potential therapeutic option for BPD. IMPACT Administration of rhFUT9, an enzyme of endogenous stem cell marker SSEA-1, reduces pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leak and cell death in the BPD mouse model. SSEA-1 is reported for the first time in experimental BPD models, and in human RDS and BPD. rhFUT9 treatment ameliorates hyperoxia-induced lung injury in a developmentally appropriate BPD mouse model. Our results have translational potential as a therapeutic modality for BPD in the developing lung.
Collapse
|
257
|
Chen WJ, Xie J, Lin X, Ou MH, Zhou J, Wei XL, Chen WX. The Role of Small Extracellular Vesicles Derived from Lipopolysaccharide-preconditioned Human Dental Pulp Stem Cells in Dental Pulp Regeneration. J Endod 2021; 47:961-969. [PMID: 33775732 DOI: 10.1016/j.joen.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Regenerative endodontics has created a desirable shift in the treatment paradigm despite current limitations of regenerative outcomes. Mesenchymal stem cells (MSCs) facilitate tissue regeneration and repair in a mild inflammatory environment. Small extracellular vesicles (sEVs) derived from MSCs play an imperative role in the paracrine modulation of regenerative responses modulated by MSCs. However, it remains unknown whether MSCs enhance dental pulp regeneration or whether this enhancement is mediated by sEVs in a mild inflammatory environment. The present study aimed to elucidate the effects of sEVs originated from lipopolysaccharide (LPS)-preconditioned human dental pulp stem cells (hDPSCs) on dental pulp regeneration. METHODS All sEVs were isolated from hDPSCs cultured with or without LPS (ie, N-sEVs and L-sEVs, respectively). The effect of N-sEVs and L-sEVs on proliferation, migration, angiogenesis, and differentiation of rat bone marrow MSCs was identified in vitro. Moreover, N-sEVs or L-sEVs were implanted into rat pulpless root canal models, and the regenerated tissue in root canals was assessed via hematoxylin-eosin staining, Masson staining, and immunohistochemistry after 30 days of transplantation. RESULTS Both N-sEVs and L-sEVs could modulate BMSC proliferation, migration, angiogenesis, and differentiation. Both kinds of sEVs enhanced the structure of the regenerated tissue closer to that of a normal dental pulp in vivo. L-sEVs had a more significant effect than N-sEVs. CONCLUSIONS sEVs released by hDPSCs in a mild inflammatory microenvironment are capable of facilitating the regeneration of dental pulp through functional healing instead of scar healing, which has potential applications in regenerative endodontics.
Collapse
Affiliation(s)
- Wen-Jin Chen
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Jing Xie
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Xi Lin
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Ming-Hang Ou
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Jun Zhou
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Xiao-Lang Wei
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Wen-Xia Chen
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China.
| |
Collapse
|
258
|
Dong B, Wang C, Zhang J, Zhang J, Gu Y, Guo X, Zuo X, Pan H, Hsu ACY, Wang G, Wang F. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther 2021; 12:204. [PMID: 33761997 PMCID: PMC7988945 DOI: 10.1186/s13287-021-02244-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Severe, steroid-resistant asthma (SSRA) is a serious clinical problem in asthma management. Affected patients have severe clinical symptoms, worsened quality of life, and do not respond to steroid, a mainstay steroid treatment of asthma. Thus, effective therapies are urgently needed. Exosomes derived from mesenchymal stem cell (MSC-Exo) has become attractive candidates for the lung inflammatory diseases through its immunomodulatory effects. In this study, we explored the therapeutic effects of MSC-Exo in SSRA and identified the therapeutic mechanism of MSC-Exo. METHOD Exosomes from human umbilical cord mesenchymal stem cell (hUCMSC) were isolated and characterized by transmission electron microscopy, nanoparticle tracking analysis and flow cytometry analysis. Effects of MSC-Exo on airway hyper responsiveness (AHR), inflammation, histopathology, and macrophage polarization in SSRA in mice were evaluated. Systematic depletion of macrophages determined the role of macrophages in the therapeutic effect of SSRA in mice. LPS-stimulated RAW 264.7 cell model was constructed to determine the underlying mechanism of MSC-Exo on macrophage polarization. qRT-PCR, Western blotting, immunofluorescence, and flow cytometry were performed to evaluate the expression of M1 or M2 markers. Tandem mass tags (TMT)-labeled quantitative proteomics were applied to explore the central protein during the regulation effect of MSC-Exo on macrophage polarization. Knockdown and overexpression of TRAF1 were used to further clarify the role of the central protein on macrophage polarization. RESULT We successfully isolated and characterized exosomes from hUCMSCs. We verified that the intratracheal administration of MSC-Exo reversed AHR, histopathology changes, and inflammation in SSRA mice. Systematic depletion of macrophages weakened the therapeutic effect of MSC-Exo. We found that MSC-Exo treatment inhibited M1 polarization and promoted M2 polarization in LPS-stimulated RAW 264.7 cells. Subsequently, tumor necrosis factor receptor-associated factor 1 (TRAF1) was determined as the central protein which may be closely related to the regulation of macrophage polarization from TMT-labeled quantitative proteomics analysis. Knockdown and overexpression of TRAF1 demonstrated that the effect of MSC-Exo treatment on macrophage polarization, NF-κB and PI3K/AKT signaling was dependent on TRAF1. CONCLUSION MSC-Exo can ameliorate SSRA by moderating inflammation, which is achieved by reshaping macrophage polarization via inhibition of TRAF1.
Collapse
Affiliation(s)
- Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jinrong Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - He Pan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2305, Australia
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
259
|
Mesenchymal stem cell-derived secretomes for therapeutic potential of premature infant diseases. Biosci Rep 2021; 40:222738. [PMID: 32320046 PMCID: PMC7953482 DOI: 10.1042/bsr20200241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Preterm birth is a complex syndrome and remains a substantial public health problem globally. Its common complications include periventricular leukomalacia (PVL), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP). Despite great advances in the comprehension of the pathogenesis and improvements in neonatal intensive care and associated medicine, preterm birth-related diseases remain essentially without adequate treatment and can lead to high morbidity and mortality. The therapeutic potential of mesenchymal stem/stromal cells (MSCs) appears promising as evidenced by their efficacy in preclinical models of pathologies relevant to premature infant complications. MSC-based therapeutic efficacy is closely associated with MSC secretomes and a subsequent paracrine action response to tissue injuries, which are complex and abundant in response to the local microenvironment. In the current review, we summarize the paracrine mechanisms of MSC secretomes underlying diverse preterm birth-related diseases, including PVL, BPD, NEC and ROP, are summarized, and focus is placed on MSC-conditioned media (CM) and MSC-derived extracellular vesicles (EVs) as key mediators of modulatory action, thereby providing new insights for future therapies in newborn medicine.
Collapse
|
260
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
261
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
262
|
Lei LM, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Zheng MH, Wang Y, Xu QS, Yuan LQ. Exosomes and Obesity-Related Insulin Resistance. Front Cell Dev Biol 2021; 9:651996. [PMID: 33816504 PMCID: PMC8012888 DOI: 10.3389/fcell.2021.651996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles, delivering signal molecules from donor cells to recipient cells. The cargo of exosomes, including proteins, DNA and RNA, can target the recipient tissues and organs, which have an important role in disease development. Insulin resistance is a kind of pathological state, which is important in the pathogeneses of type 2 diabetes mellitus (T2DM), gestational diabetes mellitus and Alzheimer's disease. Furthermore, obesity is a kind of inducement of insulin resistance. In this review, we summarized recent research advances on exosomes and insulin resistance, especially focusing on obesity-related insulin resistance. These studies suggest that exosomes have great importance in the development of insulin resistance in obesity and have great potential for use in the diagnosis and therapy of insulin resistance.
Collapse
Affiliation(s)
- Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
263
|
Fernandez-Gonzalez A, Willis GR, Yeung V, Reis M, Liu X, Mitsialis SA, Kourembanas S. Therapeutic Effects of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles in Oxygen-Induced Multi-Organ Disease: A Developmental Perspective. Front Cell Dev Biol 2021; 9:647025. [PMID: 33796534 PMCID: PMC8007882 DOI: 10.3389/fcell.2021.647025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Despite major advances in neonatal intensive care, infants born at extremely low birth weight still face an increased risk for chronic illness that may persist into adulthood. Pulmonary, retinal, and neurocognitive morbidities associated with preterm birth remain widespread despite interventions designed to minimize organ dysfunction. The design of therapeutic applications for preterm pathologies sharing common underlying triggers, such as fluctuations in oxygen supply or in the inflammatory state, requires alternative strategies that promote anti-inflammatory, pro-angiogenic, and trophic activities—ideally as a unitary treatment. Mesenchymal stem/stromal cell-derived extracellular vesicles (MEx) possess such inherent advantages, and they represent a most promising treatment candidate, as they have been shown to contribute to immunomodulation, homeostasis, and tissue regeneration. Current pre-clinical studies into the MEx mechanism of action are focusing on their restorative capability in the context of preterm birth-related pathologies, albeit not always with a multisystemic focus. This perspective will discuss the pathogenic mechanisms underlying the multisystemic lesions resulting from early-life disruption of normal physiology triggered by high oxygen exposures and pro-inflammatory conditions and introduce the application of MEx as immunomodulators and growth-promoting mediators for multisystem therapy.
Collapse
Affiliation(s)
- Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Monica Reis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
264
|
Tang WY, Liu JH, Peng CJ, Liao Y, Luo JS, Sun X, Tang YL, Luo XQ. Functional Characteristics and Application of Mesenchymal Stem Cells in Systemic Lupus Erythematosus. Arch Immunol Ther Exp (Warsz) 2021; 69:7. [PMID: 33713197 DOI: 10.1007/s00005-021-00603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a rare, heterogeneous autoimmune and autoinflammatory disease that affects both sexes and all races, although this disease exhibits its highest incidence/prevalence among the black population and shows a predilection for women of reproductive age. Although SLE has no cure, treatment can help decrease its signs and symptoms. Thus, we should focus primarily on personalized treatment. Mesenchymal stem/stromal cells (MSCs), which are multipotent cells capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myoblasts, among other cell types, are potential candidates for use in a promising strategy to treat severe and refractory SLE. MSCs have an immunomodulatory function that can suppress the proliferation and activities of many immune cells, such as T lymphocytes, B lymphocytes, natural killer cells, macrophages and dendritic cells. Substantial progress has recently been made in MSC therapy, and experimental and clinical data suggest that such a therapy is a promising strategy for the treatment of severe and refractory SLE. In this review, we highlight the effects of MSCs on different immune cell types, describe the mechanisms underlying MSC-mediated immunoregulation, and discuss the treatment of SLE with MSCs from different sources in various animal models and clinical applications.
Collapse
Affiliation(s)
- Wen-Yan Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jia-Hua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Chun-Jin Peng
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yao Liao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Jie-Si Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| | - Yan-Lai Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Xue-Qun Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
265
|
Sung SE, Kang KK, Choi JH, Lee SJ, Kim K, Lim JH, Yang SY, Kim SK, Seo MS, Lee GW. Comparisons of Extracellular Vesicles from Human Epidural Fat-Derived Mesenchymal Stem Cells and Fibroblast Cells. Int J Mol Sci 2021; 22:2889. [PMID: 33809214 PMCID: PMC8000612 DOI: 10.3390/ijms22062889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are generated and secreted by cells into the circulatory system. Stem cell-derived EVs have a therapeutic effect similar to that of stem cells and are considered an alternative method for cell therapy. Accordingly, research on the characteristics of EVs is emerging. EVs were isolated from human epidural fat-derived mesenchymal stem cells (MSCs) and human fibroblast culture media by ultracentrifugation. The characterization of EVs involved the typical evaluation of cluster of differentiation (CD antigens) marker expression by fluorescence-activated cell sorting, size analysis with dynamic laser scattering, and morphology analysis with transmission electron microscopy. Lastly, the secreted levels of cytokines and chemokines in EVs were determined by a cytokine assay. The isolated EVs had a typical size of approximately 30-200 nm, and the surface proteins CD9 and CD81 were expressed on human epidural fat MSCs and human fibroblast cells. The secreted levels of cytokines and chemokines were compared between human epidural fat MSC-derived EVs and human fibroblast-derived EVs. Human epidural fat MSC-derived EVs showed anti-inflammatory effects and promoted macrophage polarization. In this study, we demonstrated for the first time that human epidural fat MSC-derived EVs exhibit inflammatory suppressive potency relative to human fibroblast-derived EVs, which may be useful for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - Si-Joon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - KilSoo Kim
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea
| | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.-J.L.); or (K.K.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| |
Collapse
|
266
|
Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat Commun 2021; 12:1565. [PMID: 33692365 PMCID: PMC7946947 DOI: 10.1038/s41467-021-21865-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
During late lung development, alveolar and microvascular development is finalized to enable sufficient gas exchange. Impaired late lung development manifests as bronchopulmonary dysplasia (BPD) in preterm infants. Single-cell RNA sequencing (scRNA-seq) allows for assessment of complex cellular dynamics during biological processes, such as development. Here, we use MULTI-seq to generate scRNA-seq profiles of over 66,000 cells from 36 mice during normal or impaired lung development secondary to hyperoxia with validation of some of the findings in lungs from BPD patients. We observe dynamic populations of cells, including several rare cell types and putative progenitors. Hyperoxia exposure, which mimics the BPD phenotype, alters the composition of all cellular compartments, particularly alveolar epithelium, stromal fibroblasts, capillary endothelium and macrophage populations. Pathway analysis and predicted dynamic cellular crosstalk suggest inflammatory signaling as the main driver of hyperoxia-induced changes. Our data provides a single-cell view of cellular changes associated with late lung development in health and disease.
Collapse
|
267
|
Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2021; 9:639657. [PMID: 33768094 PMCID: PMC7985078 DOI: 10.3389/fcell.2021.639657] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown etiology characterized by progressive pulmonary fibrosis. Pirfenidone and nintedanib are the only drugs that can prolong the time to disease progression, slow down the decline in lung function, and prolong survival. However, they do not offer a cure and are associated with tolerability issues. The pluripotency of mesenchymal stem cells (MSCs) and their ability to regulate immunity, inhibit inflammation, and promote epithelial tissue repair highlight the promise of MSC therapy for treating interstitial lung disease. However, optimal protocols are lacking for multi-parameter selection in MSC therapy. This review summarizes preclinical studies on MSC transplantation for the treatment of interstitial lung disease and clinical studies with known results. An analysis of relevant factors for the optimization of treatment plans is presented, including MSCs with different sources, administration routes and timing, dosages, frequencies, and pretreatments with MSCs. This review proposes an optimized plan for guiding the design of future clinical research to identify therapeutic options for this complex disease.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Harbin Medical University, Harbin, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yale Jiang
- School of Medicine, Tsinghua University, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
268
|
Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, Tan GC, Wong YP. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:615508. [PMID: 33791258 PMCID: PMC8006350 DOI: 10.3389/fped.2021.615508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
269
|
Gong J, Feng Z, Peterson AL, Carr JF, Lu X, Zhao H, Ji X, Zhao YY, De Paepe ME, Dennery PA, Yao H. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight 2021; 6:137594. [PMID: 33497360 PMCID: PMC8021105 DOI: 10.1172/jci.insight.137594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Dysmorphic pulmonary vascular growth and abnormal endothelial cell (EC) proliferation are paradoxically observed in premature infants with bronchopulmonary dysplasia (BPD), despite vascular pruning. The pentose phosphate pathway (PPP), a metabolic pathway parallel to glycolysis, generates NADPH as a reducing equivalent and ribose 5-phosphate for nucleotide synthesis. It is unknown whether hyperoxia, a known mediator of BPD in rodent models, alters glycolysis and the PPP in lung ECs. We hypothesized that hyperoxia increases glycolysis and the PPP, resulting in abnormal EC proliferation and dysmorphic angiogenesis in neonatal mice. To test this hypothesis, lung ECs and newborn mice were exposed to hyperoxia and allowed to recover in air. Hyperoxia increased glycolysis and the PPP. Increased PPP, but not glycolysis, caused hyperoxia-induced abnormal EC proliferation. Blocking the PPP reduced hyperoxia-induced glucose-derived deoxynucleotide synthesis in cultured ECs. In neonatal mice, hyperoxia-induced abnormal EC proliferation, dysmorphic angiogenesis, and alveolar simplification were augmented by nanoparticle-mediated endothelial overexpression of phosphogluconate dehydrogenase, the second enzyme in the PPP. These effects were attenuated by inhibitors of the PPP. Neonatal hyperoxia augments the PPP, causing abnormal lung EC proliferation, dysmorphic vascular development, and alveolar simplification. These observations provide mechanisms and potential metabolic targets to prevent BPD-associated vascular dysgenesis.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Xuexin Lu
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Haifeng Zhao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Xiangming Ji
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics (Critical Care Division), Pharmacology, and Medicine (Pulmonary and Critical Care Medicine), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, Rhode Island, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
270
|
Raghav A, Khan ZA, Upadhayay VK, Tripathi P, Gautam KA, Mishra BK, Ahmad J, Jeong GB. Mesenchymal Stem Cell-Derived Exosomes Exhibit Promising Potential for Treating SARS-CoV-2-Infected Patients. Cells 2021; 10:587. [PMID: 33799966 PMCID: PMC8001291 DOI: 10.3390/cells10030587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome-CoV-2 (SARS-CoV-2) is responsible for COVID-19 infection. The COVID-19 pandemic represents one of the worst global threats in the 21st century since World War II. This pandemic has led to a worldwide economic recession and crisis due to lockdown. Biomedical researchers, pharmaceutical companies, and premier institutes throughout the world are claiming that new clinical trials are in progress. During the severe phase of this disease, mechanical ventilators are used to assist in the management of outcomes; however, their use can lead to the development of pneumonia. In this context, mesenchymal stem cell (MSC)-derived exosomes can serve as an immunomodulation treatment for COVID-19 patients. Exosomes possess anti-inflammatory, pro-angiogenic, and immunomodulatory properties that can be explored in an effort to improve the outcomes of SARS-CoV-2-infected patients. Currently, only one ongoing clinical trial (NCT04276987) is specifically exploring the use of MSC-derived exosomes as a therapy to treat SARS-CoV-2-associated pneumonia. The purpose of this review is to provide insights of using exosomes derived from mesenchymal stem cells in management of the co-morbidities associated with SARS-CoV-2-infected persons in direction of improving their health outcome. There is limited knowledge of using exosomes in SARS-CoV-2; the clinicians and researchers should exploit exosomes as therapeutic regime.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Zeeshan Ahmad Khan
- Department of Bioengineering, Korea University of Technology and Education, Cheonan-si 31253, Korea;
| | | | - Prashant Tripathi
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Kirti Amresh Gautam
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Brijesh Kumar Mishra
- Department of Endocrinology, UCMS, GTB Hospital, Dilshad Garden, Delhi 110095, India;
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Korea
| |
Collapse
|
271
|
Cooper TT, Sherman SE, Bell GI, Dayarathna T, McRae DM, Ma J, Lagugné-Labarthet F, Pasternak SH, Lajoie GA, Hess DA. Ultrafiltration and Injection of Islet Regenerative Stimuli Secreted by Pancreatic Mesenchymal Stromal Cells. Stem Cells Dev 2021; 30:247-264. [PMID: 33403929 PMCID: PMC10331161 DOI: 10.1089/scd.2020.0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The secretome of mesenchymal stromal cells (MSCs) is enriched for biotherapeutic effectors contained within and independent of extracellular vesicles (EVs) that may support tissue regeneration as an injectable agent. We have demonstrated that the intrapancreatic injection of concentrated conditioned media (CM) produced by bone marrow MSC supports islet regeneration and restored glycemic control in hyperglycemic mice, ultimately providing a platform to elucidate components of the MSC secretome. Herein, we extend these findings using human pancreas-derived MSC (Panc-MSC) as "biofactories" to enrich for tissue regenerative stimuli housed within distinct compartments of the secretome. Specifically, we utilized 100 kDa ultrafiltration as a simple method to debulk protein mass and to enrich for EVs while concentrating the MSC secretome into an injectable volume for preclinical assessments in murine models of blood vessel and islet regeneration. EV enrichment (EV+) was validated using nanoscale flow cytometry and atomic force microscopy, in addition to the detection of classical EV markers CD9, CD81, and CD63 using label-free mass spectrometry. EV+ CM was predominately enriched with mediators of wound healing and epithelial-to-mesenchymal transition that supported functional regeneration in mesenchymal and nonmesenchymal tissues. For example, EV+ CM supported human microvascular endothelial cell tubule formation in vitro and enhanced the recovery of blood perfusion following intramuscular injection in nonobese diabetic/severe combined immunodeficiency mice with unilateral hind limb ischemia. Furthermore, EV+ CM increased islet number and β cell mass, elevated circulating insulin, and improved glycemic control following intrapancreatic injection in streptozotocin-treated mice. Collectively, this study provides foundational evidence that Panc-MSC, readily propagated from the subculture of human islets, may be utilized for regenerative medicine applications.
Collapse
Affiliation(s)
- Tyler T. Cooper
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - Stephen E. Sherman
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gillian I. Bell
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Thamara Dayarathna
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | | | - Jun Ma
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | | | - Stephen H. Pasternak
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| |
Collapse
|
272
|
Characterization of the innate immune response in a novel murine model mimicking bronchopulmonary dysplasia. Pediatr Res 2021; 89:803-813. [PMID: 32434214 DOI: 10.1038/s41390-020-0967-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), the most common complication of prematurity, arises from various factors that compromise lung development, including oxygen and inflammation. Hyperoxia has been used to mimic the disease in newborn rodents. The use of a second hit to induce systemic inflammation has been suggested as an added strategy to better mimic the inflammatory aspect of BPD. Here we report a novel 2 hit (2HIT) BPD model with in-depth characterization of the innate immune response, enabling mechanistic studies of therapies with an immunomodulatory component. METHODS C57BL/6N mice were exposed to 85% O2 from postnatal day (P)1 to P7, and received postnatally (P3) Escherichia coli LPS. At various timepoints, immune activation in the lung and at the systemic level was analyzed by fluorescence-activated cell sorting (FACS), and gene and protein expressions. RESULTS 2HIT mice showed fewer alveoli, increased lung compliance, and right ventricular hypertrophy. A transient proinflammatory cytokine response was observed locally and systemically. Type 2 anti-inflammatory cytokine expression was decreased in the lung together with the number of mature alveolar macrophages. Simultaneously, a Siglec-F intermediate macrophage population emerged. CONCLUSION This study provides long-term analysis of the 2HIT model, suggesting impairment of type 2 cytokine environment and altered alveolar macrophage profile in the lung. IMPACT We have developed a novel 2HIT mouse BPD model with postnatal LPS and hyperoxia exposure, which enables mechanistic studies of potential therapeutic strategies with an immunomodulatory component. This is the first report of in-depth characterization of the lung injury and recovery describing the evolution of the innate immune response in a standardized mouse model for experimental BPD with postnatal LPS and hyperoxia exposure. The 2HIT model has the potential to help understand the link between inflammation and impaired lung development, and will enable testing of new therapies in a short and more robust manner.
Collapse
|
273
|
Cao X, Li Y, Shi J, Tang H. The Potentially Therapeutic Role of EPAC in Curbing the Process of Idiopathic Pulmonary Fibrosis via Differential Cellular Pathways. J Inflamm Res 2021; 14:611-619. [PMID: 33679138 PMCID: PMC7926039 DOI: 10.2147/jir.s296382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrosis disease caused by genetic susceptibility (causative) and other indirect risk factors such as smoking, micro-aspiration and air pollution. Repeated damage of lung epithelial cells can cause fibroblast activation and excessive collagen will lead the scar formation and severe fibrosis. It has been decades since drugs for the treatment of IPF were developed, but clinical choices were limited. Exchange Protein directly Activated by cAMP (EPAC), as a newly emerging cAMP (adenosine 3ʹ,5ʹ-cyclic monophosphate) downstream molecule, plays a vital role in the cellular pathways of IPF such as inhibiting fibroblast proliferation, stress fiber formation and epithelium cell adhesion, so it may be a novel target for drug development and treatment for curbing IPF. Here, we hypothesize that EPAC may participate in the signaling pathways related to IPF in different cell types (fibroblasts; airway smooth muscle cells; vascular endothelial cells; lung epithelial cells; macrophages; mesenchymal stem cells; T cells), thereby playing a potentially therapeutic role in resisting the process of fibrosis. We summarize the current correlation between EPAC and IPF in these different cell types, and further insights into EPAC will help to optimize the pharmacological treatment for IPF.
Collapse
Affiliation(s)
- Xinwei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yajun Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianrong Shi
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, 310003, People's Republic of China
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
274
|
Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:600711. [PMID: 33659247 PMCID: PMC7917181 DOI: 10.3389/fcell.2021.600711] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as a potential therapy for several diseases. These plasma membrane-derived fragments are released constitutively by virtually all cell types-including mesenchymal stromal cells (MSCs)-under stimulation or following cell-to-cell interaction, which leads to activation or inhibition of distinct signaling pathways. Based on their size, intracellular origin, and secretion pathway, EVs have been grouped into three main populations: exosomes, microvesicles (or microparticles), and apoptotic bodies. Several molecules can be found inside MSC-derived EVs, including proteins, lipids, mRNA, microRNAs, DNAs, as well as organelles that can be transferred to damaged recipient cells, thus contributing to the reparative process and promoting relevant anti-inflammatory/resolutive actions. Indeed, the paracrine/endocrine actions induced by MSC-derived EVs have demonstrated therapeutic potential to mitigate or even reverse tissue damage, thus raising interest in the regenerative medicine field, particularly for lung diseases. In this review, we summarize the main features of EVs and the current understanding of the mechanisms of action of MSC-derived EVs in several lung diseases, such as chronic obstructive pulmonary disease (COPD), pulmonary infections [including coronavirus disease 2019 (COVID-19)], asthma, acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and cystic fibrosis (CF), among others. Finally, we list a number of limitations associated with this therapeutic strategy that must be overcome in order to translate effective EV-based therapies into clinical practice.
Collapse
Affiliation(s)
- Soraia C. Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Daniel J. Weiss
- Department of Medicine, College of Medicine, University of Vermont Larner, Burlington, VT, United States
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
275
|
Lee BC, Kang I, Yu KR. Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J Clin Med 2021; 10:711. [PMID: 33670202 PMCID: PMC7916919 DOI: 10.3390/jcm10040711] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of the immunomodulatory and regenerative properties of mesenchymal stem cells (MSCs) have made them an attractive alternative therapeutic option for diseases with no effective treatment options. Numerous clinical trials have followed; however, issues such as infusional toxicity and cellular rejection have been reported. To address these problems associated with cell-based therapy, MSC exosome therapy was developed and has shown promising clinical outcomes. MSC exosomes are nanosized vesicles secreted from MSCs and represent a non-cellular therapeutic agent. MSC exosomes retain therapeutic features of the cells from which they originated including genetic material, lipids, and proteins. Similar to MSCs, exosomes can induce cell differentiation, immunoregulation, angiogenesis, and tumor suppression. MSC exosomes have therefore been employed in several experimental models and clinical studies. Here, we review the therapeutic potential of MSC-derived exosomes and summarize currently ongoing clinical trials according to disease type. In addition, we propose several functional enhancement strategies for the effective clinical application of MSC exosome therapy.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Insung Kang
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA;
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
276
|
Cargnoni A, Papait A, Masserdotti A, Pasotti A, Stefani FR, Silini AR, Parolini O. Extracellular Vesicles From Perinatal Cells for Anti-inflammatory Therapy. Front Bioeng Biotechnol 2021; 9:637737. [PMID: 33614619 PMCID: PMC7892960 DOI: 10.3389/fbioe.2021.637737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Perinatal cells, including cells from placenta, fetal annexes (amniotic and chorionic membranes), umbilical cord, and amniotic fluid display intrinsic immunological properties which very likely contribute to the development and growth of a semiallogeneic fetus during pregnancy. Many studies have shown that perinatal cells can inhibit the activation and modulate the functions of various inflammatory cells of the innate and adaptive immune systems, including macrophages, neutrophils, natural killer cells, dendritic cells, and T and B lymphocytes. These immunological properties, along with their easy availability and lack of ethical concerns, make perinatal cells very useful/promising in regenerative medicine. In recent years, extracellular vesicles (EVs) have gained great interest as a new therapeutic tool in regenerative medicine being a cell-free product potentially capable, thanks to the growth factors, miRNA and other bioactive molecules they convey, of modulating the inflammatory microenvironment thus favoring tissue regeneration. The immunomodulatory actions of perinatal cells have been suggested to be mediated by still not fully identified factors (secretoma) secreted either as soluble proteins/cytokines or entrapped in EVs. In this review, we will discuss how perinatal derived EVs may contribute toward the modulation of the immune response in various inflammatory pathologies (acute and chronic) by directly targeting different elements of the inflammatory microenvironment, ultimately leading to the repair and regeneration of damaged tissues.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
277
|
Ren J, Liu Y, Yao Y, Feng L, Zhao X, Li Z, Yang L. Intranasal delivery of MSC-derived exosomes attenuates allergic asthma via expanding IL-10 producing lung interstitial macrophages in mice. Int Immunopharmacol 2021; 91:107288. [PMID: 33360827 DOI: 10.1016/j.intimp.2020.107288] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) have been investigated in preventing and treating allergic asthma in many reports. Recently, MSC-derived exosomes (MSC-Exo) were showed a promising alternative to stem cell-based therapy in many kinds of diseases. However, the effect of MSC-Exo on allergic asthma has not been investigated thoroughly thus far. Here, we aimed to investigate the immunomodulation effect of MSC-Exo in a murine model of asthma and explore the underlying mechanisms. BALB/c mice were sensitized and challenged by OVA to establish asthma model. MSC-Exo were intranasally delivered before or during challenge and the protective effect were assessed after the last OVA challenge. Allergic airway inflammation elicited by OVA were significantly attenuated by intranasal delivery of MSC-Exo. To explore the protective mechanism of MSC-Exo, lung interstitial macrophages (IMs) and alveolar macrophages (AMs) were analyzed by flow cytometry and the origin of IMs were traced. Lung IMs ratios were significantly enhanced and high level of IL-10 was produced after MSC-Exo intranasal delivery. IMs ratios were not obviously affected by CCR2 inhibitor or Clodronate liposome administration, whereas significantly decreased in splenectomized mice. Cx3cr1+ cell specific IL-10 conditionally deficient mice were used to further examine the role of IL-10 producing IMs in allergic asthma. IMs-mediated protection was dependent on IL-10, given that the protection disappeared in Cx3cr1-IL-10-/-mice. In conclusion, intranasal delivery of MSC-Exo could substantially expand lung IL-10-producing IMs, which may originate from spleen, thus contribute to protection against allergic asthma in mice.
Collapse
Affiliation(s)
- Jiling Ren
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Yongzhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Ye Yao
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Lifeng Feng
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaotong Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Liang Yang
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
278
|
Porzionato A, Zaramella P, Dedja A, Guidolin D, Bonadies L, Macchi V, Pozzobon M, Jurga M, Perilongo G, De Caro R, Baraldi E, Muraca M. Intratracheal administration of mesenchymal stem cell-derived extracellular vesicles reduces lung injuries in a chronic rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2021; 320:L688-L704. [PMID: 33502939 DOI: 10.1152/ajplung.00148.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early therapeutic effect of intratracheally (IT)-administered extracellular vesicles secreted by mesenchymal stem cells (MSC-EVs) has been demonstrated in a rat model of bronchopulmonary dysplasia (BPD) involving hyperoxia exposure in the first 2 postnatal weeks. The aim of this study was to evaluate the protective effects of IT-administered MSC-EVs in the long term. EVs were produced from MSCs following GMP standards. At birth, rats were distributed in three groups: (a) animals raised in ambient air for 6 weeks (n = 10); and animals exposed to 60% hyperoxia for 2 weeks and to room air for additional 4 weeks and treated with (b) IT-administered saline solution (n = 10), or (c) MSC-EVs (n = 10) on postnatal days 3, 7, 10, and 21. Hyperoxia exposure produced significant decreases in total number of alveoli, total surface area of alveolar air spaces, and proliferation index, together with increases in mean alveolar volume, mean linear intercept and fibrosis percentage; all these morphometric changes were prevented by MSC-EVs treatment. The medial thickness index for <100 µm vessels was higher for hyperoxia-exposed/sham-treated than for normoxia-exposed rats; MSC-EV treatment significantly reduced this index. There were no significant differences in interstitial/alveolar and perivascular F4/8-positive and CD86-positive macrophages. Conversely, hyperoxia exposure reduced CD163-positive macrophages both in interstitial/alveolar and perivascular populations and MSC-EV prevented these hyperoxia-induced reductions. These findings further support that IT-administered EVs could be an effective approach to prevent/treat BPD, ameliorating the impaired alveolarization and pulmonary artery remodeling also in a long-term model. M2 macrophage polarization could play a role through anti-inflammatory and proliferative mechanisms.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Arben Dedja
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Diego Guidolin
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Michela Pozzobon
- Institute of Pediatric Research, Padua, Italy.,Stem Cell and Regenerative Medicine Laboratory, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Marcin Jurga
- The Cell Factory BVBA (Esperite NV), Niel, Belgium
| | - Giorgio Perilongo
- Institute of Pediatric Research, Padua, Italy.,Pediatric Clinic, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy.,Institute of Pediatric Research, Padua, Italy
| | - Maurizio Muraca
- Institute of Pediatric Research, Padua, Italy.,Stem Cell and Regenerative Medicine Laboratory, Department of Women's and Children's Health, University of Padova, Padua, Italy
| |
Collapse
|
279
|
Shi J, Zhao YC, Niu ZF, Fan HJ, Hou SK, Guo XQ, Sang L, Lv Q. Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: Progress and prospect. World J Stem Cells 2021; 13:49-63. [PMID: 33584979 PMCID: PMC7859991 DOI: 10.4252/wjsc.v13.i1.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could differentiate into multiple tissues. MSC-based therapy has become an attractive and promising strategy for treating human diseases through immune regulation and tissue repair. However, accumulating data have indicated that MSC-based therapeutic effects are mainly attributed to the properties of the MSC-sourced secretome, especially small extracellular vesicles (sEVs). sEVs are signaling vehicles in intercellular communication in normal or pathological conditions. sEVs contain natural contents, such as proteins, mRNA, and microRNAs, and transfer these functional contents to adjacent cells or distant cells through the circulatory system. MSC-sEVs have drawn much attention as attractive agents for treating multiple diseases. The properties of MSC-sEVs include stability in circulation, good biocompatibility, and low toxicity and immunogenicity. Moreover, emerging evidence has shown that MSC-sEVs have equal or even better treatment efficacies than MSCs in many kinds of disease. This review summarizes the current research efforts on the use of MSC-sEVs in the treatment of human diseases and the existing challenges in their application from lab to clinical practice that need to be considered.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yu-Chen Zhao
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Zhi-Fang Niu
- General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Hao-Jun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiao-Qin Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Lu Sang
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
280
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
281
|
|
282
|
Papait A, Cargnoni A, Sheleg M, Silini AR, Kunis G, Ofir R, Parolini O. Perinatal Cells: A Promising COVID-19 Therapy? Front Bioeng Biotechnol 2021; 8:619980. [PMID: 33520970 PMCID: PMC7841388 DOI: 10.3389/fbioe.2020.619980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has become a priority in the health systems of all nations worldwide. In fact, there are currently no specific drugs or preventive treatments such as vaccines. The numerous therapies available today aim to counteract the symptoms caused by the viral infection that in some subjects can evolve causing acute respiratory distress syndromes (ARDS) with consequent admission to intensive care unit. The exacerbated response of the immune system, through cytokine storm, causes extensive damage to the lung tissue, with the formation of edema, fibrotic tissues and susceptibility to opportunistic infections. The inflammatory picture is also aggravated by disseminated intravascular coagulation which worsens the damage not only to the respiratory system, but also to other organs. In this context, perinatal cells represent a valid strategy thanks to their strong immunomodulatory potential, their safety profile, the ability to reduce fibrosis and stimulate reparative processes. Furthermore, perinatal cells exert antibacterial and antiviral actions. This review therefore provides an overview of the characteristics of perinatal cells with a particular focus on the beneficial effects that they could have in patients with COVID-19, and more specifically for their potential use in the treatment of ARDS and sepsis.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | | | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
283
|
Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC, Yahaya BH. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther 2021; 12:54. [PMID: 33436065 PMCID: PMC7805108 DOI: 10.1186/s13287-020-02088-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin. METHODS In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD). RESULTS Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD. CONCLUSIONS In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.
Collapse
Affiliation(s)
- Noridzzaida Ridzuan
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Norashikin Zakaria
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Mitsuru Morimoto
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hirofumi Kiyokawa
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Seoparjoo Azmel Mohd Isa
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Malaysia
| | - Gurjeet Kaur Chatar Singh
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Kong-Yong Then
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
284
|
Hansmann G, Sallmon H, Roehr CC, Kourembanas S, Austin ED, Koestenberger M, for the European Pediatric Pulmonary Vascular Disease Network (EPPVDN). Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr Res 2021; 89:446-455. [PMID: 32521539 PMCID: PMC7979539 DOI: 10.1038/s41390-020-0993-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a major complication in prematurely born infants. Pulmonary hypertension (PH) associated with BPD (BPD-PH) is characterized by alveolar diffusion impairment, abnormal vascular remodeling, and rarefication of pulmonary vessels (vascular growth arrest), which lead to increased pulmonary vascular resistance and right heart failure. About 25% of infants with moderate to severe BPD develop BPD-PH that is associated with high morbidity and mortality. The recent evolution of broader PH-targeted pharmacotherapy in adults has opened up new treatment options for infants with BPD-PH. Sildenafil became the mainstay of contemporary BPD-PH therapy. Additional medications, such as endothelin receptor antagonists and prostacyclin analogs/mimetics, are increasingly being investigated in infants with PH. However, pediatric data from prospective or randomized controlled trials are still sparse. We discuss comprehensive diagnostic and therapeutic strategies for BPD-PH and briefly review the relevant differential diagnoses of parenchymal and interstitial developmental lung diseases. In addition, we provide a practical framework for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH from the 2018 World Symposium on Pulmonary Hypertension, and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies. Finally, current gaps of knowledge and future research directions are discussed. IMPACT: PH in BPD substantially increases mortality. Treatment of BPD-PH should be conducted by an interdisciplinary team and follow our new treatment algorithm while still kept tailored to the individual patient. We discuss recent developments in BPD-PH, make recommendations on diagnosis, monitoring and treatment of PH in BPD, and address current gaps of knowledge and potential research directions. We provide a practical framework, including a new treatment algorithm, for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH (2018 WSPH) and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies for BPD-PH.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany.
| | - Hannes Sallmon
- grid.6363.00000 0001 2218 4662Department of Pediatric Cardiology, Charité University Medical Center, Berlin, Germany
| | - Charles C. Roehr
- grid.410556.30000 0001 0440 1440Newborn Services, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK ,grid.4991.50000 0004 1936 8948National Perinatal Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Stella Kourembanas
- grid.38142.3c000000041936754XDivision of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Eric D. Austin
- grid.152326.10000 0001 2264 7217Division of Pediatric Pulmonary Medicine, Vanderbilt University, Nashville, TN USA
| | - Martin Koestenberger
- grid.11598.340000 0000 8988 2476Division of Pediatric Cardiology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
285
|
Gao Y, Huang X, Lin H, Zhao M, Liu W, Li W, Han L, Ma Q, Dong C, Li Y, Hu Y, Jin F. Adipose mesenchymal stem cell-derived antioxidative extracellular vesicles exhibit anti-oxidative stress and immunomodulatory effects under PM2.5 exposure. Toxicology 2021; 447:152627. [DOI: 10.1016/j.tox.2020.152627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
|
286
|
Stevens HY, Bowles AC, Yeago C, Roy K. Molecular Crosstalk Between Macrophages and Mesenchymal Stromal Cells. Front Cell Dev Biol 2020; 8:600160. [PMID: 33363157 PMCID: PMC7755599 DOI: 10.3389/fcell.2020.600160] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for regenerative medicine applications, from treating various inflammatory diseases as a cell therapy to generating engineered tissue constructs. Numerous studies have evaluated the potential effects of MSCs following therapeutic administration. By responding to their surrounding microenvironment, MSCs may mediate immunomodulatory effects through various mechanisms that directly (i.e., contact-dependent) or indirectly (i.e., paracrine activity) alter the physiology of endogenous cells in various disease pathologies. More specifically, a pivotal crosstalk between MSCs and tissue-resident macrophages and monocytes (TMφ) has been elucidated using in vitro and in vivo preclinical studies. An improved understanding of this crosstalk could help elucidate potential mechanisms of action (MOAs) of therapeutically administered MSCs. TMφ, by nature of their remarkable functional plasticity and prevalence within the body, are uniquely positioned as critical modulators of the immune system - not only in maintaining homeostasis but also during pathogenesis. This has prompted further exploration into the cellular and molecular alterations to TMφ mediated by MSCs. In vitro assays and in vivo preclinical trials have identified key interactions mediated by MSCs that polarize the responses of TMφ from a pro-inflammatory (i.e., classical activation) to a more anti-inflammatory/reparative (i.e., alternative activation) phenotype and function. In this review, we describe physiological and pathological TMφ functions in response to various stimuli and discuss the evidence that suggest specific mechanisms through which MSCs may modulate TMφ phenotypes and functions, including paracrine interactions (e.g., secretome and extracellular vesicles), nanotube-mediated intercellular exchange, bioenergetics, and engulfment by macrophages. Continued efforts to elucidate this pivotal crosstalk may offer an improved understanding of the immunomodulatory capacity of MSCs and inform the development and testing of potential MOAs to support the therapeutic use of MSCs and MSC-derived products in various diseases.
Collapse
Affiliation(s)
- Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Annie C. Bowles
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA, United States
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Center for ImmunoEngineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
287
|
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11:590972. [PMID: 33343360 PMCID: PMC7746877 DOI: 10.3389/fphar.2020.590972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is closely associated with the recruitment of fibroblasts from capillary vessels with damaged endothelial cells, the epithelial mesenchymal transition (EMT) of type II alveolar epithelial cells, and the transformation of fibroblasts to myofibroblasts. Recent studies suggest that EMT is a key factor in the pathogenesis of pulmonary fibrosis, as the disruption of EMT-related effector molecules can inhibit the occurrence and development of PF. With the numerous advancements made in molecular biology in recent years, researchers have discovered that exosomes and their cargos, such as miRNAs, lncRNAs, and proteins, can promote or inhibit the EMT, modulate the transformation of fibroblasts into myofibroblasts, contribute to the proliferation of fibroblasts and promote immunoregulatory and mitochondrial damage during pulmonary fibrosis. Exosomes are key factors regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs) into myofibroblasts. Interestingly, exosomes derived from BMSCs under pathological and physiological conditions may promote or inhibit the EMT of type II alveolar epithelial cells and the transformation of fibroblasts into myofibroblasts to regulate pulmonary fibrosis. Thus, exosomes may become a new direction in the study of drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
288
|
Deng H, Wu L, Liu M, Zhu L, Chen Y, Zhou H, Shi X, Wei J, Zheng L, Hu X, Wang M, He Z, Lv X, Yang H. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages. Shock 2020; 54:828-843. [PMID: 32433208 DOI: 10.1097/shk.0000000000001549] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play a key role in the development of sepsis-induced acute respiratory distress syndrome (ARDS). Recent evidence has proved that glycolysis plays an important role in regulating macrophage polarization through metabolic reprogramming. Bone marrow mesenchymal stem cells (BMSCs) can alleviate sepsis-induced lung injury and possess potent immunomodulatory and immunosuppressive properties via secreting exosomes. However, it is unknown whether BMSCs-derived exosomes exert their therapeutic effect against sepsis-induced lung injury by inhibiting glycolysis in macrophages. Therefore, the present study aimed to evaluate the anti-inflammatory effects of exosomes released from BMSCs on acute lung injury induced by lipopolysaccharide (LPS) in mice and explored the possible underlying mechanisms in vitro and in vivo. We found that BMSCs inhibited M1 polarization and promoted M2 polarization in MH-S cells (a murine alveolar macrophage cell line) by releasing exosomes. Further experiments showed that exosomes secreted by BMSCs modulated LPS-treated MH-S cells polarization by inhibiting cellular glycolysis. Moreover, our results showed that BMSCs-derived exosomes down-regulated the expression of several essential proteins of glycolysis via inhibition of hypoxia-inducible factor 1 (HIF-1)α. Finally, a model of LPS-induced ARDS in mice was established, we found that BMSCs-derived exosomes ameliorated the LPS-induced inflammation and lung pathological damage. Meanwhile, we found that intratracheal delivery of BMSCs-derived exosomes effectively down-regulated LPS-induced glycolysis in mice lung tissue. These findings reveal new mechanisms of BMSCs-derived exosomes in regulating macrophage polarization which may provide novel strategies for the prevention and treatment of LPS-induced ARDS.
Collapse
Affiliation(s)
- Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingmin Wu
- Department of Anesthesiology, The First Hospital of Anhui Medical University, Hefei, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Xiaoting Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mansi Wang
- Department of Pathology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
289
|
Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med 2020; 18:449. [PMID: 33246476 PMCID: PMC7691969 DOI: 10.1186/s12967-020-02622-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have captured great attention in regenerative medicine for over a few decades by virtue of their differentiation capacity, potent immunomodulatory properties, and their ability to be favorably cultured and manipulated. Recent investigations implied that the pleiotropic effects of MSCs is not associated to their ability of differentiation, but rather is mediated by the secretion of soluble paracrine factors. Exosomes, nanoscale extracellular vesicles, are one of these paracrine mediators. Exosomes transfer functional cargos like miRNA and mRNA molecules, peptides, proteins, cytokines and lipids from MSCs to the recipient cells. Exosomes participate in intercellular communication events and contribute to the healing of injured or diseased tissues and organs. Studies reported that exosomes alone are responsible for the therapeutic effects of MSCs in numerous experimental models. Therefore, MSC-derived exosomes can be manipulated and applied to establish a novel cell-free therapeutic approach for treatment of a variety of diseases including heart, kidney, liver, immune and neurological diseases, and cutaneous wound healing. In comparison with their donor cells, MSC-derived exosomes offer more stable entities and diminished safety risks regarding the administration of live cells, e.g. microvasculature occlusion risk. This review discusses the exosome isolation methods invented and utilized in the clinical setting thus far and presents a summary of current information on MSC exosomes in translational medicine.
Collapse
|
290
|
Pezzana C, Agnely F, Bochot A, Siepmann J, Menasché P. Extracellular Vesicles and Biomaterial Design: New Therapies for Cardiac Repair. Trends Mol Med 2020; 27:231-247. [PMID: 33218944 DOI: 10.1016/j.molmed.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
There is increasing evidence that extracellular vesicles (EVs) mediate the paracrine effects of stem cells. Although EVs have several attractive characteristics, they also raise issues related to delivery. For patients with cardiac disease that require a surgical procedure, direct intramyocardial (IM) administration of EVs is straightforward but its efficacy may be limited by fast wash-out, hence the interest of incorporating EVs into a controlled release polymer to optimize their residence time. For patients without surgical indication, the intravenous (IV) route is attractive because of its lack of invasiveness; however, whole-body distribution limits the fraction of EVs that reach the heart, hence the likely benefits of EV engineering to increase EV homing to the target tissue.
Collapse
Affiliation(s)
- Chloé Pezzana
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 75015 Paris, France.
| | - Florence Agnely
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Amélie Bochot
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Juergen Siepmann
- Unité 1008 INSERM, Université de Lille, Centre Hospitalier Universitaire Lille, 59000 Lille, France
| | - Philippe Menasché
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
291
|
Bazzoni R, Takam Kamga P, Tanasi I, Krampera M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Front Cell Dev Biol 2020; 8:596079. [PMID: 33240892 PMCID: PMC7677193 DOI: 10.3389/fcell.2020.596079] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in the stromal tissues of the body and capable of promoting tissue repair and attenuating inflammatory processes through their immunomodulatory properties. Preclinical and clinical observations revealed that not only direct intercellular communication mediates MSC properties; in fact, a pivotal role is also played by the release of soluble and bioactive factors, such as cytokines, growth factor and extracellular vesicles (EVs). EVs are membrane-coated vesicles containing a large variety of bioactive molecules, including lipids, proteins, and nucleic acids, such as RNA. EVs release their contents into target cells, thus influencing cell fate through the control of intracellular processes. In addition, MSC-derived EVs can mediate modulatory effects toward different effector cells belonging to both innate and adaptive immunity. In this review, we will discuss the literature data concerning MSC-derived EVs, including the current standardized methods for their isolation and characterization, the mechanisms supporting their immunoregulatory properties, and their potential clinical application as alternative to MSC-based therapy for inflammatory reactions, such as graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
292
|
You J, Zhou O, Liu J, Zou W, Zhang L, Tian D, Dai J, Luo Z, Liu E, Fu Z, Zou L. Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Alleviate Lung Injury in Rat Model of Bronchopulmonary Dysplasia by Affecting Cell Survival and Angiogenesis. Stem Cells Dev 2020; 29:1520-1532. [PMID: 33040709 DOI: 10.1089/scd.2020.0156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a serious chronic lung disease in premature newborns, with high morbidity and mortality rates. Mesenchymal stem cell (MSC) transplantation has developed into a promising approach to alleviate BPD. Small extracellular vesicles, which are an important therapeutic component of MSCs, have been reported to be effective in a mouse model of BPD. However, the affected cell types and detailed underlying mechanisms are unclear. In this study, we found that human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEVs) were successfully absorbed by lung tissue after intratracheal administration, and remained in the lungs for at least 72 h. The results showed that hucMSC-sEVs restored alveolar structure and lung function, and ameliorated pulmonary hypertension in a rat model of BPD. The number of Ki-67-positive lung cells were improved, while the number of TUNEL-positive lung cells were reduced in our hucMSC-sEV-treated BPD model. Additionally, SP-C staining (a marker of type II alveolar epithelial cells, TIIAECs) and CD31 staining (a marker of pulmonary vascular endothelial cells, PVECs) were both increased in a hyperoxia-induced BPD model treated with hucMSC-sEVs. In vitro, under hyperoxic conditions, the tube-like structure formation was improved in human umbilical vein endothelial cells, and the proliferation was increased and the apoptosis was attenuated in MLE-12 cells treated with hucMSC-sEVs. Furthermore, we observed downregulated expression of PTEN and cleaved-caspase3, and upregulated expression of p-Akt and vascular endothelial growth factor-A in our hucMSC-sEV-treated BPD model. In conclusion, hucMSC-sEVs improved alveolarization and angiogenesis in a rat BPD model by protecting TIIAECs and PVECs, which were associated with the PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Jingyi You
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Ou Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Jiang Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Linghuan Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Daiyin Tian
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Jihong Dai
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Lin Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
293
|
Tissue-Resident Type 2 Innate Lymphoid Cells Arrest Alveolarization in Bronchopulmonary Dysplasia. J Immunol Res 2020; 2020:8050186. [PMID: 33178840 PMCID: PMC7648679 DOI: 10.1155/2020/8050186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of the respiratory system associated with preterm birth. Type 2 innate lymphoid cells (ILC2s) play a major role in tissue homeostasis, inflammation, and wound healing. However, the role in BPD remains unclear. The present study showed that ILC2s, interleukin-4 (IL-4), IL-13, and anti-inflammatory (M2) macrophages increased significantly in BPD mice as compared to the control mice. Administration with recombinant mouse IL-33 amplified the above phenomena and aggravated the alveolar structural disorder and functional injury in mice subjected to BPD, and the opposite was true with anti-ST2 antibody. In addition, the depletion of ILC2s in BPD mice with anti-CD90.2 antibody substantially abolished the destructive effect on BPD. In the treatment of BPD with dexamethasone, the number of ILC2s and M2 macrophages and levels of IL-4 and IL-13 decreased with remission as compared to the control group. This study identified a major destructive role of the ILC2s in BPD that could be attenuated as a therapeutic strategy.
Collapse
|
294
|
Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis. Front Bioeng Biotechnol 2020; 8:575057. [PMID: 33251195 PMCID: PMC7673418 DOI: 10.3389/fbioe.2020.575057] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) has become recognized as a low-grade inflammatory state. Inflammatory infiltration of the synovium by macrophages, T cells, B cells, and other immune cells is often observed in OA patients and plays a key role in the pathogenesis of OA. Hence, orchestrating the local inflammatory microenvironment and tissue regeneration microenvironment is important for the treatment of OA. Mesenchymal stem cells (MSCs) offer the potential for cartilage regeneration owing to their effective immunomodulatory properties and anti-inflammatory abilities. The paracrine effect, mediated by MSC-derived extracellular vehicles (EVs), has recently been suggested as a mechanism for their therapeutic properties. In this review, we summarize the interactions between MSCs or MSC-derived EVs and OA-related immune cells and discuss their therapeutic effects in OA. Additionally, we discuss the potential of MSC-derived EVs as a novel cell-free therapy approach for the clinical treatment of OA.
Collapse
Affiliation(s)
- Xige Zhao
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Yanhong Zhao
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yi Xing
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
295
|
Taglauer ES, Fernandez-Gonzalez A, Willis GR, Reis M, Yeung V, Liu X, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell-derived extracellular vesicle therapy prevents preeclamptic physiology through intrauterine immunomodulation†. Biol Reprod 2020; 104:457-467. [PMID: 33112369 DOI: 10.1093/biolre/ioaa198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stromal cells (MSCs) are a widely recognized treatment modality for a variety of preclinical disease models and have been transitioned to human clinical trials. We have previously shown in neonatal lung disease that the therapeutic capacity of MSCs is conferred by their secreted extracellular vesicles (MEx), which function primarily through immunomodulation. We hypothesize that MEx have significant therapeutic potential pertinent to immune-mediated gestational diseases. Of particular interest is early-onset preeclampsia, which can be caused by alterations of the maternal intrauterine immune environment. Using a heme-oxygenase-1 null mouse model of pregnancy loss with preeclampsia-like features, we examined the preventative effects of maternal MEx treatment early in pregnancy. Heme oxygenase-1 null females (Hmox1-/-) or wild-type control females were bred in homozygous matings followed by evaluation of maternal and fetal parameters. A single dose of MEx was administered intravenously on gestational day (GD)1 to Hmox1-/- females (Hmox1-/- MEx). Compared with untreated Hmox1-/- females, Hmox1-/- MEx-treated pregnancies showed significant improvement in fetal loss, intrauterine growth restriction, placental spiral artery modification, and maternal preeclamptic stigmata. Biodistribution studies demonstrated that MEx localize to a subset of cells in the preimplantation uterus. Further, mass cytometric (CyTOF) evaluation of utero-placental leukocytes in Hmox1-/- MEx versus untreated pregnancies showed alteration in the abundance, surface marker repertoire, and cytokine profiles of multiple immune populations. Our data demonstrate the therapeutic potential of MEx to optimize the intrauterine immune environment and prevent maternal and fetal sequelae of preeclamptic disease.
Collapse
Affiliation(s)
- Elizabeth S Taglauer
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gareth R Willis
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Reis
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Vincent Yeung
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xianlan Liu
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine and Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
296
|
Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020; 11:437. [PMID: 33059757 PMCID: PMC7558244 DOI: 10.1186/s13287-020-01963-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has negatively impacted the global public health and the international economy; therefore, there is an urgent need for an effective therapy to treat COVID-19 patients. Mesenchymal stem cells (MSCs) have been proposed as an emerging therapeutic option for the SARS-CoV-2 infection. Recently, numerous clinical trials have been registered to examine the safety and efficacy of different types of MSCs and their exosomes for treating COVID-19 patients, with less published data on the mechanism of action. Although there is no approved effective therapy for COVID-19 as of yet, MSC therapies showed an improvement in the treatment of some COVID-19 patients. MSC’s therapeutic effect is displayed in their ability to reduce the cytokine storm, enhance alveolar fluid clearance, and promote epithelial and endothelial recovery; however, the safest and most effective route of MSC delivery remains unclear. The use of poorly characterized MSC products remains one of the most significant drawbacks of MSC-based therapy, which could theoretically promote the risk for thromboembolism. Optimizing the clinical-grade production of MSCs and establishing a consensus on registered clinical trials based on cell-product characterization and mode of delivery would aid in laying the foundation for a safe and effective therapy in COVID-19. In this review, we shed light on the mechanistic view of MSC therapeutic role based on preclinical and clinical studies on acute lung injury and ARDS; therefore, offering a unique correlation and applicability in COVID-19 patients. We further highlight the challenges and opportunities in the use of MSC-based therapy.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- Dermatology Department, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
297
|
Xiao K, He W, Guan W, Hou F, Yan P, Xu J, Zhou T, Liu Y, Xie L. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis 2020; 11:863. [PMID: 33060560 PMCID: PMC7567061 DOI: 10.1038/s41419-020-03034-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is a pulmonary disorder, which can result in fibrosis of the lung tissues. Recently, mesenchymal stem cell (MSC) has become a novel therapeutic method for ALI. However, the potential mechanism by which MSC regulates the progression of ALI remains blurry. The present study focused on investigating the mechanism underneath MSC-reversed lung injury and fibrosis. At first, we determined that coculture with MSC led to the inactivation of NF-κB signaling and therefore suppressed hedgehog pathway in LPS-treated MLE-12 cells. Besides, we confirmed that MSC-exosomes were responsible for the inhibition of EMT process in LPS-treated MLE-12 cells through transmitting miRNAs. Mechanism investigation revealed that MSC-exosome transmitted miR-182-5p and miR-23a-3p into LPS-treated MLE-12 cells to, respectively, target Ikbkb and Usp5. Of note, Usp5 interacted with IKKβ to hamper IKKβ ubiquitination. Moreover, co-inhibition of miR-182-5p and miR-23a-3p offset the suppression of MSC on EMT process in LPS-treated MLE-12 cells as well as in LPS-injured lungs of mice. Besides, the retarding effect of MSC on p65 nuclear translocation was also counteracted after co-inhibiting miR-182-5p and miR-23a-3p, both in vitro and in vivo. In summary, MSC-exosome transmitted miR-23a-3p and miR-182-5p reversed the progression of LPS-induced lung injury and fibrosis through inhibiting NF-κB and hedgehog pathways via silencing Ikbkb and destabilizing IKKβ.
Collapse
Affiliation(s)
- Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Wanxue He
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Wei Guan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Fei Hou
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Peng Yan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Jianqiao Xu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Ting Zhou
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Yuhong Liu
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China. .,Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.
| | - Lixin Xie
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.
| |
Collapse
|
298
|
Mahida RY, Matsumoto S, Matthay MA. Extracellular Vesicles: A New Frontier for Research in Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2020; 63:15-24. [PMID: 32109144 DOI: 10.1165/rcmb.2019-0447tr] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent research on extracellular vesicles (EVs) has provided new insights into pathogenesis and potential therapeutic options for acute respiratory distress syndrome (ARDS). EVs are membrane-bound anuclear structures that carry important intercellular communication mechanisms, allowing targeted transfer of diverse biologic cargo, including protein, mRNA, and microRNA, among several different cell types. In this review, we discuss the important role EVs play in both inducing and attenuating inflammatory lung injury in ARDS as well as in sepsis, the most important clinical cause of ARDS. We discuss the translational challenges that need to be overcome before EVs can also be used as prognostic biomarkers in patients with ARDS and sepsis. We also consider how EVs may provide a platform for novel therapeutics in ARDS.
Collapse
Affiliation(s)
- Rahul Y Mahida
- Cardiovascular Research Institute.,Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom; and
| | - Shotaro Matsumoto
- Cardiovascular Research Institute.,Department of Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michael A Matthay
- Cardiovascular Research Institute.,Department of Medicine, and.,Department of Anesthesia, University of California San Francisco, San Francisco, California
| |
Collapse
|
299
|
Gong J, Feng Z, Peterson AL, Carr JF, Vang A, Braza J, Choudhary G, Dennery PA, Yao H. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. J Pathol 2020; 252:411-422. [PMID: 32815166 DOI: 10.1002/path.5534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants, results from mechanical ventilation and hyperoxia, amongst other factors. Although most BPD survivors can be weaned from supplemental oxygen, many show evidence of cardiovascular sequelae in adulthood, including pulmonary hypertension and pulmonary vascular remodeling. Endothelial-mesenchymal transition (EndoMT) plays an important role in mediating vascular remodeling in idiopathic pulmonary arterial hypertension. Whether hyperoxic exposure, a known mediator of BPD in rodent models, causes EndoMT resulting in vascular remodeling and pulmonary hypertension remains unclear. We hypothesized that neonatal hyperoxic exposure causes EndoMT, leading to the development of pulmonary hypertension in adulthood. To test this hypothesis, newborn mice were exposed to hyperoxia and then allowed to recover in room air until adulthood. Neonatal hyperoxic exposure gradually caused pulmonary vascular and right ventricle remodeling as well as pulmonary hypertension. Male mice were more susceptible to developing pulmonary hypertension compared to female mice, when exposed to hyperoxia as newborns. Hyperoxic exposure induced EndoMT in mouse lungs as well as in cultured lung microvascular endothelial cells (LMVECs) isolated from neonatal mice and human fetal donors. This was augmented in cultured LMVECs from male donors compared to those from female donors. Using primary mouse LMVECs, hyperoxic exposure increased phosphorylation of both Smad2 and Smad3, but reduced Smad7 protein levels. Treatment with a selective TGF-β inhibitor SB431542 blocked hyperoxia-induced EndoMT in vitro. Altogether, we show that neonatal hyperoxic exposure caused vascular remodeling and pulmonary hypertension in adulthood. This was associated with increased EndoMT. These novel observations provide mechanisms underlying hyperoxia-induced vascular remodeling and potential approaches to prevent BPD-associated pulmonary hypertension by targeting EndoMT. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, PR China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Jennifer F Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Julie Braza
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
300
|
Giagnorio R, Hansmann G. Mineralocorticoid receptor blockade improves pulmonary hypertension and right ventricular function in bronchopulmonary dysplasia: a case report. Cardiovasc Diagn Ther 2020; 10:1686-1690. [PMID: 33224781 DOI: 10.21037/cdt.2020.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a combined pulmonary vascular and parenchymal disease, representing the most common cause of chronic lung disease (CLD) in infancy. Pulmonary hypertension (PH) is frequently associated with BPD and-if persistent-substantially increases mortality. We report on a 4-month-old, former preterm infant with BPD, severe PH and right heart failure who greatly and rapidly improved clinical status and right ventricular (RV) function by means of blood biomarkers [N-terminal prohormone of brain natriuretic peptide (NT-pro-BNP), cardiac troponin T] and transthoracic echocardiography, following the addition of spironolactone and hydrochlorothiazide to the treatment regimen.
Collapse
Affiliation(s)
- Roberto Giagnorio
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| |
Collapse
|