251
|
Wang J, Jin Z, Zhang W, Xie X, Song N, Lv T, Wu D, Cao Y. The preventable efficacy of β-glucan against leptospirosis. PLoS Negl Trop Dis 2019; 13:e0007789. [PMID: 31675378 PMCID: PMC6860453 DOI: 10.1371/journal.pntd.0007789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/18/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis, caused by pathogenic Leptospira species, has emerged as an important neglected zoonotic disease. Few studies have reported the preventable effects of immunoregulators, except for antibiotics, against leptospirosis. Generally, immunostimulatory agents are considered effective for enhancing innate immune responses. Many studies have found that beta-glucan (β-glucan) could be a potent and valuable immunostimulant for improving immune responses and controlling diseases. In this study, we investigated the preventable role of β-glucan against Leptospira infection in hamsters. First, β-glucan was administered 24 h prior to, during and after infection. The results showed that β-glucan increased the survival rate to 100%, alleviated tissue injury, and decreased leptospire loads in target organs. Additionally, we found using quantitative real-time PCR that application of β-glucan significantly enhanced the expression of Toll-like receptor (TLR) 2, interleukin (IL)-1β and iNOS at 2 dpi (days post infection) and reduced the increase of TLR2, IL-1β and iNOS induced by Leptospira at 5 dpi. Furthermore, to induce memory immunity, β-glucan was administered 5 days prior to infection. β-Glucan also significantly increased the survival rates and ameliorated pathological damage to organs. Moreover, we demonstrated that β-glucan-trained macrophages exhibited elevated expression of proinflammatory cytokines (IL-1β and IL-6) in vitro, indicating that β-glucan induces an enhanced inflammatory response against Leptospira infection. These results indicate that administration of β-glucan and other immunostimulants could be potential valuable options for the control of Leptospira infection.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Zhao Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Dianjun Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
252
|
Liu C, Choi MW, Xue X, Cheung PCK. Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12137-12143. [PMID: 31566976 DOI: 10.1021/acs.jafc.9b03294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study evaluated the immunomodulatory effects of two high-molecular-weight and structurally different mushroom polysaccharides, an alkali-soluble polysaccharide (mPRSon) and a water-soluble polysaccharide-protein complex (PRW), isolated previously from the sclerotia of Pleurotus rhinocerus, on the maturation of murine bone-marrow-derived dendritic cells (BMDCs). The effects of mPRSon and PRW on the expression of morphological change, surface molecules, phagocytic activity, and cytokine release in BMDCs were determined by flow cytometry and a mouse cytokine array. The results showed that both mPRSon and PRW could induce phenotypic and functional maturation of BMDCs. At the same time, mPRSon upregulated the expression of membrane phenotypic marker CD86 and PRW markedly upregulated CD40, CD80, and CD86. In addition, mPRSon could bind to the dectin-1 receptor and stimulate the release of MIP-1α, MIP-2, and IL-2, while PRW could bind to complement receptor 3 and toll-like receptor 2 with an upregulation of the expression of IL-2, IL-6, MIP-1α, MIP-2, RANTES, IL-12p40p70, IL-12p70, TIMP-1, IFN-γ, KC, MCP-1, and GCSF. The study provides additional information on how structural differences in sclerotial polysaccharides influence their immunomodulatory activities on BMDCs involving different PAMP receptors. It is anticipated that more understanding of the interactions between the sclerotial polysaccharides and their receptors in immune cells can facilitate their future application for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoran Liu
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Man Wing Choi
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Xingkui Xue
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
253
|
Abstract
Fungal bioactive polysaccharides are well known and have been widely used in Asia as a part of the traditional diet and medicine. In fact, some biopolymers (mainly β-glucans or glycoconjugate) have already made their way to the market as antitumor or immunostimulating drugs. In the last decades, the relationship between structure and activity of polysaccharides and their detailed mode of action have been the core of intense research to understand and utilize their medicinal properties. Most of the antitumor polysaccharides belong to conserved β-glucans, with a linear β-(1→3)-glucan backbone and attached β-(1→6) branch. Structurally different β-glucans appear to have different affinities toward their receptors and thus generate markedly different host responses. However, their antitumor activities are mainly influenced by molecular mass, degree of branching, conformation, and structure modification of the polysaccharides. β-Glucans act on several immune receptors including Dectin-1, complement receptor (CR3) and TLR-2/6, then trigger both innate and adaptive response and enhance opsonic and nonopsonic phagocytosis. Various receptor interactions explain the possible mode of actions of polysaccharides.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
254
|
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2019; 8:1020-1044. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral drug delivery remains the most preferred approach due to its multiple advantages. Recently there has been increasing interest in the development of advanced vehicles for oral delivery of different therapeutics. Among them, biomimetic and bioinspired strategies are emerging as novel approaches that are promising for addressing biological barriers encountered by traditional drug delivery systems. Herein we provide a state-of-the-art review on the current progress of biomimetic particulate oral delivery systems. Different biomimetic nanoparticles used for oral drug delivery are first discussed, mainly including ligand/antibody-functionalized nanoparticles, transporter-mediated nanoplatforms, and nanoscale extracellular vesicles. Then we describe bacteria-derived biomimetic systems, with respect to oral delivery of therapeutic proteins or antigens. Subsequently, yeast-derived oral delivery systems, based on either chemical engineering or bioengineering approaches are discussed, with emphasis on the treatment of inflammatory diseases and cancer as well as oral vaccination. Finally, bioengineered plant cells are introduced for oral delivery of biological agents. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of currently developed biomimetic oral therapies.
Collapse
Affiliation(s)
- Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Guoyu Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China. and The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
255
|
Hydrophobically Modified Glucan as an Amphiphilic Carbohydrate Polymer for Micellar Delivery of Myricetin. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24203747. [PMID: 31627423 PMCID: PMC6833000 DOI: 10.3390/molecules24203747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Myricetin (Myr) is a phytochemical with many functional properties. However, its hydrophobicity, low bioavailability, and stability limit its application. In this study, octadecanoate oat β-glucan (OGE) was synthesized and gained recognition as a self-assembled micelle forming a polymer with a critical micelle concentration (CMC) of 59.4 μg/mL. The Myr-loaded OGE micelle was then prepared and characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FT-IR) spectra. The water solubility of Myr was greatly enhanced by forming the Myr/OGE inclusion complex. Consequently, compared to free Myr, the retention of Myr in Myr-loaded OGE micelle was effectively increased during the intestinal digestion phase, and its antioxidant activity was also improved. Overall, our findings demonstrated the potential applications of OGE polymer for the development of prospective micelle in health food, cosmetics, and pharmaceutical fields because they can aid in the delivery of hydrophobic functional compounds like Myr.
Collapse
|
256
|
Seguin-Devaux C, Plesseria JM, Verschueren C, Masquelier C, Iserentant G, Fullana M, Józsi M, Cohen JHM, Dervillez X. FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol 2019; 13:2531-2553. [PMID: 31365168 PMCID: PMC6887587 DOI: 10.1002/1878-0261.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b‐binding protein C‐terminal‐α‐/β‐chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent‐positive regulator of the AP, the human factor H‐related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VHH targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab‐recognising epitopes [VHH(T) or VHH(P)], respectively, were used as HER2 anchoring moieties. Optimised high‐FHR4 valence heteromultimeric immunoconjugates [FHR4/VHH(T) or FHR4/VHH(P)] were selected by sequential cell cloning and a selective multistep His‐Trap purification. Optimised FHR4‐heteromultimeric immunoconjugates successfully overcame FH‐mediated complement inhibition threshold, causing increased C3b deposition on SK‐OV‐3, BT474 and SK‐BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement‐dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane‐anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement‐dependent cell‐mediated cytotoxicity. We showed that the degree of FHR4‐multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH‐mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady‐state towards activation on tumour cell surface.
Collapse
Affiliation(s)
- Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Plesseria
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Cécile Masquelier
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marie Fullana
- Société d'Accélération des Transferts de Technologies du Nord, Direction Territoriale Reims, Reims, France
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Life Sciences Research Unit (LSRU), Signal Transduction Laboratory, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
257
|
Li X, Xie Y, Peng J, Hu H, Wu Q, Yang BB. Ganoderiol F purified from Ganoderma leucocontextum retards cell cycle progression by inhibiting CDK4/CDK6. Cell Cycle 2019; 18:3030-3043. [PMID: 31544588 DOI: 10.1080/15384101.2019.1667705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study was designed to purify molecules possess anti-cancer cell activity from the fruit body of Ganoderma leucocontextum. Bio-activity-guided purification and chromatographic separation of Ganoderma leucocontextum extract led to the enrichment of bioactive fractions and isolation of a single compound. The purified compound was identified as Ganoderiol F, which induced cancer cell death. In the in vivo experiments, we founded ethanol extract and ethyl acetate fraction inhibited tumor growth in the mice injected with 4T1 cells. We found that Ganoderiol F-mediated suppression of breast cancer cell viability occurred through cell cycle arrest. Ganoderiol F down-regulated expression of cyclin D, CDK4, CDK6, cyclin E and CDK2 and inhibited cell cycle progression arresting the cells in G1 phase. In addition, Ganoderiol F up-regulated pro-apoptotic Foxo3, down-regulated anti-apoptotic c-Myc, Bcl-2 and Bcl-w leading to apoptosis in human breast cancer cells MDA-MB-231. These results showed that c-Myc, cyclin D-CDK4/CDK6 and cyclin E-CDK2 are the central components of Ganoderiol F regulation of cell cycle progression. Hence Ganoderiol F may serve as a potential CDK4/CDK6 inhibitor for breast cancer therapy. Abbreviations: GLE: Ganoderma leucocontextum ethanol extract; GLEA: Ganoderma leucocontextum ethyl acetate fraction; GLPE: Ganoderma leucocontextum petroleum ether fraction; RP-HPLC: reversed-phase high-performance liquid chromatograph; DMEM: Dulbecco's modified Eagle's medium; FBS: fetal bovine serum; PAGE: polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences , Guangzhou , China.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre , Toronto , Canada
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences , Guangzhou , China.,Yuewei Edible Fungi Technology Co. Ltd ., Guangzhou , China
| | - Juanjuan Peng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences , Guangzhou , China
| | - Huiping Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences , Guangzhou , China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences , Guangzhou , China
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre , Toronto , Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto , Canada
| |
Collapse
|
258
|
Meng Y, Qu Y, Wu W, Chen L, Sun L, Tai G, Zhou Y, Cheng H. Galactan isolated from Cantharellus cibarius modulates antitumor immune response by converting tumor-associated macrophages toward M1-like phenotype. Carbohydr Polym 2019; 226:115295. [PMID: 31582086 DOI: 10.1016/j.carbpol.2019.115295] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) with an M2-like phenotype have been linked to the proliferation, invasion and metastasis of tumor cells. Resetting tumor-associated macrophages represents an attractive target for an effective cancer immunotherapy. WCCP-N-b, a novel linear 3-O-methylated galactan, isolated from Cantharellus cibarius, can convert tumor-promoting M2-like macrophages to tumor-inhibiting M1-like phenotype. On a cellular mechanistic level, WCCP-N-b inhibited M2-like macrophages polarization through suppression of STAT6 activation. Furthermore, WCCP-N-b increased the phosphorylation of mitogen-activated protein kinases (MAPKs) and degradation of IκB-α through targeting Toll-like receptor 2 (TLR2). The activation of MAPKs and degradation of IκB-α were responsible for converting M2-like macrophages to M1-like macrophages. Importantly, cell culture supernatants of WCCP-N-b-treated M2-like macrophages could inhibit the cell viability of B16F1 and B16F10. Our findings provide a potential natural and harmless polysaccharide for macrophage-based tumor immunotherapy.
Collapse
Affiliation(s)
- Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yunhe Qu
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Wenjing Wu
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Lei Chen
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Lin Sun
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Hairong Cheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
259
|
Chae JS, Shin H, Song Y, Kang H, Yeom CH, Lee S, Choi YS. Yeast (1 → 3)-(1 → 6)-β-d-glucan alleviates immunosuppression in gemcitabine-treated mice. Int J Biol Macromol 2019; 136:1169-1175. [DOI: 10.1016/j.ijbiomac.2019.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
260
|
Nguyen TM, Mandiki SNM, Tran TNT, Larondelle Y, Mellery J, Mignolet E, Cornet V, Flamion E, Kestemont P. Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β-glucan. FISH & SHELLFISH IMMUNOLOGY 2019; 92:288-299. [PMID: 31195114 DOI: 10.1016/j.fsi.2019.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Omnivorous fish species such as the common carp (Cyprinus carpio) are able to biosynthesise long chain polyunsaturated fatty acids (LC-PUFAs) from plant oil PUFA precursors, but the influence of the amount and quality of the LC-PUFAs biosynthesised from these oils on the immunocompetence status of the fish has received little attention. This study aims to evaluate whether the conversion of PUFA by carp induces a sufficient biosynthesis of LC-PUFA to maintain a good immunocompetence status in this species. Six iso-nitrogenous (crude protein = 39.1%) and iso-lipidic (crude lipids = 10%) diets containing three different lipid sources (cod liver oil (CLO) as fish oil; linseed oil (LO) and sunflower oil (SFO) as plant oils) were formulated with or without β-glucan supplementation at 0.25 g/kg diet. Juvenile carp (16.3 ± 0.6 g initial body weight) were fed a daily ration of 4% body weight for 9 weeks and then infected at day 64 with the bacteria Aeromonas hydrophyla. No significant differences in survival rate, final body weight, specific growth rate and feed conversion rate were observed between diets. After bacterial infection, mortality rate did not differ between fish fed CLO and plant oil-based diets, indicating that the latter oils did not affect the overall immunocompetence status of common carp. Plant oil-based diets did not alter lysozyme activity in healthy and infected fish. No negative effects of plant oils on complement activity (ACH50) were observed in healthy fish, even if both plant oil-based diets induced a decrease in stimulated fish two days after infection. Furthermore, the levels of various immune genes (nk, lys, il-8, pla, pge, alox) were not affected by plant oil-based diets. The expression of pla and pge genes were higher in SFO-fed fish than in CLO ones, indicating that this plant oil rich in linoleic acid (LA) better stimulated the eicosanoid metabolism process than fish oil. In response to β-glucan supplementation, some innate immune functions seemed differentially affected by plant oil-based diets. LO and SFO induced substantial LC-PUFA production, even if fish fed CLO displayed the highest EPA and DHA levels in tissues. SFO rich in LA induced the highest ARA levels in fish muscle while LO rich in α-linolenic acid (ALA) sustained higher EPA production than SFO. A significantly higher fads-6a expression level was observed in SFO fish than in LO ones, but this was not observed for elovl5 expression. In conclusion, the results show that common carp fed plant oil-based diets are able to produce substantial amounts of LC-PUFA for sustaining growth rate, immune status and disease resistance similar to fish fed a fish oil-based diet. The differences in the production capacity of LC-PUFAs by the two plant oil-based diets were associated to a differential activation of some immune pathways, explaining how the use of these oils did not affect the overall immunocompetence of fish challenged with bacterial infection. Moreover, plant oil-based diets did not induce substantial negative effects on the immunomodulatory action of β-glucans, confirming that these oils are suitable for sustaining a good immunocompetence status in common carp.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thi Nang Thu Tran
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Julie Mellery
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
261
|
Patanapongpibul M, Chen QH. Immune Modulation of Asian Folk Herbal Medicines and Related Chemical Components for Cancer Management. Curr Med Chem 2019; 26:3042-3067. [DOI: 10.2174/0929867324666170705112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023]
Abstract
Various exciting immunotherapies aiming to address immune deficiency induced
by tumor and treatment hold promise in improving the quality of life and survival
rate of cancer patients. It is thus becoming an important and rewarding arena to develop
some appropriate immune modulators for cancer prevention and/or treatment. Exploitation
of natural products-based immune modulators is of particular imperative because the
potential of numerous traditional herbal medicines and edible mushrooms in boosting
human immune system has long been verified by folklore practices. This review summarizes
the immune modulations of various herbal medicines and edible mushrooms, their
crude extracts, and/or key chemical components that have been, at least partly, associated
with their cancer management. This article also tabulates the origin of species, key
chemical components, and clinical studies of these herbal medicines and edible mushrooms.
Collapse
Affiliation(s)
- Manee Patanapongpibul
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, United States
| | - Qiao-Hong Chen
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, United States
| |
Collapse
|
262
|
Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym 2019; 218:53-62. [DOI: 10.1016/j.carbpol.2019.04.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
|
263
|
Geller A, Shrestha R, Yan J. Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. Int J Mol Sci 2019; 20:E3618. [PMID: 31344853 PMCID: PMC6695648 DOI: 10.3390/ijms20153618] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
An increased understanding of the complex mechanisms at play within the tumor microenvironment (TME) has emphasized the need for the development of strategies that target immune cells within the TME. Therapeutics that render the TME immune-reactive have a vast potential for establishing effective cancer interventions. One such intervention is β-glucan, a natural compound with immune-stimulatory and immunomodulatory potential that has long been considered an important anti-cancer therapeutic. β-glucan has the ability to modulate the TME both by bridging the innate and adaptive arms of the immune system and by modulating the phenotype of immune-suppressive cells to be immune-stimulatory. New roles for β-glucan in cancer therapy are also emerging through an evolving understanding that β-glucan is involved in a concept called trained immunity, where innate cells take on memory phenotypes. Additionally, the hollow structure of particulate β-glucan has recently been harnessed to utilize particulate β-glucan as a delivery vesicle. These new concepts, along with the emerging success of combinatorial approaches to cancer treatment involving β-glucan, suggest that β-glucan may play an essential role in future strategies to prevent and inhibit tumor growth. This review emphasizes the various characteristics of β-glucan, with an emphasis on fungal β-glucan, and highlights novel approaches of β-glucan in cancer therapy.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
264
|
Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019; 11:nu11071528. [PMID: 31284389 PMCID: PMC6682972 DOI: 10.3390/nu11071528] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS). The etiology of this multifactorial disease has not been clearly defined. Conventional medical treatment of MS has progressed, but is still based on symptomatic treatment. One of the key factors in the pathogenesis of MS is oxidative stress, enhancing inflammation and neurodegeneration. In MS, both reactive oxygen and nitrogen species are formed in the CNS mainly by activated macrophages and microglia structures, which can lead to demyelination and axon disruption. The course of MS is associated with the secretion of many inflammatory and oxidative stress mediators, including cytokines (IL-1b, IL-6, IL-17, TNF-α, INF-γ) and chemokines (MIP-1a, MCP-1, IP10). The early stage of MS (RRMS) lasts about 10 years, and is dominated by inflammatory processes, whereas the chronic stage is associated with neurodegenerative axon and neuron loss. Since oxidative damage has been known to be involved in inflammatory and autoimmune-mediated processes, antioxidant therapy could contribute to the reduction or even prevention of the progression of MS. Further research is needed in order to establish new aims for novel treatment and provide possible benefits to MS patients. The present review examines the roles of oxidative stress and non-pharmacological anti-oxidative therapies in MS.
Collapse
Affiliation(s)
- Elzbieta Dorota Miller
- Department of Physical Medicine, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland
- Neurorehabilitation Ward, General Hospital no III, Milionowa 14, 90-001 Lodz, Poland
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
265
|
|
266
|
Lee NK, Hong JY, Yi SH, Hong SP, Lee JE, Paik HD. Bioactive compounds of probiotic Saccharomyces cerevisiae strains isolated from cucumber jangajji. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
267
|
β-Glucan, a dietary fiber in effective prevention of lifestyle diseases – An insight. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
268
|
β-Glucan hybridized poly(ethylene glycol) microgels for macrophage-targeted protein delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
269
|
Maity GN, Maity P, Choudhuri I, Bhattacharyya N, Acharya K, Dalai S, Mondal S. Structural studies of a water insoluble β-glucan from Pleurotus djamor and its cytotoxic effect against PA1, ovarian carcinoma cells. Carbohydr Polym 2019; 222:114990. [PMID: 31320072 DOI: 10.1016/j.carbpol.2019.114990] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 11/15/2022]
Abstract
A water insoluble β-glucan (PS), with molecular mass ∼9.16 × 104 Da was isolated from the 4% alkaline extract of an edible mushroom, Pleurotus djamor and found to consist of (1→3)-β-d-glucopyranosyl moiety. The structure of the PS was elucidated on the basis of total hydrolysis, methylation analysis, periodate oxidation, and NMR experiments (1H, 13C, DQF-COSY, DEPT-135, and HSQC). The structure of the repeating unit of the polysaccharide was established as: →3)-β-d-Glcp-(1→. The water insoluble β-glucan showed cytotoxic effect against PA1 cells, where˜50% population was destroyed at 100 μg/mL concentration, and almost all cells at 250 μg/mL concentration. The wound healing assay showed significant anticarcinogenic effect against ovarian carcinoma PA1 cells after 48 h of treatment.
Collapse
Affiliation(s)
- Gajendra Nath Maity
- Department of Microbiology, Panskura Banamali College, Panskura, Purba Midnapore, 721152, West Bengal, India
| | - Prasenjit Maity
- Department of Chemistry, Panskura Banamali College, Panskura, Purba Midnapore, 721152, West Bengal, India; Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India; Department of Chemistry, Pingla Thana Mahavidyalaya, Maligram, 721140, Paschim Medinipur, West Bengal, India
| | - Indranil Choudhuri
- Department of Biotechnology, Panskura Banamali College, Panskura, Purba Medinipur, 721152, West Bengal, India
| | - Nandan Bhattacharyya
- Department of Biotechnology, Panskura Banamali College, Panskura, Purba Medinipur, 721152, West Bengal, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sudipta Dalai
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Soumitra Mondal
- Department of Chemistry, Panskura Banamali College, Panskura, Purba Midnapore, 721152, West Bengal, India.
| |
Collapse
|
270
|
Inhibition of tumor growth by β-glucans through promoting CD4+ T cell immunomodulation and neutrophil-killing in mice. Carbohydr Polym 2019; 213:370-381. [DOI: 10.1016/j.carbpol.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022]
|
271
|
Pramudya M, Wahyuningsih SPA. Immunomodulatory potential of polysaccharides from Coriolus versicolor against intracellular bacteria Neisseria gonorrhoeae. Vet World 2019; 12:735-739. [PMID: 31439986 PMCID: PMC6661474 DOI: 10.14202/vetworld.2019.735-739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: For many years, people use natural products from the plant and fungal to improve immune response against microorganism. This study aimed to investigate the immunomodulatory properties of polysaccharides (PS) from Coriolus versicolor in mice infected by intracellular bacteria Neisseria gonorrhoeae. Materials and Methods: Thirty-six female BALB/C mice were divided into six groups: Normal control, negative control, positive control, P1 (PS before infection), P2 (PS after infection), and P3 (PS before and after infection). PS were administrated for 10 days. N. gonorrhoeae was infected twice with 2 weeks gap from the first to second exposure with a dose of 106 cells. 1 week after the end of treatment, level of oxidants, innate immune responses, and adaptive immune responses were measured. Results: This study showed that PS administration could restore the number of leukocytes as normal but could not enhance the number of phagocytes and its activity. PS administration also showed immunosuppression activity by lowering nitric oxide levels in P2 and P3 groups (p<0.05). This result showed that PS prevent over-expression of pro-inflammatory cytokines by decreasing phagocytic activity. Contrast with innate immune response result; PS administration could significantly increase interferon-gamma level in P1, P2, and P3 groups (p<0.05). Level of antibodies was significantly increased in the P3 group (p<0.05). PS administration also showed an increased level of tumor necrosis factor-α, but the difference was not significant (p>0.05). Conclusion: PS enhance adaptive immunity due to the capability of N. gonorrhoeae that able to survive and replicate in phagocytes. Thus, PS from C. versicolor could be potentially be used as a natural immunomodulator against intracellular bacteria.
Collapse
Affiliation(s)
- Manikya Pramudya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
272
|
Ge H, Cortezon-Tamarit F, Wang HC, Sedgwick AC, Arrowsmith RL, Mirabello V, Botchway SW, James TD, Pascu SI. Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides. NANOSCALE 2019; 11:9498-9507. [PMID: 31046042 DOI: 10.1039/c8nr10344e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new supramolecular polysaccharide complex, comprising a functionalised coumarin tag featuring a boronic acid and β-d-glucan (a natural product extract from barley, Hordeum Vulgare) was assembled based on the ability of the boronate motif to specifically recognise and bind to 1,2- or 1,3-diols in water. The complexation ratio of the fluorophore : biopolymer strand was determined from fluorescence titration experiments in aqueous environments and binding isotherms best described this interaction using a 2 : 1 model with estimated association constants of K2:1a1 = 5.0 × 104 M-1 and K2:1a2 = 3.3 × 1011 M-1. The resulting hybrid (denoted 5@β-d-glucan) was evaluated for its cellular uptake as an intact functional biopolymer and its distribution compared to that of the pinacol-protected coumarin boronic acid derivative using two-photon fluorescence lifetime imaging microscopy (FLIM) in living cells. The new fluorescent β-d-glucan conjugate has a high kinetic stability in aqueous environments with respect to the formation of the free boronic acid derivative compound 5 and retains fluorescence emissive properties both in solution and in living cells, as shown by two-photon fluorescence spectroscopy coupled with time-correlated single photon counting (TCSPC). Super-resolution fluorescence imaging using Airyscan detection as well as TM AFM and Raman spectroscopy investigations confirmed the formation of fluorescent and nano-dimensional aggregates of up to 20 nm dimensions which self-assemble on several different inert surfaces, such as borosilicate glass and mica surfaces, and these aggregates can also be observed within living cells with optical imaging techniques. The cytoplasmic distribution of the 5@β-d-glucan complex was demonstrated in several different cancer cell lines (HeLa and PC-3) as well as in healthy cells (J774.2 macrophages and FEK-4). Both new compounds (pinacol protected boronated coumarin) 5-P and its complex hybrid 5@β-d-glucan successfully penetrate cellular membranes with the minimum morphological alterations to cells and distribute evenly in the cytoplasm. The glucan biopolymer retains its activity towards macrophages in the presence of the coumarin tag functionality, demonstrating the potential of this natural β-d-glucan to act as a functional self-assembled theranostic scaffold capable of mediating the delivery of anchored small organic molecules with imaging and drug delivery applications.
Collapse
Affiliation(s)
- Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | - Hui-Chen Wang
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin, 105E, 24th Street, Austin, TX 78712-1224, USA
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Stanley W Botchway
- Central Laser Facility, STFC Rutherford Appleton Laboratory, and Research Complex at Harwell, Harwell Campus, Didcot, OX11 0QX, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
273
|
Upadhyay TK, Fatima N, Sharma A, Sharma D, Sharma R. Nano-Rifabutin entrapment within glucan microparticles enhances protection against intracellular Mycobacterium tuberculosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:427-435. [PMID: 30672352 DOI: 10.1080/21691401.2018.1559180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, yeast-derived glucan particles (GP) have emerged as novel drug delivery agents that provide for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. In our previous study, we prepared GP loaded with high payload (40.5 + 1.9%) of rifabutin (RB) nano-particles [(RB-NPs)-GP]. We investigated the anti-mycobacterial efficacy and cellular activation responses within Mycobacterium tuberculosis (M. tuberculosis) infected J774 macrophage cells following exposure to the (RB-NPs)-GP formulation. The exposure was seen to augment a robust innate immune response including the induction of reactive oxygen and nitrogen species, autophagy and apoptosis within M. tuberculosis infected macrophage. Further, the efficacy testing of these particles in murine macrophage exhibited that the (RB-NPs)-GP formulation enhanced the efficacy of RB drug by ∼2.5 fold. The study suggests that the set of innate responses conducive to killing intracellular bacteria evoked by (RB-NPs)-GP play a pivotal role in impeding the intracellular M. tuberculosis survival, resulting in enhanced efficacy of the formulation. Our results establish that the (RB-NPs)-GP formulation not only activate M. tuberculosis infected, immune-suppressed macrophage, but also adds significantly to the efficacy of loaded drug, and thus forms a promising approach that should be explored further as an alternative or adjunct form of TB therapy. Highlights Nano-Rifabutin loaded Glucan microparticles [(RB-NPs)-GP] administered to M. tuberculosis infected macrophage. (RB-NPs)-GP induces appropriate innate immune responses in host macrophage. Mycobactericidal Effect of Rifabutin was markedly enhanced by its nano-entrapment in GP. Intracellular drug delivery supplements the innate response in M. tuberculosis infected macrophage.
Collapse
Affiliation(s)
- Tarun K Upadhyay
- a Immunobiochemistry Laboratory Lab, Department of Biosciences, Faculty of Science , Integral University , Lucknow , India
| | - Nida Fatima
- a Immunobiochemistry Laboratory Lab, Department of Biosciences, Faculty of Science , Integral University , Lucknow , India
| | - Akanksha Sharma
- a Immunobiochemistry Laboratory Lab, Department of Biosciences, Faculty of Science , Integral University , Lucknow , India
| | - Deepak Sharma
- b Pharmaceutics Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Rolee Sharma
- a Immunobiochemistry Laboratory Lab, Department of Biosciences, Faculty of Science , Integral University , Lucknow , India
| |
Collapse
|
274
|
Li J, Cai C, Zheng M, Hao J, Wang Y, Hu M, Fan L, Yu G. Alkaline Extraction, Structural Characterization, and Bioactivities of (1→6)-β-d-Glucan from Lentinus edodes. Molecules 2019; 24:molecules24081610. [PMID: 31022848 PMCID: PMC6515283 DOI: 10.3390/molecules24081610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study is to develop a robust approach to obtain β glucans from Lentinus edodes and to characterize their structural and biological properties for sustainable utilization. The alkali extraction was optimized with an orthogonal experimental design, and a concise process for obtaining specific targeting polysaccharides from Lentinus edodes was developed in this study. After purification with a Q-Sepharose Fast Flow strong anion-exchange column, the monosaccharide composition, a methylation analysis, and NMR spectroscopy were employed for their structural characterizations. LeP-N2 was found to be composed of (1→6)-β-d-glucans with minor β-(1→3) glucosidic side chains. Atomic force microscopy (AFM) and high-performance gel permeation chromatography–refractive index–multi-angle laser light scattering (HPGPC-RI-MALLS) also revealed LeP-N2 exhibiting a compact unit in aqueous solution. This (1→6)-β-d-glucan was tested for antioxidant activities with IC50 at 157 μg/mL. Moreover, RAW 264.7 macrophage activation indicated that the release of nitric oxide (NO) and reactive oxygen species (ROS) were markedly increased with no cytotoxicity at a dose of 100 μg/mL. These findings suggest that the (1→6)-β-d-glucans obtained from Lentinus edodes could serve as potential agents in the fields of functional foods or medicine.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Mengmeng Zheng
- Laboratory of Chinese Medicine Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Ya Wang
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Minghua Hu
- Infinite Pole (China) Co., LTD., Guangzhou 510600, China.
| | - Luodi Fan
- Infinite Pole (China) Co., LTD., Guangzhou 510600, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
275
|
Horst G, Levine R, Chick R, Hofacre C. Effects of beta-1,3-glucan (AletaTM) on vaccination response in broiler chickens. Poult Sci 2019; 98:1643-1647. [PMID: 30476311 DOI: 10.3382/ps/pey523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
This 42-day study evaluated the effects of dietary supplementation with β-1,3-glucan (Aleta™) on the vaccination response to Newcastle disease virus (NDV), avian infectious bronchitis virus (IBV), and infectious bursal disease (IBD) in a non-challenged environment. This trial included 600 chicks (all vaccinated with IBD at the hatchery) which were assigned to 1 of 3 treatments: vaccination (NDV, IBV), no vaccination, or vaccination combined with feed supplemented with Aleta (100 g/MT of feed). The vaccination with Aleta treatment group showed a trend for improved FCR that was not statistically significant. Control birds that were not vaccinated for IBV had significantly lower IBV titers on day 21 compared to birds that were vaccinated (both with and without Aleta). Surprisingly, there was significant separation among treatment groups for NDV titer levels, especially on day 21, where birds vaccinated and supplemented with Aleta had significantly higher titer levels compared to vaccination alone or no vaccination at all. Critically, only 14% of the birds receiving the vaccine plus Aleta had titer levels below the critical titer threshold for immunity compared to 28% of the birds receiving the vaccine alone and 40% of the unvaccinated birds. This suggests that Aleta supplementation may help to improve the vaccination response by birds, especially for NDV.
Collapse
Affiliation(s)
- G Horst
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | - R Levine
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | | | - C Hofacre
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677, USA
| |
Collapse
|
276
|
Dou H, Chang Y, Zhang L. Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:361-381. [PMID: 31030754 DOI: 10.1016/bs.pmbts.2019.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coriolus versicoloris is one of the well-known traditional medicinal mushrooms used in China for over 2000 years. Polysaccharopeptide (PSP) is identified as the major bioactive component, which can be obtained from the mycelium or fermentation broth of Coriolus versicolor. The polysaccharide content in PSP is ~60% and the peptide content in PSP is ~10-30%. The main monosaccharides found in PSP include glucose, mannose, and a small amount of galactose, xylose, and fucose. β-Glucan is one of the identified components in PSP with the established immunomodulatory function. PSP was approved by the authority and has been used clinically in Japan and China since 1970s. PSP is helpful in improving the survival and quality of life in patients suffering cancers, hepatopathy, hyperlipidemia, chronic bronchitis, and other complex diseases. In this article, the preclinical and clinical studies of PSP are summarized over the past 41 years based on a literature search covering the CNKI, VIP, and Wanfang databases. Current studies support PSP as an immunotherapeutic. PSP activates and enhances the function and recognition ability of immune cells, strengthens the phagocytosis of macrophages, increases the expressions of cytokines and chemokines such as tumor necrosis factor-α (TNF-α), interleukins (IL-1β and IL-6), histamine, and prostaglandin E, stimulates the filtration of both dendritic cells and T-cells into tumors, and ameliorates the adverse events associated with chemotherapy. In recent years, immunotherapy has been widely used in cancer treatment. However, to use PSP as an immunotherapeutic at world stage, further chemical, biochemical and pharmacological studies of PSP are needed.
Collapse
Affiliation(s)
- Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yajing Chang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
277
|
Lin TY, Tseng AJ, Qiu WL, Chao CH, Lu MK. A sulfated glucan from Antrodia cinnamomea reduces Slug expression through regulation of TGFβ/AKT/GSK3β axis in lung cancer. Carbohydr Polym 2019; 210:175-184. [DOI: 10.1016/j.carbpol.2019.01.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/02/2023]
|
278
|
Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydr Polym 2019; 210:389-398. [DOI: 10.1016/j.carbpol.2019.01.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
|
279
|
Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 2019; 24:molecules24071251. [PMID: 30935016 PMCID: PMC6479769 DOI: 10.3390/molecules24071251] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Glucans are part of a group of biologically active natural molecules and are steadily gaining strong attention not only as an important food supplement, but also as an immunostimulant and potential drug. This paper represents an up-to-date review of glucans (β-1,3-glucans) and their role in various immune reactions and the treatment of cancer. With more than 80 clinical trials evaluating their biological effects, the question is not if glucans will move from food supplement to widely accepted drug, but how soon.
Collapse
|
280
|
Zhang Y, Jiang Y, Zhang M, Zhang L. Ganoderma sinense polysaccharide: An adjunctive drug used for cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:165-177. [PMID: 31030747 DOI: 10.1016/bs.pmbts.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ganoderma sinense is one of well-known herb medicine and has been used for 2000 years in China. G. lucidum and G. sinense are two family members of Ganoderma, a genus of polypore fungi. In Chinese, "Lingzhi" is designated as G. lucidum or red "Lingzhi" whereas "Zizhi" as G. sinense or purple "Lingzhi." The polysaccharides or glycans extracted from both G. lucidum and G. sinense have been developed into clinical drugs and recorded in Chinese Pharmacopeia. G. lucidum polysaccharide (GLPS) is one of a few non-hormonal drugs used for treating neurosis, polymyositis, dermatomyositis, atrophic myotonia and muscular dystrophy in China during the past 40 years. In contrast, G. sinense polysaccharide (GSP) tablet is approved as an adjunctive therapeutic drug in China for treating leukopenia and hematopoietic injury caused by concurrent chemo/radiation therapy during cancer treatment by the State Food and Drug Administration (SFDA) in 2010. β-glucan, an established immunostimulanting polysaccharide, is one of the components in GSP. In this study, we will review the biological activities and preclinical studies of GSP in China based on literatures searches from CNKI (China National Knowledge Infrastructure), VIP (Chongqing VIP Chinese Scientific Journals Database), Wanfang database, and PubMed database. Both basic and preclinical studies showed that GSP has antitumor, antioxidant, anticytopenia, and unique mushroom-poison detoxification properties that are different from that of GLPS. Our goal is to provide a molecular picture that would allow in-depth evaluation of GSP as one of few glycan-based drugs that has been used as an immunomodulatory adjunctive drug during cancer therapy.
Collapse
Affiliation(s)
- Yiran Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yifei Jiang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
281
|
Guo L, Cheng X, Chen H, Chen C, Xie S, Zhao M, Liu D, Deng Q, Liu Y, Wang X, Chen X, Wang J, Yin Z, Qi S, Gao J, Ma Y, Guo N, Shi M. Induction of breast cancer stem cells by M1 macrophages through Lin-28B-let-7-HMGA2 axis. Cancer Lett 2019; 452:213-225. [PMID: 30917918 DOI: 10.1016/j.canlet.2019.03.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
Proinflammatory macrophage (M1) is now being suggested as a potential therapeutic strategy for cancer because of its tumoricidal capacity. However, few studies have been focused directly on the effects of M1 macrophages on cancer cells. Here, we found that M1 induced a subpopulation of CD44high/CD24-/low or ALDH1+ cells with CSC-like phenotypes from different types of breast cancer cells (BCCs) in a paracrine manner. Stat3/NF-κB pathways in BCCs were activated by proinflammatory cytokines, igniting Lin-28B-let-7-HMGA2 axis to induce CSC through epithelial-mesenchymal transition (EMT). Previously, we reported that Stat3-coordinated Lin-28B-let-7-HMGA2 axis initiated EMT in BCCs. Here, inhibition of Stat3/NF-κB pathways or Lin-28B-let-7-HMGA2 axis suppressed EMT/CSCs program. Notably, HMGA2 knockdown directly repressed M1-induced CSC formation and expression of Klf-4 and Nanog. Meanwhile, prolonged coculture with BCCs endowed M1 with M2 properties. M1 supernatant induced CSC from non-stem cancer cells, while M2 supernatant sustained a higher proportion of ALDH1+ cells. Our data suggest that macrophages might modulate CSC formation and maintenance by transferring between M1/M2 phenotype. Given that M1 are being considered as a promising immunotherapy tool, it is important to inhibit their CSC-inducing potential by targeting key molecules and pathways.
Collapse
Affiliation(s)
- Liang Guo
- Institute of Basic Medical Sciences, Beijing, 100850, PR China.
| | - Xiang Cheng
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Hongyu Chen
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Changguo Chen
- Department of Clinical Laboratory, The Navy General Hospital, Beijing, 100048, PR China
| | - Shuai Xie
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, PR China
| | - Min Zhao
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Dan Liu
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Que Deng
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Yanjun Liu
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, PR China
| | - Xiaomeng Wang
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Xintian Chen
- Department of Cancer Biotherapy, Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, PR China
| | - Jiangong Wang
- Department of Cancer Biotherapy, Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, PR China
| | - Zhaoyang Yin
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing, 100048, PR China
| | - Siyong Qi
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing, 100048, PR China
| | - Jiangping Gao
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing, 100048, PR China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, PR China
| | - Ning Guo
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Ming Shi
- Institute of Basic Medical Sciences, Beijing, 100850, PR China.
| |
Collapse
|
282
|
Vetvicka V, Gover O, Karpovsky M, Hayby H, Danay O, Ezov N, Hadar Y, Schwartz B. Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
283
|
Gissibl A, Care A, Sun A, Hobba G, Nevalainen H, Sunna A. Development of screening strategies for the identification of paramylon-degrading enzymes. J Ind Microbiol Biotechnol 2019; 46:769-781. [PMID: 30806871 DOI: 10.1007/s10295-019-02157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Enzymatic degradation of the β-1,3-glucan paramylon could enable the production of bioactive compounds for healthcare and renewable substrates for biofuels. However, few enzymes have been found to degrade paramylon efficiently and their enzymatic mechanisms remain poorly understood. Thus, the aim of this work was to find paramylon-degrading enzymes and ways to facilitate their identification. Towards this end, a Euglena gracilis-derived cDNA expression library was generated and introduced into Escherichia coli. A flow cytometry-based screening assay was developed to identify E. gracilis enzymes that could hydrolyse the fluorogenic substrate fluorescein di-β-D-glucopyranoside in combination with time-saving auto-induction medium. In parallel, four amino acid sequences of potential E. gracilis β-1,3-glucanases were identified from proteomic data. The open reading frame encoding one of these candidate sequences (light_m.20624) was heterologously expressed in E. coli. Finally, a Congo Red dye plate assay was developed for the screening of enzyme preparations potentially able to degrade paramylon. This assay was validated with enzymes assumed to have paramylon-degrading activity and then used to identify four commercial preparations with previously unknown paramylon degradation ability.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
| | - Graham Hobba
- Agritechnology Pty Ltd, 36 Underwood Road, Borenore, NSW, 2800, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
284
|
Çetin E. Pretreatment with β-glucan attenuates isoprenaline-induced myocardial injury in rats. Exp Physiol 2019; 104:505-513. [PMID: 30677174 DOI: 10.1113/ep086739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/21/2019] [Indexed: 01/13/2023]
Abstract
NEW FINDINGS What is the central question of this study? The study was designed to assess whether pretreatment with β-glucan could exert any protective action against isoprenaline-induced myocardial injury in rats. What is the main finding and its importance? β-Glucan pretreatment could reduce myocardial injury by restoring cardiac biomarkers, antioxidant status, apoptosis and histopathological changes. Therefore, β-glucan might have the potential to be used in the prevention and/or treatment of myocardial infarction. ABSTRACT This study was designed to investigate the cardioprotective effect of pretreatment with β-glucan, the glucose polymer derived from the yeast Saccharomyces cerevisiae, against isoprenaline (ISO)-induced myocardial injury in rats by studying biochemical cardiac markers, antioxidant parameters, apoptosis, ECG and histopathological changes. Male Sprague-Dawley rats were randomly divided into four treatment groups, namely control, β-glucan, isoprenaline and β-glucan + isoprenaline. The β-glucan treatment group received β-glucan (50 mg kg-1 day-1 , p.o.) for 10 days. Myocardial injury was induced by ISO administration (100 mg kg-1 , s.c.) twice, at an interval of 24 h, on the 9th and 10th days. Isoprenaline administration resulted in a marked increase in heart rate, ST segment elevation, myocardial malondialdehyde content, cardiac marker levels (lactate dehydrogenase, creatine kinase-MB and high-sensitivity cardiac troponin T) and apoptotic index, and a significant decrease in R-wave amplitude and myocardial superoxide dismutase, catalase and glutathione peroxidase activities. In addition, apoptosis, congestion, necrosis, inflammatory cell infiltration and myofibrillar disorganization were observed histologically in myocardial tissue sections. The oral pretreatment with β-glucan prevented almost all the parameters of isoprenaline-induced myocardial injury in rats, and these findings were confirmed by the histopathological analysis. These findings provide evidence that β-glucan could protect rat myocardium against ISO-induced myocardial injury, and this was attributed to its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Ebru Çetin
- Department of Physiology, Faculty of Veterinary Medicine, University of Erciyes, 38039, Kayseri, Turkey
| |
Collapse
|
285
|
Pan P, Huang YW, Oshima K, Yearsley M, Zhang J, Arnold M, Yu J, Wang LS. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit Rev Food Sci Nutr 2019; 59:992-1007. [PMID: 30795687 DOI: 10.1080/10408398.2018.1537237] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is considered a fetal disease caused by uncontrolled proliferation and progression of abnormal cells. The most efficient cancer therapies suppress tumor growth, prevent progression and metastasis, and are minimally toxic to normal cells. Natural compounds have shown a variety of chemo-protective effects alone or in combination with standard cancer therapies. Along with better understanding of the dynamic interactions between our immune system and cancer development, nutritional immunology-the use of natural compounds as immunomodulators in cancer patients-has begun to emerge. Cancer cells evolve strategies that target many aspects of the immune system to escape or even edit immune surveillance. Therefore, the immunesuppressive tumor microenvironment is a major obstacle in the development of cancer therapies. Because interaction between the tumor microenvironment and the immune system is a complex topic, this review focuses mainly on human clinical trials and animal studies, and it highlights specific immune cells and their cytokines that have been modulated by natural compounds, including carotenoids, curcumin, resveratrol, EGCG, and β-glucans. These natural compounds have shown promising immune-modulating effects, such as inhibiting myeloid-derived suppressor cells and enhancing natural killer and cytolytic T cells, in tumor-bearing animal models, but their efficacy in cancer patients remains to be determined.
Collapse
Affiliation(s)
- Pan Pan
- a Division of Hematology and Oncology, Department of Medicine , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - Yi-Wen Huang
- b Department of Obstetrics and Gynecology , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - Kiyoko Oshima
- c Department of Pathology , Johns Hopkins University , Baltimore , Maryland , USA
| | - Martha Yearsley
- d Department of Pathology , The Ohio State University , Columbus , Ohio , USA
| | - Jianying Zhang
- e Center for Biostatistics , The Ohio State University , Columbus , Ohio , USA
| | - Mark Arnold
- f Department of Surgery , The Ohio State University , Columbus , Ohio , USA
| | - Jianhua Yu
- g Hematologic Malignancies and Stem Cell Transplantation Institute, Department of Hematology & Hematopoietic Cell Transplantation , City of Hope National Medical Center and Beckman Research Institute , Duarte , California , USA
| | - Li-Shu Wang
- a Division of Hematology and Oncology, Department of Medicine , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| |
Collapse
|
286
|
Production of β-glucan, glutathione, and glutathione derivatives by probiotic Saccharomyces cerevisiae isolated from cucumber jangajji. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
287
|
Winarsih S, Kosasih T, Putera MA, Rahmadhiani N, Poernomo EL, Runtuk KS, Oswari MV. β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells). Rev Soc Bras Med Trop 2019; 52:e20180254. [PMID: 30726315 DOI: 10.1590/0037-8682-0254-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Antimicrobial resistance has been reported in the drugs used for the treatment of typhoid fever. The immunomodulatory substance β-glucan can be used as an alternative therapy as it potentiates host immunity. The aims of this study are to observe the effect of Candida albicans cell wall (CCW) extract towards host immunity (TCD8+ and TCD4+ cells in spleen, intestinal sIgA) and its capacity to kill Salmonella in the intestine and liver of typhoid fever mice models. METHODS Typhoid fever mice models were created by infecting mice with S. Typhimurium orally. Mice were divided into four groups: the Non-Infected, Infected, CCW (infected mice treated with 300 µg CCW extract/mouse once a day), and Ciprofloxacin groups (infected mice treated with 15 mg/kg BW ciprofloxacin twice a day). RESULTS Secretory IgA (sIgA) concentrations of mice in the CCW group remained unchanged. However, their TCD4+ and TCD8+ cells increased substantially compared to those in the Non-Infected group. In the Ciprofloxacin group, sIgA concentrations increased markedly compared to those in the Non-Infected and CCW groups; TCD4+ and TCD8+ cells also increased significantly compared to those in the Infected Group, but not significant compared to those in the CCW group. Colonization of S. Typhimurium in the intestine and liver decreased significantly in the CCW and Ciprofloxacin groups compared to that in the Infected group, with the lowest reduction being found in the Ciprofloxacin group. CONCLUSIONS The inhibition of S. Typhimurium colonization by CCW is associated with the increase in TCD4+ and TCD8+ cells.
Collapse
Affiliation(s)
- Sri Winarsih
- Pharmacy Study Program, Faculty of Medicine, Universitas Brawijaya, Indonesia
| | - Tomson Kosasih
- Pharmacy Study Program, Faculty of Medicine, Universitas Brawijaya, Indonesia
| | | | - Nayla Rahmadhiani
- Medicine Study Program, Faculty of Medicine, Universitas Brawijaya, Indonesia
| | | | | | | |
Collapse
|
288
|
Li X, Zhang X, Pang L, Yao L, ShangGuan Z, Pan Y. Agaricus bisporus-derived β-glucan enter macrophages and adipocytes by CD36 receptor. Nat Prod Res 2019; 34:3253-3256. [PMID: 30676779 DOI: 10.1080/14786419.2018.1556654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β-glucans are a heterogeneous group of natural polysaccharides. They are ubiquitously found in bacterial or fungal cell walls, cereals, seaweed, and mushrooms. The beneficial role of β-glucan in tumor, insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. Ample evidence showed that β-glucan could act on several receptors, such as Dectin, complement receptor (CR3), TLR-2, 4, 6 and scavenger. Based on the above, we wanted to explore whether agaricus bisporus-derived β-glucan acted on these receptors on Raw 264.7 macrophages and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Xiumin Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| | - Xiufen Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| | - Liang Pang
- The College of Physical Education, Minnan Normal University, Zhangzhou, China
| | - Liyun Yao
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| | - Zhaoshui ShangGuan
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| |
Collapse
|
289
|
Wang H, Yang B, Wang Y, Liu F, Fernández-Tejada A, Dong S. β-Glucan as an immune activator and a carrier in the construction of a synthetic MUC1 vaccine. Chem Commun (Camb) 2019; 55:253-256. [PMID: 30534737 DOI: 10.1039/c8cc07691j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the preparation of a cancer vaccine candidate by conjugating a MUC1 peptide antigen to the β-glucan polysaccharide, which serves both as a carrier and an immune activator. In contrast to amorphous polysaccharides, peptide-β-glucan conjugates form uniform nanoparticles that facilitate the delivery of antigens and binding to myeloid cells, thus leading to the activation of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
290
|
Bozbulut R, Sanlier N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
291
|
Charoenwongpaiboon T, Supraditaporn K, Klaimon P, Wangpaiboon K, Pichyangkura R, Issaragrisil S, Lorthongpanich C. Effect of alternan versus chitosan on the biological properties of human mesenchymal stem cells. RSC Adv 2019; 9:4370-4379. [PMID: 35520166 PMCID: PMC9060545 DOI: 10.1039/c8ra10263e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Alternan α-1,3- and α-1,6-linked glucan, promotes proliferation, migration, and differentiation of human MSCs.
Collapse
Affiliation(s)
| | - Kantpitchar Supraditaporn
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Phatchanat Klaimon
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Karan Wangpaiboon
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Rath Pichyangkura
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| |
Collapse
|
292
|
Dekker RFH, Queiroz EAIF, Cunha MAA, Barbosa-Dekker AM. Botryosphaeran – A Fungal Exopolysaccharide of the (1→3)(1→6)-β-D-Glucan Kind: Structure and Biological Functions. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
293
|
Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv 2018; 16:27-41. [DOI: 10.1080/17425247.2019.1551874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chinnu Sabu
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Panakkal Mufeedha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| | - Kannissery Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, India
| |
Collapse
|
294
|
Eyigor A, Bahadori F, Yenigun VB, Eroglu MS. Beta-Glucan based temperature responsive hydrogels for 5-ASA delivery. Carbohydr Polym 2018; 201:454-463. [DOI: 10.1016/j.carbpol.2018.08.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 11/30/2022]
|
295
|
CHAIYASUT C, PENGKUMSRI N, SIVAMARUTHI BS, SIRILUN S, KESIKA P, SAELEE M, CHAIYASUT K, PEERAJAN S. Extraction of β-glucan of Hericium erinaceus, Avena sativa L., and Saccharomyces cerevisiae and in vivo evaluation of their immunomodulatory effects. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.18217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Noppawat PENGKUMSRI
- Chiang Mai University, Thailand; Huachiew Chalermprakiet University, Thailand
| | | | | | | | | | - Khontaros CHAIYASUT
- Health Innovation Institute, Thailand; Chiang Mai Rajabhat University, Thailand
| | | |
Collapse
|
296
|
de Oliveira CAF, Vetvicka V, Zanuzzo FS. β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comp Immunol Microbiol Infect Dis 2018; 62:1-6. [PMID: 30711038 DOI: 10.1016/j.cimid.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Several reports have shown the positive effects of β-glucans on the immune. Howeverthese studies have a broad experimental design including β-glucans compounds. Consequently, a study using the same β-glucan molecule, administration route and experimental design is needed to compare the effects of β-glucan across vertebrate species. For this end, during 28 days we fed four different vertebrate species: mice, dogs, piglets and chicks, with two β-glucan molecules (BG01 and BG02). We measured the serum interleukin 2 as an indicator of innate immune response, the neutrophils and monocytes phagocytosis index as a cellular response and antibody formation as an adaptive response. The results clearly showed that the different β-glucan molecules exhibited biologically differently behaviors, but both molecules stimulate the immune system in a similar pattern in these four species. This finding suggests that vertebrates shared similar mechanisms/patterns in recognizing the β-glucans and confirms the benefits of β-glucans across different vertebrate species.
Collapse
Affiliation(s)
- Carlos A F de Oliveira
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| | - Vaclav Vetvicka
- University of Louisville, Department of Pathology, Louisville, KY, USA.
| | - Fábio S Zanuzzo
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| |
Collapse
|
297
|
Natsuka S, Tachibana A, Sumiyoshi W, Nakakita SI, Suzuki N. Preparation of a Molecular Library of Branched β-Glucan Oligosaccharides Derived from Laminarin. J Appl Glycosci (1999) 2018; 65:45-49. [PMID: 34354512 PMCID: PMC8056915 DOI: 10.5458/jag.jag.jag-2018_004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
To study the structure of β-glucans, we developed a separation method and molecular library of β-glucan oligosaccharides. The oligosaccharides were prepared by partial acid hydrolysis from laminarin, which is a β-glucan of Laminaria digitata. They were labeled with the 2-aminopyridine fluorophore and separated to homogeneity by size-fractionation and reversed phase high-performance liquid chromatography (HPLC). Branching structures of all isomeric oligosaccharides from trimers to pentamers were determined, and a two-dimensional (2D)-HPLC map of the β-glucan oligosaccharides was made based on the data. Next, structural analysis of the longer β-glucan oligosaccharide was performed using the 2D-HPLC map. A branched decamer oligosaccharide was isolated from the β-glucan and cleaved to smaller oligosaccharides by partial acid hydrolysis. The structure of the longer oligosaccharide was successfully elucidated from the fragment structures determined by the 2D-HPLC map. The molecular library and the 2D-HPLC map described in this study will be useful for the structural analysis of β-glucans.
Collapse
Affiliation(s)
- Shunji Natsuka
- 1 Department of Biology, Faculty of Science, Niigata University
| | - Aki Tachibana
- 1 Department of Biology, Faculty of Science, Niigata University.,2 Department of Chemistry, Graduate School of Science, Osaka University
| | | | | | - Noriko Suzuki
- 1 Department of Biology, Faculty of Science, Niigata University
| |
Collapse
|
298
|
Solano-Aguilar GI, Jang S, Lakshman S, Gupta R, Beshah E, Sikaroodi M, Vinyard B, Molokin A, Gillevet PM, Urban JF. The Effect of Dietary Mushroom Agaricus bisporus on Intestinal Microbiota Composition and Host Immunological Function. Nutrients 2018; 10:nu10111721. [PMID: 30424006 PMCID: PMC6266512 DOI: 10.3390/nu10111721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
A study was designed to determine the potential prebiotic effect of dietary mushrooms on the host immune response, and intestinal microbiota composition and function. Thirty-one six-week-old pigs were fed a pig grower diet alone or supplemented with either three or six servings of freeze-dried white button (WB)-mushrooms for six weeks. Host immune response was evaluated in peripheral blood mononuclear cells (PBMC), and alveolar macrophages (AM) after stimulation with Salmonella typhymurium-Lipopolysaccharide (LPS). Isolated DNA from fecal and proximal colon contents were used for 16S rDNA taxonomic analysis and linear discriminant analysis effect size (LEfSe) to determine bacterial abundance and metabolic function. Pigs gained weight with no difference in body composition or intestinal permeability. Feeding mushrooms reduced LPS-induced IL-1β gene expression in AM (P < 0.05) with no change in LPS-stimulated PBMC or the intestinal mucosa transcriptome. LEfSe indicated increases in Lachnospiraceae, Ruminococcaceae within the order Clostridiales with a shift in bacterial carbohydrate metabolism and biosynthesis of secondary metabolites in the mushroom-fed pigs. These results suggested that feeding WB mushrooms significantly reduced the LPS-induced inflammatory response in AM and positively modulated the host microbiota metabolism by increasing the abundance of Clostridiales taxa that are associated with improved intestinal health.
Collapse
Affiliation(s)
- Gloria I Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Saebyeol Jang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA.
| | - Ethiopia Beshah
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA.
| | - Bryan Vinyard
- Statistics Group, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA.
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| |
Collapse
|
299
|
Bekale RB, Du Plessis SM, Hsu NJ, Sharma JR, Sampson SL, Jacobs M, Meyer M, Morse GD, Dube A. Mycobacterium Tuberculosis and Interactions with the Host Immune System: Opportunities for Nanoparticle Based Immunotherapeutics and Vaccines. Pharm Res 2018; 36:8. [PMID: 30411187 PMCID: PMC6362825 DOI: 10.1007/s11095-018-2528-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a deadly infectious disease. The thin pipeline of new drugs for TB, the ineffectiveness in adults of the only vaccine available, i.e. the Bacillus Calmette-Guerin vaccine, and increasing global antimicrobial resistance, has reinvigorated interest in immunotherapies. Nanoparticles (NPs) potentiate the effect of immune modulating compounds (IMC), enabling cell targeting, improved transfection of antigens, enhanced compound stability and provide opportunities for synergistic action, via delivery of multiple IMCs. In this review we describe work performed in the application of NPs towards achieving immune modulation for TB treatment and vaccination. Firstly, we present a comprehensive review of M. tuberculosis and how the bacterium modulates the host immune system. We find that current work suggest great promise of NP based immunotherapeutics as novel treatments and vaccination systems. There is need to intensify research efforts in this field, and rationally design novel NP immunotherapeutics based on current knowledge of the mycobacteriology and immune escape mechanisms employed by M. tuberculosis.
Collapse
Affiliation(s)
- Raymonde B Bekale
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Su-Mari Du Plessis
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jyoti R Sharma
- National Health Laboratory Service, Johannesburg, South Africa
| | - Samantha L Sampson
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
- Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Cape Town, South Africa
| | - Gene D Morse
- AIDS Clinical Trials Group Pharmacology Specialty Laboratory, New York State Center of Excellence in Bioinformatics and Life Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Admire Dube
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
300
|
Alexander MP, Fiering SN, Ostroff GR, Cramer RA, Mullins DW. Beta-glucan-induced inflammatory monocytes mediate antitumor efficacy in the murine lung. Cancer Immunol Immunother 2018; 67:1731-1742. [PMID: 30167860 PMCID: PMC11028371 DOI: 10.1007/s00262-018-2234-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/13/2018] [Indexed: 01/07/2023]
Abstract
β-Glucan is a naturally occurring glucose polysaccharide with immunostimulatory activity in both infection and malignancy. β-Glucan's antitumor effects have been attributed to the enhancement of complement receptor 3-dependent cellular cytotoxicity, as well as modulation of suppressive and stimulatory myeloid subsets, which in turn enhances antitumor T cell immunity. In the present study, we demonstrate antitumor efficacy of yeast-derived β-glucan particles (YGP) in a model of metastatic-like melanoma in the lung, through a mechanism that is independent of previously reported β-glucan-mediated antitumor pathways. Notably, efficacy is independent of adaptive immunity, but requires inflammatory monocytes. YGP-activated monocytes mediated direct cytotoxicity against tumor cells in vitro, and systemic YGP treatment upregulated inflammatory mediators, including TNFα, M-CSF, and CCL2, in the lungs. Collectively, these studies identify a novel role for inflammatory monocytes in β-glucan-mediated antitumor efficacy, and expand the understanding of how this immunomodulator can be used to generate beneficial immune responses against metastatic disease.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adjuvants, Immunologic
- Animals
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- Receptors, CCR2/physiology
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- beta-Glucans/pharmacology
Collapse
Affiliation(s)
- Matthew P Alexander
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
- Department of Medical Education, Geisel School of Medicine at Dartmouth, 45 Dewey Field Road, HB7100, Hanover, NH, 03755, USA.
| |
Collapse
|