251
|
Yu J, Zhang L, Chen A, Xiang G, Wang Y, Wu J, Mitchelson K, Cheng J, Zhou Y. Identification of the gene transcription and apoptosis mediated by TGF-beta-Smad2/3-Smad4 signaling. J Cell Physiol 2008; 215:422-33. [PMID: 17960585 DOI: 10.1002/jcp.21325] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta (TGF-beta) signaling is known to depend on the formation of Smad2/3-Smad4 transcription regulatory complexes. However, the signaling functions of Smad2/3-Smad4 during TGF-beta-induced responses are obscure as TGF-beta also initiates a number of other signaling pathways. In this study, we systematically assessed the contribution of TGF-beta-Smad2/3-Smad4 signaling to both target gene transcription and apoptosis. Individual Smads were selectively knocked down in Hep3B cells by stable RNA interference (RNAi). We identified TGF-beta-responsive genes using genome-wide oligonucleotide microarrays and confirmed their dependency on Smad2, Smad3, or Smad4 by the combination of RNAi and microarray assay. The major finding from our microarray analysis was that of the 2,039 target genes seen to be regulated via TGF-beta induction, 190 were differentially transcriptionally controlled by Smad2-Smad4 and Smad3-Smad4 signaling and the latter control mechanism appeared to be functionally more important. We also found indirect evidence of competition between Smad2 and Smad3 for their activation when controlling the transcription of target genes. Functional analysis revealed that Smad3 and Smad4 were the predominant mediators of TGF-beta-induced apoptosis in Hep3B cells. We provide evidence that up-regulation of Bcl-2-interacting mediator of cell death (Bim), under the transcriptional control of Smad3-Smad4 signaling, is crucial to TGF-beta-induced apoptosis in Hep3B cells.
Collapse
Affiliation(s)
- Jian Yu
- Medical Systems Biology Research Center, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Abstract
The history of RNA interference (RNAi) has unfolded rapidly since 1997 with a series of discoveries from plants, fungi, and animals. Initially, the interest was directed towards development of gene silencing technology that could be applied in research, medical therapy, and crop improvement. However, as the underlying mechanism was revealed, it became apparent that RNAi manifests a novel system of genetic regulation that was only hinted at by previous data. This overview unit gives a brief history of the field, describes the natural role of RNAi and related processes, identifies strategies for RNAi and cosuppression in plants and animals, and describes methods for detection and characterization of siRNA and miRNA.
Collapse
Affiliation(s)
- David Baulcombe
- The Sainsbury Laboratory John Innes Center, Norwich, United Kingdom
| |
Collapse
|
253
|
Favreau C, Delbarre E, Courvalin JC, Buendia B. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway. Exp Cell Res 2008; 314:1392-405. [PMID: 18294630 DOI: 10.1016/j.yexcr.2008.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/15/2008] [Accepted: 01/25/2008] [Indexed: 12/29/2022]
Abstract
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.
Collapse
Affiliation(s)
- Catherine Favreau
- Institut Jacques Monod, UMR7592, CNRS et Universités Paris 6 et 7, Paris Cedex 05, France
| | | | | | | |
Collapse
|
254
|
Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S. Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB. J Mol Biol 2008; 375:637-49. [PMID: 18037434 PMCID: PMC2277468 DOI: 10.1016/j.jmb.2007.10.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 01/01/2023]
Abstract
Activation of the nuclear factor (NF)-kappaB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-kappaB activity. Using this mouse model and an NF-kappaB-targeted gene array, we first determined the components of NF-kappaB signaling cascade and the NF-kappaB-linked genes that are expressed during the progression to cardiac hypertrophy and HF. Second, we explored the effects of inhibition of NF-kappaB signaling events by using a gene knockdown approach: RNA interference through delivery of a short hairpin RNA against NF-kappaB p65 using a lentiviral vector (L-sh-p65). When the short hairpin RNA was delivered directly into the hearts of 10-week-old Myo-Tg mice, there was a significant regression of cardiac hypertrophy, associated with a significant reduction in NF-kappaB activation and atrial natriuretic factor expression. Our data suggest, for the first time, that inhibition of NF-kappaB using direct gene delivery of sh-p65 RNA results in regression of cardiac hypertrophy. These data validate NF-kappaB as a therapeutic target to prevent hypertrophy/HF.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, NB50, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
256
|
Stein U, Walther W, Stege A, Kaszubiak A, Fichtner I, Lage H. Complete In Vivo Reversal of the Multidrug Resistance Phenotype by Jet-injection of Anti-MDR1 Short Hairpin RNA-encoding Plasmid DNA. Mol Ther 2008; 16:178-86. [PMID: 17878902 DOI: 10.1038/sj.mt.6300304] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Triggering the RNA interference (RNAi) pathway by inducing the expression of short hairpin RNA (shRNA) molecules has become a promising tool for efficient silencing of a given gene in gene therapy applications. In this study, shRNA encoding DNA was utilized to reverse the classical MDR1/P-glycoprotein (MDR1/P-gp)-mediated multidrug resistance (MDR) phenotype in vivo. For the first time, the nonviral jet-injection technology was applied for delivering naked shRNA-vector constructs for direct intratumoral in vivo transfer. The highly efficient anti-MDR1 shRNA expression vectors were applied twice in the human MDR1/P-gp overexpressing MaTu/ADR cancer xenograft-bearing mice, and twice in the corresponding drug-sensitive parental MaTu tumor xenograft bearing mice as well. Two days after anti-MDR1 shRNA vector injection, the expression level of the MDR1 messenger RNA (mRNA) was decreased by more than 90% and the corresponding MDR1/P-gp protein was no longer detectable in the tumors. Two jet-injections of anti-MDR1 shRNA vectors into the tumors, combined with two intravenous (IV) administrations of doxorubicin, were sufficient to achieve complete reversal of the drug-resistant phenotype. The data show that jet-injection delivery of shRNA-expressing vectors is effective in reversing MDR1/P-gp-mediated MDR in vivo, and is therefore a promising strategy for making tumors with an MDR1/Pgp-dependent MDR phenotype revert to a drug-sensitive state.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- DNA, Neoplasm/administration & dosage
- DNA, Neoplasm/genetics
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- HeLa Cells
- Humans
- Injections, Intralesional
- Injections, Jet
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Nude
- Phenotype
- Plasmids/administration & dosage
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/administration & dosage
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Ulrike Stein
- 1Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
257
|
Lee J, Yu P, Xiao X, Kodadek T. A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(ii) tris-bipyridyl as an unusually efficient “warhead”. ACTA ACUST UNITED AC 2008; 4:59-65. [DOI: 10.1039/b712307h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
258
|
The therapeutic potential of siRNA in gene therapy of neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:43-9. [PMID: 17982877 DOI: 10.1007/978-3-211-73574-9_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA interference using small inhibitory RNA (siRNA) has become a powerful tool to downregulate mRNA levels by cellular nucleases that become activated when a sequence homology between the siRNA and a respective mRNA molecule is detected. Therefore siRNA can be used to silence genes involved in the pathogenesis of various diseases associated with a known genetic background. As for many neurodegenerative disorders a causative therapy is unavailable, siRNA holds a promising option for the development of novel therapeutic strategies. Here we discuss different siRNA target strategies aiming for an allele-specific degradation of disease-inducing mRNA and we review the literature in the field of siRNA and its application in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and spinocerebellar ataxia (SCA1).
Collapse
|
259
|
Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer's disease treatment. Expert Opin Biol Ther 2007; 7:1853-67. [PMID: 18034651 DOI: 10.1517/14712598.7.12.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable progress has been made in recent years towards better understanding the pathogenesis of Alzheimer's disease (AD), a dementing neurodegenerative disorder that affects > 10 million individuals in the US and Europe combined. Recent studies suggest that alterations in the processing of amyloid precursor protein (APP), resulting in the accumulation of amyloid-beta protein (Abeta) and the formation of oligomers leads to synaptic damage and neurodegeneration. Therefore, strategies for treatment development have been focused on reducing Abeta accumulation using, among other approaches, antiaggregation molecules, regulators of the APP proteolysis and processing, reducing APP production (e.g., small-interfering RNA), and increasing Abeta clearance with antibodies, apolipoprotein E and Abeta-degrading enzymes (e.g., neprilysin). The main focus of this review is on novel treatments for AD with a special emphasis on delivering neuroprotective and antiamyloidogenic molecules by gene therapy and by promoting neurogenesis.
Collapse
Affiliation(s)
- Brian Spencer
- University of California, Department of Neurosciences, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
260
|
Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J, Khvorova A. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2007; 2:2068-78. [PMID: 17853862 DOI: 10.1038/nprot.2007.278] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective gene silencing by the RNA interference (RNAi) pathway requires a comprehensive understanding of the elements that influence small interfering RNA (siRNA) functionality and specificity. These include (i) sequence space restrictions that define the boundaries of siRNA targeting, (ii) structural and sequence features required for efficient siRNA performance, (iii) mechanisms that underlie nonspecific gene modulation and (iv) additional features specific to the intended use (i.e., inclusion of native sugar or base chemical modifications for increased stability or specificity, vector design, etc.). Attention to each of these factors enhances siRNA performance and heightens overall confidence in the output of RNAi-mediated functional genomic studies. Here, we provide a detailed protocol explaining the methodologies used for manual and web-based design of siRNAs.
Collapse
|
261
|
Cheng TS, Hsiao YL, Lin CC, Yu CTR, Hsu CM, Chang MS, Lee CI, Huang CYF, Howng SL, Hong YR. Glycogen synthase kinase 3beta interacts with and phosphorylates the spindle-associated protein astrin. J Biol Chem 2007; 283:2454-64. [PMID: 18055457 DOI: 10.1074/jbc.m706794200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence shows that glycogen synthase kinase 3beta (GSK3beta) is involved in mitotic division and that inhibiting of GSK3beta kinase activity causes defects in spindle microtubule length and chromosome alignment. However, the purpose of GSK3beta involvement in spindle microtubule assembly and accurate chromosome segregation remains obscure. Here, we report that GSK3beta interacts with the spindle-associated protein Astrin both in vitro and in vivo. Additionally, Astrin acts as a substrate for GSK3beta and is phosphorylated at Thr-111, Thr-937 ((S/T)P motif) and Ser-974/Thr-978 ((S/T)XXX(S/T)-p motif; p is a phosphorylatable residue). Inhibition of GSK3beta impairs spindle and kinetochore accumulation of Astrin and spindle formation at mitosis, suggesting that Astrin association with the spindle microtubule and kinetochore may be dependent on phosphorylation by GSK3beta. Conversely, depletion of Astrin by small interfering RNA has no detectable influence on the localization of GSK3beta. Interestingly, in vitro assays demonstrated that Astrin enhances GSK3beta-mediated phosphorylation of other substrates. Moreover, we showed that coexpression of Astrin and GSK3beta differentially increases GSK3beta-mediated Tau phosphorylation on an unprimed site. Collectively, these data indicate that GSK3beta interacts with and phosphorylates the spindle-associated protein Astrin, resulting in targeting Astrin to the spindle microtubules and kinetochores. In turn, the GSK3beta-Astrin complex may also facilitate further physiological and pathological phosphorylation.
Collapse
Affiliation(s)
- Tai-Shan Cheng
- Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Arp3 is required during preimplantation development of the mouse embryo. FEBS Lett 2007; 581:5691-7. [PMID: 18035060 DOI: 10.1016/j.febslet.2007.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 12/11/2022]
Abstract
The role of Arp3 in mouse development was investigated utilizing a gene trap mutation in the Arp3 gene. Heterozygous Arp3(WT/GT) mice are normal, however, homozygous Arp3(GT/GT) embryos die at blastocyst stage. Earlier embryonic stages appear unaffected by the mutation, probably due to maternal Arp3 protein. Mutant blastocysts isolated at E3.5 fail to continue development in vitro, lack outgrowth of trophoblast-like cells in culture and express reduced levels of the trophoblast marker Cdx2, while markers for inner cell mass continue to be present. The recessive embryonic lethal phenotype indicates that Arp3 plays a vital role for early mouse development, possibly when trophoblast cells become critical for implantation.
Collapse
|
263
|
Manolea F, Claude A, Chun J, Rosas J, Melançon P. Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. Mol Biol Cell 2007; 19:523-35. [PMID: 18003980 DOI: 10.1091/mbc.e07-04-0394] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We examined the relative function of the two classes of guanine nucleotide exchange factors (GEFs) for ADP-ribosylation factors that regulate recruitment of coat proteins on the Golgi complex. Complementary overexpression and RNA-based knockdown approaches established that GBF1 regulates COPI recruitment on cis-Golgi compartments, whereas BIGs appear specialized for adaptor proteins on the trans-Golgi. Knockdown of GBF1 and/or COPI did not prevent export of VSVGtsO45 from the endoplasmic reticulum (ER), but caused its accumulation into peripheral vesiculotubular clusters. In contrast, knockdown of BIG1 and BIG2 caused loss of clathrin adaptor proteins and redistribution of several TGN markers, but had no impact on COPI and several Golgi markers. Surprisingly, brefeldin A-inhibited guanine nucleotide exchange factors (BIGs) knockdown prevented neither traffic of VSVGtsO45 to the plasma membrane nor assembly of a polarized Golgi stack. Our observations indicate that COPII is the only coat required for sorting and export from the ER exit sites, whereas GBF1 but not BIGs, is required for COPI recruitment, Golgi subcompartmentalization, and cargo progression to the cell surface.
Collapse
Affiliation(s)
- Florin Manolea
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7 Canada
| | | | | | | | | |
Collapse
|
264
|
Gehrig K, Cornell RB, Ridgway ND. Expansion of the nucleoplasmic reticulum requires the coordinated activity of lamins and CTP:phosphocholine cytidylyltransferase alpha. Mol Biol Cell 2007; 19:237-47. [PMID: 17959832 DOI: 10.1091/mbc.e07-02-0179] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleoplasmic reticulum (NR), a nuclear membrane network implicated in signaling and transport, is formed by the biosynthetic and membrane curvature-inducing properties of the rate-limiting enzyme in phosphatidylcholine synthesis, CTP:phosphocholine cytidylyltransferase (CCT) alpha. The NR is formed by invagination of the nuclear envelope and has an underlying lamina that may contribute to membrane tubule formation or stability. In this study we investigated the role of lamins A and B in NR formation in response to expression and activation of endogenous and fluorescent protein-tagged CCTalpha. Similarly to endogenous CCTalpha, CCT-green fluorescent protein (GFP) reversibly translocated to nuclear tubules projecting from the NE in response to oleate, a lipid promoter of CCT membrane binding. Coexpression and RNA interference experiments revealed that both CCTalpha and lamin A and B were necessary for NR proliferation. Expression of CCT-GFP mutants with compromised membrane-binding affinity produced fewer nuclear tubules, indicating that the membrane-binding function of CCTalpha promotes the expansion of the NR. Proliferation of atypical bundles of nuclear membrane tubules by a CCTalpha mutant that constitutively associated with membranes revealed that expansion of the double-bilayer NR requires the coordinated assembly of an underlying lamin scaffold and induction of membrane curvature by CCTalpha.
Collapse
Affiliation(s)
- Karsten Gehrig
- *Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | | | | |
Collapse
|
265
|
Sun P, Gao J, Liu YL, Wei LW, Wu LP, Liu ZY. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances epirubicin sensitivity of breast cancer cells. Mol Cell Biochem 2007; 308:161-8. [PMID: 17938864 DOI: 10.1007/s11010-007-9624-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 10/03/2007] [Indexed: 01/02/2023]
Abstract
It has been reported that over-expression of vascular endothelial growth factor-C (VEGF-C) in tumors leads to increased lymphangiogenesis and resistance to chemotherapy. Therefore, we hypothesized that VEGF-C would be a good molecular target for cancer gene therapy. In this study, we silenced the expression of VEGF-C with the highly specific post-transcriptional suppression of RNA interference (RNAi) in human breast cancer MCF-7 cell line. The expression of VEGF-C was examined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the effect of plasmid on human lymphatic endothelial cells (HLECs) in vitro was analyzed by migration and 3-(4, 5-dimethylt-hiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The sensitivity to anticancer agents was evaluated by MTT and apoptosis assay, and apoptosis-related genes bcl-2/bax ratio was determined by Western Blotting. Results showed that of three siRNA-expressing vectors, P-1/siRNA most significantly suppressed the expression of VEGF-C mRNA and protein (38.1% of control and 117.8 +/- 24.2 pg/ml, respectively) and interfered with proliferation and migration of HLECs in vitro. Moreover, transfection of VEGF-C/siRNA combined with Epirubicin markedly decreased breast cancer cells viability, reaching up to 38.5%, and increased apoptosis rate from 13.1% to 38.9%, as determined by decrease of bcl-2/bax ratio. In summary, VEGF-C would be a good molecular target, and a combination of Epirubicin and RNAi targeting VEGF-C could be an effective means for suppressing lymphatic metastasis and enhancing chemosensitivity of human breast cancer cells.
Collapse
Affiliation(s)
- Ping Sun
- Department of Anatomy, School of Medicine, Shandong University, No. 44, WenHua Xi Road, JiNan, Shandong 250012, PR China.
| | | | | | | | | | | |
Collapse
|
266
|
Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. ACTA ACUST UNITED AC 2007; 178:897-904. [PMID: 17785515 PMCID: PMC2064615 DOI: 10.1083/jcb.200702026] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane.
Collapse
Affiliation(s)
- Georgia Salpingidou
- School of Biological and Biomedical Sciences, The University of Durham, Durham, England, UK
| | | | | | | | | |
Collapse
|
267
|
Lingor P, Bähr M. Targeting neurological disease with RNAi. MOLECULAR BIOSYSTEMS 2007; 3:773-80. [PMID: 17940660 DOI: 10.1039/b701169e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuroscientific community rapidly adopted RNA interference techniques as an experimental tool for the dissection of gene function in vitro and in animal models of neurological disease in vivo. Here, we discuss recent advances in the biotechnical implementation of siRNA/shRNA-mediated gene silencing focusing on issues of design, delivery and putative detrimental effects. We then summarize the current use of RNAi in targeting neurological disease models and give an outlook on the implementation of this technique in clinical therapy.
Collapse
Affiliation(s)
- Paul Lingor
- Dept. of Neurology, Georg-August-University Göttingen, Faculty of Medicine, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
268
|
Dormoy-Raclet V, Ménard I, Clair E, Kurban G, Mazroui R, Di Marco S, von Roretz C, Pause A, Gallouzi IE. The RNA-binding protein HuR promotes cell migration and cell invasion by stabilizing the beta-actin mRNA in a U-rich-element-dependent manner. Mol Cell Biol 2007; 27:5365-80. [PMID: 17548472 PMCID: PMC1952093 DOI: 10.1128/mcb.00113-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/27/2007] [Accepted: 05/21/2007] [Indexed: 12/14/2022] Open
Abstract
A high expression level of the beta-actin protein is required for important biological mechanisms, such as maintaining cell shape, growth, and motility. Although the elevated cellular level of the beta-actin protein is directly linked to the long half-life of its mRNA, the molecular mechanisms responsible for this effect are unknown. Here we show that the RNA-binding protein HuR stabilizes the beta-actin mRNA by associating with a uridine-rich element within its 3' untranslated region. Using RNA interference to knock down the expression of HuR in HeLa cells, we demonstrate that HuR plays an important role in the stabilization but not in the nuclear/cytoplasmic distribution of the beta-actin mRNA. HuR depletion in HeLa cells alters key beta-actin-based cytoskeleton functions, such as cell adhesion, migration, and invasion, and these defects correlate with a loss of the actin stress fiber network. Together our data establish that the posttranscriptional event involving HuR-mediated beta-actin mRNA stabilization could be a part of the regulatory mechanisms responsible for maintaining cell integrity, which is a prerequisite for avoiding transformation and tumor formation.
Collapse
Affiliation(s)
- Virginie Dormoy-Raclet
- Department of Biochemistry, and McGill Cancer Center, McGill University, McIntyre Building, Room 904, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J. Cell nuclei spin in the absence of lamin b1. J Biol Chem 2007; 282:20015-26. [PMID: 17488709 DOI: 10.1074/jbc.m611094200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations of the nuclear lamins cause a wide range of human diseases, including Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome. Defects in A-type lamins reduce nuclear structural integrity and affect transcriptional regulation, but few data exist on the biological role of B-type lamins. To assess the functional importance of lamin B1, we examined nuclear dynamics in fibroblasts from Lmnb1(Delta/Delta) and wild-type littermate embryos by time-lapse videomicroscopy. Here, we report that Lmnb1(Delta/Delta) cells displayed striking nuclear rotation, with approximately 90% of Lmnb1(Delta/Delta) nuclei rotating at least 90 degrees during an 8-h period. The rotation involved the nuclear interior as well as the nuclear envelope. The rotation of nuclei required an intact cytoskeletal network and was eliminated by expressing lamin B1 in cells. Nuclear rotation could also be abolished by expressing larger nesprin isoforms with long spectrin repeats. These findings demonstrate that lamin B1 serves a fundamental role within the nuclear envelope: anchoring the nucleus to the cytoskeleton.
Collapse
Affiliation(s)
- Julie Y Ji
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Musiyenko A, Bitko V, Barik S. RNAi-dependent and -independent antiviral phenotypes of chromosomally integrated shRNA clones: role of VASP in respiratory syncytial virus growth. J Mol Med (Berl) 2007; 85:745-52. [PMID: 17351763 PMCID: PMC3263383 DOI: 10.1007/s00109-007-0179-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/19/2007] [Accepted: 02/20/2007] [Indexed: 01/26/2023]
Abstract
Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.
Collapse
Affiliation(s)
- Alla Musiyenko
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Blvd., Mobile, AL 36688-0002, USA
| | - Vira Bitko
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Blvd., Mobile, AL 36688-0002, USA
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Blvd., Mobile, AL 36688-0002, USA
| |
Collapse
|
271
|
Kim K, Lee YS, Harris D, Nakahara K, Carthew RW. The RNAi pathway initiated by Dicer-2 in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:39-44. [PMID: 17381278 DOI: 10.1101/sqb.2006.71.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Injection or expression of double-stranded RNA (dsRNA) in Drosophila serves as a trigger that causes cells to specifically cleave homologous mRNA transcripts. Our approach is to identify essential components of the RNA interference (RNAi) mechanism by isolating and characterizing mutations that cause the RNAi response to be abnormal. These studies have thus far led to the identification of seven genetic loci that encode proteins acting at various steps in the RNAi process. We have molecularly identified several of these proteins. Two are members of the Dicer family. Dicer-1 and Dicer-2 are required for short interfering RNA (siRNA)-directed mRNA cleavage by facilitating distinct steps in the assembly of the RNA-induced silencing complex (RISC). AGO2 is a RISC component that both carries out transcript cleavage and facilitates RISC maturation. Other factors appear to function as regulators of RISC assembly rather than as core factors for RNAi.
Collapse
Affiliation(s)
- K Kim
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
272
|
Merl S, Wessely R. Anti-coxsackieviral efficacy of RNA interference is highly dependent on genomic target selection and emergence of escape mutants. Oligonucleotides 2007; 17:44-53. [PMID: 17461762 DOI: 10.1089/oli.2007.0057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enteroviral diseases are widespread and impose significant importance in medicine. Although the outcome of diseases that are associated with enteroviruses such as myocarditis, pancreatitis, hepatitis, or encephalomyelitis might be fatal, no specific antiviral therapy is yet available. We and others have shown that RNA interference (RNAi) effectively limits picornaviral replication and cytopathogenicity and improves survival in susceptible mice. However, little is known about the dependence of short interfering RNA (siRNA) efficacy on target region selection and emergence of viral escape mutants that may limit the effect of RNAi. The results of our study indicate that antiviral siRNA should be targeted preferentially to nonstructural protein coding regions because siRNA efficacy was consistently found to be superior compared to noncoding or structural protein coding regions. Further more, emergence of viral escape mutants that harbor single point mutations in the central part of the siRNA binding motif are the major factor that limits early therapeutic siRNA efficacy. The appearance of viral escape mutants can be sufficiently suppressed by combined administration of at least three distinct siRNA molecules. Therefore, genomic target selection and viral escape mutants are the most critical factors that limit early RNAi directed against enteroviral genomes. Both obstacles can be circumvented by appropriate target selection and combined siRNA administration.
Collapse
Affiliation(s)
- Sabine Merl
- Deutsches Herzzentrum and Medizinische Klinik, Klinikum rechts der Isar, University of Technology, Munich, Germany
| | | |
Collapse
|
273
|
Stewart CL, Kozlov S, Fong LG, Young SG. Mouse models of the laminopathies. Exp Cell Res 2007; 313:2144-56. [PMID: 17493612 PMCID: PMC1949387 DOI: 10.1016/j.yexcr.2007.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 12/25/2022]
Abstract
The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.
Collapse
Affiliation(s)
- Colin L Stewart
- Laboratory of Cancer and Developmental Biology, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
274
|
Oshima RG. Intermediate filaments: a historical perspective. Exp Cell Res 2007; 313:1981-94. [PMID: 17493611 PMCID: PMC1950476 DOI: 10.1016/j.yexcr.2007.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/08/2023]
Abstract
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.
Collapse
Affiliation(s)
- Robert G Oshima
- Oncodevelopmental Biology Program, Cancer Research Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
275
|
Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: Are the pieces now in place? J Cell Biochem 2007; 104:1964-87. [PMID: 17546585 DOI: 10.1002/jcb.21364] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
276
|
Abstract
Cardiac hypertrophy and heart failure are major causes of morbidity and mortality in Western societies. Many factors have been implicated in cardiac remodeling, including alterations in gene expression in myocytes, cardiomyocytes apoptosis, cytokines and growth factors that influence cardiac dynamics, and deficits in energy metabolism as well as alterations in cardiac extracellular matrix composition. Many therapeutic means have been shown to prevent or reverse cardiac hypertrophy. New concepts for characterizing the pathophysiology of cardiac hypertrophy have been drawn from various aspects, including medical therapy and gene therapy, or use of stem cells for tissue regeneration. In this review, we focus on various types of cardiac hypertrophy, defining the causes of hypertrophy, describing available animal models of hypertrophy, discussing the mechanisms for development of hypertrophy and its transition to heart failure, and presenting the potential use of novel promising therapeutic strategies derived from new advances in basic scientific research.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
277
|
Dorner D, Gotzmann J, Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. FEBS J 2007; 274:1362-73. [PMID: 17489094 DOI: 10.1111/j.1742-4658.2007.05695.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lamins are major structural components of the nuclear envelope in multicellular eukaryotes. Particularly A-type lamins are also located in the nucleoplasm, likely involving a specific binding partner, lamina-associated polypeptide 2alpha (LAP2alpha). LAP2alpha-lamins A/C complexes in the nucleoplasm have been implicated in the regulation of gene expression by various means. They bind chromatin proteins and chromatin modifying enzymes, and can thus participate in epigenetic control pathways. Furthermore, binding of lamins A/C complexes to specific transcription factors and repressors may directly affect their transcriptional activity. LAP2alpha-lamins A/C also regulate retinoblastoma protein and influence cell cycle progression and differentiation, which could have important implications for molecular mechanisms of laminopathic diseases, linked to lamins A/C mutations.
Collapse
Affiliation(s)
- Daniela Dorner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | |
Collapse
|
278
|
Ito H, Koyama Y, Takano M, Ishii K, Maeno M, Furukawa K, Horigome T. Nuclear envelope precursor vesicle targeting to chromatin is stimulated by protein phosphatase 1 in Xenopus egg extracts. Exp Cell Res 2007; 313:1897-910. [PMID: 17448463 DOI: 10.1016/j.yexcr.2007.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 03/08/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
The mechanism underlying targeting of the nuclear membrane to chromatin at the end of mitosis was studied using an in vitro cell-free system comprising Xenopus egg membrane and cytosol fractions, and sperm chromatin. The mitotic phase membrane, which was separated from a mitotic phase extract of Xenopus eggs and could not bind to chromatin, became able to bind to chromatin on pretreatment with a synthetic phase cytosol fraction of Xenopus eggs. When the cytosol fraction was depleted of protein phosphatase 1 (PP1) with anti-Xenopus PP1gamma1 antibodies, this ability was lost. The addition of recombinant xPP1gamma1 to the PP1-depleted cytosol fraction restored the ability. These and other results suggested that dephosphorylation of mitotic phosphorylation sites on membranes by PP1 in the synthetic phase cytosol fraction promoted targeting of the membranes to chromatin. On the other hand, a fragment containing the chromatin-binding domain of lamin B receptor (LBR) but not emerin inhibited targeting of membrane vesicles. It was also shown that PP1 dephosphorylates a phosphate group(s) responsible for regulation of the binding of LBR to chromatin. A possible mechanism involving PP1 and LBR for the regulation of nuclear membrane targeting to chromatin was discussed.
Collapse
Affiliation(s)
- Hiromi Ito
- Courses of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Igarashi-2, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
279
|
Cheng TS, Hsiao YL, Lin CC, Hsu CM, Chang MS, Lee CI, Yu RCT, Huang CYF, Howng SL, Hong YR. hNinein is required for targeting spindle-associated protein Astrin to the centrosome during the S and G2 phases. Exp Cell Res 2007; 313:1710-21. [PMID: 17383637 DOI: 10.1016/j.yexcr.2007.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 02/27/2007] [Accepted: 02/28/2007] [Indexed: 12/22/2022]
Abstract
Human Ninein (hNinein) is implicated in centrosomal microtubule nucleation and microtubule anchoring in interphase cells and may act as a scaffold protein, but its direct interaction partners remain unexplored in the centrosome. In this report, we show clearly that a spindle-associated protein, Astrin, interacts and co-localizes with hNinein at the centrosome during the S and G2 phases, and this complex may dissociate in the M phase. We also demonstrate that the truncated forms of hNinein, which could interfere with gamma-tubulin and function as dominant-negative mutants, are able to affect Astrin localization to the centrosome. Moreover, siRNA-mediated knockdown of hNinein in HeLa cells causes Astrin to fail to target to the centrosome, whereas hNinein can localize at the centrosome in the absence of Astrin. In addition, reduction in hNinein protein levels causes mislocalization of Astrin with the spindle apparatus and results in the formation of an aberrant mitotic spindle. Collectively, these data suggest that hNinein is required for targeting Astrin to the centrosome during the S and G2 phases. We therefore propose a model wherein hNinein regulates the dynamic movement of Astrin throughout the cell cycle and this interaction, in turn, is required for maintenance of centrosome/spindle pole integrity.
Collapse
Affiliation(s)
- Tai-Shan Cheng
- Graduate Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Kaszubiak A, Kupstat A, Müller U, Hausmann R, Holm PS, Lage H. Regulation of MDR1 gene expression in multidrug-resistant cancer cells is independent from YB-1. Biochem Biophys Res Commun 2007; 357:295-301. [PMID: 17418094 DOI: 10.1016/j.bbrc.2007.03.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 12/31/2022]
Abstract
The MDR1 gene encoded transmembrane ABC-transporter MDR1/P-glycoprotein can mediate the phenotype of multidrug resistance (MDR), a major obstacle in the clinical management of cancer patients. It was hypothesized that YB-1 is a fundamental regulatory factor of the MDR1 gene in tumor cells and can therewith enhance drug resistance. To analyze the potential impact of YB-1 in MDR cancer cells, two specific anti-YB-1 small interfering RNAs (siRNAs) were designed for transient triggering the gene-silencing RNA interference (RNAi) pathway in the MDR cell lines EPG85-257RDB and EPP85-181RDB as well as in their drug-sensitive counterparts EPG85-257P and EPP85-181P. Since both siRNAs showed biological activity, for stable inhibition of YB-1 corresponding tetracycline-inducible short hairpin RNA (shRNA)-encoding expression vectors were designed. By treatment of the cancer cells with these constructs, the expression of the targeted YB-1 encoding mRNA and protein was completely inhibited following tetracycline exposure. These gene-silencing effects were not accompanied by modulation of the MDR1 expression or by reversal of the drug-resistant phenotype. In conclusion, the data demonstrate the utility of the analyzed RNAs as powerful laboratory tools and indicate that YB-1 is not involved in the regulation of the MDR1 gene or the development of the drug-resistant phenotype in MDR cancer cells.
Collapse
Affiliation(s)
- Alexander Kaszubiak
- Charité Campus Mitte, Institute of Pathology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
281
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
282
|
Houben F, Ramaekers FCS, Snoeckx LHEH, Broers JLV. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:675-86. [PMID: 17050008 DOI: 10.1016/j.bbamcr.2006.09.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/12/2006] [Accepted: 09/08/2006] [Indexed: 01/08/2023]
Abstract
The response of individual cells to cellular stress is vital for cellular functioning. A large network of physically interconnected cellular components, starting from the structural components of the cells' nucleus, via cytoskeleton filaments to adhesion molecules and the extracellular matrix, constitutes an integrated matrix that functions as a scaffold allowing the cell to cope with mechanical stress. Next to a role in mechanical properties, this network also has a mechanotransductional function in the response to mechanical stress. This signaling route does not only regulate a rapid reorganization of structural components such as actin filaments, but also stimulates for example gene activation via NFkappaB and other transcription factors. The importance of an intact mechano-signaling network is illustrated by the physiological consequences of several genetic defects of cellular network components e.g. actin, dystrophin, desmin and lamins. These give rise to an impaired response of the affected cells to mechanical stress and often result in dystrophy of the affected tissue. Recently, the importance of the cell nucleus in cellular strength has been established. Several new interconnecting proteins, such as the nesprins that link the nuclear lamina to the cytoskeleton, have been identified. Furthermore, the function of nuclear lamins in determining cellular strength and nuclear stability was illustrated in lamin-knock-out cells. Absence of the A-type lamins or mutations in these structural components of the nuclear lamina lead to an impaired cellular response to mechanical stress and disturbances in cytoskeletal organization. In addition, laminopathies show clinical phenotypes comparable to those seen for diseases resulting from genetic defects in cytoskeletal components, further indicating that lamins play a central role in maintaining the mechanical properties of the cell.
Collapse
Affiliation(s)
- F Houben
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht (CARIM) and Research Institute for Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
283
|
Ito S, Kita K, Zhal L, Wano C, Suzuki T, Yamaura A, Suzuki N. Involvement of Human Small Fragment Nuclease in the Resistance of Human Cells to UV-C-induced Cell Death¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
284
|
Avolio TM, Lee Y, Feng N, Xiong K, Jin H, Wang M, Vassilakos A, Wright J, Young A. RNA interference targeting the R2 subunit of ribonucleotide reductase inhibits growth of tumor cells in vitro and in vivo. Anticancer Drugs 2007; 18:377-88. [PMID: 17351390 DOI: 10.1097/cad.0b013e328013c04f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA interference, a posttranscriptional gene-silencing mechanism, has received considerable attention for its potential as a new therapeutic strategy to treat human diseases and conditions including cancer. Various studies have supported a role for the R2 subunit of ribonucleotide reductase in cancer progression and metastasis. Short interfering siRNA 1284 was designed to target R2. In vitro studies, in which three different human tumor cell lines (A498, HT-29 and A2058) were transfected with short interfering siRNA 1284, demonstrate sequence-specific down-regulation of R2, which coincides with a decrease in cell proliferation, and cell cycle inhibition. In vivo studies with xenograft mouse models, generated from the same tumor cell lines, indicate that treatment with short interfering siRNA 1284 leads to inhibition of tumor growth and this effect was found to be dose dependent. Taken together, these results suggest that short interfering siRNA 1284, targeting R2, has great potential to serve as a therapeutic agent towards the treatment of human cancers.
Collapse
|
285
|
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007; 26:2527-39. [PMID: 17446862 PMCID: PMC1868901 DOI: 10.1038/sj.emboj.7601689] [Citation(s) in RCA: 879] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 12/19/2022] Open
Abstract
The anti-apoptotic proteins Bcl-2 and Bcl-X(L) bind and inhibit Beclin-1, an essential mediator of autophagy. Here, we demonstrate that this interaction involves a BH3 domain within Beclin-1 (residues 114-123). The physical interaction between Beclin-1 and Bcl-X(L) is lost when the BH3 domain of Beclin-1 or the BH3 receptor domain of Bcl-X(L) is mutated. Mutation of the BH3 domain of Beclin-1 or of the BH3 receptor domain of Bcl-X(L) abolishes the Bcl-X(L)-mediated inhibition of autophagy triggered by Beclin-1. The pharmacological BH3 mimetic ABT737 competitively inhibits the interaction between Beclin-1 and Bcl-2/Bcl-X(L), antagonizes autophagy inhibition by Bcl-2/Bcl-X(L) and hence stimulates autophagy. Knockout or knockdown of the BH3-only protein Bad reduces starvation-induced autophagy, whereas Bad overexpression induces autophagy in human cells. Gain-of-function mutation of the sole BH3-only protein from Caenorhabditis elegans, EGL-1, induces autophagy, while deletion of EGL-1 compromises starvation-induced autophagy. These results reveal a novel autophagy-stimulatory function of BH3-only proteins beyond their established role as apoptosis inducers. BH3-only proteins and pharmacological BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin-1 and Bcl-2 or Bcl-X(L).
Collapse
Affiliation(s)
- M Chiara Maiuri
- INSERM U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud—Paris 11, Villejuif, France
- Università degli studi di Napoli ‘Federico II', Facoltà di Scienze Biotecnologiche, Napoli, Italy
| | | | - Alfredo Criollo
- INSERM U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud—Paris 11, Villejuif, France
| | | | - Fabien Gautier
- INSERM, U601-Equipe 4, University of Nantes, Faculty of MedicineM, Nantes, France
| | - Philippe Juin
- INSERM, U601-Equipe 4, University of Nantes, Faculty of MedicineM, Nantes, France
| | - Ezgi Tasdemir
- INSERM U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud—Paris 11, Villejuif, France
| | | | - Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Crete, Greece
| | - John A Hickman
- Institut de Recherche Servier, Croissy sur Seine, France
| | - Olivier Geneste
- Institut de Recherche Servier, Croissy sur Seine, France
- These authors contributed equally to this work
- Institut de Recherche Servier, 125 chemin de ronde, Croissy sur Seine 78290, France. Tel.: +33 1 55 72 21 68; Fax: +33 1 55 72 21 80; E-mail:
| | - Guido Kroemer
- INSERM U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud—Paris 11, Villejuif, France
- These authors contributed equally to this work
- INSERM U848, Institut Gustave Roussy, PR1, 39 rue Camille Desmoulins, Villejuif 94805, France. Tel.: +33 1 42 11 60 46; Fax: +33 1 42 11 60 47; E-mail:
| |
Collapse
|
286
|
Gallmeier E, Kern SE. Targeting Fanconi anemia/BRCA2 pathway defects in cancer: the significance of preclinical pharmacogenomic models. Clin Cancer Res 2007; 13:4-10. [PMID: 17200332 DOI: 10.1158/1078-0432.ccr-06-1637] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defects in the Fanconi anemia (FA) pathway occur in subsets of diverse human cancers. The hypersensitivity of FA pathway-deficient cells to DNA interstrand cross-linking and possibly other agents renders these genes attractive targets for a genotype-based, individualized anticancer therapy. A prerequisite before clinical trials is the validation and quantification of this hypersensitivity in suitable preclinical pharmacogenomic models. In addition, the effects of combinational therapy need to be evaluated and novel agents sought. We discuss here the pitfalls and limitations in the interpretation of common FA models when applied to the validation of FA gene defects as therapeutic targets. In general, all preclinical models are prone to certain artifacts and, thus, promising results in a single or few models rarely translate into clinical success. Nevertheless, the extraordinary robustness of FA pathway-deficient cells to interstrand cross-linking agents, which are observable in virtually any model independent of species, cell type, or technique used to engineer the gene defect, in various in vitro and in vivo settings, renders these gene defects particularly attractive for targeted therapy. Clinical trials are now under way.
Collapse
Affiliation(s)
- Eike Gallmeier
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
287
|
Shen HL, Xu W, Wu ZY, Zhou LL, Qin RJ, Tang HR. Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leuk Res 2007; 31:515-21. [PMID: 17034851 DOI: 10.1016/j.leukres.2006.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/03/2006] [Accepted: 09/05/2006] [Indexed: 12/27/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. K562 human leukemia cells overexpress VEGF, with a shift in isoform production from membrane-bound VEGF189 to the more soluble VEGF165. In the present study, three 19 bp reverse repeated motifs targeting exons 5 and 7 boundary of VEGF165 gene sequence with 9 bp spacer were synthesized and cloned into eukaryotic expression plasmid pGenesil-1 containing U6 shRNA promoter and termination signal of RNA polymerase. The recombinant plasmids pGenesil-VR1, pGenesil-VR2, pGenesil-VR3 and pGenesil-con (plasmid containing random DNA fragment) were transfected into K562 cells, respectively, through lipofectamine reagent. A vector-based small interfering RNA(SiRNA) inhibited VEGF165 mRNA expression by 72% and protein production by 67% in K562 cells. Human microvascular endothelial cell migration induced by conditioned medium from VEGFsi-transfected K562 cells was significantly less than that induced by conditioned medium from K562 cells and control vector-transfected K562 cells. Furthermore, the VEGF shRNA dramatically suppressed tumor angiogenesis and tumor growth in a K562 s.c. xenograft model. Vessel density as assessed by vWF immunohistochemical analysis was also decreased. This strategy provides a novel tool to study the function of various VEGF isoforms and may contribute to VEGF-specific treatment in cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Genetic Vectors/genetics
- Humans
- Immunoenzyme Techniques
- K562 Cells
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/prevention & control
- Mice
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Protein Isoforms
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Survival Rate
- Transfection
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Hui-Ling Shen
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212002, PR China
| | | | | | | | | | | |
Collapse
|
288
|
Lin HH, Hsu HL, Yeh NH. Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification. J Biomed Sci 2007; 14:681-94. [PMID: 17401638 DOI: 10.1007/s11373-007-9165-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/05/2007] [Indexed: 10/23/2022] Open
Abstract
NuMA is a nuclear matrix protein in interphase and distributes to the spindle poles during mitosis. While the essential function of NuMA for mitotic spindle assembly is well established, a structural role of NuMA in interphase nucleus has also been proposed. Several observations suggest that the apoptotic degradation of NuMA may relate to chromatin condensation and micronucleation. Here we demonstrate that four apoptotic cleavage sites are clustered at a junction between the globular tail and the central coiled-coil domains of NuMA. Cleavage of a caspase-6-sensitive site at D(1705) produced the R-form, a major tail-less product of NuMA during apoptosis. The other two cleavage sites were defined at D(1726) and D(1747) that were catalyzed, respectively, by caspase-3 and an unknown aspartase. A NuMA deletion mutant missing the entire cleavage region of residues 1701-1828 resisted degradation and protected cells from nuclear disruption upon apoptotic attack. Under such conditions, cytochrome c was released from mitochondria, but the subsequent apoptotic events such as caspase-3 activation, poly(ADP-ribose) polymerase degradation, and DNA fragmentation were attenuated. Conversely, the tail-less NuMA alone, a mutant mimicking the R-form, induced chromatin condensation and activated the death machinery. It supports that intact NuMA is a structural element in maintaining nuclear integrity.
Collapse
Affiliation(s)
- Hsueh-Hsuan Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, 155 Li-Nong Street Sec. 2, Taipei, 112, Taiwan ROC
| | | | | |
Collapse
|
289
|
Liu N, Academia K, Rubio T, Wehr T, Yeck T, Jordan L, Hamby K, Paulus A. Actin deficiency induces cofilin phosphorylation: proteome analysis of HeLa cells after beta-actin gene silencing. ACTA ACUST UNITED AC 2007; 64:110-20. [PMID: 17123313 DOI: 10.1002/cm.20169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Actin-binding proteins regulate the dynamic structure and function of actin filaments in the cell. Much is known about how manipulation of the actin-binding proteins affects the structure and function of actin filaments; however, little is known about how manipulation of actin in the cell affects actin-binding proteins. We addressed this question by utilizing two technologies: RNA interference and 2-dimensional gel electrophoresis. We knocked down beta-actin expression in HeLa cells using short interfering RNA and applied 2-DGE to examine alterations in the HeLa cell proteome. We revealed a 2-5 fold increases of four protein spots on 2-D gels and identified these proteins by mass spectrometry. Three of the four proteins were actin-binding proteins, including cofilin, which promotes both disassembly and assembly of actin filaments but becomes inactivated when phosphorylated. Further examination revealed that the cofilin total protein level barely increased, but the phosphorylated cofilin level increased dramatically in HeLa cells after beta-actin siRNA treatment. These results suggest that in response to siRNA-induced beta-actin deficiency HeLa cells inactivate cofilin by phosphorylation rather than down-regulate its protein expression level. This study also demonstrates that the combination of RNA interference and 2-dimensional gel electrophoresis technologies provides a valuable method to study protein interactions in a specific cellular pathway.
Collapse
Affiliation(s)
- Ning Liu
- Bio-Rad Laboratories, Inc., Hercules, California 94547, USA.
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Donnini S, Finetti F, Solito R, Terzuoli E, Sacchetti A, Morbidelli L, Patrignani P, Ziche M. EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. FASEB J 2007; 21:2418-30. [PMID: 17384145 DOI: 10.1096/fj.06-7581com] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In squamous cell carcinoma, the levels of nitric oxide (NO) derived from inducible NO synthase (iNOS) and prostaglandin E2 (PGE2) derived from cyclooxygenase-2 (COX-2) originated from tumor cells or tumor-associated inflammatory cells have been reported to correlate with tumor growth, metastasis, and angiogenesis. The present study examined the role of the iNOS signaling pathway in PGE2-mediated tumor invasiveness and proliferation in squamous cell carcinoma, A431, and SCC-9 cells. Cell invasion and proliferation promoted by PGE2 were blocked by iNOS silencing RNA or iNOS/guanylate cyclase (GC) pharmacological inhibition. Consistently, iNOS-GC pathway inhibitors blocked mitogen-activated protein kinase-ERK1/2 phosphorylation, which was required to mediate PGE2 functions. In vivo, in A431 cells implanted in nude mice, GC inhibition also decreased the tumor proliferation index and ERK1/2 activation. PGE2 effects were confined to the selective stimulation of the EP2 receptor subtype, leading to epidermal growth factor receptor (EGFR) transactivation via protein kinase A (PKA) and c-Src activation. EP2-mediated ERK1/2 activation and cell functions were abolished by inhibitors of PKA, c-Src, and EGFR, as well as by inhibiting iNOS pathway. Silencing of iNOS also impaired EGFR-induced ERK1/2 phosphorylation. These results indicate that iNOS/GC signaling is a downstream player in the control of EP2/EGFR-mediated tumor cell proliferation and invasion.
Collapse
Affiliation(s)
- Sandra Donnini
- Department of Molecular Biology, Pharmacology Angiogenesis Lab., University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Federici T, Boulis NM. Ribonucleic acid interference for neurological disorders: candidate diseases, potential targets, and current approaches. Neurosurgery 2007; 60:3-15; discussion 15-6. [PMID: 17228249 DOI: 10.1227/01.neu.0000249214.42461.a5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Ribonucleic acid (RNA) interference (RNAi) is a conserved evolutionary defense mechanism that is gaining utility for therapeutic application by modulating gene expression or silencing disease-causing genes. METHODS This strategy has recently achieved success in mammalian cells via synthetic small interfering RNA or short hairpin RNA expressed in vectors for gene delivery. The vector-based RNAi strategy has particular potential because of the possibility of targeted gene delivery, long-term gene expression, and the potential means of penetrating the blood-brain barrier. RESULTS RNAi-based approaches have been proposed for a variety of neurological disorders, including dominant genetic diseases, neurodegenerative diseases, malignant brain tumors, pain, and viral-induced encephalopathies. CONCLUSION This review summarizes the current approaches of the RNAi strategy for neurological disorders, focusing on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neuroscience The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
292
|
Mongiu AK, Weitzke EL, Chaga OY, Borisy GG. Kinetic-structural analysis of neuronal growth cone veil motility. J Cell Sci 2007; 120:1113-25. [PMID: 17327278 DOI: 10.1242/jcs.03384] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal growth cone advance was investigated by correlative light and electron microscopy carried out on chick dorsal root ganglion cells. Advance was analyzed in terms of the two principal organelles responsible for protrusive motility in the growth cone – namely, veils and filopodia. Veils alternated between rapid phases of protrusion and retraction. Electron microscopy revealed characteristic structural differences between the phases. Our results provide a significant advance in three respects: first, protruding veils are comprised of a densely branched network of actin filaments that is lamellipodial in appearance and includes the Arp2/3 complex. On the basis of this structural and biomarker evidence, we infer that the dendritic nucleation and/or array-treadmilling mechanism of protrusive motility is conserved in veil protrusion of growth cones as in the motility of fibroblasts; second, retracting veils lack dendritic organization but contain a sparse network of long filaments; and third, growth cone filopodia have the capacity to nucleate dendritic networks along their length, a property consistent with veil formation seen at the light microscopic level but not previously understood in supramolecular terms. These elements of veil and filopodial organization, when taken together, provide a conceptual framework for understanding the structural basis of growth cone advance.
Collapse
Affiliation(s)
- Anne K Mongiu
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Marine Biological Laboratory, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
293
|
Segura T, Hubbell JA. Synthesis and in Vitro Characterization of an ABC Triblock Copolymer for siRNA Delivery. Bioconjug Chem 2007; 18:736-45. [PMID: 17358044 DOI: 10.1021/bc060284y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to specifically down-regulate gene expression using the RNAi pathway in mammalian cells has tremendous potential in therapy and in basic science. However, delivery systems capable of efficient and biocompatible delivery of siRNA to target cells are not yet satisfactory. Here, we report the synthesis and in vitro characterization of ABC triblock copolymers that self-assemble with siRNA based on electrostatics and with each other by hydrophobic interactions. The ABC triblock copolymer is based on poly(ethylene glycol) (PEG), poly(propylene sulfide) (PPS), and a positively charged peptide (PEG-PPS-peptide). The diblock copolymer PEG(45)-PPS(5,10) was synthesized using anionic polymerization of propylene sulfide upon a PEG macroinitiator, and the peptide domain was coupled to the PPS terminus using a disulfide exchange reaction with an N-terminal cysteine residue on the peptide. The peptides were designed to interact electrostatically with siRNA, selecting the TAT peptide domain of HIV (RKKRRQRRR) and an oligolysine (Lys(9)). The resulting triblock copolymers were able to self-assemble with siRNA as demonstrated by dynamic light scattering and gel electrophoresis. Complex size was found to be dependent on the amount of polymer used (charge ratio) and the length of the hydrophobic PPS block, achieving sizes ranging from 171 nm to 601 nm. Cell internalization and gene expression down-regulation studies showed that the triblock copolymers are able to transport siRNA inside the cell and mediate gene expression down-regulation, with the amount of internalization and gene transfer affected by charge ratio, PPS length, and the presence of serum. The proposed triblock was able to mediate gene expression down-regulation of GAPDH, achieving up to 90.5% +/- 0.02% down-regulation.
Collapse
Affiliation(s)
- Tatiana Segura
- Ecole Polytechnique Fédérale de Lausanne, Institute of Bioengineering and Institute of Chemical Sciences and Engineering, CH-1015, Lausanne, Switzerland
| | | |
Collapse
|
294
|
Roux KJ, Burke B. Nuclear envelope defects in muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2007; 1772:118-27. [PMID: 16904876 DOI: 10.1016/j.bbadis.2006.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/03/2006] [Indexed: 11/29/2022]
Abstract
Muscular dystrophies are a heterogeneous group of disorders linked to defects in 20-30 different genes. Mutations in the genes encoding a pair of nuclear envelope proteins, emerin and lamin A/C, have been shown to cause the X-linked and autosomal forms respectively of Emery-Dreifuss muscular dystrophy. A third form of muscular dystrophy, limb girdle muscular dystrophy 1b, has also been linked to mutations in the lamin A/C gene. Given that these two genes are ubiquitously expressed, a major goal is to determine how they can be associated with tissue specific diseases. Recent results suggest that lamin A/C and emerin contribute to the maintenance of nuclear envelope structure and at the same time may modulate the expression patterns of certain mechanosensitive and stress induced genes. Both emerin and lamin A/C may play an important role in the response of cells to mechanical stress and in this way may help to maintain muscle cell integrity.
Collapse
Affiliation(s)
- Kyle J Roux
- Department of Anatomy and Cell Biology, The University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32606, USA
| | | |
Collapse
|
295
|
Henley D, Isbill M, Fernando R, Foster JS, Wimalasena J. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother Pharmacol 2007; 59:235-49. [PMID: 16972069 DOI: 10.1007/s00280-006-0262-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 04/30/2006] [Indexed: 11/29/2022]
Abstract
PURPOSE Paclitaxel (PTX) is a widely used chemotherapy agent and may cause cell death by apoptosis subsequent to microtubule (MT) disruption. In this paper, we have investigated whether cell cycle transit and or Cdc2 (Cdk1) activity is required for the apoptosis induced by PTX. METHODS Cell cycle was analyzed by flow cytometry, Cdc2 was assayed bio chemically. Cdc2 activity was decreased by siRNA and dominant negative (dn) Cdc2 expression. Cells were arrested by chemical or biological inhibitors in a G1 or S phase. Apoptosis was measured by DNA fragmentation and examination of nuclei by microscopy. JNK and AKT activations were assessed as well. RESULTS Cell cycle inhibition was highly effective in decreasing PTX induced apoptosis. MT morphology was not altered by these inhibitors. PTX induced JNK activity or AKT mediated BAD phosphorylation was unaffected by cell cycle inhibitors. Abrogation of Cdc 2 activity was without effect on PTX induced apoptosis. CONCLUSIONS While cell cycle transit is required for PTX induced apoptosis; Cdc2 activity is not required.
Collapse
Affiliation(s)
- D Henley
- Department of OB/GYN, GSM, UTMCK, University of Tennessee, Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | | | |
Collapse
|
296
|
Forte A, Napolitano MA, Cipollaro M, Giordano A, Cascino A, Galderisi U. An effective method for adenoviral-mediated delivery of small interfering RNA into mesenchymal stem cells. J Cell Biochem 2007; 100:293-302. [PMID: 16888813 DOI: 10.1002/jcb.21025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) promise as a main actor of cell-based therapeutic strategies, due to their intrinsic ability to differentiate along different mesenchymal cell lineages, able to repair the diseased or injured tissue in which they are localized. The application of MSCs in therapies requires an in depth knowledge of their biology and of the molecular mechanisms leading to MSC multilineage differentiation. The knockdown of target genes through small interfering RNA (siRNA) carried by adenoviruses (Ad) represents a valid tool for the study of the role of specific molecules in cell biology. Unfortunately, MSCs are poorly transfected by conventional Ad serotype 5 (Ad5) vectors. We set up a method to obtain a very efficient transduction of rat MSCs with low doses of unmodified Ad5, carrying the siRNA targeted against the mRNA coding for Rb2/p130 (Ad-siRNA-Rb2), which plays a fundamental role in cell differentiation. This method allowed a 95% transduction rate of Ad-siRNA in MSC, along with a siRNA-mediated 85% decrease of Rb2/p130 mRNA and a 70% decrease of Rb2/p130 protein 48 h after transduction with 50 multiplicities of infection (MOIs) of Ad5. The effect on Rb2/p130 protein persisted 15 days after transduction. Finally, Ad-siRNA did not compromise the viability of transduced MSCs neither induced any cell cycle modification. The effective Ad-siRNA-Rb2 we constructed, together with the efficient method of delivery in MSCs we set up, will allow an in depth analysis of the role of Rb2/p130 in MSC biology and multilineage differentiation.
Collapse
Affiliation(s)
- Amalia Forte
- Excellence Research Center for Cardiovascular Diseases, Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
297
|
Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgó J, Díaz J, Lavandero S, Harper F, Pierron G, di Stefano D, Rizzuto R, Szabadkai G, Kroemer G. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 2007; 14:1029-39. [PMID: 17256008 DOI: 10.1038/sj.cdd.4402099] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The reduction of intracellular 1,4,5-inositol trisphosphate (IP(3)) levels stimulates autophagy, whereas the enhancement of IP(3) levels inhibits autophagy induced by nutrient depletion. Here, we show that knockdown of the IP(3) receptor (IP(3)R) with small interfering RNAs and pharmacological IP(3)R blockade is a strong stimulus for the induction of autophagy. The IP(3)R is known to reside in the membranes of the endoplasmic reticulum (ER) as well as within ER-mitochondrial contact sites, and IP(3)R blockade triggered the autophagy of both ER and mitochondria, as exactly observed in starvation-induced autophagy. ER stressors such as tunicamycin and thapsigargin also induced autophagy of ER and, to less extent, of mitochondria. Autophagy triggered by starvation or IP(3)R blockade was inhibited by Bcl-2 and Bcl-X(L) specifically targeted to ER but not Bcl-2 or Bcl-X(L) proteins targeted to mitochondria. In contrast, ER stress-induced autophagy was not inhibited by Bcl-2 and Bcl-X(L). Autophagy promoted by IP(3)R inhibition could not be attributed to a modulation of steady-state Ca(2+) levels in the ER or in the cytosol, yet involved the obligate contribution of Beclin-1, autophagy-related gene (Atg)5, Atg10, Atg12 and hVps34. Altogether, these results strongly suggest that IP(3)R exerts a major role in the physiological control of autophagy.
Collapse
Affiliation(s)
- A Criollo
- INSERM, U848, Institut Gustave Roussy, PR1 39 rue Camille Desmoulins, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Koff JL, Shao MXG, Kim S, Ueki IF, Nadel JA. Pseudomonas lipopolysaccharide accelerates wound repair via activation of a novel epithelial cell signaling cascade. THE JOURNAL OF IMMUNOLOGY 2007; 177:8693-700. [PMID: 17142770 DOI: 10.4049/jimmunol.177.12.8693] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The surface of the airway epithelium represents a battleground in which the host intercepts signals from pathogens and activates epithelial defenses to combat infection. Wound repair is an essential function of the airway epithelium in response to injury in chronic airway diseases, and inhaled pathogens such as Pseudomonas bacteria are implicated in the pathobiology of several of these diseases. Because epidermal growth factor receptor (EGFR) activation stimulates wound repair and because LPS activates EGFR, we hypothesized that LPS accelerates wound repair via a surface signaling cascade that causes EGFR phosphorylation. In scrape wounds of NCI-H292 human airway epithelial cells, high concentrations of LPS were toxic and decreased wound repair. However, lower concentrations of LPS accelerated wound repair. This effect was inhibited by treatment with a selective inhibitor of EGFR phosphorylation (AG 1478) and by an EGFR neutralizing Ab. Metalloprotease inhibitors and TNF-alpha-converting enzyme (TACE) small interfering RNA inhibited wound repair, implicating TACE. Additional studies implicated TGF-alpha as the active EGFR ligand cleaved by TACE during wound repair. Reactive oxygen species scavengers, NADPH oxidase inhibitors, and importantly small interfering RNA of dual oxidase 1 inhibited LPS-induced wound repair. Inhibitors of protein kinase C isoforms alphabeta and a TLR-4 neutralizing Ab also inhibited LPS-induced wound repair. Normal human bronchial epithelial cells responded similarly. Thus, LPS accelerates wound repair in airway epithelial cells via a novel TLR-4-->protein kinase C alphabeta-->dual oxidase 1-->reactive oxygen species-->TACE-->TGF-alpha-->EGFR phosphorylation pathway.
Collapse
Affiliation(s)
- Jonathan L Koff
- Cardiovascular Research Institute, Department of Medicine, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
299
|
Pekovic V, Harborth J, Broers JLV, Ramaekers FCS, van Engelen B, Lammens M, von Zglinicki T, Foisner R, Hutchison C, Markiewicz E. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts. J Cell Biol 2007; 176:163-72. [PMID: 17227891 PMCID: PMC2063936 DOI: 10.1083/jcb.200606139] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 12/15/2006] [Indexed: 01/03/2023] Open
Abstract
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2alpha is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G(1) phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2alpha or lamin A/C in HDFs leads to accumulation of Rb in speckles and G(1) arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2alpha and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Vos LJ, Famulski JK, Chan GKT. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2007; 84:619-39. [PMID: 16936833 DOI: 10.1139/o06-078] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.
Collapse
Affiliation(s)
- Larissa J Vos
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | | | | |
Collapse
|