251
|
Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H. An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagn 2008; 10:513-9. [PMID: 18832457 DOI: 10.2353/jmoldx.2008.080077] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis. In this study, miRNAs extracted from matched snap-frozen and FFPE samples were profiled using the Agilent miRNA array platform (Agilent, Santa Clara, CA). Each miRNA sample was hybridized to arrays containing probes interrogating 470 human miRNAs. Seven cases were compared in either duplicate or triplicate. Intrachip and interchip analyses demonstrated that the processes of miRNA extraction, labeling, and hybridization from both frozen and FFPE samples are highly reproducible and add little variation to the results; technical replicates showed high correlations with one another (Kendall tau, 0.722 to 0.853; Spearman rank correlation coefficient, 0.891 to 0.954). Our results showed consistent high correlations between matched frozen and FFPE samples (Kendall tau, 0.669 to 0.815; Spearman rank correlation coefficient, 0.847 to 0.948), supporting the use of FFPE-derived miRNAs for array-based, gene expression profiling.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pathology and Molecular Medicine, Queen's Laboratory for Molecular Pathology, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
252
|
Poulsen L, Søe MJ, Snakenborg D, Møller LB, Dufva M. Multi-stringency wash of partially hybridized 60-mer probes reveals that the stringency along the probe decreases with distance from the microarray surface. Nucleic Acids Res 2008; 36:e132. [PMID: 18805905 PMCID: PMC2582620 DOI: 10.1093/nar/gkn600] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Here, we describe a multi-parametric study of DNA hybridization to probes with 20–70% G + C content. Probes were designed towards 71 different sites/mutations in the phenylalanine hydroxylase gene. Seven probe lengths, three spacer lengths and six stringencies were systematically varied. The three spacer lengths were obtained by placing the gene-specific sequence in discrete steps along the 60-mer probes. The study was performed using Agilent 8 × 15 000 probes custom-made arrays and a home-built array washer providing different stringencies to each of the eight sub-arrays on the slides. Investigation of hybridization signals, specificity and dissociation curves indicated that probes close to the surface were influenced by an additional stringency provided by the microarray surface. Consistent with this, probes close to the surface required 4 × SSC, while probes placed away from the surface required 0.35 × SSC wash buffers in order to give accurate genotyping results. Multiple step dissociation was frequently observed for probes placed furthest away from surface, but not for probes placed proximal to the surface, which is consistent with the hypothesis that there is different stringency along the 60-mer. The results have impact on design of probes for genotyping, gene expression and comparative genome hybridization analysis.
Collapse
Affiliation(s)
- Lena Poulsen
- DTU Nanotech, Department of Micro and Nanotechnology, Technical University of Denmark, Oersteds Plads, Bld. 345 East, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
253
|
Scaria V, Hariharan M, Brahmachari SK, Maiti S, Pillai B. microRNA: an emerging therapeutic. ChemMedChem 2008; 2:789-92. [PMID: 17410618 DOI: 10.1002/cmdc.200600278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Vinod Scaria
- GN Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, (CSIR), Mall Road, Delhi, India
| | | | | | | | | |
Collapse
|
254
|
Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008; 54:1696-704. [PMID: 18719201 DOI: 10.1373/clinchem.2007.101741] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND microRNA (miRNA) expression profiles are being intensively investigated for their involvement in carcinogenesis. We evaluated the prognostic value of mature microRNA-21 (miR-21) and mature microRNA-205 (miR-205) overexpression in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS We studied 48 pairs of NSCLC fresh frozen tissue specimens collected at time of surgery and before chemotherapy. Highly specific amplification and quantification of mature miR-21 and mature miR-205 was achieved using looped real time RT-PCR. RESULTS miRNA expression, determined by real time RT-PCR, was defined by DeltaDeltaCt measurements. We detected overexpression of mature miR-21 in 25 (52.0%) of the 48 NSCLC paired specimens and overexpression of miR-205 in 31 (64.6%). Overexpression was assessed after comparison of miRNA expression in NSCLC tissues and in their corresponding noncancerous tissues with respect to U6 expression. During the follow-up period, 29 of 48 (60.4%) patients relapsed, and 23 of 48 died (47.9%). Mature miR-21 was upregulated in 16 of 29 (55.2%) patients who relapsed and 15 of 23 (65.2%) patients who died. Mature miR-205 was overexpressed in 19 of 29 patients who relapsed (65.5%) and 15 of 23 patients who died (65.2%). Mature miR-21 overexpression correlated with overall survival (OS) of the patients (P = 0.027), whereas overexpression of mature miR-205 did not. CONCLUSIONS Our results suggest that overexpression of mature miR-21 is an independent negative prognostic factor for OS in NSCLC patients.
Collapse
Affiliation(s)
- Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
255
|
Microfluidic-based enzymatic on-chip labeling of miRNAs. N Biotechnol 2008; 25:142-9. [PMID: 18786664 DOI: 10.1016/j.nbt.2008.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 11/20/2022]
Abstract
Small noncoding RNAs (sncRNAs) have moved from oddity to recognized important players in gene regulation. Next generation sequencing approaches discover more and more such molecules from a variety of different groups, but flexible tools translating this sequence information into affordable high-throughput assays are missing. Here we describe a microfluidic primer extension assay (MPEA) for the detection of sncRNAs on highly flexible microfluidic microarrays which combines several beneficial parameters: it can effortless incorporate any new sequence information; it is sensitive enough to work with as little as 20ng of total RNA and has a high level of specificity owing to a combination of a conventional hybridization assay and an enzymatic elongation step. Importantly, no labeling step is needed before hybridization and - because of its high sensitivity - no amplification is required. Both aspects ensure that no bias is introduced by such processes. Although the assay is exemplified with miRNAs, the flexibility of the technology platform allows the analysis of any type of sncRNA, such as piRNAs.
Collapse
|
256
|
Abstract
MicroRNAs (miRNAs) are a family of endogenous small noncoding RNA molecules, of 19–28 nucleotides in length. In humans, up to 3% of all genes are estimated to encode these evolutionarily conserved sequences. miRNAs are thought to control expression of thousands of target mRNAs. Mammalian miRNAs generally negatively regulate gene expression by repressing translation, possibly through effects on mRNA stability and compartmentalisation, and/or the translation process itself. An extensive range of in silico and experimental techniques have been applied to our understanding of the occurrence and functional relevance of such sequences, and antisense technologies have been successfully used to control miRNA expression in vitro and in vivo. Interestingly, miRNAs have been identified in both normal and pathological conditions, including differentiation and development, metabolism, proliferation, cell death, viral infection and cancer. Of specific relevance and excitement to the area of diabetes research, miRNA regulation has been implicated in insulin secretion from pancreatic β-cells, diabetic heart conditions and nephropathy. Further analyses of miRNAs in vitro and in vivo will, undoubtedly, enable us determine their potential to be exploited as therapeutic targets in diabetes.
Collapse
|
257
|
Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E. Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 2008; 10:415-23. [PMID: 18687792 DOI: 10.2353/jmoldx.2008.080018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Formalin-fixed, paraffin-embedded tissues are an invaluable tool for biomarker discovery and validation. As these archived specimens are not always compatible with modern genomic techniques such as gene expression arrays, we assessed the use of microRNA (miRNA) as an alternative means for the reliable molecular characterization of formalin-fixed, paraffin-embedded tissues. Expression profiling using two different microarray platforms and multiple mouse and human formalin-fixed, paraffin-embedded tissue types resulted in the correlation ratios of miRNA expression levels between frozen and fixed tissue pairs ranging from 0.82 to 0.99, depending on the cellular heterogeneity of the tissue type. The same miRNAs were identified as differentially expressed between tissues using both fixed and frozen specimens. While formalin fixation time had only marginal effects on microarray performance, extended storage times for tissue blocks (up to 11 years) resulted in a gradual loss of detection of miRNAs expressed at low levels. Method reproducibility and accuracy were also evaluated in two different tissues stored for different lengths of time. The technical variation between full process replicates, including independent RNA isolation methods, was approximately 5%, and the correlation of expression levels between microarray and real-time quantitative reverse transcriptase polymerase chain reaction was 0.98. Together, these data demonstrate that miRNA expression profiling is an accurate and robust method for the molecular analysis of archived clinical specimens, potentially extending the use of miRNAs as new diagnostic, prognostic, and treatment response biomarkers.
Collapse
Affiliation(s)
- Anna E Szafranska
- Asuragen, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744, USA
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Kitamura Y, Ihara T, Tsujimura Y, Osawa Y, Sasahara D, Yamamoto M, Okada K, Tazaki M, Jyo A. Template-directed formation of luminescent lanthanide complexes: versatile tools for colorimetric identification of single nucleotide polymorphism. J Inorg Biochem 2008; 102:1921-31. [PMID: 18707760 DOI: 10.1016/j.jinorgbio.2008.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 06/17/2008] [Accepted: 06/24/2008] [Indexed: 12/21/2022]
Abstract
We present the facile technique of colorimetric SNP (single nucleotide polymorphism) analysis through DNA-templated cooperative complexation between a luminescent lanthanide ion (Ln(III): Tb(III) or Eu(III)) and two ODN (oligodeoxyribonucleotide) conjugates carrying a metal chelator. Families of complexane-type chelators and heterocyclic aromatic ligands were covalently attached to ODNs to form conjugates for application as capture and sensitizer probes. The sequences of the conjugates were designed so as to form a ternary tandem duplex with the target, where their auxiliary units face each other, providing a microenvironment to accommodate Ln(III). Only the combination of EDTA (ethylenediaminetetraacetic acid) conjugates and phen (1,10-phenanthroline) conjugates provided significant emissions with quantum yields of 3.3% and 1.5% for Tb(III) and Eu(III), respectively, in the presence of the target. Biallelic polymorphism in the TPMT (thiopurine S-methyltransferase) gene, wt/wt (G/G), mut/mut (C/C), and wt/mut (G/C), were distinguished as emissions in green, red, and yellow, respectively; the colors were identified even by the naked eye.
Collapse
Affiliation(s)
- Yusuke Kitamura
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Chen J, Lozach J, Garcia EW, Barnes B, Luo S, Mikoulitch I, Zhou L, Schroth G, Fan JB. Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res 2008; 36:e87. [PMID: 18579563 PMCID: PMC2504321 DOI: 10.1093/nar/gkn387] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have developed a highly sensitive, specific and reproducible method for microRNA (miRNA) expression profiling, using the BeadArray™ technology. This method incorporates an enzyme-assisted specificity step, a solid-phase primer extension to distinguish between members of miRNA families. In addition, a universal PCR is used to amplify all targets prior to array hybridization. Currently, assay probes are designed to simultaneously analyse 735 well-annotated human miRNAs. Using this method, highly reproducible miRNA expression profiles were generated with 100–200 ng total RNA input. Furthermore, very similar expression profiles were obtained with total RNA and enriched small RNA species (R2 ≥ 0.97). The method has a 3.5–4 log (105–109 molecules) dynamic range and is able to detect 1.2- to 1.3-fold-differences between samples. Expression profiles generated by this method are highly comparable to those obtained with RT–PCR (R2 = 0.85–0.90) and direct sequencing (R = 0.87–0.89). This method, in conjunction with the 96-sample array matrix should prove useful for high-throughput expression profiling of miRNAs in large numbers of tissue samples.
Collapse
Affiliation(s)
- Jing Chen
- Illumina, Inc. 9885 Towne Centre Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123:372-379. [PMID: 18449891 DOI: 10.1002/ijc.23501] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
microRNAs are endogenous small noncoding RNAs that regulate gene expression negatively at posttranscriptional level. This latest addition to the complex gene regulatory circuitry revolutionizes our way to understanding physiological and pathological processes in the human body. Here we investigated the possible role of microRNAs in the development of multidrug resistance (MDR) in gastric cancer cells. microRNA expression profiling revealed a limited set of microRNAs with altered expression in multidrug- resistant gastric cancer cell line SGC7901/VCR compared to its parental SGC7901 cell line. Among the downregulated microRNAs are miR-15b and miR-16, members of miR-15/16 family, whose expression was further validated by qRT-PCR. In vitro drug sensitivity assay demonstrated that overexpression of miR-15b or miR-16 sensitized SGC7901/VCR cells to anticancer drugs whereas inhibition of them using antisense oligonucleotides conferred SGC7901 cells MDR. The downregulation of miR-15b and miR-16 in SGC7901/VCR cells was concurrent with the upregulation of Bcl-2 protein. Enforced mir-15b or miR-16 expression reduced Bcl-2 protein level and the luciferase activity of a BCL2 3' untranslated region-based reporter construct in SGC7901/VCR cells, suggesting that BCL2 is a direct target of miR-15b and miR-16. Moreover, overexpression of miR-15b or miR-16 could sensitize SGC7901/VCR cells to VCR-induced apoptosis. Taken together, our findings suggest that miR-15b and miR-16 could play a role in the development of MDR in gastric cancer cells at least in part by modulation of apoptosis via targeting BCL2.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dexin Zhang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui Du
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanglin Pan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shiren Sun
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
261
|
HNA and ANA high-affinity arrays for detections of DNA and RNA single-base mismatches. Biosens Bioelectron 2008; 23:1728-32. [DOI: 10.1016/j.bios.2008.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
|
262
|
Stanczyk J, Pedrioli DML, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. ACTA ACUST UNITED AC 2008; 58:1001-9. [PMID: 18383392 DOI: 10.1002/art.23386] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE MicroRNAs (miRNA) have recently emerged as a new class of modulators of gene expression. In this study we investigated the expression, regulation, and function of miR-155 and miR-146a in rheumatoid arthritis (RA) synovial fibroblasts (RASFs) and RA synovial tissue. METHODS Locked nucleic acid microarray was used to screen for differentially expressed miRNA in RASFs treated with tumor necrosis factor alpha (TNFalpha). TaqMan-based real-time polymerase chain reaction was applied to measure the levels of miR-155 and miR-146a. Enforced overexpression of miR-155 was used to investigate the function of miR-155 in RASFs. RESULTS Microarray analysis of miRNA expressed in RASFs treated with TNFalpha revealed a prominent up-regulation of miR-155. Constitutive expression of both miR-155 and miR-146a was higher in RASFs than in those from patients with osteoarthritis (OA), and expression of miR-155 could be further induced by TNFalpha, interleukin-1beta, lipopolysaccharide, poly(I-C), and bacterial lipoprotein. The expression of miR-155 in RA synovial tissue was higher than in OA synovial tissue. Enforced expression of miR-155 in RASFs was found to repress the levels of matrix metalloproteinase 3 (MMP-3) and reduce the induction of MMPs 3 and 1 by Toll-like receptor ligands and cytokines. Moreover, compared with monocytes from RA peripheral blood, RA synovial fluid monocytes displayed higher levels of miR-155. CONCLUSION This study provides the first description of increased expression of miRNA miR-155 and miR-146a in RA. Based on these findings, we postulate that the inflammatory milieu may alter miRNA expression profiles in resident cells of the rheumatoid joints. Considering the repressive effect of miR-155 on the expression of MMPs 3 and 1 in RASFs, we hypothesize that miR-155 may be involved in modulation of the destructive properties of RASFs.
Collapse
Affiliation(s)
- Joanna Stanczyk
- Center of Experimental Rheumatology, University Hospital Zurich, and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 2008; 3:e2213. [PMID: 18493317 PMCID: PMC2374903 DOI: 10.1371/journal.pone.0002213] [Citation(s) in RCA: 851] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/11/2008] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. These cells are usually culture expanded prior to their application. However, a precise molecular definition of MSC and the sequel of long-term in vitro culture are yet unknown. In this study, we have addressed the impact of replicative senescence on human MSC preparations. Within 43 to 77 days of cultivation (7 to 12 passages), MSC demonstrated morphological abnormalities, enlargement, attenuated expression of specific surface markers, and ultimately proliferation arrest. Adipogenic differentiation potential decreased whereas the propensity for osteogenic differentiation increased. mRNA expression profiling revealed a consistent pattern of alterations in the global gene expression signature of MSC at different passages. These changes are not restricted to later passages, but are continuously acquired with increasing passages. Genes involved in cell cycle, DNA replication and DNA repair are significantly down-regulated in late passages. Genes from chromosome 4q21 were over-represented among differentially regulated transcripts. Differential expression of 10 genes has been verified in independent donor samples as well as in MSC that were isolated under different culture conditions. Furthermore, miRNA expression profiling revealed an up-regulation of hsa-mir-371, hsa-mir-369-5P, hsa-mir-29c, hsa-mir-499 and hsa-let-7f upon in vitro propagation. Our studies indicate that replicative senescence of MSC preparations is a continuous process starting from the first passage onwards. This process includes far reaching alterations in phenotype, differentiation potential, global gene expression patterns, and miRNA profiles that need to be considered for therapeutic application of MSC preparations.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Quantification of microRNA by gold nanoparticle probes. Anal Biochem 2008; 376:183-8. [DOI: 10.1016/j.ab.2008.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
|
265
|
Kawai Y, Kikuchi T, Mitani Y, Kogo Y, Itoh M, Usui K, Kanamori H, Kaiho A, Takakura H, Hoshi K, Cizdziel PE, Hayashizaki Y. Sensitive detection of EGFR mutations using a competitive probe to suppress background in the SMart Amplification Process. Biologicals 2008; 36:234-8. [PMID: 18440823 DOI: 10.1016/j.biologicals.2008.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 11/30/2022] Open
Abstract
In a previous study, a single nucleotide polymorphism (SNP) diagnostic system named the SMart Amplification Process version 2 (SMAP 2) was reported, which enabled rapid gene diagnostics from crude samples such as whole blood. The asymmetric primer design and use of Taq MutS were reported as innovative background suppression technologies employed by SMAP 2, but Taq MutS is known to display differential affinities for various mismatch combinations, and hence may not be entirely effective for all possible applications. To address this issue we developed another approach using a competitive probe (CP) to enhance background suppression technology instead of Taq MutS. CP is a 3'-end aminated oligonucleotide that competes with 3'-end of a discrimination primer or the self-priming elongation site on intermediate product 2 (IM2) for non-target sequences, such as the alternative allele. The preferred hybridization kinetics for the full-match CP on the non-target sequence results in effective background suppression in SMAP 2 assays. By using a CP, we demonstrated the sensitive detection of EGFR gene mutations in purified genomic DNA from mixed cell populations. The CP approach is another tool enhancing the effectiveness and versatility of SMAP 2 assays, expanding its potential applications, and reinforcing its position as a highly effective technology for molecular diagnostics.
Collapse
Affiliation(s)
- Yuki Kawai
- Genome Exploration Research Group (Genome Network Project Core Group), Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Okamoto I, Seio K, Sekine M. Study of the base discrimination ability of DNA and 2'-O-methylated RNA oligomers containing 2-thiouracil bases towards complementary RNA or DNA strands and their application to single base mismatch detection. Bioorg Med Chem 2008; 16:6034-41. [PMID: 18487052 DOI: 10.1016/j.bmc.2008.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/26/2022]
Abstract
Precise detection of target DNA and RNA sequences using chemically modified oligonucleotides is of crucial importance in gene analysis and gene silence. The hybridisation and base discrimination abilities of oligonucleotides containing 2'-O-methyl-2-thiouridine (s(2)Um) in homo- and hetero-duplexes composed of DNA and RNA strands have been studied in detail. When s(2)Um was incorporated into RNA or DNA strands, the hybridisation and base discrimination abilities of the modified RNA or DNA oligomers towards the complementary RNA strands were superior to those of the corresponding unmodified oligomers. On the other hand, their base discrimination abilities towards complementary DNA strands were almost the same as those of the unmodified ones. The base discrimination abilities of 2-thiouracil base-containing oligonucleotide probes on slide glass plates were also studied. These modified probes exhibited efficient detection of mismatched base pairing.
Collapse
Affiliation(s)
- Itaru Okamoto
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
267
|
Michalak P, Malone JH. Testis-derived microRNA profiles of African clawed frogs (Xenopus) and their sterile hybrids. Genomics 2008; 91:158-64. [PMID: 18079091 DOI: 10.1016/j.ygeno.2007.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/12/2022]
Abstract
Gene regulation was long predicted to play a vital role in speciation and species divergence. Only recently with the advent of new technologies, however, has it been possible to address the question of the relative contributions of different mechanisms of gene expression to the evolution of phenotypic diversity. Here we broaden the question and ask whether microRNAs, a large class of small regulatory RNAs, play a role in reproductive isolation between species by contributing to hybrid male sterility. MicroRNAs from the testes of clawed frogs (Xenopus) were extracted and the expression profiles of sterile hybrids were compared with males of a parental species. Hybrid testes were largely microRNA-depleted relative to those of nonhybrids, and this pattern was validated with quantitative RT-PCR. A number of candidate differential microRNAs from this study have previously been described as testis-specific in the mouse, suggesting that microRNA structural conservation may be associated with functional retention.
Collapse
Affiliation(s)
- Pawel Michalak
- Department of Biology, University of Texas Arlington, Box 19498, Arlington, TX 76019, USA.
| | | |
Collapse
|
268
|
Lowery AJ, Miller N, McNeill RE, Kerin MJ. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res 2008; 14:360-5. [PMID: 18223209 DOI: 10.1158/1078-0432.ccr-07-0992] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery of microRNAs (miRNA) as novel modulators of gene expression has resulted in a rapidly expanding repertoire of molecules in this family, as reflected in the concomitant expansion of scientific literature. MiRNAs are a category of naturally occurring RNA molecules that play important regulatory roles in plants and animals by targeting mRNAs for cleavage or translational repression. Characteristically, miRNAs are noncoding, single-stranded short (18-22 nucleotides) RNAs, features which possibly explain why they had not been intensively investigated until recently. Accumulating experimental evidence indicates that miRNAs play a pivotal role in many cellular functions via the regulation of gene expression. Furthermore, their dysregulation and/or mutation has been shown in carcinogenesis. We provide a brief review of miRNA biogenesis and discuss the technical challenges of modifying experimental techniques to facilitate the identification and characterization of these small RNAs. MiRNA function and their involvement in malignancy, particularly their putative role as oncogenes or tumor suppressors is also discussed, with a specific emphasis on breast cancer. Finally, we comment on the potential role of miRNAs in breast cancer management, particularly in improving current prognostic tools and achieving the goal of individualized cancer treatment.
Collapse
Affiliation(s)
- Aoife J Lowery
- Department of Surgery, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
269
|
Abstract
For several decades, only a limited number of noncoding RNAs, such as ribosomal and transfer RNA, have been studied in any depth. In recent years, additional species of noncoding RNAs have increasingly been discovered. Of these, small RNA species attract particular interest because of their essential roles in processes such as RNA silencing and modifications. Detailed analyses revealed several pathways associated with the function of small RNAs. Although these pathways show evolutional conservation, there are substantial differences. Advanced technologies to profile RNAs have accelerated the field further resulting in the discovery of an increasing number of novel species, suggesting that we are only just beginning to appreciate the complexity of small RNAs and their functions. Here, we review recent progress in novel small RNA exploration, including discovered small RNA species, their pathways, and devised technologies.
Collapse
|
270
|
Microarray-based label-free detection of RNA using bispyrene-modified 2'-O-methyl oligoribonucleotide as capture and detection probe. Bioorg Med Chem Lett 2008; 18:2590-3. [PMID: 18394885 DOI: 10.1016/j.bmcl.2008.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 02/19/2008] [Accepted: 03/14/2008] [Indexed: 11/22/2022]
Abstract
A novel oligonucleotide microarray that can detect RNAs without fluorescent labeling of sample RNAs was developed. As a capture and detection probe, bispyrene-modified 2'-O-methyl oligoribonucleotide (OMUpy2), whose fluorescence was dramatically increased when hybridized with its complementary RNA, was adopted. Fluorescence of the OMUpy2 tethered on the glass surface was enhanced as much as 22-fold by the addition of complementary oligoribonucleotide.
Collapse
|
271
|
Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S. MicroRNA expression in the adult mouse central nervous system. RNA (NEW YORK, N.Y.) 2008; 14:432-44. [PMID: 18230762 PMCID: PMC2248253 DOI: 10.1261/rna.783108] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
MicroRNAs are approximately 22 nucleotide endogenous noncoding RNAs that post-transcriptionally repress expression of protein-coding genes by base-pairing with the 3'-untranslated regions of the target mRNAs. We present here an inventory of miRNA expression profiles from 13 neuroanatomically distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons, hypothalamus, hippocampus, neocortex, olfactory bulb, eye, and pituitary gland. These findings suggest that a large number of mouse CNS-expressed miRNAs may be associated with specific functions within these regions. Notably, more than 50% of the identified mouse CNS-enriched miRNAs showed different expression patterns compared to those reported in zebrafish, although the mature miRNA sequences are nearly 100% conserved between the two vertebrate species. The inventory of miRNA profiles in the adult mouse CNS presented here provides an important step toward further elucidation of miRNA function and miRNA-related gene regulatory networks in the mammalian central nervous system.
Collapse
Affiliation(s)
- Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
272
|
A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 2008; 105:3333-8. [PMID: 18303114 DOI: 10.1073/pnas.0712312105] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) control tissue development, but their mechanism of regulation is not well understood. We used a gene complementation strategy combined with microarray screening to identify miRNAs involved in the formation of erythroid (red blood) cells. Two conserved miRNAs, miR 144 and miR 451, emerged as direct targets of the critical hematopoietic transcription factor GATA-1. In vivo, GATA-1 binds a distal upstream regulatory element to activate RNA polymerase II-mediated transcription of a single common precursor RNA (pri-miRNA) encoding both mature miRNAs. Zebrafish embryos depleted of miR 451 by using antisense morpholinos form erythroid precursors, but their development into mature circulating red blood cells is strongly and specifically impaired. These results reveal a miRNA locus that is required for erythropoiesis and uncover a new regulatory axis through which GATA-1 controls this process.
Collapse
|
273
|
Abstract
Eukaryotic cells express small noncoding RNAs to silence target genes or regulate chromatin domains. MicroRNAs (miRNA) are endogenous small RNAs that are thought to each regulate multiple mRNA targets. To gain a deeper understanding of processes regulated by small noncoding RNAs, techniques are required to identify and detect them. This unit describes standard laboratory methods for and comments about high-throughput technologies for the identification and detection of small RNAs. This unit also outlines a cell-based reporter gene assay for assessing the regulatory potential of a microRNA on a candidate mRNA target.
Collapse
Affiliation(s)
- Nelson C Lau
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
274
|
Abstract
Mesenchymal stem cells, or multipotent mesenchymal stromal cells (MSC), isolated from various adult tissue sources have the capacities to self-renew and to differentiate into multiple lineages. Both of these processes are tightly regulated by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of single-stranded noncoding RNAs known as microRNAs also plays a critical role in this process. First described in nematodes and plants, microRNAs have been shown to modulate major regulatory mechanisms in eukaryotic cells involved in a broad array of cellular functions. Studies with various types of embryonic as well as adult stem cells indicate an intricate network of microRNAs regulating key transcription factors and other genes, which in turn determine cell fate. In addition, expression of unique microRNAs in specific cell types serves as a useful diagnostic marker to define a particular cell type. MicroRNAs are also found to be regulated by extracellular signaling pathways that are important for differentiation into specific tissues, suggesting that they play a role in specifying tissue identity. In this review, we describe the importance of microRNAs in stem cells, focusing on our current understanding of microRNAs in MSC and their derivatives.
Collapse
Affiliation(s)
- Uma Lakshmipathy
- Stem Cells and Regenerative Medicine, Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, California 92008, USA.
| | | |
Collapse
|
275
|
Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol 2008; 26:70-6. [DOI: 10.1016/j.tibtech.2007.11.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
|
276
|
MicroRNA quantitation from a single cell by PCR using SYBR® Green detection and LNA-based primers. Nat Methods 2008. [DOI: 10.1038/nmeth.f.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
277
|
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D, Calin GA. miRNAs and their potential for use against cancer and other diseases. Future Oncol 2008; 3:521-37. [PMID: 17927518 DOI: 10.2217/14796694.3.5.521] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNAs are 19-24 nucleotide long noncoding RNAs found in almost all genetically dissected species, including viruses, plants, nematodes, flies, fish, mice and humans. Rapid advances have been made in understanding their physiological functions, while abnormal patterns of miRNA expression have been found in many disease states, most notably human cancer. It is now clear that miRNAs represent a class of genes with a great potential for use in diagnosis, prognosis and therapy. In this review we will focus on the discoveries that elucidate their crucial role in mammalian diseases, particularly in cancer, and propose that miRNA-based gene therapy might become the potential technology of choice in a wide range of human diseases including cancer.
Collapse
Affiliation(s)
- Esmerina Tili
- Ohio State University, Department of Molecular Virology, Immunology & Medical Genetics and Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
278
|
Abstract
MicroRNAs (miRNAs) are a recently discovered group of small RNA molecules involved in the regulation of gene expression. Analogously to mRNAs, the non-protein-encoding pri-miRNAs are synthesized by RNA polymerase II and post-transcriptionally modified by addition of a 5'-cap and a 3'-poly (A) tail. Subsequently, the pri-miRNA undergoes a number of processing steps in the nucleus and cytoplasm, and ends up as a mature approximately 22 nt miRNA, which can exert its function by binding to the 3'-untranslated region of a subset of mRNAs. Binding of the miRNA to the mRNA results in a reduced translation rate and/or increased degradation of the mRNA. In this way a large number of cellular pathways, such as cellular proliferation, differentiation, and apoptosis, are regulated by mi-RNAs. As corruption of these pathways is the hallmark of many cancers, dysregulation of miRNA biogenesis or expression levels may lead to tumorigenesis. The mechanisms that alter the expression of miRNAs are similar to those that change the expression levels of mRNAs of tumor suppressor- and oncogenes, i.e. gross genomic aberrations, epigenetic changes, and minor mutations affecting the expression level, processing, or target-interaction potential of the miRNA. Furthermore, expression profiling of miRNAs has been found to be useful for classification of different tumor types. Taken together, miRNAs can be classified as onco-miRs or tumor suppressor-miRs, and may turn out to be potential targets for cancer therapy.
Collapse
Affiliation(s)
- Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
279
|
Lee I, Ajay SS, Chen H, Maruyama A, Wang N, McInnis MG, Athey BD. Discriminating single-base difference miRNA expressions using microarray Probe Design Guru (ProDeG). Nucleic Acids Res 2008; 36:e27. [PMID: 18208839 PMCID: PMC2275156 DOI: 10.1093/nar/gkm1165] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNA) are endogenous tissue-specific short RNAs that regulate gene expression. Discriminating each let-7 family member expression is especially important due to let-7's abundance and connection with development and cancer. However, short lengths (22 nt) and similarities between multiple sequences have prevented identification of individual members. Here, we present ProDeG, a computational algorithm which designs imperfectly matched sequences (previously yielding only noise levels in microarray experiments) for genome-wide microarray “signal” probes to discriminate single nucleotide differences and to improve probe qualities. Our probes for the entire let-7 family are both homogeneous and specific, verified using microarray signals from fluorescent dye-tagged oligonucleotides corresponding to the let-7 family, demonstrating the power of our algorithm. In addition, false let-7c signals from conventional perfectly-matched probes were identified in lymphoblastoid cell-line samples through comparison with our probe-set signals, raising concerns about false let-7 family signals in conventional microarray platform.
Collapse
Affiliation(s)
- Inhan Lee
- Department of Psychiatry, University of Michigan, Ann Arbor, Bioinformatics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
280
|
Taylor EL, Gant TW. Emerging fundamental roles for non-coding RNA species in toxicology. Toxicology 2008; 246:34-9. [PMID: 18289762 DOI: 10.1016/j.tox.2007.12.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are a large family of small regulatory RNA molecules found in all multicellular organisms. Since their discovery in 2001, there has been impressive progress in miRNA research, and a great deal is now known about the biosynthesis of miRNAs and their regulatory role in translation. It is becoming increasingly clear that miRNAs have fundamental roles to play in cellular responses to xenobiotic stress, the development of pathophysiological changes and other toxicological phenomenon such as susceptibility and resistance. Furthermore, the expression of miRNAs, like many of the genes important in toxicology, can be regulated by xenobiotics and DNA methylation. In this article we review the present understanding of the miRNA field with particular reference to toxicology. We also give an insight into our current projects within this exciting area and highlight some of the new challenges that now face miRNA research.
Collapse
Affiliation(s)
- Emma L Taylor
- University of Leicester, Systems Toxicology Group, Lancaster Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
281
|
Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2008; 67:11612-20. [PMID: 18089790 DOI: 10.1158/0008-5472.can-07-5019] [Citation(s) in RCA: 446] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are a new class of short noncoding regulatory RNAs (18-25 nucleotides) that are involved in diverse developmental and pathologic processes. Altered miRNA expression has been associated with several types of human cancer. However, most studies did not establish whether miRNA expression changes occurred within cells undergoing malignant transformation. To obtain insight into miRNA deregulation in breast cancer, we implemented an in situ hybridization (ISH) method to reveal the spatial distribution of miRNA expression in archived formalin-fixed, paraffin-embedded specimens representing normal and tumor tissue from >100 patient cases. Here, we report that expression of miR-145 and miR-205 was restricted to the myoepithelial/basal cell compartment of normal mammary ducts and lobules, whereas their accumulation was reduced or completely eliminated in matching tumor specimens. Conversely, expression of other miRNAs was detected at varying levels predominantly within luminal epithelial cells in normal tissue; expression of miR-21 was frequently increased, whereas that of let-7a was decreased in malignant cells. We also analyzed the association of miRNA expression with that of epithelial markers; prognostic indicators such as estrogen receptor, progesterone receptor, and HER2; as well as clinical outcome data. This ISH approach provides a more direct and informative assessment of how altered miRNA expression contributes to breast carcinogenesis compared with miRNA expression profiling in gross tissue biopsies. Most significantly, early manifestation of altered miR-145 expression in atypical hyperplasia and carcinoma in situ lesions suggests that this miRNA may have a potential clinical application as a novel biomarker for early detection.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 2008; 18:89-102. [PMID: 18295505 DOI: 10.1016/j.semcancer.2008.01.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of small endogenous non-coding RNAs that regulate gene expression post-transcriptionally by binding to their cognate target mRNAs. Emerging evidence implies that miRNAs play important roles in cancer and thus, miRNAs have rapidly emerged as valuable markers for cancer diagnostics and promising targets for therapeutics. Locked nucleic acid (LNA) is a conformational RNA analoque that binds complementary RNA with unprecedented affinity and specificity. These properties make LNA well suited for miRNA detection and analysis for cancer diagnostics. Furthermore, recent studies on LNA-mediated silencing of miRNA function in vitro and in vivo support the potential of LNA in therapeutic intervention of cancer-associated miRNAs.
Collapse
Affiliation(s)
- Jan Stenvang
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
283
|
Wark A, Lee H, Corn R. Multiplexmethoden zur Profilierung der MikroRNA-Expression in biologischen Proben. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200702450] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
284
|
Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew Chem Int Ed Engl 2008; 47:644-52. [PMID: 17994653 PMCID: PMC2739110 DOI: 10.1002/anie.200702450] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recent discovery of short, non-protein coding RNA molecules, such as microRNA molecules (miRNAs), that can control gene expression has unveiled a whole new layer of complexity in the regulation of cell function. Since 2001, there has been a surge of interest in understanding the regulatory role of the hundreds to thousands of miRNAs expressed in both plants and animals. Significant progress in this area requires the development of quantitative bioanalytical methods for the rapid, multiplexed detection of all miRNAs that are present in a particular cell or tissue sample. In this Minireview, we discuss some of the latest methods for high-throughput miRNA profiling and the unique technological challenges that must be surmounted in this endeavor.
Collapse
Affiliation(s)
- Alastair W Wark
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
285
|
Lee HJ, Wark AW, Corn RM. Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings. Analyst 2008; 133:596-601. [DOI: 10.1039/b718713k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
286
|
Liu CG, Spizzo R, Calin GA, Croce CM. Expression profiling of microRNA using oligo DNA arrays. Methods 2008; 44:22-30. [PMID: 18158129 PMCID: PMC3321558 DOI: 10.1016/j.ymeth.2007.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 12/25/2022] Open
Abstract
After 12 years from its first application, microarray technology has become the reference technique to monitor gene expression of thousands of genes in the same experiment. In the past few years an increasing amount of evidence showed the importance of non-coding RNA (ncRNA) in different human diseases. The microRNAs (miRNAs) are one of the groups of ncRNA. They are small RNA fragments, 19-25 nucleotides long, with a main regulatory function on both protein coding genes and non-coding RNAs. The application of microarray platforms applied to miRNA profiling determined their deregulation in virtually all human diseases that have been studied. We previously developed a custom miRNA microarray platform, and here we describe the protocol we used to work with it including the oligo design strategy, the microarray printing protocol, the target-probe hybridization and the signal detection.
Collapse
Affiliation(s)
- Chang-Gong Liu
- Departement of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus OH 43210
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston TX 77030
| | - George Adrian Calin
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston TX 77030
| | - Carlo Maria Croce
- Departement of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus OH 43210
| |
Collapse
|
287
|
Zhang B, Farwell MA. microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med 2007; 12:3-21. [PMID: 18088390 PMCID: PMC3823469 DOI: 10.1111/j.1582-4934.2007.00196.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are a new class of non-protein-coding small RNAs, which regulate the expression of more than 30% protein-coding genes. The unique expression profiles of different miRNAs in different types of cancers and at different stages in one cancer type suggest that miRNAs can function as novel biomarkers for disease diagnostics and may present a new strategy for miRNA gene therapy. Anti-miRNAs and antisense oligonucleotides (ASO) have been employed to inhibit specific miRNA expression in vitro and in vivo for investigational and clinical purposes. Although miRNA-based diagnostics and gene therapy are still in their infancy, their huge potentials will meet our need for future disease diagnostics and gene therapy. High efficient delivery of miRNAs into targeted sites, designing accurate anti-miRNA/ASOs, and related biosafety issues are three major challenges in this field.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | |
Collapse
|
288
|
Petersen J, Poulsen L, Petronis S, Birgens H, Dufva M. Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays. Nucleic Acids Res 2007; 36:e10. [PMID: 18063568 PMCID: PMC2241873 DOI: 10.1093/nar/gkm1081] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
DNA microarrays are generally operated at a single condition, which severely limits the freedom of designing probes for allele-specific hybridization assays. Here, we demonstrate a fluidic device for multi-stringency posthybridization washing of microarrays on microscope slides. This device is called a multi-thermal array washer (MTAW), and it has eight individually controlled heating zones, each of which corresponds to the location of a subarray on a slide. Allele-specific oligonucleotide probes for nine mutations in the beta-globin gene were spotted in eight identical subarrays at positions corresponding to the temperature zones of the MTAW. After hybridization with amplified patient material, the slides were mounted in the MTAW, and each subarray was exposed to different temperatures ranging from 22 to 40°C. When processed in the MTAW, probes selected without considering melting temperature resulted in improved genotyping compared with probes selected according to theoretical melting temperature and run under one condition. In conclusion, the MTAW is a versatile tool that can facilitate screening of a large number of probes for genotyping assays and can also enhance the performance of diagnostic arrays.
Collapse
Affiliation(s)
- Jesper Petersen
- Department of Haematology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
289
|
Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:728-38. [PMID: 17724137 PMCID: PMC1959494 DOI: 10.2353/ajpath.2007.070070] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a family of 21- to 25-nucleotide, noncoding small RNAs that primarily function as gene regulators. It is surprising that these tiny molecules, so diverse and consequential in their biological functions, have been hidden for so many years. Thanks to their discovery, cancer research has found a new arena. Aided by innovative molecular techniques, the research of miRNAs in oncology has progressed rapidly in recent years. miRNA abnormalities are becoming an emerging theme in cancer research. Specific functions of miRNAs, many of which are relevant to cancer development, are becoming apparent. The value of miRNAs in cancer classification and prognostication is being explored, and new therapeutic strategies targeting miRNAs are being developed. Because there is great promise that miRNA research will provide breakthroughs in the understanding of cancer pathogenesis and development of new valuable prognostic markers, pathologists should be adequately informed of this rapidly progressing field. Here, we offer a review on the basics of miRNA biology and the emerging role of miRNA in cancer pathogenesis, classification, and prognostication, including highlights of the involvement of specific miRNAs in different tumor types.
Collapse
Affiliation(s)
- Wenyong Zhang
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, Starr 711A, 525 East 68th St., New York, NY 10021, USA
| | | | | |
Collapse
|
290
|
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression post-transcriptionally. After the discovery of the first miRNA in the roundworm Caenorhabditis elegans, these short regulatory RNAs have been found to be an abundant class of RNAs in plants, animals, and DNA viruses. About 3% of human genes encode for miRNAs, and up to 30% of human protein coding genes may be regulated by miRNAs. MicroRNAs play a key role in diverse biological processes, including development, cell proliferation, differentiation, and apoptosis. Accordingly, altered miRNA expression is likely to contribute to human disease, including cancer. This review will summarize the emerging knowledge of the connections between human miRNA biology and different aspects of carcinogenesis. Various techniques available to investigate miRNAs will also be discussed.
Collapse
|
291
|
Castoldi M, Benes V, Hentze MW, Muckenthaler MU. miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 2007; 43:146-52. [PMID: 17889802 DOI: 10.1016/j.ymeth.2007.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 11/16/2022] Open
Abstract
As key regulators of post-transcriptional gene expression, it is important to monitor the expression of microRNAs (miRNA) in diverse physiological and pathophysiological processes. Here, we describe a method for sensitive and accurate microarray-based expression profiling of miRNAs. The protocol focuses on the use of locked nucleic acid (LNA)-modified capture probes. LNAs are bicyclic nucleotide analogues that significantly increase the melting temperature (T(m)) of hybrids with miRNAs. Mixed LNA/DNA capture probes thus can be designed for equal T(m)s for all miRNAs, which naturally cover a range between 45 and 74 degrees C. The protocols established are easy to apply, as they do not require RNA size selection and/or amplification of miRNAs. Moreover, they enable high affinity hybridizations yielding accurate signals that discriminate between single nucleotide differences and hence closely related miRNA family members.
Collapse
Affiliation(s)
- Mirco Castoldi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 156, D-69210 Heidelberg, Germany
| | | | | | | |
Collapse
|
292
|
Wang C, Li Q. Identification of Differentially Expressed MicroRNAs During the Development of Chinese Murine Mammary Gland. J Genet Genomics 2007; 34:966-73. [DOI: 10.1016/s1673-8527(07)60109-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 04/09/2007] [Indexed: 11/25/2022]
|
293
|
Gant TW. Novel and future applications of microarrays in toxicological research. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.599] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
294
|
Scaria V, Hariharan M, Pillai B, Maiti S, Brahmachari SK. Host-virus genome interactions: macro roles for microRNAs. Cell Microbiol 2007; 9:2784-94. [PMID: 17944962 DOI: 10.1111/j.1462-5822.2007.01050.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MicroRNAs are recently discovered small endogenous non-coding RNAs. These small RNAs of approximately 22 nucleotide length are crucial post-transcriptional regulators of gene expression in a wide spectrum of normal and abnormal biological processes including antiviral defence, oncogenesis and development in higher eukaryotes. Of late, a number of viruses have also been shown to encode for microRNAs. The host- and virus-encoded microRNAs and their targets together thus form a novel regulatory layer of genetic interactions between the host and the virus. Recent reports have thrown light on this new regulatory layer. A clear understanding of the cross-talk between the host and virus would not only enable us to understand the molecular basis of viral pathogenesis, but also enable us to develop better therapeutic strategies. This review discusses the intricacies of host-virus cross-talk mediated by microRNAs. Recent trends in this field and the challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
295
|
Kaur H, Babu BR, Maiti S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem Rev 2007; 107:4672-97. [PMID: 17944519 DOI: 10.1021/cr050266u] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
296
|
Giannakakis A, Coukos G, Hatzigeorgiou A, Sandaltzopoulos R, Zhang L. miRNA genetic alterations in human cancers. Expert Opin Biol Ther 2007; 7:1375-86. [PMID: 17727327 DOI: 10.1517/14712598.7.9.1375] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which negatively regulate gene expression in a sequence-specific manner via translational repression and/or mRNA degradation. Their discovery revealed a new and exciting aspect of post-transcriptional gene regulation that is universally involved in cellular homeostasis. Importantly, the advent of miRNAs added another level of complication in the already complex regulatory networks of the cell, undermining that RNA molecules in general, should be considered gene regulators of equal importance with proteins. Recently, the scientific community drew attention to the miRNA field for an additional reason: an increasing line of evidence indicated that miRNA genes are tightly connected with the process of tumorigenesis. Indeed, several miRNAs have already been demonstrated to behave as oncogenes or tumor suppressor genes in many types of cancer. Even though the underlying mechanisms by which miRNAs can destabilize the normal cellular processes, promoting cell transformation and tumor progression, are not well understood, genetic and epigenetic alterations most probably play a critical role. Significant technologic advances facilitated the profiling of the miRNA expression patterns in normal and cancer tissues and discovered an unexpected greater reliability of miRNA expression signatures in classifying cancer types than the respective signatures of protein-coding genes. Along with this extraordinary diagnostic potential, miRNAs have also proved their prognostic value in predicting clinical behaviors of cancer patients. The aim of this review is to describe miRNA expression and how its deregulation is involved in the pathophysiology of human cancers.
Collapse
Affiliation(s)
- Antonis Giannakakis
- University of Pennsylvania School of Medicine, Center for Research on Early Detection and Cure of Ovarian Cancer, Rm1209 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
297
|
Ahmed FE. Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn 2007; 7:569-603. [PMID: 17892365 DOI: 10.1586/14737159.7.5.569] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miRNAs, their involvement in cancer development and their potential to be robust biomarkers of diagnosis, staging, prognosis and response to therapy are reviewed. In small RNA animal biogenesis, miRNA genes in the nucleus are transcribed to generate long primary transcripts (pri-miRNAs), which are first cropped by RNase-III-type enzyme Drosha to release hairpin intermediates (pre-miRNAs) in the nucleus. Pre-miRNA is then exported to the cytoplasm by exportin-5. Following arrival in the cytoplasm, pre-miRNAs are subjected to the second processing step (dicing) to release the mature miRNA duplex, which is then separated: one strand becomes the mature miRNA and the other is degraded. These tiny miRNAs induce messenger degradation, translational repression or both. However, there is no evidence to demonstrate that these two mechanisms exist in the regulation of the same gene. Since a miRNA can target numerous mRNAs, often in combination with other miRNAs, these miRNAs operate a highly complex regulatory network. The specific function in most mammalian miRNAs is unknown. However, data suggest that miRNA genes, approximately 1% of all human genes, regulate protein production for 20-30% or more of all genes. miRNA expression profiles are effective for classifying solid and hematologic human cancers, and have shown great promise for early cancer detection. This is of great importance for effective treatment before the cells metastasize; therefore, tumors can be surgically resected. Computer-based prediction approaches of miRNAs and their targets, and biological validation techniques for ascertaining these predictions, currently play a central role in the discovery of miRNAs and in elucidating their function. Guidelines have been established for the identification and annotation of new miRNAs to distinguish them from other RNAs, especially siRNAs. These guidelines take into account factors such as transcript structure, conservation and processing, and a centralized, searchable database of all possible miRNA sequence information and annotation for humans and of more than 38 other species. Two approaches are used to characterize miRNAs: studying expression of known miRNAs by hybridization-based techniques (e.g., northern blots, RNase protection, primer extension, real-time, quantitative PCR and microarrays) or discovery of novel miRNAs molecules by cloning and sequencing. Owing to their adaptability and high throughput, microarrays may prove to be the preferred platform for whole-genome miRNA expression analysis.
Collapse
Affiliation(s)
- Farid E Ahmed
- East Carolina University, Department of Radiation Oncology, LSB 014, Leo W Jenkins Cancer Center, The Brody School of Medicine, 600 Moye Blvd, LSB 003, Greenville, NC 27858, USA.
| |
Collapse
|
298
|
Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA (NEW YORK, N.Y.) 2007; 13:1668-74. [PMID: 17698639 PMCID: PMC1986820 DOI: 10.1261/rna.642907] [Citation(s) in RCA: 462] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
microRNAs (miRNAs) are noncoding small RNAs that regulate gene expression at the translational level by mainly interacting with 3' UTRs of their target mRNAs. Archived formalin-fixed paraffin-embedded (FFPE) specimens represent excellent resources for biomarker discovery. Currently there is a lack of systematic analysis on the stability of miRNAs and optimized conditions for expression analysis using FFPE samples. In this study, the expression of miRNAs from FFPE samples was analyzed using high-throughput locked nucleic acid-based miRNA arrays. The effect of formalin fixation on the stability of miRNAs was also investigated using miRNA real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The stability of miRNAs of archived colorectal cancer FFPE specimens was characterized with samples dating back up to 10 yr. Our results showed that the expression profiles of miRNAs were in good correlation between 1 mug of fresh frozen and 1-5 mug of FFPE samples (correlation coefficient R (2) = 0.86-0.89). Different formalin fixation times did not change the stability of miRNAs based on real-time qRT-PCR analysis. There are no significant differences of representative miRNA expression among 40 colorectal cancer FFPE specimens. This study provides a foundation for miRNA investigation using FFPE samples in cancer and other types of diseases.
Collapse
Affiliation(s)
- Yaguang Xi
- Cancer Genomics Laboratory, Mitchell Cancer Institute, Mobile, Alabama 36688, USA
| | | | | | | | | | | | | |
Collapse
|
299
|
Yin JQ, Zhao RC. Identifying expression of new small RNAs by microarrays. Methods 2007; 43:123-30. [PMID: 17889799 DOI: 10.1016/j.ymeth.2007.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 12/28/2022] Open
Abstract
Although a large number of small RNAs (sRNAs) have been discovered, it is very likely that the screens conducted so far have not reached saturation. Recently, many methods for predicting and identifying new sRNAs have been developed. However, it remains unclear what the total number of sRNAs within a genome is and how many types of sRNAs exist in plants and animals. In this article, combined methods of dynamic programming prediction, enrichment of sRNAs, and microarray analysis are developed to screen and evaluate a new class of sRNAs from introns of human, protein-encoding genes. The methods used by our laboratories to design capture probes and label enriched small RNAs are thoroughly described here. The microarray results show that our modified technologies are useful to enhance sensitivity and specificity of arrays, identify expression patterns within different cells, and discover differential expression of sRNAs during the differentiation process of bone marrow stem cells. Accordingly, the combination of computational prediction and microarray analysis may be a feasible and practical approach for profiling studies of both known and predicted small RNAs.
Collapse
Affiliation(s)
- James Q Yin
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | | |
Collapse
|
300
|
Tang X, Gal J, Zhuang X, Wang W, Zhu H, Tang G. A simple array platform for microRNA analysis and its application in mouse tissues. RNA (NEW YORK, N.Y.) 2007; 13:1803-22. [PMID: 17675362 PMCID: PMC1986807 DOI: 10.1261/rna.498607] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that regulate gene expression at the post-transcriptional level and play a critical role in many important biological processes. Most miRNAs are conserved between humans and mice, which makes it possible to analyze their expressions with a set of selected array probes. Here, we report a simple array platform that can detect 553 nonredundant miRNAs encompassing the entire set of miRNAs for humans and mice. The platform features carefully selected and designed probes with optimized hybridization parameters. Potential cross-reaction between mature miRNAs and their precursors was investigated. The array platform was used to analyze miRNAs in the mouse central nervous system (CNS, spinal cord and brain), and two other non-CNS organs (liver and heart). Two types of miRNAs, differentially expressed organ/tissue-associated miRNAs and ubiquitously expressed miRNAs, were detected in the array analysis. In addition to the previously reported neuron-related miR-124a, liver-related miR-122a, and muscle-related miR-133a, we also detected new tissue-associated miRNAs (e.g., liver-associated miR-194). Interestingly, while the majority of pre-miRNAs were undetectable, miR690, miR709, and miR720 were clearly detected at both mature and precursor levels by the array analysis, indicating a limited cross-reaction between pre-miRNAs and their mature miRNAs. The reliability of this array technology was validated by comparing the results with independent Northern blot analyses and published data. A new approach of data normalization based on Northern blot analysis of one ubiquitously expressed miRNA is introduced and compared with traditional approaches. We expect this miRNA array platform to be useful for a wide variety of biological studies.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Gene Suppression Laboratory, Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546-0236, USA
| | | | | | | | | | | |
Collapse
|