251
|
Rathore A, Malani H. Need for a risk-based control strategy for managing glycosylation profile for biosimilar products. Expert Opin Biol Ther 2021; 22:123-131. [PMID: 34431439 DOI: 10.1080/14712598.2021.1973425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Monoclonal antibodies, though a popular class of therapeutics, are complex molecules that are manufactured using complex processes, making it nontrivial to maintain high level of batch-to-batch consistency in product quality. Glycosylation is a posttranslation modification that is widely considered a critical quality attribute (CQA) as its variations are known to impact the Fc effector functions of mAbs. With continuing rise of biosimilars, comparability of these products to the reference product with respect to glycosylation is a topic of immense interest. AREAS COVERED In this article, we focus on the various aspects related to this topic including criticality of the various glycosylated forms, as well as comparability of biosimilars with respect to glycosylation. EXPERT OPINION We propose that manufacturers should focus on those glycoforms that are present in larger amounts and are known to be critical with respect to the biotherapeutic's safety and efficacy. Such risk-based evaluation of glycoforms and their control would offer an optimal route to biosimilar manufacturers for a cost-effective approach toward product development without compromising on the safety and efficacy characteristics of the therapeutic. For mAbs lacking Fc effector function, devising stringent glycosylation control strategies can be bypassed, thereby simplifying process and product development.
Collapse
Affiliation(s)
- Anurag Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
252
|
Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: review and update. J Drug Target 2021; 29:848-862. [PMID: 33615933 DOI: 10.1080/1061186x.2021.1894435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotoxins (ITs) are protein-based drugs that compose of targeting and cytotoxic moieties. After binding the IT to the specific cell-surface antigen, the IT internalises into the target cell and kills it. Targeting and cytotoxic moieties usually include monoclonal antibodies and protein toxins with bacterial or plant origin, respectively. ITs have been successful in haematologic malignancies treatment. However, ITs penetrate poorly into solid tumours because of their large size. Use of camelid antibody fragments known as nanobodies (Nbs) as a targeting moiety may overcome this problem. Nbs are the smallest fragment of antibodies with excellent tumour tissue penetration. The ability to recognise cryptic (immuno-evasive) target antigens, low immunogenicity, and high-affinity are other fundamental characteristics of Nbs that make them suitable candidates in targeted therapy. Here, we reviewed and discussed the structure and function of ITs, Nbs, and nanobody-based ITs. To gain sound insight into the issue at hand, we focussed on nanobody-based ITs.
Collapse
Affiliation(s)
- Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
253
|
Yeoh SG, Sum JS, Lai JY, W Isa WYH, Lim TS. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J Cardiovasc Transl Res 2021; 15:360-380. [PMID: 34467463 DOI: 10.1007/s12265-021-10169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. "Lipid hypothesis" which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.
Collapse
Affiliation(s)
- Soo Ghee Yeoh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - W Y Haniff W Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
254
|
Foreman HCC, Frank A, Stedman TT. Determination of variable region sequences from hybridoma immunoglobulins that target Mycobacterium tuberculosis virulence factors. PLoS One 2021; 16:e0256079. [PMID: 34415957 PMCID: PMC8378720 DOI: 10.1371/journal.pone.0256079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-quarter of the world's population. Mtb and HIV coinfections enhance the comorbidity of tuberculosis (TB) and AIDS, accounting for one-third of all AIDS-associated mortalities. Humoral antibody to Mtb correlates with TB susceptibility, and engineering of Mtb antibodies may lead to new diagnostics and therapeutics. The characterization and validation of functional immunoglobulin (Ig) variable chain (IgV) sequences provide a necessary first step towards developing therapeutic antibodies against pathogens. The virulence-associated Mtb antigens SodA (Superoxide Dismutase), KatG (Catalase), PhoS1/PstS1 (regulatory factor), and GroES (heat shock protein) are potential therapeutic targets but lacked IgV sequence characterization. Putative IgV sequences were identified from the mRNA of hybridomas targeting these antigens and isotype-switched into a common immunoglobulin fragment crystallizable region (Fc region) backbone, subclass IgG2aκ. Antibodies were validated by demonstrating recombinant Ig assembly and secretion, followed by the determination of antigen-binding specificity using ELISA and immunoblot assay.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| | - Andrew Frank
- BEI Resources, ATCC., Manassas, Virginia, United States of America
| | - Timothy T. Stedman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| |
Collapse
|
255
|
Joshua PE, Nwauzor CO, Odimegwu DC, Ukachukwu UG, Asomadu RO, Ezeorba TPC. Experimental and molecular predictions of the adjuvanticity of snail mucin on hepatitis B vaccine in albino mice. PLoS One 2021; 16:e0246915. [PMID: 34297725 PMCID: PMC8301616 DOI: 10.1371/journal.pone.0246915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022] Open
Abstract
Although aluminum-containing adjuvants are widely used in human vaccination due to their excellent safety profile, they exhibit low effectiveness with many recombinant antigens. This study investigated the adjuvanticity of snail mucin with recombinant Hepatitis B Vaccine (rHBsAg). Twenty-five (25) female mice distributed unbiasedly into 5 groups were used in the study and were administered different rHBsAg/Mucin formulation at 7 days intervals. Blood samples were collected a day following the administration for analysis. The results of liver function and body weight analysis were indications that snail mucin had no adverse effect on the mice. The treatment group (administer mucin and rHBsAg) showed significantly (P<0.05) higher mean titres of anti-HBsAg antibodies when compared with the negative controls and the positive control administered with two doses of rHBsAg after the boost doses (day 28). Furthermore, a comparable immune response to positive control administered with three doses rHBaAG was recorded. In silico prediction, studies of the protein-protein interaction of a homology modelled snail mucus protein and HBsAg gave an indication of enhanced HBV antigen-antibody interaction. Therefore, this study has shown that snail mucin possesses some adjuvant properties and enhances immune response towards rHBsAg vaccine. However, there is a need for further molecular dynamics studies to understand its mechanism of action.
Collapse
Affiliation(s)
- Parker Elijah Joshua
- Faculty of Biological Sciences, Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology & Biotechnology, University of Nigeria, Nsukka, Nigeria
| | | | | | | |
Collapse
|
256
|
Huseby Kelcher AM, Baehr CA, Hamid FA, Hart GT, Pravetoni M. Contribution of Antibody-Mediated Effector Functions to the Mechanism of Efficacy of Vaccines for Opioid Use Disorders. THE JOURNAL OF IMMUNOLOGY 2021; 207:860-867. [PMID: 34281999 DOI: 10.4049/jimmunol.2100204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
Vaccines and mAbs offer promising strategies to treat substance use disorders (SUDs) and prevent overdose. Despite vaccines and mAbs against SUDs demonstrating proof of efficacy, selectivity, and safety in animal models, it is unknown whether the mechanism of action of these immunotherapeutics relies exclusively on the formation of Ab/drug complexes, or also involves Ab-mediated effector functions. Hence, this study tested whether the efficacy of active and passive immunization against drugs of abuse requires phagocytosis, the intact Fc portion of the anti-drug Ab, FcγRs, or the neonatal FcR (FcRn). The efficacy of a lead vaccine against oxycodone was not diminished in mice after depletion of macrophages or granulocytes. Anti-oxycodone F(ab')2 fragments resulted in lower serum levels of F(ab')2 compared with intact mAbs, and F(ab')2s were not as effective as the parent mAbs in reducing distribution of oxycodone to the brain. The efficacy of vaccines and mAbs against oxycodone was preserved in either FcγIII or FcγI-IV ablated mice, suggesting that FcγRs are not required for Ab efficacy. Finally, both active and passive immunization against oxycodone in FcRn-/- mice yielded reduced efficacy compared with wild-type control mice. These data identified a role for FcRn, but not for phagocytosis or Fc-dependent effector functions, in mediating the efficacy of vaccines and mAbs against SUD. This study supports rational design of vaccines and mAbs engineered for maximal neutralization activity and optimal FcRn binding.
Collapse
Affiliation(s)
| | - Carly A Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Fatima A Hamid
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Geoffrey T Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and.,Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN; .,Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
257
|
Rezaei S, Sefidbakht Y, Uskoković V. Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Brief Bioinform 2021; 22:6313266. [PMID: 34219142 DOI: 10.1093/bib/bbab241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
With the onset of the COVID-19 pandemic, the amount of data on genomic and proteomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stored in various databases has exponentially grown. A large volume of these data has led to the production of equally immense sets of immunological data, which require rigorous computational approaches to sort through and make sense of. Immunoinformatics has emerged in the recent decades as a field capable of offering this approach by bridging experimental and theoretical immunology with state-of-the-art computational tools. Here, we discuss how immunoinformatics can assist in the development of high-performance vaccines and drug discovery needed to curb the spread of SARS-CoV-2. Immunoinformatics can provide a set of computational tools to extract meaningful connections from the large sets of COVID-19 patient data, which can be implemented in the design of effective vaccines. With this in mind, we represent a pipeline to identify the role of immunoinformatics in COVID-19 treatment and vaccine development. In this process, a number of free databases of protein sequences, structures and mutations are introduced, along with docking web servers for assessing the interaction between antibodies and the SARS-CoV-2 spike protein segments as most commonly considered antigens in vaccine design.
Collapse
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center at Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center at Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Founder of the biotech startup, TardigradeNano, and formerly a Professor at University of Illinois in Chicago, Chapman University, and University of California in Irvine
| |
Collapse
|
258
|
Kadkhoda J, Akrami-Hasan-Kohal M, Tohidkia MR, Khaledi S, Davaran S, Aghanejad A. Advances in antibody nanoconjugates for diagnosis and therapy: A review of recent studies and trends. Int J Biol Macromol 2021; 185:664-678. [PMID: 34224755 DOI: 10.1016/j.ijbiomac.2021.06.191] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023]
Abstract
Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application. These intelligent delivery systems can deliver therapeutic agents that target cancerous tissue with minimal side effects and a wide therapeutic window. Overall, the linkage between the antibody and NPs is a critical subject and requires precise design and development. The attachment of antibody nanoconjugates (Ab-NCs) on the antigen surface shouldn't affect the function of the antibody-antigen binding. Also, the stability of the antibody nanoconjugates in blood circulation is concerned to avoid the release of drug in non-targeted regions and the possible for specific toxicity while disposal to the desired site. Here, we update the recent progress of Ab-NCs to improve early detection and cancer therapy.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Akrami-Hasan-Kohal
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Khaledi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
259
|
Shmool TA, Martin LK, Bui-Le L, Moya-Ramirez I, Kotidis P, Matthews RP, Venter GA, Kontoravdi C, Polizzi KM, Hallett JP. An experimental approach probing the conformational transitions and energy landscape of antibodies: a glimmer of hope for reviving lost therapeutic candidates using ionic liquid. Chem Sci 2021; 12:9528-9545. [PMID: 34349928 PMCID: PMC8278930 DOI: 10.1039/d1sc02520a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding protein folding in different environmental conditions is fundamentally important for predicting protein structures and developing innovative antibody formulations. While the thermodynamics and kinetics of folding and unfolding have been extensively studied by computational methods, experimental methods for determining antibody conformational transition pathways are lacking. Motivated to fill this gap, we prepared a series of unique formulations containing a high concentration of a chimeric immunoglobin G4 (IgG4) antibody with different excipients in the presence and absence of the ionic liquid (IL) choline dihydrogen phosphate. We determined the effects of different excipients and IL on protein thermal and structural stability by performing variable temperature circular dichroism and bio-layer interferometry analyses. To further rationalise the observations of conformational changes with temperature, we carried out molecular dynamics simulations on a single antibody binding fragment from IgG4 in the different formulations, at low and high temperatures. We developed a methodology to study the conformational transitions and associated thermodynamics of biomolecules, and we showed IL-induced conformational transitions. We showed that the increased propensity for conformational change was driven by preferential binding of the dihydrogen phosphate anion to the antibody fragment. Finally, we found that a formulation containing IL with sugar, amino acids and surfactant is a promising candidate for stabilising proteins against conformational destabilisation and aggregation. We hope that ultimately, we can help in the quest to understand the molecular basis of the stability of antibodies and protein misfolding phenomena and offer new candidate formulations with the potential to revive lost therapeutic candidates.
Collapse
Affiliation(s)
- Talia A Shmool
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Laura K Martin
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Liem Bui-Le
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Ignacio Moya-Ramirez
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Richard P Matthews
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Gerhard A Venter
- Scientific Computing Research Unit, Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| |
Collapse
|
260
|
Rakauskaitė R, Urbanavičiūtė G, Simanavičius M, Žvirblienė A, Klimašauskas S. Selective immunocapture and light-controlled traceless release of transiently caged proteins. STAR Protoc 2021; 2:100455. [PMID: 33937874 PMCID: PMC8076704 DOI: 10.1016/j.xpro.2021.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The 4,5-dimethoxy-2-nitrobenzyl (DMNB) photocaging group introduced into small biomolecules, peptides, oligonucleotides, and proteins is commonly used for spatiotemporal control of chemical and biological processes. Here, we describe the use of a DMNB-selective monoclonal antibody for non-covalent capture of chemically or biosynthetically produced proteins containing surface-exposed DMNB caging groups followed by light-controlled traceless decaging and release of the bound proteins into solution for a variety of downstream applications. For complete details on the use and execution of this protocol, please refer to Rakauskaitė et al. (2020).
Collapse
Affiliation(s)
- Rasa Rakauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Giedrė Urbanavičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Martynas Simanavičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
261
|
Computational-Driven Epitope Verification and Affinity Maturation of TLR4-Targeting Antibodies. Int J Mol Sci 2021; 22:ijms22115989. [PMID: 34206009 PMCID: PMC8198660 DOI: 10.3390/ijms22115989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/29/2021] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody-antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.
Collapse
|
262
|
Zhang L, Wang Z, Wang Z, Luo F, Guan M, Xu M, Li Y, Zhang Y, Wang Z, Wang W. A Simple and Efficient Method to Generate Dual Site-Specific Conjugation ADCs with Cysteine Residue and an Unnatural Amino Acid. Bioconjug Chem 2021; 32:1094-1104. [PMID: 34013721 DOI: 10.1021/acs.bioconjchem.1c00134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates (ADCs) are complex pharmaceutical molecules that combine monoclonal antibodies with biologically active drugs through chemical linkers. ADCs are designed to specifically kill disease cells by utilizing the target specificity of antibodies and the cytotoxicity of chemical drugs. However, the traditional ADCs were only applied to a few disease targets because of some limitations such as the huge molecular weight, the uncontrollable coupling reactions, and a single mechanism of action. Here we report a simple, one-pot, successive reaction method to produce dual payload conjugates with the site-specifically engineered cysteine and p-acetyl-phenylalanine using Herceptin (trastuzumab), an anti-HER2 antibody drug widely used for breast cancer treatment, as a tool molecule. This strategy enables antibodies to conjugate with two mechanistically distinct cytotoxic drugs through different functional groups sequentially, therefore, rendering the newly designed ADCs with functional diversity and the potential to overcome drug resistance and enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Lin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zewei Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meimei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yundong Li
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
263
|
Baah S, Laws M, Rahman KM. Antibody-Drug Conjugates-A Tutorial Review. Molecules 2021; 26:2943. [PMID: 34063364 PMCID: PMC8156828 DOI: 10.3390/molecules26102943] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a family of targeted therapeutic agents for the treatment of cancer. ADC development is a rapidly expanding field of research, with over 80 ADCs currently in clinical development and eleven ADCs (nine containing small-molecule payloads and two with biological toxins) approved for use by the FDA. Compared to traditional small-molecule approaches, ADCs offer enhanced targeting of cancer cells along with reduced toxic side effects, making them an attractive prospect in the field of oncology. To this end, this tutorial review aims to serve as a reference material for ADCs and give readers a comprehensive understanding of ADCs; it explores and explains each ADC component (monoclonal antibody, linker moiety and cytotoxic payload) individually, highlights several EMA- and FDA-approved ADCs by way of case studies and offers a brief future perspective on the field of ADC research.
Collapse
Affiliation(s)
| | | | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (S.B.); (M.L.)
| |
Collapse
|
264
|
Kang W, Ding C, Zheng D, Ma X, Yi L, Tong X, Wu C, Xue C, Yu Y, Zhou Q. Nanobody Conjugates for Targeted Cancer Therapy and Imaging. Technol Cancer Res Treat 2021; 20:15330338211010117. [PMID: 33929911 PMCID: PMC8111546 DOI: 10.1177/15330338211010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Wei Kang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lun Yi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinyi Tong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chuang Wu
- Xiamen Medical College, Xiamen, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
265
|
Yang Y, Chai X, Xin W, Wang D, Dai C, Qian F, Yang T. Generation and characterization of a high-affinity chimeric anti-OX40 antibody with potent antitumor activity. FEBS Lett 2021; 595:1587-1603. [PMID: 33792041 DOI: 10.1002/1873-3468.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
OX40 is a costimulatory molecule that belongs to the tumor necrosis factor receptor (TNFR) superfamily. OX40 agonist-based combinations are emerging as promising candidates for novel cancer immunotherapy. Clinical trials have shown that OX40 agonist antibodies could lead to better results in cancer patients. Using a hybridoma platform and three different types of immunization strategies, namely recombinant protein, DNA, and overexpressing cells, we identified a chimeric anti-OX40 antibody (mAb035-hIgG1 from DNA immunization) that shows excellent binding specificity, and slightly stronger activation of human memory CD4+ T cells and similar potent antitumor activity compared with BMS 986178, an anti-OX40 antibody currently being evaluated for the treatment of solid tumors. This paper further systematically investigates the antigen-specific immune response, the number of binders, epitope bins, and functional activities of antibodies among different immunization strategies. Interestingly, we found that different immunization strategies affect the biological activity of monoclonal antibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity
- Antibody Specificity
- Antineoplastic Agents, Immunological/isolation & purification
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- Biological Assay
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CHO Cells
- Cricetulus
- Female
- Freund's Adjuvant/administration & dosage
- Gene Expression
- Genes, Reporter
- HEK293 Cells
- Humans
- Hybridomas/chemistry
- Hybridomas/immunology
- Immunization/methods
- Immunoglobulin Fc Fragments/biosynthesis
- Immunoglobulin Fc Fragments/isolation & purification
- Immunoglobulin Fc Fragments/pharmacology
- Jurkat Cells
- Luciferases/genetics
- Luciferases/metabolism
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred BALB C
- NF-kappa B/genetics
- NF-kappa B/immunology
- Receptors, OX40/antagonists & inhibitors
- Receptors, OX40/genetics
- Receptors, OX40/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/pharmacology
Collapse
Affiliation(s)
- Yongli Yang
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
- Shanghai ChemPartner Co., Ltd., China
| | | | | | | | | | - Feng Qian
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
266
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
267
|
Toward Homogenous Antibody Drug Conjugates Using Enzyme-Based Conjugation Approaches. Pharmaceuticals (Basel) 2021; 14:ph14040343. [PMID: 33917962 PMCID: PMC8068374 DOI: 10.3390/ph14040343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/17/2023] Open
Abstract
In the last few decades, antibody-based diagnostic and therapeutic applications have been well established in medicine and have revolutionized cancer managements by improving tumor detection and treatment. Antibodies are unique medical elements due to their powerful properties of being able to recognize specific antigens and their therapeutic mechanisms such as blocking specific pathways, antibody-dependent cellular cytotoxicity, and complement-dependent cytotoxicity. Furthermore, modification techniques have paved the way for improving antibody properties and to develop new classes of antibody-conjugate-based diagnostic and therapeutic agents. These techniques allow arming antibodies with various effector molecules. However, these techniques are utilizing the most frequently used amino acid residues for bioconjugation, such as cysteine and lysine. These bioconjugation approaches generate heterogeneous products with different functional and safety profiles. This is mainly due to the abundance of lysine and cysteine side chains. To overcome these limitations, different site-direct conjugation methods have been applied to arm the antibodies with therapeutic or diagnostics molecules to generate unified antibody conjugates with tailored properties. This review summarizes some of the enzyme-based site-specific conjugation approaches.
Collapse
|
268
|
Peplau E, De Rose F, Eichinger A, Reder S, Mittelhäuser M, Scafetta G, Schwaiger M, Weber WA, Bartolazzi A, D'Alessandria C, Skerra A. Effective rational humanization of a PASylated anti-galectin-3 Fab for the sensitive PET imaging of thyroid cancer in vivo. Sci Rep 2021; 11:7358. [PMID: 33795750 PMCID: PMC8016950 DOI: 10.1038/s41598-021-86641-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The lack of a non-invasive test for malignant thyroid nodules makes the diagnosis of thyroid cancer (TC) challenging. Human galectin-3 (hGal3) has emerged as a promising target for medical TC imaging and diagnosis because of its exclusive overexpression in malignant thyroid tissues. We previously developed a human-chimeric αhGal3 Fab fragment derived from the rat monoclonal antibody (mAb) M3/38 with optimized clearance characteristics using PASylation technology. Here, we describe the elucidation of the hGal3 epitope recognized by mAb M3/38, X-ray crystallographic analysis of its complex with the chimeric Fab and, based on the three-dimensional structure, the rational humanization of the Fab by CDR grafting. Four CDR-grafted versions were designed using structurally most closely related fully human immunoglobulin VH/VL regions of which one-employing the acceptor framework regions of the HIV-1 neutralizing human antibody m66-showed the highest antigen affinity. By introducing two additional back-mutations to the rodent donor sequence, an affinity toward hGal3 indistinguishable from the chimeric Fab was achieved (KD = 0.34 ± 0.02 nM in SPR). The PASylated humanized Fab was site-specifically labelled with the fluorescent dye Cy7 and applied for the immuno-histochemical staining of human tissue sections representative for different TCs. The same protein was conjugated with the metal chelator Dfo, followed by radiolabelling with 89Zr(IV). The resulting protein tracer allowed the highly sensitive and specific PET/CT imaging of orthotopic tumors in mice, which was confirmed by quantitative analysis of radiotracer accumulation. Thus, the PASylated humanized αhGal3 Fab offers clinical potential for the diagnostic imaging of TC.
Collapse
Affiliation(s)
- Emanuel Peplau
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Francesco De Rose
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Sybille Reder
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Mittelhäuser
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Giorgia Scafetta
- Pathology Research Laboratory, Sant'Andrea Hospital, University Sapienza, via di Grottarossa 1035, 00189, Rome, Italy
| | - Markus Schwaiger
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Wolfgang A Weber
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Armando Bartolazzi
- Pathology Research Laboratory, Cancer Center Karolinska, Karolinska Hospital, 17176, Stockholm, Sweden
- Pathology Research Laboratory, Sant'Andrea Hospital, University Sapienza, via di Grottarossa 1035, 00189, Rome, Italy
| | - Calogero D'Alessandria
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany.
| |
Collapse
|
269
|
Li X, Xiao L, Kochert B, Donnelly DP, Gao X, Richardson D. Extended characterization of unpaired cysteines in an IgG1 monoclonal antibody by LC-MS analysis. Anal Biochem 2021; 622:114172. [PMID: 33766578 DOI: 10.1016/j.ab.2021.114172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/23/2023]
Abstract
The development of comprehensive methods to characterize unpaired cysteines in monoclonal antibodies (mAbs) is very important for understanding structural heterogeneity, impurity, and stability. In this paper, unpaired cysteines observed in a therapeutic antibody (mAb1) were thoroughly studied by Liquid Chromatography-Mass Spectrometry (LC-MS) methods at the intact mAb, domain, and peptide levels. Three cysteine variants were observed at the intact mAb level with each variant containing two unpaired cysteines. Variants containing four or six unpaired cysteines were not observed. Domain analysis indicated that two Fab variants, each containing two unpaired cysteines, were present while the third variant contained two unpaired cysteines on the Fc region. Peptide mapping analysis localized the six unpaired cysteines to Cys22/Cys96, Cys146/Cys202, and Cys369/Cys427 in the heavy chain. No significant changes were observed for these unpaired cysteines in mAb1 under high pH and heat-stressed conditions. Structural analysis and molecular modeling revealed that these unpaired cysteines were buried inside the three-dimensional structure. The integrated LC-MS methods together with stress studies and structural analysis may potentially be applied to the analysis of unpaired cysteines in other mAbs.
Collapse
Affiliation(s)
- Xiaojuan Li
- Analytical Research & Development Mass Spectrometry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Li Xiao
- Computational and Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Brent Kochert
- Analytical Research & Development Mass Spectrometry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Daniel P Donnelly
- Analytical Research & Development Mass Spectrometry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Xinliu Gao
- Analytical Research & Development Mass Spectrometry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Douglas Richardson
- Analytical Research & Development Mass Spectrometry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| |
Collapse
|
270
|
Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infect Immun 2021; 89:IAI.00054-21. [PMID: 33558319 DOI: 10.1128/iai.00054-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of viral disease has been demonstrated for infections caused by flaviviruses and influenza viruses; however, antibodies that enhance bacterial disease are relatively unknown. In recent years, a few studies have directly linked antibodies with exacerbation of bacterial disease. This ADE of bacterial disease has been observed in mouse models and human patients with bacterial infections. This antibody-mediated enhancement of bacterial infection is driven by various mechanisms that are disparate from those found in viral ADE. This review aims to highlight and discuss historic evidence, potential molecular mechanisms, and current therapies for ADE of bacterial infection. Based on specific case studies, we report how plasmapheresis has been successfully used in patients to ameliorate infection-related symptomatology associated with bacterial ADE. A greater understanding and appreciation of bacterial ADE of infection and disease could lead to better management of infections and inform current vaccine development efforts.
Collapse
|
271
|
Fernández-Quintero ML, Kroell KB, Hofer F, Riccabona JR, Liedl KR. Mutation of Framework Residue H71 Results in Different Antibody Paratope States in Solution. Front Immunol 2021; 12:630034. [PMID: 33737932 PMCID: PMC7960778 DOI: 10.3389/fimmu.2021.630034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Characterizing and understanding the antibody binding interface have become a pre-requisite for rational antibody design and engineering. The antigen-binding site is formed by six hypervariable loops, known as the complementarity determining regions (CDRs) and by the relative interdomain orientation (VH-VL). Antibody CDR loops with a certain sequence have been thought to be limited to a single static canonical conformation determining their binding properties. However, it has been shown that antibodies exist as ensembles of multiple paratope states, which are defined by a characteristic combination of CDR loop conformations and interdomain orientations. In this study, we thermodynamically and kinetically characterize the prominent role of residue 71H (Chothia nomenclature), which does not only codetermine the canonical conformation of the CDR-H2 loop but also results in changes in conformational diversity and population shifts of the CDR-H1 and CDR-H3 loop. As all CDR loop movements are correlated, conformational rearrangements of the heavy chain CDR loops also induce conformational changes in the CDR-L1, CDR-L2, and CDR-L3 loop. These overall conformational changes of the CDR loops also influence the interface angle distributions, consequentially leading to different paratope states in solution. Thus, the type of residue of 71H, either an alanine or an arginine, not only influences the CDR-H2 loop ensembles, but co-determines the paratope states in solution. Characterization of the functional consequences of mutations of residue 71H on the paratope states and interface orientations has broad implications in the field of antibody engineering.
Collapse
Affiliation(s)
| | | | | | | | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
272
|
Wang CK, Craik DJ. Linking molecular evolution to molecular grafting. J Biol Chem 2021; 296:100425. [PMID: 33600801 PMCID: PMC8005815 DOI: 10.1016/j.jbc.2021.100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Molecular grafting is a strategy for the engineering of molecular scaffolds into new functional agents, such as next-generation therapeutics. Despite its wide use, studies so far have focused almost exclusively on demonstrating its utility rather than understanding the factors that lead to either poor or successful grafting outcomes. Here, we examine protein evolution and identify parallels between the natural process of protein functional diversification and the artificial process of molecular grafting. We discuss features of natural proteins that are correlated to innovability-the capacity to acquire new functions-and describe their implications to molecular grafting scaffolds. Disulfide-rich peptides are used as exemplars because they are particularly promising scaffolds onto which new functions can be grafted. This article provides a perspective on why some scaffolds are more suitable for grafting than others, identifying opportunities on how molecular grafting might be improved.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
273
|
Ding M, Shen L, Xiao L, Liu X, Hu J. A cell line development strategy to improve a bispecific antibody expression purity in CHO cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
274
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
275
|
Mahmoudi T, Pourhassan-Moghaddam M, Shirdel B, Baradaran B, Morales-Narváez E, Golmohammadi H. (Nano)tag-antibody conjugates in rapid tests. J Mater Chem B 2021; 9:5414-5438. [PMID: 34143173 DOI: 10.1039/d1tb00571e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibodies (Abs) are naturally derived materials with favorable affinity, selectivity, and fast binding kinetics to the respective antigens, which enables their application as promising recognition elements in the development of various types of biosensors/bioassays, especially in rapid tests. These tests are low-cost and easy-to-use biosensing devices with broad applications including medical or veterinary diagnostics, environmental monitoring and industrial usages such as safety and quality analysis in food, providing on-site quick monitoring of various analytes, making it possible to save analysis costs and time. To reach such features, the conjugation of Abs with various nanomaterials (NMs) as tags is necessary, which range from conventional gold nanoparticles to other nanoparticles recently introduced, where magnetic, plasmonic, photoluminescent, or multi-modal properties play a critical role in the overall performance of the analytical device. In this context, to preserve the Ab affinity and provide a rapid response with long-term storage capability, the use of efficient bio-conjugation techniques is critical. Thanks to their prominent role in rapid tests, many studies have been devoted to the design and development of Abs-NMs conjugates with various chemistries including passive adsorption, covalent coupling, and affinity interactions. In this review, we present the state-of-the-art techniques allowing various Ab-NM conjugates with a special focus on the efficiency of the developed probes to be employed in in vitro rapid tests. Challenges and future perspectives on the development of Ab-conjugated nanotags in rapid diagnostic tests are highlighted along with a survey of the progress in commercially available Ab-NM conjugates.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Pourhassan-Moghaddam
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Behnaz Shirdel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
276
|
Sillen M, Declerck PJ. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front Cardiovasc Med 2020; 7:622473. [PMID: 33415130 PMCID: PMC7782431 DOI: 10.3389/fcvm.2020.622473] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
Collapse
Affiliation(s)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
277
|
Rakauskaitė R, Urbanavičiūtė G, Simanavičius M, Lasickienė R, Vaitiekaitė A, Petraitytė G, Masevičius V, Žvirblienė A, Klimašauskas S. Photocage-Selective Capture and Light-Controlled Release of Target Proteins. iScience 2020; 23:101833. [PMID: 33305188 PMCID: PMC7718476 DOI: 10.1016/j.isci.2020.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/05/2022] Open
Abstract
Photochemical transformations enable exquisite spatiotemporal control over biochemical processes; however, methods for reliable manipulations of biomolecules tagged with biocompatible photo-sensitive reporters are lacking. Here we created a high-affinity binder specific to a photolytically removable caging group. We utilized chemical modification or genetically encoded incorporation of noncanonical amino acids to produce proteins with photocaged cysteine or selenocysteine residues, which were used for raising a high-affinity monoclonal antibody against a small photoremovable tag, 4,5-dimethoxy-2-nitrobenzyl (DMNB) group. Employing the produced photocage-selective binder, we demonstrate selective detection and immunoprecipitation of a variety of DMNB-caged target proteins in complex biological mixtures. This combined orthogonal strategy permits photocage-selective capture and light-controlled traceless release of target proteins for a myriad of applications in nanoscale assays. The first high-affinity monoclonal antibody specific for a popular photocaging group A new tool for selective detection of DMNB-tagged proteins in complex mixtures Enables non-covalent capture of native proteins with surface-exposed DMNB groups Orthogonal protein manipulation by photocage-selective capture and photolytic release
Collapse
Affiliation(s)
- Rasa Rakauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Giedrė Urbanavičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Martynas Simanavičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Rita Lasickienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aušra Vaitiekaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Gražina Petraitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.,Institute of Chemistry, Department of Chemistry and Geosciences, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.,Institute of Chemistry, Department of Chemistry and Geosciences, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
278
|
Kieber-Emmons T. Antibodies and Structure. Monoclon Antib Immunodiagn Immunother 2020; 39:193-194. [DOI: 10.1089/mab.2020.29003.tke] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
279
|
Trimmer JS. Recombinant Antibodies in Basic Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e106. [PMID: 33151027 PMCID: PMC7665837 DOI: 10.1002/cpns.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic neuroscience research employs antibodies as key reagents to label, capture, and modulate the function of proteins of interest. Antibodies are immunoglobulin proteins. Recombinant antibodies are immunoglobulin proteins whose nucleic acid coding regions, or fragments thereof, have been cloned into expression plasmids that allow for unlimited production. Recombinant antibodies offer many advantages over conventional antibodies including their unambiguous identification and digital archiving via DNA sequencing, reliable expression, ease and reliable distribution as DNA sequences and as plasmids, and the opportunity for numerous forms of engineering to enhance their utility. Recombinant antibodies exist in many different forms, each of which offers potential advantages and disadvantages for neuroscience research applications. I provide an overview of recombinant antibodies and their development. Examples of their emerging use as valuable reagents in basic neuroscience research are also discussed. Many of these examples employ recombinant antibodies in innovative experimental approaches that cannot be pursued with conventional antibodies. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
280
|
Fernández-Quintero ML, Kroell KB, Heiss MC, Loeffler JR, Quoika PK, Waibl F, Bujotzek A, Moessner E, Georges G, Liedl KR. Surprisingly Fast Interface and Elbow Angle Dynamics of Antigen-Binding Fragments. Front Mol Biosci 2020; 7:609088. [PMID: 33330636 PMCID: PMC7732698 DOI: 10.3389/fmolb.2020.609088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fab consist of a heavy and light chain and can be subdivided into a variable (V H and V L ) and a constant region (C H 1 and C L ). The variable region contains the complementarity-determining region (CDR), which is formed by six hypervariable loops, shaping the antigen binding site, the paratope. Apart from the CDR loops, both the elbow angle and the relative interdomain orientations of the V H -V L and the C H 1-C L domains influence the shape of the paratope. Thus, characterization of the interface and elbow angle dynamics is essential to antigen specificity. We studied nine antigen-binding fragments (Fab) to investigate the influence of affinity maturation, antibody humanization, and different light-chain types on the interface and elbow angle dynamics. While the CDR loops reveal conformational transitions in the micro-to-millisecond timescale, both the interface and elbow angle dynamics occur on the low nanosecond timescale. Upon affinity maturation, we observe a substantial rigidification of the V H and V L interdomain and elbow-angle flexibility, reflected in a narrower and more distinct distribution. Antibody humanization describes the process of grafting non-human CDR loops onto a representative human framework. As the antibody framework changes upon humanization, we investigated if both the interface and the elbow angle distributions are changed or shifted. The results clearly showed a substantial shift in the relative V H -V L distributions upon antibody humanization, indicating that different frameworks favor distinct interface orientations. Additionally, the interface and elbow angle dynamics of five antibody fragments with different light-chain types are included, because of their strong differences in elbow angles. For these five examples, we clearly see a high variability and flexibility in both interface and elbow angle dynamics, highlighting the fact that Fab interface orientations and elbow angles interconvert between each other in the low nanosecond timescale. Understanding how the relative interdomain orientations and the elbow angle influence antigen specificity, affinity, and stability has broad implications in the field of antibody modeling and engineering.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Katharina B. Kroell
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Martin C. Heiss
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes R. Loeffler
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Patrick K. Quoika
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ekkehard Moessner
- Roche Pharma Research and Early Development, Large Molecular Research, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
281
|
Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-Engineering for Modulated Effector Functions-Improving Antibodies for Cancer Treatment. Antibodies (Basel) 2020; 9:E64. [PMID: 33212886 PMCID: PMC7709126 DOI: 10.3390/antib9040064] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The majority of monoclonal antibody (mAb) therapeutics possess the ability to engage innate immune effectors through interactions mediated by their fragment crystallizable (Fc) domain. By delivering Fc-Fc gamma receptor (FcγR) and Fc-C1q interactions, mAb are able to link exquisite specificity to powerful cellular and complement-mediated effector functions. Fc interactions can also facilitate enhanced target clustering to evoke potent receptor signaling. These observations have driven decades-long research to delineate the properties within the Fc that elicit these various activities, identifying key amino acid residues and elucidating the important role of glycosylation. They have also fostered a growing interest in Fc-engineering whereby this knowledge is exploited to modulate Fc effector function to suit specific mechanisms of action and therapeutic purposes. In this review, we document the insight that has been generated through the study of the Fc domain; revealing the underpinning structure-function relationships and how the Fc has been engineered to produce an increasing number of antibodies that are appearing in the clinic with augmented abilities to treat cancer.
Collapse
Affiliation(s)
- Rena Liu
- GlaxoSmithKline Research and Development, Stevenage SG1 2NY, UK;
| | - Robert J. Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Emma Teal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| |
Collapse
|
282
|
Camelliti S, Le Noci V, Bianchi F, Moscheni C, Arnaboldi F, Gagliano N, Balsari A, Garassino MC, Tagliabue E, Sfondrini L, Sommariva M. Mechanisms of hyperprogressive disease after immune checkpoint inhibitor therapy: what we (don't) know. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:236. [PMID: 33168050 PMCID: PMC7650183 DOI: 10.1186/s13046-020-01721-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have made a breakthrough in the treatment of different types of tumors, leading to improvement in survival, even in patients with advanced cancers. Despite the good clinical results, a certain percentage of patients do not respond to this kind of immunotherapy. In addition, in a fraction of nonresponder patients, which can vary from 4 to 29% according to different studies, a paradoxical boost in tumor growth after ICI administration was observed: a completely unpredictable novel pattern of cancer progression defined as hyperprogressive disease. Since this clinical phenomenon has only been recently described, a universally accepted clinical definition is lacking, and major efforts have been made to uncover the biological bases underlying hyperprogressive disease. The lines of research pursued so far have focused their attention on the study of the immune tumor microenvironment or on the analysis of intrinsic genomic characteristics of cancer cells producing data that allowed us to formulate several hypotheses to explain this detrimental effect related to ICI therapy. The aim of this review is to summarize the most important works that, to date, provide important insights that are useful in understanding the mechanistic causes of hyperprogressive disease.
Collapse
Affiliation(s)
- Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Francesca Bianchi
- Molecular Targets Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Marina Chiara Garassino
- Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Elda Tagliabue
- Molecular Targets Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
283
|
Giampà M, Sgobba E. Insight to Functional Conformation and Noncovalent Interactions of Protein-Protein Assembly Using MALDI Mass Spectrometry. Molecules 2020; 25:E4979. [PMID: 33126406 PMCID: PMC7662314 DOI: 10.3390/molecules25214979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022] Open
Abstract
Noncovalent interactions are the keys to the structural organization of biomolecule e.g., proteins, glycans, lipids in the process of molecular recognition processes e.g., enzyme-substrate, antigen-antibody. Protein interactions lead to conformational changes, which dictate the functionality of that protein-protein complex. Besides biophysics techniques, noncovalent interaction and conformational dynamics, can be studied via mass spectrometry (MS), which represents a powerful tool, due to its low sample consumption, high sensitivity, and label-free sample. In this review, the focus will be placed on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) and its role in the analysis of protein-protein noncovalent assemblies exploring the relationship within noncovalent interaction, conformation, and biological function.
Collapse
Affiliation(s)
- Marco Giampà
- MR Cancer Group, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Elvira Sgobba
- Genetics and Plant Physiology, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| |
Collapse
|
284
|
Chen T, Liu X, Hong H, Wei H. Novel single-domain antibodies against the EGFR domain III epitope exhibit the anti-tumor effect. J Transl Med 2020; 18:376. [PMID: 33023595 PMCID: PMC7541222 DOI: 10.1186/s12967-020-02538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) have been used for cancer therapy. They are large and have some disadvantages limiting their use. Smaller antibody fragments are needed as their alternatives. A fully human single-domain antibody (sdAb) has a small size of only 15 kDa and consists of only the variable domain of the human antibody heavy chain (VH). It has no immunogenicity. It can easily penetrate into tumor tissues, target an epitope inaccessible to mAb and be manufactured in bacteria for a low cost. Epidermal growth factor receptor (EGFR) is over-expressed in many cancer cells and is a good target for cancer therapy. Methods The EGFR protein fragment located on the EGFR extracellular domain III was chosen to screen a human sdAb library. Five human anti-EGFR sdAbs were identified. Their specific binding to EGFR was confirmed by ELISA, Western blotting and flow cytometry. Their anti-tumor effects were tested. Results Five novel fully human anti-EGFR sdAbs were isolated. They specifically bound to EGFR, not to the seven unrelated proteins as negative controls. They also bound to the three different human cancer cell lines, but not to the two cell lines as negative controls. They inhibited cell proliferation, migration and invasion and increased apoptosis of these three cancer cell lines. Two of them were tested for their anti-tumor effect in vivo and showed the anti-tumor activity in a mouse xenograft model for human lung cancer. Immunohistochemical staining of xenograft tumors also showed that their anti-tumor effects were associated with the inhibition of cancer cell proliferation and the promotion of cancer cell apoptosis. Conclusions This study clearly demonstrated that the anti-EGFR sdAbs could inhibit cancer cell growth in vitro and tumor growth in vivo. They could be potential therapeutics for the treatment of different human cancers.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xue Liu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Haifeng Hong
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
285
|
NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials 2020; 262:120316. [PMID: 32896817 DOI: 10.1016/j.biomaterials.2020.120316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional gene expression regulators with potential therapeutic applications. miR-146a is a negative regulator of inflammatory processes in both tissue-resident and specialized immune cells and may therefore have therapeutic effect in inflammatory skin diseases. PepFect (PF) and NickFect (NF) type of cell-penetrating peptides (CPPs) have previously been shown to deliver miRNA mimics and/or siRNAs into cell cultures and in vivo. Here, we first demonstrate that selected PF- and NF-type of CPPs support delivery of fluorescent labelled miRNA mimics into keratinocytes (KCs) and dendritic cells (DCs). Second, we show that both PF- and NF-miR-146a nanocomplexes were equally effective in KCs, while NFs were more efficient in DCs as assessed by downregulation of miR-146a-influenced genes. None of miRNA nanocomplexes with the tested CPPs influenced the viability of KCs and DCs nor caused activation of DCs according to CD86 and CD83 markers. Transmission electron microscopy analysis with Nanogold-labelled miR-146a mimics and assessment of endocytic trafficking pathways revealed endocytosis as an active route of delivery in both KCs and DCs for all tested CPPs. However, consistent with the higher efficiency, NF-delivered miR-146a was detected more often outside endosomes in DCs. Finally, pre-injection of NF71:miR-146a nanocomplexes was confirmed to suppress inflammatory responses in a mouse model of irritant contact dermatitis as shown by reduced ear swelling response and downregulation of pro-inflammatory cytokines, including IL-6, IL-1β, IL-33 and TNF-α. In conclusion, NF71 efficiently delivers miRNA mimics into KCs as well as DCs, and therefore may have advantage in therapeutic delivery of miRNAs in case of inflammatory skin diseases.
Collapse
|
286
|
Naf'an MK, Kurniasih K, Untari T, Prakoso YA. Development of a coagglutination kit as a rapid test for diagnosing Newcastle disease in poultry. Vet World 2020; 13:1719-1724. [PMID: 33061250 PMCID: PMC7522963 DOI: 10.14202/vetworld.2020.1719-1724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Aim: Newcastle disease (ND) is a viral infection that causes high mortality and economic loss in the poultry industry. The Office International des Epizooties (OIE) recommends several diagnostic methods for the detection of ND, including isolation and molecular tests. However, these detection methods are time-consuming and highly expensive. Therefore, this study was conducted to develop a coagglutination kit as a novel diagnostic tool for ND in the poultry industry. Materials and Methods: Two adult male New Zealand White rabbits weighing 2.5 kg were vaccinated using ND life vaccine intraperitoneally. The vaccination was conducted once a week for 4 weeks with multilevel doses. Rabbits’ serum was collected at week 6 and inactivated at 56°C for 30 min. The serum was precipitated using ammonium sulfate and reacted with protein A of Staphylococcus aureus to produce the agglutination kit for detecting ND virus. A total of 25 chickens suspected with ND infection from a local poultry farm in Yogyakarta were used as the test samples. The chickens were necropsied, and the brain, spleen, lung, intestine, and feces were collected. Half of these organs were subjected to tests using the coagglutination kit and reverse transcription-polymerase chain reaction (RT-PCR). The other half was processed for histopathology. Data were analyzed qualitatively. Results: Of the 25 samples, 13 (52%) were positive for ND infection when tested using both the ND coagglutination kit and RT-PCR. The positive samples also exhibited several histopathological changes, including perivascular cuffing surrounding the cerebral blood–brain barrier, hemorrhagic pneumonia, splenitis, and necrotic hemorrhage enteritis. Conclusion: This study confirmed that the ND coagglutination kit could be used as a novel diagnostic tool for the detection of ND virus infection in the poultry industry.
Collapse
Affiliation(s)
- Muhammad Kholish Naf'an
- Student of Master of Sciences Degree, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Kurniasih Kurniasih
- Department of Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Untari
- Department of Microbiology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Yos Adi Prakoso
- Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| |
Collapse
|
287
|
Yanaka S, Yogo R, Kato K. Biophysical characterization of dynamic structures of immunoglobulin G. Biophys Rev 2020; 12:637-645. [PMID: 32410186 PMCID: PMC7311591 DOI: 10.1007/s12551-020-00698-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin G (IgG) is a major antibody and functions as a hub linking specific antigen binding and recruitment of effector molecules typified by Fcγ receptors (FcγRs). These activities are associated primarily with interactions involving its Fab and Fc sites, respectively. An IgG molecule is characterized by a multiple domain modular structure with conserved N-glycosylation in Fc. The molecule displays significant freedom in internal motion on various spatiotemporal scales. The consequent conformational flexibility and plasticity of IgG glycoproteins are functionally significant and potentially important factors for design and engineering of antibodies with enhanced functionality. In this article, experimental and computational approaches are outlined for characterizing the conformational dynamics of IgG molecules in solution. In particular, the importance of integration of these approaches is highlighted, as illustrated by dynamic intramolecular interactions between the pair of N-glycans and their proximal amino acid residues in Fc. These interactions can critically affect effector functions mediated by human IgG1 and FcγRIII. Further improvements in individual biophysical techniques and their integration will advance understanding of dynamic behaviors of antibodies in physiological and pathological conditions. Such understanding will provide opportunities for engineering antibodies through controlling allosteric networks in IgG molecules.
Collapse
Affiliation(s)
- Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
288
|
Westbrook JD, Soskind R, Hudson BP, Burley SK. Impact of the Protein Data Bank on antineoplastic approvals. Drug Discov Today 2020; 25:837-850. [PMID: 32068073 PMCID: PMC7305983 DOI: 10.1016/j.drudis.2020.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Open access to 3D structure information from the Protein Data Bank (PDB) facilitated discovery and development of >90% of the 79 new antineoplastic agents (54 small molecules, 25 biologics) with known molecular targets approved by the FDA 2010-2018. Analyses of PDB holdings, the scientific literature and related documents for each drug-target combination revealed that the impact of public-domain 3D structure data was broad and substantial, ranging from understanding target biology (∼95% of all targets) to identifying a given target as probably druggable (∼95% of all targets) to structure-guided lead optimization (>70% of all small-molecule drugs). In addition to aggregate impact assessments, illustrative case studies are presented for three protein kinase inhibitors, an allosteric enzyme inhibitor and seven advanced-stage melanoma therapeutics.
Collapse
Affiliation(s)
- John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rose Soskind
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian P Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
289
|
Cnudde T, Lakhrif Z, Bourgoin J, Boursin F, Horiot C, Henriquet C, di Tommaso A, Juste MO, Jiacomini IG, Dimier-Poisson I, Pugnière M, Mévélec MN, Aubrey N. Exploration and Modulation of Antibody Fragment Biophysical Properties by Replacing the Framework Region Sequences. Antibodies (Basel) 2020; 9:E9. [PMID: 32326443 PMCID: PMC7344962 DOI: 10.3390/antib9020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
In order to increase the successful development of recombinant antibodies and fragments, it seems fundamental to enhance their expression and/or biophysical properties, such as the thermal, chemical, and pH stabilities. In this study, we employed a method bases on replacing the antibody framework region sequences, in order to promote more particularly single-chain Fragment variable (scFv) product quality. We provide evidence that mutations of the VH- C-C' loop might significantly improve the prokaryote production of well-folded and functional fragments with a production yield multiplied by 27 times. Additional mutations are accountable for an increase in the thermal (+19.6 °C) and chemical (+1.9 M) stabilities have also been identified. Furthermore, the hereby-produced fragments have shown to remain stable at a pH of 2.0, which avoids molecule functional and structural impairments during the purification process. Lastly, this study provides relevant information to the understanding of the relationship between the antibodies amino acid sequences and their respective biophysical properties.
Collapse
Affiliation(s)
- Thomas Cnudde
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Zineb Lakhrif
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Justine Bourgoin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Fanny Boursin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Catherine Horiot
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Corinne Henriquet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | - Anne di Tommaso
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba 81530, PR, Brazil
| | | | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | | | - Nicolas Aubrey
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| |
Collapse
|
290
|
Georges GJ, Dengl S, Bujotzek A, Hesse F, Fischer JA, Gärtner A, Benz J, Lauer ME, Ringler P, Stahlberg H, Plath F, Brinkmann U, Imhof-Jung S. The Contorsbody, an antibody format for agonism: Design, structure, and function. Comput Struct Biotechnol J 2020; 18:1210-1220. [PMID: 32542107 PMCID: PMC7283085 DOI: 10.1016/j.csbj.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
The careful design of the antibody architecture is becoming more and more important, especially when the purpose is agonism. We present the design of a novel antibody format that is able to promote receptor dimerization and induce signal transduction resulting in cell proliferation. Mono-specific bivalent Y-shape IgGs made of two light chains and two heavy chains are engineered into single chain dimers of two modified heavy chains, resulting in the fixation of the two Fab fragments along the Fc dimerizing moiety. By this, an antagonist of the Her-receptor family, Trastuzumab, is re-formatted into an agonist by simply incorporating the original binding motif into a different geometrically and sterically constrained conformation. This novel format, named Contorsbody, retains antigen binding properties of the parental IgGs and can be produced by standard technologies established for recombinant IgGs. Structural analyses using molecular dynamics and electron microscopy are described to guide the initial design and to confirm the Contorsbody as a very compact molecule, respectively. Contorsbodies show increased rigidity compared to IgGs and their Fab moieties are positioned parallel and adjacent to each other. This geometry has an increased potential to trigger cell surface antigen or receptor ‘cis’-dimerization without ‘trans’-bridging of cells or mere receptor blockade.
Collapse
Affiliation(s)
- Guy J. Georges
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
- Corresponding author.
| | - Stefan Dengl
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Alexander Bujotzek
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Friederike Hesse
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jens A.A. Fischer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Achim Gärtner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jörg Benz
- Roche Pharmaceutical Research and Early Development, Chemical Biology, Roche Innovation Center, Basel, Switzerland
| | - Matthias E. Lauer
- Roche Pharmaceutical Research and Early Development, Chemical Biology, Roche Innovation Center, Basel, Switzerland
| | - Philippe Ringler
- C-CINA, Center for Celullar Imaging and Nano Analytics, University of Basel, Switzerland
| | - Henning Stahlberg
- C-CINA, Center for Celullar Imaging and Nano Analytics, University of Basel, Switzerland
| | - Friederike Plath
- Roche Pharmaceutical Research and Early Development, Pharma Technical Development, Roche Innovation Center, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| | - Sabine Imhof-Jung
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|