251
|
Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 2021; 142:111953. [PMID: 34343897 PMCID: PMC8299225 DOI: 10.1016/j.biopha.2021.111953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, there are over 230 different COVID-19 vaccines under development around the world. At least three decades of scientific development in RNA biology, immunology, structural biology, genetic engineering, chemical modification, and nanoparticle technologies allowed the accelerated development of fully synthetic messenger RNA (mRNA)-based vaccines within less than a year since the first report of a SARS-CoV-2 infection. mRNA-based vaccines have been shown to elicit broadly protective immune responses, with the added advantage of being amenable to rapid and flexible manufacturing processes. This review recapitulates current advances in engineering the first two SARS-CoV-2-spike-encoding nucleoside-modified mRNA vaccines, highlighting the strategies followed to potentiate their effectiveness and safety, thus facilitating an agile response to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Javier T Granados-Riveron
- Laboratorio de Investigación en Patogénesis Molecular, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico
| | - Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.
| |
Collapse
|
252
|
Turner JS, O'Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T, Thapa M, Chen RE, Case JB, Amanat F, Rauseo AM, Haile A, Xie X, Klebert MK, Suessen T, Middleton WD, Shi PY, Krammer F, Teefey SA, Diamond MS, Presti RM, Ellebedy AH. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021; 596:109-113. [PMID: 34182569 PMCID: PMC8935394 DOI: 10.1038/s41586-021-03738-2] [Citation(s) in RCA: 579] [Impact Index Per Article: 144.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191-5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity.
Collapse
Affiliation(s)
- Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Elizaveta Kalaidina
- Division of Allergy and Immunology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rita E Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana M Rauseo
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Xuping Xie
- University of Texas Medical Branch, Galveston, TX, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
253
|
Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Hsiao CJ, Acosta E, Almarsson Ö, Moore MJ, Brito LA. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release 2021; 335:237-246. [PMID: 34019945 DOI: 10.1016/j.jconrel.2021.05.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023]
Abstract
Lipid nanoparticles (LNP) are effective delivery vehicles for messenger RNA (mRNA) and have shown promise for vaccine applications. Yet there are no published reports detailing how LNP biophysical properties can impact vaccine performance. In our hands, a retrospective analysis of mRNA LNP vaccine in vivo studies revealed a relationship between LNP particle size and immunogenicity in mice using LNPs of various compositions. To further investigate this, we designed a series of studies to systematically change LNP particle size without altering lipid composition and evaluated biophysical properties and immunogenicity of the resulting LNPs. While small diameter LNPs were substantially less immunogenic in mice, all particle sizes tested yielded a robust immune response in non-human primates (NHP).
Collapse
Affiliation(s)
- Kimberly J Hassett
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Jaclyn Higgins
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Angela Woods
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Becca Levy
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Yan Xia
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Chiaowen Joyce Hsiao
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Edward Acosta
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Örn Almarsson
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Melissa J Moore
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Luis A Brito
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America.
| |
Collapse
|
254
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol 2021; 12:679344. [PMID: 34305909 PMCID: PMC8293291 DOI: 10.3389/fimmu.2021.679344] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, mRNA vaccines have become a significant type of therapeutic and have created new fields in the biopharmaceutical industry. mRNA vaccines are promising next-generation vaccines that have introduced a new age in vaccinology. The recent approval of two COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) has accelerated mRNA vaccine technology and boosted the pharmaceutical and biotechnology industry. These mRNA vaccines will help to tackle COVID-19 pandemic through immunization, offering considerable hope for future mRNA vaccines. Human trials with data both from mRNA cancer vaccines and mRNA infectious disease vaccines have provided encouraging results, inspiring the pharmaceutical and biotechnology industries to focus on this area of research. In this article, we discuss current mRNA vaccines broadly in two parts. In the first part, mRNA vaccines in general and COVID-19 mRNA vaccines are discussed. We presented the mRNA vaccine structure in general, the different delivery systems, the immune response, and the recent clinical trials for mRNA vaccines (both for cancer mRNA vaccines and different infectious diseases mRNA vaccines). In the second part, different COVID-19 mRNA vaccines are explained. Finally, we illustrated a snapshot of the different leading mRNA vaccine developers, challenges, and future prospects of mRNA vaccines.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
255
|
Roncati L, Corsi L. Nucleoside-modified messenger RNA COVID-19 vaccine platform. J Med Virol 2021; 93:4054-4057. [PMID: 33675239 DOI: 10.1002/jmv.26924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/11/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
On March 11, 2020, the World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic; from that date, the vaccine race has begun, and many technology platforms to develop a specific and effective COVID-19 vaccine have been launched in several clinical trials (protein subunit, RNA-based, DNA-based, replicating viral vector, nonreplicating viral vector, inactivated virus, live attenuated virus, and virus-like particle). Among the next-generation strategies, nucleoside-modified messenger RNA vaccines appear the most attractive, not only to counteract emerging pathogens but also for the possible applications in regenerative medicine and cancer therapy. However, exactly as all innovative drugs, they deserve careful pharmacovigilance in the short and long term.
Collapse
Affiliation(s)
- Luca Roncati
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplantation, Oncology and Regenerative Medicine, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
256
|
Kurkowiak M, Grasso G, Faktor J, Scheiblecker L, Winniczuk M, Mayordomo MY, O'Neill JR, Oster B, Vojtesek B, Al-Saadi A, Marek-Trzonkowska N, Hupp TR. An integrated DNA and RNA variant detector identifies a highly conserved three base exon in the MAP4K5 kinase locus. RNA Biol 2021; 18:2556-2575. [PMID: 34190025 PMCID: PMC8632122 DOI: 10.1080/15476286.2021.1932345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA variants that emerge from editing and alternative splicing form important regulatory stages in protein signalling. In this report, we apply an integrated DNA and RNA variant detection workbench to define the range of RNA variants that deviate from the reference genome in a human melanoma cell model. The RNA variants can be grouped into (i) classic ADAR-like or APOBEC-like RNA editing events and (ii) multiple-nucleotide variants (MNVs) including three and six base pair in-frame non-canonical unmapped exons. We focus on validating representative genes of these classes. First, clustered non-synonymous RNA edits (A-I) in the CDK13 gene were validated by Sanger sequencing to confirm the integrity of the RNA variant detection workbench. Second, a highly conserved RNA variant in the MAP4K5 gene was detected that results most likely from the splicing of a non-canonical three-base exon. The two RNA variants produced from the MAP4K5 locus deviate from the genomic reference sequence and produce V569E or V569del isoform variants. Low doses of splicing inhibitors demonstrated that the MAP4K5-V569E variant emerges from an SF3B1-dependent splicing event. Mass spectrometry of the recombinant SBP-tagged MAP4K5V569E and MAP4K5V569del proteins pull-downs in transfected cell systems was used to identify the protein-protein interactions of these two MAP4K5 isoforms and propose possible functions. Together these data highlight the utility of this integrated DNA and RNA variant detection platform to detect RNA variants in cancer cells and support future analysis of RNA variant detection in cancer tissue.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Giuseppa Grasso
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lisa Scheiblecker
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Małgorzata Winniczuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Marcos Yebenes Mayordomo
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - J Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bodil Oster
- QIAGEN Aarhus, Silkeborgvej 2, 8000 Aarhus, Denmark
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ali Al-Saadi
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| |
Collapse
|
257
|
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID-19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained-release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein-polymer blends, and metal-organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable "single-shot" formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardon, Texas, USA
| |
Collapse
|
258
|
Löffler P. Review: Vaccine Myth-Buster - Cleaning Up With Prejudices and Dangerous Misinformation. Front Immunol 2021; 12:663280. [PMID: 34177902 PMCID: PMC8222972 DOI: 10.3389/fimmu.2021.663280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although vaccines have already saved and will continue to save millions of lives, they are under attack. Vaccine safety is the main target of criticism. The rapid distribution of false information, or even conspiracy theories on the internet has tremendously favored vaccine hesitancy. The World Health Organization (WHO) named vaccine hesitancy one of the top ten threats to global health in 2019. Parents and patients have several concerns about vaccine safety, of which the ubiquitous anxieties include inactivating agents, adjuvants, preservatives, or new technologies such as genetic vaccines. In general, increasing doubts concerning side effects have been observed, which may lead to an increasing mistrust of scientific results and thus, the scientific method. Hence, this review targets five topics concerning vaccines and reviews current scientific publications in order to summarize the available information refuting conspiracy theories and myths about vaccination. The topics have been selected based on the author's personal perception of the most frequently occurring safety controversies: the inactivation agent formaldehyde, the adjuvant aluminum, the preservative mercury, the mistakenly-drawn correlation between vaccines and autism and genetic vaccines. The scientific literature shows that vaccine safety is constantly studied. Furthermore, the literature does not support the allegations that vaccines may cause a serious threat to general human life. The author suggests that more researchers explaining their research ideas, methods and results publicly could strengthen the general confidence in science. In general, vaccines present one of the safest and most cost-effective medications and none of the targeted topics raised serious health concerns.
Collapse
Affiliation(s)
- Paul Löffler
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
259
|
Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. NANO TODAY 2021; 38:101142. [PMID: 33815564 PMCID: PMC7997390 DOI: 10.1016/j.nantod.2021.101142] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 05/10/2023]
Abstract
The emergency use authorization (EUA) by the US-FDA for two mRNA-based vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) has brought hope of addressing the COVID-19 pandemic which has killed more than two million people globally. Nanotechnology has played a significant role in the success of these vaccines. Nanoparticles (NPs) aid in improving stability by protecting the encapsulated mRNA from ribonucleases and facilitate delivery of intact mRNA to the target site. The overwhelming success of these two mRNA based vaccines with ~95% efficacy in phase III clinical trials can be attributed to their unique nanocarrier, the "lipid nanoparticles" (LNPs). LNPs are unique compared with bilayered liposomes and provide improved stability of the cargo, possess rigid morphology, and aid in better cellular penetration. This EUA is a major milestone and showcases the immense potential of nanotechnology for vaccine delivery and for fighting against future pandemics. Currently, these two vaccines are aiding in the alleviation of the COVID-19 health crisis and demonstrate the potential utility of nanomedicine for tackling health problems at the global level.
Collapse
Affiliation(s)
- Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc) PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc) PVNRTVU, Mamnoor, Warangal 506166, Telangana, India
| | - Prince Allawadhi
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc) PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
- Department of Aquatic Animal Health Management, College of Fishery Science, PVNRTVU, Pebbair, Wanaparthy 509104, Telangana, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering & Technology (UIET), Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| | - Kamaldeep Joshi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc) PVNRTVU, Mamnoor, Warangal 506166, Telangana, India
- Department of Aquatic Animal Health Management, College of Fishery Science, PVNRTVU, Pebbair, Wanaparthy 509104, Telangana, India
| |
Collapse
|
260
|
Chauhan DS, Dhasmana A, Laskar P, Prasad R, Jain NK, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Nanotechnology synergized immunoengineering for cancer. Eur J Pharm Biopharm 2021; 163:72-101. [PMID: 33774162 PMCID: PMC8170847 DOI: 10.1016/j.ejpb.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nishant K Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
261
|
Scialo F, Vitale M, Daniele A, Nigro E, Perrotta F, Gelzo M, Iadevaia C, Cerqua FS, Costigliola A, Allocca V, Amato F, Pastore L, Castaldo G, Bianco A. SARS-CoV-2: One Year in the Pandemic. What Have We Learned, the New Vaccine Era and the Threat of SARS-CoV-2 Variants. Biomedicines 2021; 9:611. [PMID: 34072088 PMCID: PMC8226851 DOI: 10.3390/biomedicines9060611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since the beginning of 2020, the new pandemic caused by SARS-CoV-2 and named coronavirus disease 19 (COVID 19) has changed our socio-economic life. In just a few months, SARS-CoV-2 was able to spread worldwide at an unprecedented speed, causing hundreds of thousands of deaths, especially among the weakest part of the population. Indeed, especially at the beginning of this pandemic, many reports highlighted how people, suffering from other pathologies, such as hypertension, cardiovascular diseases, and diabetes, are more at risk of severe outcomes if infected. Although this pandemic has put the entire academic world to the test, it has also been a year of intense research and many important contributions have advanced our understanding of SARS-CoV-2 origin, its molecular structure and its mechanism of infection. Unfortunately, despite this great effort, we are still a long way from fully understanding how SARS-CoV-2 dysregulates organismal physiology and whether the current vaccines will be able to protect us from possible future pandemics. Here, we discuss the knowledge we have gained during this year and which questions future research should address.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “L. Vanvitelli”, 80131 Naples, Italy;
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
| | - Maria Vitale
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Aurora Daniele
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
| | - Ersilia Nigro
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
| | - Fabio Perrotta
- U.O.C Pneumologia Azienda Ospedaliera Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Monica Gelzo
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Carlo Iadevaia
- Pneumology Vanvitelly-COVID Unit A.O. dei Colli Hospital Monaldi, 80131 Naples, Italy; (C.I.); (F.S.C.); (A.C.); (V.A.)
| | - Francesco Saverio Cerqua
- Pneumology Vanvitelly-COVID Unit A.O. dei Colli Hospital Monaldi, 80131 Naples, Italy; (C.I.); (F.S.C.); (A.C.); (V.A.)
| | - Adriano Costigliola
- Pneumology Vanvitelly-COVID Unit A.O. dei Colli Hospital Monaldi, 80131 Naples, Italy; (C.I.); (F.S.C.); (A.C.); (V.A.)
| | - Valentino Allocca
- Pneumology Vanvitelly-COVID Unit A.O. dei Colli Hospital Monaldi, 80131 Naples, Italy; (C.I.); (F.S.C.); (A.C.); (V.A.)
| | - Felice Amato
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppe Castaldo
- CEINGE, Biotecnologie Avanzate, 80131 Naples, Italy; (M.V.); (A.D.); (E.N.); (M.G.); (F.A.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Andrea Bianco
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “L. Vanvitelli”, 80131 Naples, Italy;
- Pneumology Vanvitelly-COVID Unit A.O. dei Colli Hospital Monaldi, 80131 Naples, Italy; (C.I.); (F.S.C.); (A.C.); (V.A.)
| |
Collapse
|
262
|
Bogen JP, Grzeschik J, Jakobsen J, Bähre A, Hock B, Kolmar H. Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based Therapeutics. Front Oncol 2021; 11:672262. [PMID: 34123841 PMCID: PMC8191463 DOI: 10.3389/fonc.2021.672262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Bladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research. This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. Besides, newly emerging entities in the realm of bladder cancer like mRNA, gene therapy or cell-based therapeutics are discussed and evaluated. As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. Furthermore, the distribution and expression of the targeted antigens and the intended mechanisms of action are elucidated.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Joern Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Alexandra Bähre
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
263
|
Knudson CJ, Alves-Peixoto P, Muramatsu H, Stotesbury C, Tang L, Lin PJC, Tam YK, Weissman D, Pardi N, Sigal LJ. Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection. Mol Ther 2021; 29:2769-2781. [PMID: 33992803 DOI: 10.1016/j.ymthe.2021.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
It is well established that memory CD8 T cells protect susceptible strains of mice from mousepox, a lethal viral disease caused by ectromelia virus (ECTV), the murine counterpart to human variola virus. While mRNA vaccines induce protective antibody (Ab) responses, it is unknown whether they also induce protective memory CD8 T cells. We now show that immunization with different doses of unmodified or N(1)-methylpseudouridine-modified mRNA (modified mRNA) in lipid nanoparticles (LNP) encoding the ECTV gene EVM158 induced similarly strong CD8 T cell responses to the epitope TSYKFESV, albeit unmodified mRNA-LNP had adverse effects at the inoculation site. A single immunization with 10 μg modified mRNA-LNP protected most susceptible mice from mousepox, and booster vaccination increased the memory CD8 T cell pool, providing full protection. Moreover, modified mRNA-LNP encoding TSYKFESV appended to green fluorescent protein (GFP) protected against wild-type ECTV infection while lymphocytic choriomeningitis virus glycoprotein (GP) modified mRNA-LNP protected against ECTV expressing GP epitopes. Thus, modified mRNA-LNP can be used to create protective CD8 T cell-based vaccines against viral infections.
Collapse
Affiliation(s)
- Cory J Knudson
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pedro Alves-Peixoto
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis J Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
264
|
Starostina EV, Sharabrin SV, Antropov DN, Stepanov GA, Shevelev GY, Lemza AE, Rudometov AP, Borgoyakova MB, Rudometova NB, Marchenko VY, Danilchenko NV, Chikaev AN, Bazhan SI, Ilyichev AA, Karpenko LI. Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines (Basel) 2021; 9:452. [PMID: 34063689 PMCID: PMC8147809 DOI: 10.3390/vaccines9050452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Nucleic acid-based influenza vaccines are a promising platform that have recently and rapidly developed. We previously demonstrated the immunogenicity of DNA vaccines encoding artificial immunogens AgH1, AgH3, and AgM2, which contained conserved fragments of the hemagglutinin stem of two subtypes of influenza A-H1N1 and H3N2-and conserved protein M2. Thus, the aim of this study was to design and characterize modified mRNA obtained using the above plasmid DNA vaccines as a template. To select the most promising protocol for creating highly immunogenic mRNA vaccines, we performed a comparative analysis of mRNA modifications aimed at increasing its translational activity and decreasing toxicity. We used mRNA encoding a green fluorescent protein (GFP) as a model. Eight mRNA-GFP variants with different modifications (M0-M7) were obtained using the classic cap(1), its chemical analog ARCA (anti-reverse cap analog), pseudouridine (Ψ), N6-methyladenosine (m6A), and 5-methylcytosine (m5C) in different ratios. Modifications M2, M6, and M7, which provided the most intensive fluorescence of transfected HEK293FT cells were used for template synthesis when mRNA encoded influenza immunogens AgH1, AgH3, and AgM2. Virus specific antibodies were registered in groups of animals immunized with a mix of mRNAs encoding AgH1, AgH3, and AgM2, which contained either ARCA (with inclusions of 100% Ψ and 20% m6A (M6)) or a classic cap(1) (with 100% substitution of U with Ψ (M7)). M6 modification was the least toxic when compared with other mRNA variants. M6 and M7 RNA modifications can therefore be considered as promising protocols for designing mRNA vaccines.
Collapse
Affiliation(s)
- Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Sergei V. Sharabrin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Denis N. Antropov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Georgiy Yu. Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Anna E. Lemza
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (G.A.S.); (G.Y.S.); (A.E.L.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Nadezhda B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Vasiliy Yu. Marchenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Natalia V. Danilchenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (S.V.S.); (A.P.R.); (M.B.B.); (N.B.R.); (V.Y.M.); (N.V.D.); (S.I.B.); (A.A.I.); (L.I.K.)
| |
Collapse
|
265
|
Anand P, Stahel VP. Review the safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg 2021; 15:20. [PMID: 33933145 PMCID: PMC8087878 DOI: 10.1186/s13037-021-00291-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has infected more than 100 million people globally within the first year of the pandemic. With a death toll surpassing 500,000 in the United States alone, containing the pandemic is predicated on achieving herd immunity on a global scale. This implies that at least 70-80 % of the population must achieve active immunity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), either as a result of a previous COVID-19 infection or by vaccination against SARS-CoV-2. In December 2020, the first two vaccines were approved by the FDA through emergency use authorization in the United States. These vaccines are based on the mRNA vaccine platform and were developed by Pfizer/BioNTech and Moderna. Published safety and efficacy trials reported high efficacy rates of 94-95 % after two interval doses, in conjunction with limited side effects and a low rate of adverse reactions. The rapid pace of vaccine development and the uncertainty of potential long-term adverse effects raised some level of hesitation against mRNA vaccines in the global community. A successful vaccination campaign is contingent on widespread access to the vaccine under appropriate storage conditions, deployment of a sufficient number of vaccinators, and the willingness of the population to be vaccinated. Thus, it is important to clarify the objective data related to vaccine safety, including known side effects and potential adverse reactions. The present review was designed to provide an update on the current state of science related to the safety and efficacy of SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Pratibha Anand
- University of Colorado (CU) School of Medicine, 13001 E 17th Place, Aurora, CO, 80045, USA.
| | - Vincent P Stahel
- University of Colorado (CU) Boulder Undergraduate Program, Boulder, CO, 80309, USA
| |
Collapse
|
266
|
García-Montero C, Fraile-Martínez O, Bravo C, Torres-Carranza D, Sanchez-Trujillo L, Gómez-Lahoz AM, Guijarro LG, García-Honduvilla N, Asúnsolo A, Bujan J, Monserrat J, Serrano E, Álvarez-Mon M, De León-Luis JA, Álvarez-Mon MA, Ortega MA. An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times. Vaccines (Basel) 2021; 9:vaccines9050433. [PMID: 33925526 PMCID: PMC8146241 DOI: 10.3390/vaccines9050433] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Since the worldwide COVID-19 pandemic was declared a year ago, the search for vaccines has become the top priority in order to restore normalcy after 2.5 million deaths worldwide, overloaded sanitary systems, and a huge economic burden. Vaccine development has represented a step towards the desired herd immunity in a short period of time, owing to a high level of investment, the focus of researchers, and the urge for the authorization of the faster administration of vaccines. Nevertheless, this objective may only be achieved by pursuing effective strategies and policies in various countries worldwide. In the present review, some aspects involved in accomplishing a successful vaccination program are addressed, in addition to the importance of vaccination in a pandemic in the face of unwillingness, conspiracy theories, or a lack of information among the public. Moreover, we provide some updated points related to the landscape of the clinical development of vaccine candidates, specifically, the top five vaccines that are already being assessed in Phase IV clinical trials (BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, and CoronaVac).
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | | | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Encarnación Serrano
- Los fresnos of Health Centre, Health Area III, Torrejon de Ardoz, 28850 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Juan A De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- First of May Health Centre, Health Area I, Rivas Vaciamadrid, 28521 Madrid, Spain;
- Correspondence:
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| |
Collapse
|
267
|
Vasireddy D, Atluri P, Malayala SV, Vanaparthy R, Mohan G. Review of COVID-19 Vaccines Approved in the United States of America for Emergency Use. J Clin Med Res 2021; 13:204-213. [PMID: 34007358 PMCID: PMC8110223 DOI: 10.14740/jocmr4490] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus causing a global pandemic. Coronaviruses are a large family of single-stranded ribonucleic acid (RNA) viruses. The virus has four essential structural proteins which include the spike (S) glycoprotein, matrix (M) protein, nucleocapsid (N) protein and small envelope (E) protein. Different technologies are being used for vaccine development to battle the pandemic. There are messenger ribonucleic acid (mRNA)-based vaccines, deoxyribonucleic acid (DNA) vaccines, inactivated viral vaccines, live attenuated vaccines, protein subunit-based vaccines, viral vector-based vaccines and virus-like particle-based vaccines. Vaccine development has five stages. In the clinical developmental stage, vaccine development can be sped up by combining phase 1 and 2. The vaccines can also be approved more swiftly on an emergent basis and released sooner for usage. The United States Food and Drug Administration (USFDA) has approved Pfizer-BioNTech, Moderna and Janssen coronavirus disease 2019 (COVID-19) vaccines for emergency use. There are other vaccines that have been approved around the world. The mRNA vaccines have been created using a novel technology and they contain a synthetically created RNA sequence of virus fragments encoding the S-protein which is injected. These vaccines have a relatively low cost of production and faster manufacturing time but can have comparatively lower immunogenicity and more than one dose of vaccine may be required. In the case of viral vector-based vaccines, genes encoding the SARS-CoV-2 S protein are isolated and following gene sequencings are introduced into the adenovirus vector. These vaccines have a relatively fast manufacturing time but the efficacy of the vaccine is variable based on the host’s immune response to the viral vector. At the time of this paper, there were 81 vaccines in clinical development stage and 182 vaccines in preclinical development stage. Vaccines are an essential tool in our battle against COVID-19. Some of the COVID-19 vaccines have completed their phase III trials while many other potential vaccines are still in developmental stages. It used to take close to a decade for a vaccine to be developed and undergo rigorous testing until its production and availability to the public, but over the past year, we have seen multiple vaccines in different phases of testing against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Deepa Vasireddy
- Department of Pediatrics, Pediatric Group of Acadiana, Lafayette, LA, USA
| | | | | | | | - Gisha Mohan
- Physicians for American Health Care Access, Philadelphia, PA, USA
| |
Collapse
|
268
|
Müller L, Andrée M, Moskorz W, Drexler I, Walotka L, Grothmann R, Ptok J, Hillebrandt J, Ritchie A, Rabl D, Ostermann PN, Robitzsch R, Hauka S, Walker A, Menne C, Grutza R, Timm J, Adams O, Schaal H. Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. Clin Infect Dis 2021; 73:2065-2072. [PMID: 33906236 PMCID: PMC8135422 DOI: 10.1093/cid/ciab381] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background The SARS-CoV-2 pandemic has led to the development of various vaccines. Real-life data on immune responses elicited in the most vulnerable group of vaccinees over 80 years old is still underrepresented despite the prioritization of the elderly in vaccination campaigns. Methods We conducted a cohort study with two age groups, young vaccinees below the age of 60 and elderly vaccinees over the age of 80, to compare their antibody responses to the first and second dose of the BNT162b2 COVID-19 vaccination. Results While the majority of participants in both groups produced specific IgG antibody titers against SARS-CoV-2 spike protein, titers were significantly lower in elderly participants. Although the increment of antibody levels after the second immunization was higher in elderly participants, the absolute mean titer of this group remained lower than the <60 group. After the second vaccination, 31.3 % of the elderly had no detectable neutralizing antibodies in contrast to the younger group, in which only 2.2% had no detectable neutralizing antibodies. Conclusion Our data showed differences between the antibody responses raised after the first and second BNT162b2 vaccination, in particular lower frequencies of neutralizing antibodies in the elderly group. This suggests that this population needs to be closely monitored and may require earlier revaccination or/and an increased vaccine dose to ensure stronger long lasting immunity and protection against infection.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Andrée
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wiebke Moskorz
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Drexler
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ramona Grothmann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jonas Hillebrandt
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denise Rabl
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebekka Robitzsch
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Hauka
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Walker
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Menne
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ralf Grutza
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
269
|
Methods matter - Tailoring SARS-CoV-2 antibody targets to vaccination status. Clin Chim Acta 2021; 519:140-141. [PMID: 33872607 PMCID: PMC8052504 DOI: 10.1016/j.cca.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022]
Abstract
Individuals who have been vaccinated for COVID19 should have IgG antibody in response to the specific antigen that is the target in the vaccine development. There are several options for targeted COVID19 antigen, but most manufacturers have focused on the spike protein. Using our understanding of the targeted antigen for vaccine development, we can develop testing algorithmic scheme for anti-spike and anti-nucleocapsid antibody assays to aid delineation of infection versus vaccination in our patient population. Clear communication from laboratories specifying the specific SARS-CoV-2 antibodies (i.e., anti-spike, anti-nucleocapsid, or both) in their antibody tests at both the ordering and reporting levels will play crucial role in the development of this approach and is essential to avoid potential provider/patient confusion in the interpretation of serologic testing.
Collapse
|
270
|
Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021; 39:2190-2200. [PMID: 33771389 PMCID: PMC7987532 DOI: 10.1016/j.vaccine.2021.03.038] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Vaccines are one of the most important tools in public health and play an important role in infectious diseases control. Owing to its precision, safe profile and flexible manufacturing, mRNA vaccines are reaching the stoplight as a new alternative to conventional vaccines. In fact, mRNA vaccines were the technology of choice for many companies to combat the Covid-19 pandemic, and it was the first technology to be approved in both United States and in Europe Union as a prophylactic treatment. Additionally, mRNA vaccines are being studied in the clinic to treat a number of diseases including cancer, HIV, influenza and even genetic disorders. The increased demand for mRNA vaccines requires a technology platform and cost-effective manufacturing process with a well-defined product characterisation. Large scale production of mRNA vaccines consists in a 1 or 2-step in vitro reaction followed by a purification platform with multiple steps that can include Dnase digestion, precipitation, chromatography or tangential flow filtration. In this review we describe the current state-of-art of mRNA vaccines, focusing on the challenges and bottlenecks of manufacturing that need to be addressed to turn this new vaccination technology into an effective, fast and cost-effective response to emerging health crises.
Collapse
Affiliation(s)
- Sara Sousa Rosa
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Duarte M F Prazeres
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana M Azevedo
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom.
| |
Collapse
|
271
|
Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F. mRNA-Based Vaccines. Vaccines (Basel) 2021; 9:390. [PMID: 33921028 PMCID: PMC8103517 DOI: 10.3390/vaccines9040390] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Increases in the world's population and population density promote the spread of emerging pathogens. Vaccines are the most cost-effective means of preventing this spread. Traditional methods used to identify and produce new vaccines are not adequate, in most instances, to ensure global protection. New technologies are urgently needed to expedite large scale vaccine development. mRNA-based vaccines promise to meet this need. mRNA-based vaccines exhibit a number of potential advantages relative to conventional vaccines, namely they (1) involve neither infectious elements nor a risk of stable integration into the host cell genome; (2) generate humoral and cell-mediated immunity; (3) are well-tolerated by healthy individuals; and (4) are less expensive and produced more rapidly by processes that are readily standardized and scaled-up, improving responsiveness to large emerging outbreaks. Multiple mRNA vaccine platforms have demonstrated efficacy in preventing infectious diseases and treating several types of cancers in humans as well as animal models. This review describes the factors that contribute to maximizing the production of effective mRNA vaccine transcripts and delivery systems, and the clinical applications are discussed in detail.
Collapse
Affiliation(s)
- Frank Kowalzik
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Daniel Schreiner
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Christian Jensen
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Daniel Teschner
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, 55122 Mainz, Germany;
| | - Stephan Gehring
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Fred Zepp
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| |
Collapse
|
272
|
Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics 2021; 13:pharmaceutics13040520. [PMID: 33918635 PMCID: PMC8069739 DOI: 10.3390/pharmaceutics13040520] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.
Collapse
|
273
|
Abstract
The unprecedented need to acquire a safe and effective vaccine for the long-term control of coronavirus disease 2019 (COVID-19) is a global imperative. Researchers have been working urgently and collaboratively to develop vaccines against the causative agent of COVID-19. The use of messenger RNA (mRNA) vaccine platform offers new opportunities for the development of effective vaccines. The first use of COVID-19 mRNA vaccines for individuals outside the clinical trials raised concerns over their safety and future efficacy. In social media, particularly in developing countries, widely shared false claims allege that the current mRNA-based COVID-19 vaccines potentially integrate into the host genome and thus may genetically modify humans. These vaccines are also assumed to lack efficacy due to the emergence of new strains. Such misinformation cause people to hesitate about receiving vaccination against COVID-19. This commentary aimed to outline the structure, mechanism of action and the major motive for the use of COVID-19 mRNA vaccine, with a focus on scientifically addressing challenges associated with conspiracy theories and dispelling misinformation around vaccination.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan
| | - Ali Mussa
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
274
|
Ho W, Gao M, Li F, Li Z, Zhang X, Xu X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv Healthc Mater 2021; 10:e2001812. [PMID: 33458958 PMCID: PMC7995055 DOI: 10.1002/adhm.202001812] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/06/2020] [Indexed: 01/07/2023]
Abstract
Nucleic acid vaccines are a method of immunization aiming to elicit immune responses akin to live attenuated vaccines. In this method, DNA or messenger RNA (mRNA) sequences are delivered to the body to generate proteins, which mimic disease antigens to stimulate the immune response. Advantages of nucleic acid vaccines include stimulation of both cell-mediated and humoral immunity, ease of design, rapid adaptability to changing pathogen strains, and customizable multiantigen vaccines. To combat the SARS-CoV-2 pandemic, and many other diseases, nucleic acid vaccines appear to be a promising method. However, aid is needed in delivering the fragile DNA/mRNA payload. Many delivery strategies have been developed to elicit effective immune stimulation, yet no nucleic acid vaccine has been FDA-approved for human use. Nanoparticles (NPs) are one of the top candidates to mediate successful DNA/mRNA vaccine delivery due to their unique properties, including unlimited possibilities for formulations, protective capacity, simultaneous loading, and delivery potential of multiple DNA/mRNA vaccines. This review will summarize the many varieties of novel NP formulations for DNA and mRNA vaccine delivery as well as give the reader a brief synopsis of NP vaccine clinical trials. Finally, the future perspectives and challenges for NP-mediated nucleic acid vaccines will be explored.
Collapse
Affiliation(s)
- William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Fengqiao Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Zhongyu Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringNew Jersey Institute of Technology323 Dr Martin Luther King Jr BlvdNewarkNJ07102USA
| |
Collapse
|
275
|
Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opin Investig Drugs 2021; 30:529-541. [PMID: 33641576 DOI: 10.1080/13543784.2021.1896702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Derived from genetic alterations, cancer neoantigens are proteins with novel amino acid sequences that can be recognized by the immune system. Recent evidence demonstrates that cancer neoantigens represent important targets of cancer immunotherapy. The goal of cancer neoantigen vaccines is to induce neoantigen-specific immune responses and antitumor immunity, while minimizing the potential for autoimmune toxicity. Advances in sequencing technologies, neoantigen prediction ?algorithms,? and other technologies have dramatically improved the ability to identify and prioritize cancer neoantigens. These advances have generated considerable enthusiasm for ?the ?development of neoantigen vaccines. Several neoantigen vaccine platforms are currently being evaluated in early phase clinical trials including the synthetic long peptide (SLP), RNA, dendritic cell (DC), and DNA vaccine platforms. AREAS COVERED In this review, we describe, evaluate the mechanism(s) of action, compare the advantages and disadvantages, and summarize early clinical experience with each vaccine platform. We provide perspectives on the future directions of the neoantigen vaccine field. All data are derived from PubMed and ClinicalTrials search updated in October 2020. EXPERT OPINION Although the initial clinical experience is promising, significant challenges to the success of neoantigen vaccines include limitations in neoantigen identification and the need to successfully target the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Suangson Supabphol
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
276
|
Sathian B, Asim M, Banerjee I, Roy B, Pizarro AB, Mancha MA, van Teijlingen ER, Kord-Varkaneh H, Mekkodathil AA, Subramanya SH, Borges do Nascimento IJ, Antony N, Menezes RG, Simkhada P, Al Hamad H. Development and implementation of a potential coronavirus disease 2019 (COVID-19) vaccine: A systematic review and meta-analysis of vaccine clinical trials. Nepal J Epidemiol 2021; 11:959-982. [PMID: 33868742 PMCID: PMC8033643 DOI: 10.3126/nje.v11i1.36163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
Background To date, there is no comprehensive systematic review and meta-analysis to assess the suitability of COVID-19 vaccines for mass immunization. The current systematic review and meta-analysis was conducted to evaluate the safety and immunogenicity of novel COVID-19 vaccine candidates under clinical trial evaluation and present a contemporary update on the development and implementation of a potential vaccines. Methods For this study PubMed, MEDLINE, and Embase electronic databases were used to search for eligible studies on the interface between novel coronavirus and vaccine design until December 31, 2020. Results We have included fourteen non-randomized and randomized controlled phase I-III trials. Implementation of a universal vaccination program with proven safety and efficacy through robust clinical evaluation is the long-term goal for preventing COVID-19. The immunization program must be cost-effective for mass production and accessibility. Despite pioneering techniques for the fast-track development of the vaccine in the current global emergency, mass production and availability of an effective COVID-19 vaccine could take some more time. Conclusion Our findings suggest a revisiting of the reported solicited and unsolicited systemic adverse events for COVID-19 candidate vaccines. Hence, it is alarming to judiciously expose thousands of participants to COVID-19 candidate vaccines at Phase-3 trials that have adverse events and insufficient evidence on safety and effectiveness that necessitates further justification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hamed Kord-Varkaneh
- Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Neema Antony
- Confederation of Epidemiological Associations, India
| | | | | | | |
Collapse
|
277
|
Jatoi I, Fan J. A biomaterials viewpoint for the 2020 SARS-CoV-2 vaccine development. BIOMATERIALS TRANSLATIONAL 2021; 2:30-42. [PMID: 35837251 PMCID: PMC9255824 DOI: 10.3877/cma.j.issn.2096-112x.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/05/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a considerable loss of life, morbidity, and economic distress since its emergence in late 2019. In response to the novel virus, public and private institutions around the world have utilized novel technologies to develop a vaccine in the hopes of building herd immunity and ending the pandemic. This review provides an overview of mechanisms and available data on the nascent vaccine technologies undergoing clinical trials to combat SARS-CoV-2, namely, those using protein subunits, viral vectors, mRNA, and DNA. Furthermore, we discuss the potential uses of biomaterials in improving the immunogenicity and safety of these vaccine technologies with the goal of improving upon newly-available technologies to combat future SARS-CoV-2 strains and other emerging viral pathogens.
Collapse
|
278
|
Borah P, Deb PK, Al-Shar’i NA, Dahabiyeh LA, Venugopala KN, Singh V, Shinu P, Hussain S, Deka S, Chandrasekaran B, Jaradat DMM. Perspectives on RNA Vaccine Candidates for COVID-19. Front Mol Biosci 2021; 8:635245. [PMID: 33869282 PMCID: PMC8044912 DOI: 10.3389/fmolb.2021.635245] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
With the current outbreak caused by SARS-CoV-2, vaccination is acclaimed as a public health care priority. Rapid genetic sequencing of SARS-CoV-2 has triggered the scientific community to search for effective vaccines. Collaborative approaches from research institutes and biotech companies have acknowledged the use of viral proteins as potential vaccine candidates against COVID-19. Nucleic acid (DNA or RNA) vaccines are considered the next generation vaccines as they can be rapidly designed to encode any desirable viral sequence including the highly conserved antigen sequences. RNA vaccines being less prone to host genome integration (cons of DNA vaccines) and anti-vector immunity (a compromising factor of viral vectors) offer great potential as front-runners for universal COVID-19 vaccine. The proof of concept for RNA-based vaccines has already been proven in humans, and the prospects for commercialization are very encouraging as well. With the emergence of COVID-19, mRNA-1273, an mRNA vaccine developed by Moderna, Inc. was the first to enter human trials, with the first volunteer receiving the dose within 10 weeks after SARS-CoV-2 genetic sequencing. The recent interest in mRNA vaccines has been fueled by the state of the art technologies that enhance mRNA stability and improve vaccine delivery. Interestingly, as per the "Draft landscape of COVID-19 candidate vaccines" published by the World Health Organization (WHO) on December 29, 2020, seven potential RNA based COVID-19 vaccines are in different stages of clinical trials; of them, two candidates already received emergency use authorization, and another 22 potential candidates are undergoing pre-clinical investigations. This review will shed light on the rationality of RNA as a platform for vaccine development against COVID-19, highlighting the possible pros and cons, lessons learned from the past, and the future prospects.
Collapse
Affiliation(s)
- Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Pratiksha Institute of Pharmaceutical Sciences, Assam, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Assam, India
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Da’san M. M. Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
279
|
Kiszewski AE, Cleary EG, Jackson MJ, Ledley FD. NIH funding for vaccine readiness before the COVID-19 pandemic. Vaccine 2021; 39:2458-2466. [PMID: 33781600 PMCID: PMC7938738 DOI: 10.1016/j.vaccine.2021.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Rapid development of vaccines for COVID-19 has relied on the application of existing vaccine technologies. This work examines the maturity of ten technologies employed in candidate vaccines (as of July 2020) and NIH funding for published research on these technologies from 2000–2019. These technologies vary from established platforms, which have been used successfully in approved products, to emerging technologies with no prior clinical validation. A robust body of published research on vaccine technologies was supported by 16,358 fiscal years of NIH funding totaling $17.2 billion from 2000–2019. During this period, NIH funding for published vaccine research against specific pandemic threats such as coronavirus, Zika, Ebola, and dengue was not sustained. NIH funding contributed substantially to the advance of technologies available for rapid development of COVID-19 vaccines, suggesting the importance of sustained public sector funding for foundational technologies in the rapid response to emerging public health threats.
Collapse
Affiliation(s)
- Anthony E Kiszewski
- Department of Natural & Applied Sciences, Bentley University, Waltham, MA 02452, United States
| | - Ekaterina Galkina Cleary
- Center for Integration of Science and Industry, Bentley University, Waltham, MA 02452, United States; Department of Mathematical Sciences, Bentley University, Waltham, MA 02452, United States
| | - Matthew J Jackson
- Department of Natural & Applied Sciences, Bentley University, Waltham, MA 02452, United States; Center for Integration of Science and Industry, Bentley University, Waltham, MA 02452, United States
| | - Fred D Ledley
- Department of Natural & Applied Sciences, Bentley University, Waltham, MA 02452, United States; Center for Integration of Science and Industry, Bentley University, Waltham, MA 02452, United States; Department of Management, Bentley University, Waltham, MA 02452, United States.
| |
Collapse
|
280
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
281
|
Wan Z, Zheng R, Moharil P, Liu Y, Chen J, Sun R, Song X, Ao Q. Polymeric Micelles in Cancer Immunotherapy. Molecules 2021; 26:1220. [PMID: 33668746 PMCID: PMC7956602 DOI: 10.3390/molecules26051220] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapies have generated some miracles in the clinic by orchestrating our immune system to combat cancer cells. However, the safety and efficacy concerns of the systemic delivery of these immunostimulatory agents has limited their application. Nanomedicine-based delivery strategies (e.g., liposomes, polymeric nanoparticles, silico, etc.) play an essential role in improving cancer immunotherapies, either by enhancing the anti-tumor immune response, or reducing their systemic adverse effects. The versatility of working with biocompatible polymers helps these polymeric nanoparticles stand out as a key carrier to improve bioavailability and achieve specific delivery at the site of action. This review provides a summary of the latest advancements in the use of polymeric micelles for cancer immunotherapy, including their application in delivering immunological checkpoint inhibitors, immunostimulatory molecules, engineered T cells, and cancer vaccines.
Collapse
Affiliation(s)
- Zhuoya Wan
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Ruohui Zheng
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pearl Moharil
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Yuzhe Liu
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47906, USA;
| | - Jing Chen
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Runzi Sun
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Xu Song
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| |
Collapse
|
282
|
Abstract
mRNA vaccines have become a promising platform for cancer immunotherapy. During vaccination, naked or vehicle loaded mRNA vaccines efficiently express tumor antigens in antigen-presenting cells (APCs), facilitate APC activation and innate/adaptive immune stimulation. mRNA cancer vaccine precedes other conventional vaccine platforms due to high potency, safe administration, rapid development potentials, and cost-effective manufacturing. However, mRNA vaccine applications have been limited by instability, innate immunogenicity, and inefficient in vivo delivery. Appropriate mRNA structure modifications (i.e., codon optimizations, nucleotide modifications, self-amplifying mRNAs, etc.) and formulation methods (i.e., lipid nanoparticles (LNPs), polymers, peptides, etc.) have been investigated to overcome these issues. Tuning the administration routes and co-delivery of multiple mRNA vaccines with other immunotherapeutic agents (e.g., checkpoint inhibitors) have further boosted the host anti-tumor immunity and increased the likelihood of tumor cell eradication. With the recent U.S. Food and Drug Administration (FDA) approvals of LNP-loaded mRNA vaccines for the prevention of COVID-19 and the promising therapeutic outcomes of mRNA cancer vaccines achieved in several clinical trials against multiple aggressive solid tumors, we envision the rapid advancing of mRNA vaccines for cancer immunotherapy in the near future. This review provides a detailed overview of the recent progress and existing challenges of mRNA cancer vaccines and future considerations of applying mRNA vaccine for cancer immunotherapies.
Collapse
Affiliation(s)
- Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
283
|
Huang Q, Zeng J, Yan J. COVID-19 mRNA vaccines. J Genet Genomics 2021; 48:107-114. [PMID: 34006471 PMCID: PMC7959685 DOI: 10.1016/j.jgg.2021.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic and its unprecedented global societal and economic disruptive impact highlight the urgent need for safe and effective vaccines. Taking substantial advantages of versatility and rapid development, two mRNA vaccines against COVID-19 have completed late-stage clinical assessment at an unprecedented speed and reported positive results. In this review, we outline keynotes in mRNA vaccine development, discuss recently published data on COVID-19 mRNA vaccine candidates, focusing on those in clinical trials and analyze future potential challenges.
Collapse
Affiliation(s)
- Qingrui Huang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Zeng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
284
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
285
|
Yoo JH. What We Do Know and Do Not Yet Know about COVID-19 Vaccines as of the Beginning of the Year 2021. J Korean Med Sci 2021; 36:e54. [PMID: 33559409 PMCID: PMC7870421 DOI: 10.3346/jkms.2021.36.e54] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which started at the end of 2019 and has spread worldwide, has remained unabated in 2021. Since non-pharmaceutical interventions including social distancing are facing limitations in controlling COVID-19, additional absolute means to change the trend are necessary. To this end, coronavirus-specific antiviral drugs and vaccines are urgently needed, but for now, the priority is to promote herd immunity through extensive nationwide vaccination campaign. In addition to the vaccines based on the conventional technology such inactivated or killed virus or protein subunit vaccines, several vaccines on the new technological platforms, for example, nucleic acids-based vaccines delivered by viral carriers, nanoparticles, or plasmids as a medium were introduced in this pandemic. In addition to achieving sufficient herd immunity with vaccination, the development of antiviral treatments that work specifically against COVID-19 will also be necessary to terminate the epidemic completely.
Collapse
Affiliation(s)
- Jin Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
286
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
287
|
Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2021; 21:201-218. [PMID: 32842798 DOI: 10.1080/14712598.2020.1815704] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. AREAS COVERED The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. EXPERT OPINION RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Amir Hossein Faghfouri
- Student's Research Committee, Department of Nutrition, Tabriz University of Medical Science , Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
288
|
Liu L, Gao H, Guo C, Liu T, Li N, Qian Q. Therapeutic Mechanism of Nucleic Acid Drugs. ChemistrySelect 2021. [DOI: 10.1002/slct.202002901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lianxiao Liu
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Haixia Gao
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Chuanxin Guo
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Tao Liu
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Ning Li
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| | - Qijun Qian
- Nucleic Acid Drug Division Shanghai Cell Therapy Group Co., Ltd. 75 A Qianyang Rd, Jiading District Shanghai 201805 China
| |
Collapse
|
289
|
Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Al-Dehlawi S, Qari SH. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics 2021; 13:pharmaceutics13020140. [PMID: 33499096 PMCID: PMC7911318 DOI: 10.3390/pharmaceutics13020140] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has raised significant economic, social, and psychological concerns. The rapid spread of the virus, coupled with the absence of vaccines and antiviral treatments for SARS-CoV-2, has galvanized a major global endeavor to develop effective vaccines. Within a matter of just a few months of the initial outbreak, research teams worldwide, adopting a range of different strategies, embarked on a quest to develop effective vaccine that could be effectively used to suppress this virulent pathogen. In this review, we describe conventional approaches to vaccine development, including strategies employing proteins, peptides, and attenuated or inactivated pathogens in combination with adjuvants (including genetic adjuvants). We also present details of the novel strategies that were adopted by different research groups to successfully transfer recombinantly expressed antigens while using viral vectors (adenoviral and retroviral) and non-viral delivery systems, and how recently developed methods have been applied in order to produce vaccines that are based on mRNA, self-amplifying RNA (saRNA), and trans-amplifying RNA (taRNA). Moreover, we discuss the methods that are being used to enhance mRNA stability and protein production, the advantages and disadvantages of different methods, and the challenges that are encountered during the development of effective vaccines.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Correspondence: or
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Department of Laboratory and Blood Bank, Molecular Diagnostics Unit, King Abdullah Medical City, Makkah 21955, Saudi Arabia
| | - Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
| | | | - Sameer H. Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
290
|
Cagigi A, Loré K. Immune Responses Induced by mRNA Vaccination in Mice, Monkeys and Humans. Vaccines (Basel) 2021; 9:61. [PMID: 33477534 PMCID: PMC7831080 DOI: 10.3390/vaccines9010061] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
In this concise review, we summarize the concepts behind mRNA vaccination. We discuss the innate and adaptive immune response generated by mRNA vaccines in different animal models and in humans. We give examples of viral infections where mRNA vaccines have shown to induce potent responses and we discuss in more detail the recent SARS-CoV-2 mRNA vaccine trials in humans.
Collapse
Affiliation(s)
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 161 64 Solna, Sweden;
| |
Collapse
|
291
|
Abstract
The first proof-of-concept studies about the feasibility of genetic vaccines were published over three decades ago, opening the way for future development. The idea of nonviral antigen delivery had multiple advantages over the traditional live or inactivated pathogen-based vaccines, but a great deal of effort had to be invested to turn the idea of genetic vaccination into reality. Although early proof-of-concept studies were groundbreaking, they also showed that numerous aspects of genetic vaccines needed to be improved. Until the early 2000s, the vast majority of effort was invested into the development of DNA vaccines due to the potential issues of instability and low in vivo translatability of messenger RNA (mRNA). In recent years, numerous studies have demonstrated the outstanding abilities of mRNA to elicit potent immune responses against infectious pathogens and different types of cancer, making it a viable platform for vaccine development. Multiple mRNA vaccine platforms have been developed and evaluated in small and large animals and humans and the results seem to be promising. RNA-based vaccines have important advantages over other vaccine approaches including outstanding efficacy, safety, and the potential for rapid, inexpensive, and scalable production. There is a substantial investment by new mRNA companies into the development of mRNA therapeutics, particularly vaccines, increasing the number of basic and translational research publications and human clinical trials underway. This review gives a broad overview about genetic vaccines and mainly focuses on the past and present of mRNA vaccines along with the future directions to bring this potent vaccine platform closer to therapeutic use.
Collapse
|
292
|
Liu CH, Huang HY, Tu YF, Lai WY, Wang CL, Sun JR, Chien Y, Lin TW, Lin YY, Chien CS, Huang CH, Chen YM, Huang PI, Wang FD, Yang YP. Highlight of severe acute respiratory syndrome coronavirus-2 vaccine development against COVID-19 pandemic. J Chin Med Assoc 2021; 84:9-13. [PMID: 33186212 DOI: 10.1097/jcma.0000000000000461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has brought an unprecedented impact upon the global economy and public health. Although the SARS-CoV-2 virology has been gradually investigated, measures to combat this new threat in public health are still absent. To date, no certificated drug or vaccine has been developed for the treatment or prevention of coronavirus disease Extensive researches and international coordination has been conducted to rapidly develop novel vaccines against SARS-CoV-2 pandemic. Several major breakthroughs have been made through the identification of the genetic sequence and structural/non-structural proteins of SARS-CoV-2, which enabled the development of RNA-, DNA-based vaccines, subunit vaccines, and attenuated viral vaccines. In this review article, we present an overview of the recent advances of SARS-CoV-2 vaccines and the challenges that may be encountered in the development process, highlighting the advantages and disadvantages of these approaches that may help in effectively countering COVID-19.
Collapse
Affiliation(s)
- Cheng-Hsuan Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Hsuan-Yang Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Fang Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuh-Min Chen
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pin-I Huang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fu-Der Wang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
293
|
Peng F, Yuan H, Wu S, Zhou Y. Recent Advances on Drugs and Vaccines for COVID-19. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211055630. [PMID: 34818922 PMCID: PMC8673875 DOI: 10.1177/00469580211055630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current situation of Coronavirus Disease 2019 (COVID-19) worldwide is still very severe. Presently, many breakthroughs have been accomplished in the research and development of drugs for the treatment of COVID-19, especially vaccines; however, some of the so-called COVID-19-specific drugs highlighted in the early stage failed to achieve the expected curative effect. There is no antiviral therapy available, by stimulating protective immunity vaccine is the best choice for the future management of infection. Therefore, we aimed to identify the latest developments in the research and development of these drugs and vaccines and provide a reference for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Fang Peng
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Hao Yuan
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Sixian Wu
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Yifeng Zhou
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
294
|
Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2021; 222:108634. [PMID: 33217545 PMCID: PMC7670907 DOI: 10.1016/j.clim.2020.108634] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/09/2023]
Abstract
The world is engulfed by one of the most widespread and significant public health crises in decades as COVID-19 has become among the leading causes of death internationally. The novel SARS-CoV-2 coronavirus which causes COVID-19 has unified the scientific community in search of therapeutic and preventative solutions. The top priorities at the moment are twofold: first, to repurpose already-approved pharmacologic agents or develop novel therapies to reduce the morbidity and mortality associated with the ever-spreading virus. Secondly, the scientific and larger pharmaceutical community have been tasked with the development, testing, and production of a safe and effective vaccine as a longer-term solution to prevent further spread and recurrence throughout the populace. The purpose of this article is to review the most up-to-date published data regarding both the leading pharmacological therapies undergoing clinical trials and vaccine candidates in development to stem the threat of COVID-19.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, United States of America
| | - Matlock A Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, United States of America; University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, United States of America.
| | - Amr H Sawalha
- University of Pittsburgh, Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, Pittsburgh, PA, United States of America
| |
Collapse
|
295
|
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021; 11:1690-1702. [PMID: 33408775 PMCID: PMC7778607 DOI: 10.7150/thno.53691] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
The global outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a requirement for two pronged clinical interventions such as development of effective vaccines and acute therapeutic options for medium-to-severe stages of "coronavirus disease 2019" (COVID-19). Effective vaccines, if successfully developed, have been emphasized to become the most effective strategy in the global fight against the COVID-19 pandemic. Basic research advances in biotechnology and genetic engineering have already provided excellent progress and groundbreaking new discoveries in the field of the coronavirus biology and its epidemiology. In particular, for the vaccine development the advances in characterization of a capsid structure and identification of its antigens that can become targets for new vaccines. The development of the experimental vaccines requires a plethora of molecular techniques as well as strict compliance with safety procedures. The research and clinical data integrity, cross-validation of the results, and appropriated studies from the perspective of efficacy and potently side effects have recently become a hotly discussed topic. In this review, we present an update on latest advances and progress in an ongoing race to develop 52 different vaccines against SARS-CoV-2. Our analysis is focused on registered clinical trials (current as of November 04, 2020) that fulfill the international safety and efficacy criteria in the vaccine development. The requirements as well as benefits and risks of diverse types of SARS-CoV-2 vaccines are discussed including those containing whole-virus and live-attenuated vaccines, subunit vaccines, mRNA vaccines, DNA vaccines, live vector vaccines, and also plant-based vaccine formulation containing coronavirus-like particle (VLP). The challenges associated with the vaccine development as well as its distribution, safety and long-term effectiveness have also been highlighted and discussed.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Poznań, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women's Disease, Poznań University of Medical Sciences, Poznań, Poland
- Laboratory of Molecular Biology in Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Poznań, Poland
| | - Hubert Wolski
- Division of Perinatology and Women's Disease, Poznań University of Medical Sciences, Poznań, Poland
- Division of Obstetrics and Gynecology, Tytus Chałubiński's Hospital, Zakopane, Poland
| | | |
Collapse
|
296
|
Hemmati S, Keshavarz-Fathi M, Razi S, Rezaei N. Gene Therapy and Genetic Vaccines. CANCER IMMUNOLOGY 2021:129-142. [DOI: 10.1007/978-3-030-50287-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
297
|
Vaccines against Coronavirus Disease: Target Proteins, Immune Responses, and Status of Ongoing Clinical Trials. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 26 million individuals and caused 871,166 deaths globally. Various countries are racing against time to find a vaccine for controlling the rapid transmission of infection. The selection of antigen targets to trigger an immune response is crucial for vaccine development strategies. The receptor binding domain of the subunit of spike 1 protein is considered a promising vaccine candidate because of its ability to prevent attachment and infection of host cells by stimulating neutralizing antibodies. The vaccine is expected to mount a sufficient immunogenic response to eliminate the virus and store antigenic information in memory cells for long-term protection. Here, we review the ongoing clinical trials for COVID-19 vaccines and discuss the immune responses in patients administered an adequate dosage to prevent COVID-19.
Collapse
|
298
|
Kis Z, Kontoravdi C, Shattock R, Shah N. Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand. Vaccines (Basel) 2020; 9:3. [PMID: 33374802 PMCID: PMC7824664 DOI: 10.3390/vaccines9010003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
To overcome pandemics, such as COVID-19, vaccines are urgently needed at very high volumes. Here we assess the techno-economic feasibility of producing RNA vaccines for the demand associated with a global vaccination campaign. Production process performance is assessed for three messenger RNA (mRNA) and one self-amplifying RNA (saRNA) vaccines, all currently under clinical development, as well as for a hypothetical next-generation saRNA vaccine. The impact of key process design and operation uncertainties on the performance of the production process was assessed. The RNA vaccine drug substance (DS) production rates, volumes and costs are mostly impacted by the RNA amount per vaccine dose and to a lesser extent by the scale and titre in the production process. The resources, production scale and speed required to meet global demand vary substantially in function of the RNA amount per dose. For lower dose saRNA vaccines, global demand can be met using a production process at a scale of below 10 L bioreactor working volume. Consequently, these small-scale processes require a low amount of resources to set up and operate. RNA DS production can be faster than fill-to-finish into multidose vials; hence the latter may constitute a bottleneck.
Collapse
Affiliation(s)
- Zoltán Kis
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK; (C.K.); (N.S.)
| | - Cleo Kontoravdi
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK; (C.K.); (N.S.)
| | - Robin Shattock
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W2 1PG, UK;
| | - Nilay Shah
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK; (C.K.); (N.S.)
| |
Collapse
|
299
|
Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, Wu X, Yan Y, Zhao W, Wu J, Chodosh J, Zhang Q. COVID-19: Coronavirus Vaccine Development Updates. Front Immunol 2020; 11:602256. [PMID: 33424848 PMCID: PMC7785583 DOI: 10.3389/fimmu.2020.602256] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.
Collapse
Affiliation(s)
- Jing Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Wendong Lan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaowei Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
300
|
Functional and computational identification of a rescue mutation near the active site of an mRNA methyltransferase. Sci Rep 2020; 10:21841. [PMID: 33318548 PMCID: PMC7736282 DOI: 10.1038/s41598-020-79026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Abstract
RNA-based drugs are an emerging class of therapeutics combining the immense potential of DNA gene-therapy with the absence of genome integration-associated risks. While the synthesis of such molecules is feasible, large scale in vitro production of humanised mRNA remains a biochemical and economical challenge. Human mRNAs possess two post-transcriptional modifications at their 5' end: an inverted methylated guanosine and a unique 2'O-methylation on the ribose of the penultimate nucleotide. One strategy to precisely methylate the 2' oxygen is to use viral mRNA methyltransferases that have evolved to escape the host's cell immunity response following virus infection. However, these enzymes are ill-adapted to industrial processes and suffer from low turnovers. We have investigated the effects of homologous and orthologous active-site mutations on both stability and transferase activity, and identified new functional motifs in the interaction network surrounding the catalytic lysine. Our findings suggest that despite their low catalytic efficiency, the active-sites of viral mRNA methyltransferases have low mutational plasticity, while mutations in a defined third shell around the active site have strong effects on folding, stability and activity in the variant enzymes, mostly via network-mediated effects.
Collapse
|