301
|
Sporny M, Guez-Haddad J, Khazma T, Yaron A, Dessau M, Shkolnisky Y, Mim C, Isupov MN, Zalk R, Hons M, Opatowsky Y. Structural basis for SARM1 inhibition and activation under energetic stress. eLife 2020; 9:e62021. [PMID: 33185189 PMCID: PMC7688312 DOI: 10.7554/elife.62021] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
SARM1, an executor of axonal degeneration, displays NADase activity that depletes the key cellular metabolite, NAD+, in response to nerve injury. The basis of SARM1 inhibition and its activation under stress conditions are still unknown. Here, we present cryo-EM maps of SARM1 at 2.9 and 2.7 Å resolutions. These indicate that SARM1 homo-octamer avoids premature activation by assuming a packed conformation, with ordered inner and peripheral rings, that prevents dimerization and activation of the catalytic domains. This inactive conformation is stabilized by binding of SARM1's own substrate NAD+ in an allosteric location, away from the catalytic sites. This model was validated by mutagenesis of the allosteric site, which led to constitutively active SARM1. We propose that the reduction of cellular NAD+ concentration contributes to the disassembly of SARM1's peripheral ring, which allows formation of active NADase domain dimers, thereby further depleting NAD+ to cause an energetic catastrophe and cell death.
Collapse
Affiliation(s)
- Michael Sporny
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Tami Khazma
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Avraham Yaron
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar Ilan UniversitySafedIsrael
| | - Yoel Shkolnisky
- Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv UniversityTel-AvivIsrael
| | - Carsten Mim
- Royal Technical Institute (KTH), Dept. For Biomedical Engineering and Health SystemsStockholmSweden
| | | | - Ran Zalk
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Michael Hons
- European Molecular Biology LaboratoryGrenobleFrance
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| |
Collapse
|
302
|
Sonavane M, Hayat F, Makarov M, Migaud ME, Gassman NR. Dihydronicotinamide riboside promotes cell-specific cytotoxicity by tipping the balance between metabolic regulation and oxidative stress. PLoS One 2020; 15:e0242174. [PMID: 33166357 PMCID: PMC7652347 DOI: 10.1371/journal.pone.0242174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100–1000 μM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 μM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Faisal Hayat
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Mikhail Makarov
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Marie E. Migaud
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
303
|
Chini CCS, Peclat TR, Warner GM, Kashyap S, Espindola-Netto JM, de Oliveira GC, Gomez LS, Hogan KA, Tarragó MG, Puranik AS, Agorrody G, Thompson KL, Dang K, Clarke S, Childs BG, Kanamori KS, Witte MA, Vidal P, Kirkland AL, De Cecco M, Chellappa K, McReynolds MR, Jankowski C, Tchkonia T, Kirkland JL, Sedivy JM, van Deursen JM, Baker DJ, van Schooten W, Rabinowitz JD, Baur JA, Chini EN. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD + and NMN levels. Nat Metab 2020; 2:1284-1304. [PMID: 33199925 PMCID: PMC8752031 DOI: 10.1038/s42255-020-00298-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/10/2020] [Indexed: 11/14/2022]
Abstract
Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jair Machado Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Guilherme C de Oliveira
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lilian S Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mariana G Tarragó
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amrutesh S Puranik
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Guillermo Agorrody
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | - Bennett G Childs
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Micaela A Witte
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Paola Vidal
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anna L Kirkland
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marco De Cecco
- Center on the Biology of Aging and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Connor Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - John M Sedivy
- Center on the Biology of Aging and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
304
|
Covarrubias AJ, Kale A, Perrone R, Lopez-Dominguez JA, Pisco AO, Kasler HG, Schmidt MS, Heckenbach I, Kwok R, Wiley CD, Wong HS, Gibbs E, Iyer SS, Basisty N, Wu Q, Kim IJ, Silva E, Vitangcol K, Shin KO, Lee YM, Riley R, Ben-Sahra I, Ott M, Schilling B, Scheibye-Knudsen M, Ishihara K, Quake SR, Newman J, Brenner C, Campisi J, Verdin E. Senescent cells promote tissue NAD + decline during ageing via the activation of CD38 + macrophages. Nat Metab 2020; 2:1265-1283. [PMID: 33199924 PMCID: PMC7908681 DOI: 10.1038/s42255-020-00305-3] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2020] [Indexed: 11/08/2022]
Abstract
Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | - Abhijit Kale
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Indra Heckenbach
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ryan Kwok
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Hoi-Shan Wong
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Eddy Gibbs
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar S Iyer
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Qiuxia Wu
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Ik-Jung Kim
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Elena Silva
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Melanie Ott
- Gladstone Institutes, Virology and Immunology, San Francisco, CA, USA
| | | | - Morten Scheibye-Knudsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katsuhiko Ishihara
- Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Stephen R Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - John Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
- UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
305
|
Frederick DW, McDougal AV, Semenas M, Vappiani J, Nuzzo A, Ulrich JC, Becherer JD, Preugschat F, Stewart EL, Sévin DC, Kramer HF. Complementary NAD + replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet Muscle 2020; 10:30. [PMID: 33092650 PMCID: PMC7579925 DOI: 10.1186/s13395-020-00249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- David W Frederick
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Melisa Semenas
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | | | - Andrea Nuzzo
- Target Sciences, Computational Biology, GlaxoSmithKline R&D, Collegeville, PA, USA
| | - John C Ulrich
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - J David Becherer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Frank Preugschat
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Eugene L Stewart
- Computational Sciences, Molecular Design, GlaxoSmithKline R&D, Collegeville, PA, USA.
| | | | - H Fritz Kramer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| |
Collapse
|
306
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
307
|
Kang BE, Choi JY, Stein S, Ryu D. Implications of NAD + boosters in translational medicine. Eur J Clin Invest 2020; 50:e13334. [PMID: 32594513 DOI: 10.1111/eci.13334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential metabolite in energy metabolism as well as a co-substrate in biochemical reactions such as protein deacylation, protein ADP-ribosylation and cyclic ADP-ribose synthesis mediated by sirtuins, poly (ADP-ribose) polymerases (PARPs) and CD38. In eukaryotic cells, NAD+ is synthesized through three distinct pathways, which offer different strategies to modulate the bioavailability of NAD+ . The therapeutic potential of dietarily available NAD+ boosters preserving the NAD+ pool has been attracting attention after the discovery of declining NAD+ levels in ageing model organisms as well as in several age-related diseases, including cardiometabolic and neurodegenerative diseases. Here, we review the recent advances in the biology of NAD+ , including the salubrious effects of NAD+ boosters and discuss their future translational strategies.
Collapse
Affiliation(s)
- Baeki E Kang
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Dongryeol Ryu
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
308
|
Kory N, Uit de Bos J, van der Rijt S, Jankovic N, Güra M, Arp N, Pena IA, Prakash G, Chan SH, Kunchok T, Lewis CA, Sabatini DM. MCART1/SLC25A51 is required for mitochondrial NAD transport. SCIENCE ADVANCES 2020; 6:sciadv.abe5310. [PMID: 33087354 PMCID: PMC7577609 DOI: 10.1126/sciadv.abe5310] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 05/19/2023]
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) pair is a cofactor in redox reactions and is particularly critical in mitochondria as it connects substrate oxidation by the tricarboxylic acid (TCA) cycle to adenosine triphosphate generation by the electron transport chain (ETC) and oxidative phosphorylation. While a mitochondrial NAD+ transporter has been identified in yeast, how NAD enters mitochondria in metazoans is unknown. Here, we mine gene essentiality data from human cell lines to identify MCART1 (SLC25A51) as coessential with ETC components. MCART1-null cells have large decreases in TCA cycle flux, mitochondrial respiration, ETC complex I activity, and mitochondrial levels of NAD+ and NADH. Isolated mitochondria from cells lacking or overexpressing MCART1 have greatly decreased or increased NAD uptake in vitro, respectively. Moreover, MCART1 and NDT1, a yeast mitochondrial NAD+ transporter, can functionally complement for each other. Thus, we propose that MCART1 is the long sought mitochondrial transporter for NAD in human cells.
Collapse
Affiliation(s)
- Nora Kory
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge MA 02142, USA
| | - Jelmi Uit de Bos
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Sanne van der Rijt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Nevena Jankovic
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Miriam Güra
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Nicholas Arp
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Izabella A Pena
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Gyan Prakash
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge MA 02142, USA
| |
Collapse
|
309
|
Zhang R, Engel AL, Wang Y, Li B, Shen W, Gillies MC, Chao JR, Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J Proteome Res 2020; 20:909-922. [PMID: 32975122 DOI: 10.1021/acs.jproteome.0c00690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration. In this study, we used targeted-metabolomics and 13C tracing to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome. We found inhibition of mitochondrial respiration strikingly influenced both the intracellular and extracellular metabolome in primary RPE cells. Intriguingly, the extracellular metabolic changes sensitively reflected the intracellular changes. These changes included substantially enhanced glucose consumption and lactate production; reduced release of pyruvate, citrate, and ketone bodies; and massive accumulation of multiple amino acids and nucleosides. In conclusion, these findings reveal a metabolic signature of nutrient consumption and release in mitochondrial dysfunction in RPE cells. Testing medium metabolites provides a sensitive and noninvasive method to assess mitochondrial function in nutrient utilization and transport.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Bo Li
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Weiyong Shen
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
310
|
Radenkovic D, Reason, Verdin E. Clinical Evidence for Targeting NAD Therapeutically. Pharmaceuticals (Basel) 2020; 13:E247. [PMID: 32942582 PMCID: PMC7558103 DOI: 10.3390/ph13090247] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) pharmacology is a promising class of treatments for age-related conditions that are likely to have a favorable side effect profile for human use, given the widespread use of the NAD precursor vitamin B3 supplements. However, despite several decades of active investigation and numerous possible biochemical mechanisms of action suggested, only a small number of randomized and adequately powered clinical trials of NAD upregulation as a therapeutic strategy have taken place. We conducted a systematic review of the literature, following the PRISMA guidelines, in an attempt to determine whether or not the human clinical trials performed to date support the potential benefits of NAD supplementation in a range of skin, metabolic and age-related conditions. In addition, we sought medical indications that have yielded the most promising results in the limited studies to date. We conclude that promising, yet still speculative, results have been reported for the treatment of psoriasis and enhancement of skeletal muscle activity. However, further trials are required to determine the optimal method of raising NAD levels, identifying the target conditions, and comparisons to the present standard of care for these conditions. Lastly, pharmacological methods that increase NAD levels should also be directly compared to physiological means of raising NAD levels, such as exercise programs and dietary interventions that are tailored to older individuals, and which may be more effective.
Collapse
Affiliation(s)
- Dina Radenkovic
- Health Longevity Performance Optimisation Institute, Cambridge CB22 5NE, UK
| | - Reason
- Fight Aging!, 4736 Onondaga Blvd, PMB 179, Syracuse, NY 13219, USA;
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA;
| |
Collapse
|
311
|
Gunda V, Pathania AS, Chava S, Prathipati P, Chaturvedi NK, Coulter DW, Pandey MK, Durden DL, Challagundla KB. Amino Acids Regulate Cisplatin Insensitivity in Neuroblastoma. Cancers (Basel) 2020; 12:cancers12092576. [PMID: 32927667 PMCID: PMC7563727 DOI: 10.3390/cancers12092576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Neuroblastomas mostly show poor response to the Cisplatin therapy. Amino acids serve as building blocks for proteins, which are acquired either through diet or protein breakdown. Our study reveals high amino acid pools and dependence of Cisplatin-tolerant neuroblastomas cells on amino acids for their survival, especially, in drug treated conditions. Our study also demonstrates that response of neuroblastomas to Cisplatin can be improved by decreasing cellular amino acid levels either by reducing amino acid supplements or by applying autophagy inhibitor, Hydroxychloroquine. Thus, our findings establish that neuroblastomas can be sensitized to Cisplatin by targeting amino acid metabolism. Abstract Neuroblastoma are pediatric, extracranial malignancies showing alarming survival prognosis outcomes due to their resilience to current aggressive treatment regimens, including chemotherapies with cisplatin (CDDP) provided in the first line of therapy regimens. Metabolic deregulation supports tumor cell survival in drug-treated conditions. However, metabolic pathways underlying cisplatin-resistance are least studied in neuroblastoma. Our metabolomics analysis revealed that cisplatin-insensitive cells alter their metabolism; especially, the metabolism of amino acids was upregulated in cisplatin-insensitive cells compared to the cisplatin-sensitive neuroblastoma cell line. A significant increase in amino acid levels in cisplatin-insensitive cells led us to hypothesize that the mechanisms upregulating intracellular amino acid pools facilitate insensitivity in neuroblastoma. We hereby report that amino acid depletion reduces cell survival and cisplatin-insensitivity in neuroblastoma cells. Since cells regulate their amino acids levels through processes, such as autophagy, we evaluated the effects of hydroxychloroquine (HCQ), a terminal autophagy inhibitor, on the survival and amino acid metabolism of cisplatin-insensitive neuroblastoma cells. Our results demonstrate that combining HCQ with CDDP abrogated the amino acid metabolism in cisplatin-insensitive cells and sensitized neuroblastoma cells to sub-lethal doses of cisplatin. Our results suggest that targeting of amino acid replenishing mechanisms could be considered as a potential approach in developing combination therapies for treating neuroblastomas.
Collapse
Affiliation(s)
- Venugopal Gunda
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (A.S.P.); (S.C.)
| | - Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (A.S.P.); (S.C.)
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (A.S.P.); (S.C.)
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.K.C.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.K.C.); (D.W.C.)
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ 08103, USA;
| | - Donald L. Durden
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, 3855 Health Science Drive, MC-0815, La Jolla, CA 92093, USA;
- SignalRx Pharmaceuticals, Inc. 8330, Loveland Drive, Omaha, NE 68124, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (A.S.P.); (S.C.)
- The Children’s Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-9032
| |
Collapse
|
312
|
Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV, Jenkinson N, Wilson M, Lucas SJE, Akerman I, Seabright A, Lai YC, Tennant DA, Nightingale P, Wallis GA, Manolopoulos KN, Brenner C, Philp A, Lavery GG. Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD + Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures. Cell Rep 2020; 28:1717-1728.e6. [PMID: 31412242 PMCID: PMC6702140 DOI: 10.1016/j.celrep.2019.07.043] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. NR supplementation in aged subjects augments the skeletal muscle NAD+ metabolome NR supplementation does not affect skeletal muscle mitochondrial bioenergetics NR supplementation reduces levels of circulating inflammatory cytokines
Collapse
Affiliation(s)
- Yasir S Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Rachel S Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Antje Garten
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Craig L Doig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - David M Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lucy Oakey
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Claire V Burley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Martin Wilson
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK; School of Psychology, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Alex Seabright
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Yu-Chiang Lai
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Peter Nightingale
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, Sydney, UNSW, Australia
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
313
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
314
|
Tanuma SI, Katsuragi K, Oyama T, Yoshimori A, Shibasaki Y, Asawa Y, Yamazaki H, Makino K, Okazawa M, Ogino Y, Sakamoto Y, Nomura M, Sato A, Abe H, Nakamura H, Takahashi H, Tanuma N, Uchiumi F. Structural Basis of Beneficial Design for Effective Nicotinamide Phosphoribosyltransferase Inhibitors. Molecules 2020; 25:molecules25163633. [PMID: 32785052 PMCID: PMC7464552 DOI: 10.3390/molecules25163633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic strategy for targeting cancer metabolism. So far, many potent NAMPT inhibitors have been developed and shown to bind to two unique tunnel-shaped cavities existing adjacent to each active site of a NAMPT homodimer. However, cytotoxicities and resistances to NAMPT inhibitors have become apparent. Therefore, there remains an urgent need to develop effective and safe NAMPT inhibitors. Thus, we designed and synthesized two close structural analogues of NAMPT inhibitors, azaindole-piperidine (3a)- and azaindole-piperazine (3b)-motif compounds, which were modified from the well-known NAMPT inhibitor FK866 (1). Notably, 3a displayed considerably stronger enzyme inhibitory activity and cellular potency than did 3b and 1. The main reason for this phenomenon was revealed to be due to apparent electronic repulsion between the replaced nitrogen atom (N1) of piperazine in 3b and the Nδ atom of His191 in NAMPT by our in silico binding mode analyses. Indeed, 3b had a lower binding affinity score than did 3a and 1, although these inhibitors took similar stable chair conformations in the tunnel region. Taken together, these observations indicate that the electrostatic enthalpy potential rather than entropy effects inside the tunnel cavity has a significant impact on the different binding affinity of 3a from that of 3b in the disparate enzymatic and cellular potencies. Thus, it is better to avoid or minimize interactions with His191 in designing further effective NAMPT inhibitors.
Collapse
Affiliation(s)
- Sei-ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Correspondence:
| | - Kiyotaka Katsuragi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., Fujisawa, Kanagawa 251-0012, Japan;
| | - Yuri Shibasaki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hiroaki Yamazaki
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| |
Collapse
|
315
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society's estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
316
|
Volkova S, Matos MRA, Mattanovich M, Marín de Mas I. Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis. Metabolites 2020; 10:E303. [PMID: 32722118 PMCID: PMC7465778 DOI: 10.3390/metabo10080303] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/05/2023] Open
Abstract
Metabolic networks are regulated to ensure the dynamic adaptation of biochemical reaction fluxes to maintain cell homeostasis and optimal metabolic fitness in response to endogenous and exogenous perturbations. To this end, metabolism is tightly controlled by dynamic and intricate regulatory mechanisms involving allostery, enzyme abundance and post-translational modifications. The study of the molecular entities involved in these complex mechanisms has been boosted by the advent of high-throughput technologies. The so-called omics enable the quantification of the different molecular entities at different system layers, connecting the genotype with the phenotype. Therefore, the study of the overall behavior of a metabolic network and the omics data integration and analysis must be approached from a holistic perspective. Due to the close relationship between metabolism and cellular phenotype, metabolic modelling has emerged as a valuable tool to decipher the underlying mechanisms governing cell phenotype. Constraint-based modelling and kinetic modelling are among the most widely used methods to study cell metabolism at different scales, ranging from cells to tissues and organisms. These approaches enable integrating metabolomic data, among others, to enhance model predictive capabilities. In this review, we describe the current state of the art in metabolic modelling and discuss future perspectives and current challenges in the field.
Collapse
Affiliation(s)
| | | | | | - Igor Marín de Mas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (S.V.); (M.R.A.M.); (M.M.)
| |
Collapse
|
317
|
Tammaro A, Kers J, Scantlebery AML, Florquin S. Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Front Immunol 2020; 11:1346. [PMID: 32733450 PMCID: PMC7358591 DOI: 10.3389/fimmu.2020.01346] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI), a common event after renal transplantation, causes acute kidney injury (AKI), increases the risk of delayed graft function (DGF), primes the donor kidney for rejection, and contributes to the long-term risk of graft loss. In the last decade, epidemiological studies have linked even mild episodes of AKI to chronic kidney disease (CKD) progression, and innate immunity seems to play a crucial role. The ischemic insult triggers an acute inflammatory reaction that is elicited by Pattern Recognition Receptors (PRRs), expressed on both infiltrating immune cells as well as tubular epithelial cells (TECs). Among the PRRs, Toll-like receptors (TLRs), their synergistic receptors, Nod-like receptors (NLRs), and the inflammasomes, play a pivotal role in shaping inflammation and TEC repair, in response to renal IRI. These receptors represent promising targets to modulate the extent of inflammation, but also function as gatekeepers of tissue repair, protecting against AKI-to-CKD progression. Despite the important considerations on timely use of therapeutics, in the context of IRI, treatment options are limited by a lack of understanding of the intra- and intercellular mechanisms associated with the activation of innate immune receptors and their impact on adaptive tubular repair. Accumulating evidence suggests that TEC-associated innate immunity shapes the tubular response to stress through the regulation of immunometabolism. Engagement of innate immune receptors provides TECs with the metabolic flexibility necessary for their plasticity during injury and repair. This could significantly affect pathogenic processes within TECs, such as cell death, mitochondrial damage, senescence, and pro-fibrotic cytokine secretion, well-known to exacerbate inflammation and fibrosis. This article provides an overview of the past 5 years of research on the role of innate immunity in experimental and human IRI, with a focus on the cascade of events activated by hypoxic damage in TECs: from programmed cell death (PCD) and mitochondrial dysfunction-mediated metabolic rewiring of TECs to maladaptive repair and progression to fibrosis. Finally, we will discuss the important crosstalk between metabolism and innate immunity observed in TECs and their therapeutic potential in both experimental and clinical research.
Collapse
Affiliation(s)
- Alessandra Tammaro
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.,Biomolecular Systems Analytics, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
318
|
Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. ACTA ACUST UNITED AC 2020; 2:e200026. [PMID: 32774895 PMCID: PMC7409778 DOI: 10.20900/immunometab20200026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that involves dysfunction on multiple levels, all of which seem to converge on inflammation. Macrophages are intimately involved in initiating and resolving inflammation, and their dysregulation with age is a primary contributor to inflammaging—a state of chronic, low-grade inflammation that develops during aging. Among the age-related changes that occur to macrophages are a heightened state of basal inflammation and diminished or hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic changes. In this review article we provide a brief overview of mitochondrial functions and age-related changes that occur to macrophages, with an emphasis on how the inflammaging environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, and contribute to inflammaging and age-related pathologies.
Collapse
|
319
|
Cambronne XA, Kraus WL. Location, Location, Location: Compartmentalization of NAD + Synthesis and Functions in Mammalian Cells. Trends Biochem Sci 2020; 45:858-873. [PMID: 32595066 DOI: 10.1016/j.tibs.2020.05.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
The numerous biological roles of NAD+ are organized and coordinated via its compartmentalization within cells. The spatial and temporal partitioning of this intermediary metabolite is intrinsic to understanding the impact of NAD+ on cellular signaling and metabolism. We review evidence supporting the compartmentalization of steady-state NAD+ levels in cells, as well as how the modulation of NAD+ synthesis dynamically regulates signaling by controlling subcellular NAD+ concentrations. We further discuss potential benefits to the cell of compartmentalizing NAD+, and methods for measuring subcellular NAD+ levels.
Collapse
Affiliation(s)
- Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
320
|
Perico L, Benigni A. The iNADequacy of renal cell metabolism: modulating NAD + biosynthetic pathways to forestall kidney diseases. Kidney Int 2020; 96:264-267. [PMID: 31331461 DOI: 10.1016/j.kint.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
321
|
Chini EN. Of Mice and Men: NAD + Boosting with Niacin Provides Hope for Mitochondrial Myopathy Patients. Cell Metab 2020; 31:1041-1043. [PMID: 32492387 DOI: 10.1016/j.cmet.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this issue of Cell Metabolism, Pirinen et al. (2020) show that disruption in NAD+ homeostasis is a key component of the pathogenesis of mitochondrial myopathy in humans that can be targeted by the administration of the NAD+ precursor niacin, identifying NAD+ boosting as a potential treatment for this devastating disease.
Collapse
Affiliation(s)
- Eduardo Nunes Chini
- Department of Anesthesiology and Experimental Therapeutics, Kogod Center on Aging and Co-director of Mayo Clinic Mitochondrial Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
322
|
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, Piirilä P, Lundbom N, Taskinen MR, Brenner C, Velagapudi V, Pietiläinen KH, Suomalainen A. Niacin Cures Systemic NAD + Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020; 31:1078-1090.e5. [PMID: 32386566 DOI: 10.1016/j.cmet.2020.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
NAD+ is a redox-active metabolite, the depletion of which has been proposed to promote aging and degenerative diseases in rodents. However, whether NAD+ depletion occurs in patients with degenerative disorders and whether NAD+ repletion improves their symptoms has remained open. Here, we report systemic NAD+ deficiency in adult-onset mitochondrial myopathy patients. We administered an increasing dose of NAD+-booster niacin, a vitamin B3 form (to 750-1,000 mg/day; clinicaltrials.govNCT03973203) for patients and their matched controls for 10 or 4 months, respectively. Blood NAD+ increased in all subjects, up to 8-fold, and muscle NAD+ of patients reached the level of their controls. Some patients showed anemia tendency, while muscle strength and mitochondrial biogenesis increased in all subjects. In patients, muscle metabolome shifted toward controls and liver fat decreased even 50%. Our evidence indicates that blood analysis is useful in identifying NAD+ deficiency and points niacin to be an efficient NAD+ booster for treating mitochondrial myopathy.
Collapse
Affiliation(s)
- Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Mari Auranen
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Nahid A Khan
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Virginia Brilhante
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Niina Urho
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Alberto Pessia
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), Helsinki 00290, Finland
| | - Antti Hakkarainen
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo 12200, Finland
| | - Juho Kuula
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulla Heinonen
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), Helsinki 00290, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Obesity Centre, Abdominal Centre, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; HUSlab, Helsinki University Hospital, Helsinki 00290, Finland; Neuroscience Center, HiLife, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
323
|
Mehmel M, Jovanović N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients 2020; 12:E1616. [PMID: 32486488 PMCID: PMC7352172 DOI: 10.3390/nu12061616] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide riboside (NR) has recently become one of the most studied nicotinamide adenine dinucleotide (NAD+) precursors, due to its numerous potential health benefits mediated via elevated NAD+ content in the body. NAD+ is an essential coenzyme that plays important roles in various metabolic pathways and increasing its overall content has been confirmed as a valuable strategy for treating a wide variety of pathophysiological conditions. Accumulating evidence on NRs' health benefits has validated its efficiency across numerous animal and human studies for the treatment of a number of cardiovascular, neurodegenerative, and metabolic disorders. As the prevalence and morbidity of these conditions increases in modern society, the great necessity has arisen for a rapid translation of NR to therapeutic use and further establishment of its availability as a nutritional supplement. Here, we summarize currently available data on NR effects on metabolism, and several neurodegenerative and cardiovascular disorders, through to its application as a treatment for specific pathophysiological conditions. In addition, we have reviewed newly published research on the application of NR as a potential therapy against infections with several pathogens, including SARS-CoV-2. Additionally, to support rapid NR translation to therapeutics, the challenges related to its bioavailability and safety are addressed, together with the advantages of NR to other NAD+ precursors.
Collapse
Affiliation(s)
- Mario Mehmel
- Biosynth Carbosynth, Rietlistrasse 4, 9422 Staad, Switzerland;
| | - Nina Jovanović
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 1, 11000 Belgrade, Serbia;
| | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK
| |
Collapse
|
324
|
Parker R, Schmidt MS, Cain O, Gunson B, Brenner C. Nicotinamide Adenine Dinucleotide Metabolome Is Functionally Depressed in Patients Undergoing Liver Transplantation for Alcohol-Related Liver Disease. Hepatol Commun 2020; 4:1183-1192. [PMID: 32766477 PMCID: PMC7395074 DOI: 10.1002/hep4.1530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and related coenzymes play critical roles in liver function. Although hepatic alcohol metabolism depresses NAD+, current understanding of the NAD+ metabolome in alcohol‐related liver disease (ArLD) is based on animal models. We used human liver samples to quantify the NAD+ metabolome in ArLD with samples obtained at the time of liver transplantation or resection at University Hospitals Birmingham National Health Service Foundation Trust. The severity of steatohepatitis in liver from patients with ArLD was assessed with standard liver function tests and histology. NAD‐targeted quantitative metabolomic analysis of liver tissue was performed by liquid chromatography–tandem mass spectrometry. Seventy‐two human liver specimens were analyzed, including 43 with ArLD. The NAD+ metabolome differed significantly between different types of liver disease (two‐way analysis of variance [ANOVA], P = 0.001). ArLD liver tissue showed markedly depressed concentrations of NAD+ (432 μM vs. 616 μM in normal liver) and precursor molecules nicotinic acid and nicotinamide riboside. There was a significant overall difference in the NAD+ metabolome between ArLD samples with and without steatohepatitis (two‐way ANOVA, P = 0.018). After correcting for multiple comparisons, a significant difference for individual components of the metabolome was observed for the concentration of NAD+ (mean, 462 μM vs. 322 μM; P < 0.01 in nonsevere vs. severe alcoholic steatohepatitis, respectively). NAD+ concentration was inversely related to serum bilirubin concentration (r2 = −0.127; P = 0.04) and positively correlated with myeloperoxidase activity (r2 = 0.31; P = 0.003). The concentration of NAD+ and its precursor molecules are significantly reduced in ArLD and are associated with disease activity. Conclusion: Liver samples from people with ArLD show depressed NAD+ and precursor levels as well as depressed myeloperoxidase activity.
Collapse
Affiliation(s)
- Richard Parker
- Centre for Liver Research University of Birmingham Birmingham United Kingdom.,Liver and Hepatobiliary Unit University Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom
| | - Mark S Schmidt
- Histopathology University Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom
| | - Owen Cain
- Histopathology University Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom
| | - Bridget Gunson
- Centre for Liver Research University of Birmingham Birmingham United Kingdom
| | - Charles Brenner
- Department of Biochemistry Carver College of Medicine University of Iowa Iowa City IA
| |
Collapse
|
325
|
Moore MP, Mucinski JM. Impact of nicotinamide riboside supplementation on skeletal muscle mitochondria and whole-body glucose homeostasis: challenging the current hypothesis. J Physiol 2020; 598:3327-3328. [PMID: 32463114 DOI: 10.1113/jp279749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mary P Moore
- Research Service, Harry S Truman Memorial Veterans Medical Centre, Columbia, MO, 65211.,Department of Nutrition and Exercise Physiology
| | | |
Collapse
|
326
|
Berge RK, Cacabelos D, Señarís R, Nordrehaug JE, Nygård O, Skorve J, Bjørndal B. Hepatic steatosis induced in C57BL/6 mice by a non-ß oxidizable fatty acid analogue is associated with reduced plasma kynurenine metabolites and a modified hepatic NAD +/NADH ratio. Lipids Health Dis 2020; 19:94. [PMID: 32410680 PMCID: PMC7227213 DOI: 10.1186/s12944-020-01271-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background Non-alcoholic fatty liver disease is often associated with obesity, insulin resistance, dyslipidemia, and the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. The aim of this study was to investigate how inhibition of mitochondrial fatty acid oxidation using the compound tetradecylthiopropionic acid (TTP) would affect hepatic triacylglycerol level and plasma levels of kynurenine (Kyn) metabolites and nicotinamide. Methods 12 C57BL/6 mice were fed a control diet, or an intervention diet supplemented with 0.9% (w/w) tetradecylthiopropionic acid for 14 days. Blood and liver samples were collected, enzyme activities and gene expression were analyzed in liver, in addition to fatty acid composition. Metabolites in the tryptophan/kynurenine pathway and total antioxidant status were measured in plasma. Results Dietary treatment with tetradecylthiopropionic acid for 2 weeks induced fatty liver accompanied by decreased mitochondrial fatty acid oxidation. The liver content of the oxidized form of NAD+ was increased, as well as the ratio of NAD+/NADH, and these changes were associated by increased hepatic mRNA levels of NAD synthetase and nicotinamide mononucleotide adenyltransferase-3. The downstream metabolites of kynurenine were reduced in plasma whereas the plasma nicotinamide content was increased. Some effects on inflammation and oxidative stress was observed in the liver, while the plasma antioxidant capacity was increased. This was accompanied by a reduced plasma ratio of kynurenine/tryptophan. In addition, a significant decrease in the inflammation-related arachidonic fatty acid in liver was observed. Conclusion Fatty liver induced by short-time treatment with tetradecylthiopropionic acid decreased the levels of kynurenine metabolites but increased the plasma levels of NAD+ and nicotinamide. These changes are most likely not associated with increased inflammation and oxidative stress. Most probably the increase of NAD+ and nicotinamide are generated through the Preiss Handler pathway and/or salvage pathway and not through the de novo pathway. The take home message is that non-alcoholic fatty liver disease is associated with the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. Inducing fatty liver in mice by inhibition of fatty acid oxidation resulted in a concomitant change in kynurenine metabolites increasing the plasma levels of nicotinamides and the hepatic NAD+/NADH ratio, probably without affecting the de novo pathway of kynurenines.
Collapse
Affiliation(s)
- Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| | - Daniel Cacabelos
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Stavanger University Hospital, Stavanger, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
327
|
Lahiguera Á, Hyroššová P, Figueras A, Garzón D, Moreno R, Soto-Cerrato V, McNeish I, Serra V, Lazaro C, Barretina P, Brunet J, Menéndez J, Matias-Guiu X, Vidal A, Villanueva A, Taylor-Harding B, Tanaka H, Orsulic S, Junza A, Yanes O, Muñoz-Pinedo C, Palomero L, Pujana MÀ, Perales JC, Viñals F. Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors. EMBO Mol Med 2020; 12:e11217. [PMID: 32400970 PMCID: PMC7278557 DOI: 10.15252/emmm.201911217] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial metabolism and the generation of reactive oxygen species (ROS) contribute to the acquisition of DNA mutations and genomic instability in cancer. How genomic instability influences the metabolic capacity of cancer cells is nevertheless poorly understood. Here, we show that homologous recombination‐defective (HRD) cancers rely on oxidative metabolism to supply NAD+ and ATP for poly(ADP‐ribose) polymerase (PARP)‐dependent DNA repair mechanisms. Studies in breast and ovarian cancer HRD models depict a metabolic shift that includes enhanced expression of the oxidative phosphorylation (OXPHOS) pathway and its key components and a decline in the glycolytic Warburg phenotype. Hence, HRD cells are more sensitive to metformin and NAD+ concentration changes. On the other hand, shifting from an OXPHOS to a highly glycolytic metabolism interferes with the sensitivity to PARP inhibitors (PARPi) in these HRD cells. This feature is associated with a weak response to PARP inhibition in patient‐derived xenografts, emerging as a new mechanism to determine PARPi sensitivity. This study shows a mechanistic link between two major cancer hallmarks, which in turn suggests novel possibilities for specifically treating HRD cancers with OXPHOS inhibitors.
Collapse
Affiliation(s)
- Álvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Petra Hyroššová
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Diana Garzón
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roger Moreno
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
| | - Iain McNeish
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Conxi Lazaro
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Barretina
- Medical Oncology Department, Institut Català d'Oncologia, IDIBGI, Girona, Spain
| | - Joan Brunet
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Institut Català d'Oncologia, IDIBGI, Girona, Spain.,Medical Sciences Department, School of Medicine, University of Girona, Girona, Spain
| | - Javier Menéndez
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Xavier Matias-Guiu
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - August Vidal
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain.,Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Xenopat, Carrer de la Feixa Llarga S/N, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Xenopat, Carrer de la Feixa Llarga S/N, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Hisashi Tanaka
- Womens Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sandra Orsulic
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra Junza
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luís Palomero
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miquel Àngel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Carlos Perales
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
328
|
Pardo PS, Boriek AM. SIRT1 Regulation in Ageing and Obesity. Mech Ageing Dev 2020; 188:111249. [PMID: 32320732 DOI: 10.1016/j.mad.2020.111249] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/12/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022]
Abstract
Ageing and obesity have common hallmarks: altered glucose and lipid metabolism, chronic inflammation and oxidative stress are some examples. The downstream effects of SIRT1 activity have been thoroughly explored, and their research is still in expanse. SIRT1 activation has been shown to regulate pathways with beneficiary effects on 1) ageing and obesity-associated metabolic disorders such as metabolic syndrome, insulin resistance and type-II diabetes with, 2) chronic inflammatory processes such as arthritis, atherosclerosis and emphysema, 3) DNA damage and oxidative stress with impact on neurodegenerative diseases, cardiovascular health and some cancers. This knowledge intensified the interest in uncovering the mechanisms regulating the expression and activity of SIRT1. This review focuses on the upstream regulatory mechanisms controlling SIRT1, and how this knowledge could potentially contribute to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Patricia S Pardo
- Pulmonary and Critical Care medicine, Department of Medicine, Baylor College of Medicine, Houston TX 77030, USA.
| | - Aladin M Boriek
- Pulmonary and Critical Care medicine, Department of Medicine, Baylor College of Medicine, Houston TX 77030, USA.
| |
Collapse
|
329
|
Hayat F, Migaud ME. Nicotinamide riboside-amino acid conjugates that are stable to purine nucleoside phosphorylase. Org Biomol Chem 2020; 18:2877-2885. [PMID: 32236231 PMCID: PMC7953427 DOI: 10.1039/d0ob00134a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nutraceutical Nicotinamide Riboside (NR), an efficacious biosynthetic precursor to NAD, is readily metabolized by the purine nucleoside phosphorylase (PNP). Access to the PNP-stable versions of NR is difficult because the glycosidic bond of NR is easily cleaved. Unlike NR, NRH, the reduced form of NR, offers sufficient chemical stability to allow the successful functionalisation of the ribosyl-moiety. Here, we report on a series of NRH and NR derived amino acid conjugates, generated in good to excellent yields and show that O5'-esterification prevents the PNP-catalyzed phosphorolysis of these NR prodrugs.
Collapse
Affiliation(s)
- Faisal Hayat
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA.
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA.
| |
Collapse
|
330
|
Petucci C, Culver JA, Kapoor N, Sessions EH, Divlianska D, Gardell SJ. Measurement of Pyridine Nucleotides in Biological Samples Using LC-MS/MS. Methods Mol Biol 2020; 1996:61-73. [PMID: 31127548 DOI: 10.1007/978-1-4939-9488-5_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyridine nucleotides which include NAD+, NADH, NADP, and NADPH play vital roles in many different biological processes. These metabolites can be accurately quantified in a wide variety of biological samples using LC-MS/MS. The quality and precision of these measurements was enhanced using heavy isotope-labeled internal standards and carefully crafted protocols for sample processing.
Collapse
Affiliation(s)
- Chris Petucci
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA.,Southeast Center for Integrated Metabolomics (SECIM), Gainesville, FL, USA.,Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey A Culver
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA.,Southeast Center for Integrated Metabolomics (SECIM), Gainesville, FL, USA
| | - Nidhi Kapoor
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA.,Southeast Center for Integrated Metabolomics (SECIM), Gainesville, FL, USA.,Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, FL, USA
| | - E Hampton Sessions
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Daniela Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Stephen J Gardell
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA. .,Southeast Center for Integrated Metabolomics (SECIM), Gainesville, FL, USA. .,Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, FL, USA.
| |
Collapse
|
331
|
Affiliation(s)
- Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Andrey A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
332
|
Kiss T, Nyúl-Tóth Á, Balasubramanian P, Tarantini S, Ahire C, Yabluchanskiy A, Csipo T, Farkas E, Wren JD, Garman L, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. GeroScience 2020; 42:527-546. [PMID: 32056076 PMCID: PMC7206476 DOI: 10.1007/s11357-020-00165-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aging-induced structural and functional alterations of the neurovascular unit lead to impairment of neurovascular coupling responses, dysregulation of cerebral blood flow, and increased neuroinflammation, all of which contribute importantly to the pathogenesis of age-related vascular cognitive impairment (VCI). There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in age-related neurovascular and cerebromicrovascular dysfunction. Our recent studies demonstrate that restoring cellular NAD+ levels in aged mice rescues neurovascular function, increases cerebral blood flow, and improves performance on cognitive tasks. To determine the effects of restoring cellular NAD+ levels on neurovascular gene expression profiles, 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. Transcriptome analysis of preparations enriched for cells of the neurovascular unit was performed by RNA-seq. Neurovascular gene expression signatures in NMN-treated aged mice were compared with those in untreated young and aged control mice. We identified 590 genes differentially expressed in the aged neurovascular unit, 204 of which are restored toward youthful expression levels by NMN treatment. The transcriptional footprint of NMN treatment indicates that increased NAD+ levels promote SIRT1 activation in the neurovascular unit, as demonstrated by analysis of upstream regulators of differentially expressed genes as well as analysis of the expression of known SIRT1-dependent genes. Pathway analysis predicts that neurovascular protective effects of NMN are mediated by the induction of genes involved in mitochondrial rejuvenation, anti-inflammatory, and anti-apoptotic pathways. In conclusion, the recently demonstrated protective effects of NMN treatment on neurovascular function can be attributed to multifaceted sirtuin-mediated anti-aging changes in the neurovascular transcriptome. Our present findings taken together with the results of recent studies using mitochondria-targeted interventions suggest that mitochondrial rejuvenation is a critical mechanism to restore neurovascular health and improve cerebral blood flow in aging.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Department of Cardiology, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Farkas
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lori Garman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Anna Csiszar
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
333
|
Defining the Independence of the Liver Circadian Clock. Cell 2020; 177:1448-1462.e14. [PMID: 31150621 DOI: 10.1016/j.cell.2019.04.025] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Mammals rely on a network of circadian clocks to control daily systemic metabolism and physiology. The central pacemaker in the suprachiasmatic nucleus (SCN) is considered hierarchically dominant over peripheral clocks, whose degree of independence, or tissue-level autonomy, has never been ascertained in vivo. Using arrhythmic Bmal1-null mice, we generated animals with reconstituted circadian expression of BMAL1 exclusively in the liver (Liver-RE). High-throughput transcriptomics and metabolomics show that the liver has independent circadian functions specific for metabolic processes such as the NAD+ salvage pathway and glycogen turnover. However, although BMAL1 occupies chromatin at most genomic targets in Liver-RE mice, circadian expression is restricted to ∼10% of normally rhythmic transcripts. Finally, rhythmic clock gene expression is lost in Liver-RE mice under constant darkness. Hence, full circadian function in the liver depends on signals emanating from other clocks, and light contributes to tissue-autonomous clock function.
Collapse
|
334
|
Ear PH, Chadda A, Gumusoglu SB, Schmidt MS, Vogeler S, Malicoat J, Kadel J, Moore MM, Migaud ME, Stevens HE, Brenner C. Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring. Cell Rep 2020; 26:969-983.e4. [PMID: 30673618 DOI: 10.1016/j.celrep.2019.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/09/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Conditions of metabolic stress dysregulate the NAD metabolome. By restoring NAD, nicotinamide riboside (NR) provides resistance to such conditions. We tested the hypotheses that postpartum might dysregulate maternal NAD and that increasing systemic NAD with NR might benefit mothers and offspring. In postpartum mothers, the liver NAD metabolome is depressed while blood increases circulation of NAD metabolites to enable a >20-fold increase in mammary NAD+ and NADP+. Lactation and NR synergize in stimulating prolactin synthesis and mammary biosynthetic programs. NR supplementation of new mothers increases lactation and nursing behaviors and stimulates maternal transmission of macronutrients, micronutrients, and BDNF into milk. Pups of NR-supplemented mothers are advantaged in glycemic control, size at weaning, and synaptic pruning. Adult offspring of mothers supplemented during nursing retain advantages in physical performance, anti-anxiety, spatial memory, delayed onset of behavioral immobility, and promotion of adult hippocampal neurogenesis. Thus, postgestational maternal micronutrition confers lasting advantages to offspring.
Collapse
Affiliation(s)
- Po Hien Ear
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ankita Chadda
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Mark S Schmidt
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Sophia Vogeler
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Johnny Malicoat
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob Kadel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Michelle M Moore
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Marie E Migaud
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
335
|
Shats I, Williams JG, Liu J, Makarov MV, Wu X, Lih FB, Deterding LJ, Lim C, Xu X, Randall TA, Lee E, Li W, Fan W, Li JL, Sokolsky M, Kabanov AV, Li L, Migaud ME, Locasale JW, Li X. Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metab 2020; 31:564-579.e7. [PMID: 32130883 PMCID: PMC7194078 DOI: 10.1016/j.cmet.2020.02.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/07/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in metabolism, DNA repair, and aging. However, how NAD metabolism is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer resistance to inhibitors of NAMPT, the rate-limiting enzyme in the amidated NAD salvage pathway, in cancer cells and xenograft tumors. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. Using stable isotope tracing and microbiota-depleted mice, we demonstrate that this bacteria-mediated deamidation contributes substantially to the NAD-boosting effect of oral nicotinamide and nicotinamide riboside supplementation in several tissues. Collectively, our findings reveal an important role of bacteria-enabled deamidated pathway in host NAD metabolism.
Collapse
Affiliation(s)
- Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Jason G Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36606, USA
| | - Xiaoyue Wu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Fred B Lih
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ethan Lee
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wenling Li
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Leping Li
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36606, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
336
|
Sharma R, Ramanathan A. The Aging Metabolome-Biomarkers to Hub Metabolites. Proteomics 2020; 20:e1800407. [PMID: 32068959 PMCID: PMC7117067 DOI: 10.1002/pmic.201800407] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Aging biology is intimately associated with dysregulated metabolism, which is one of the hallmarks of aging. Aging-related pathways such as mTOR and AMPK, which are major targets of anti-aging interventions including rapamcyin, metformin, and exercise, either directly regulate or intersect with metabolic pathways. In this review, numerous candidate bio-markers of aging that have emerged using metabolomics are outlined. Metabolomics studies also reveal that not all metabolites are created equally. A set of core "hub" metabolites are emerging as central mediators of aging. The hub metabolites reviewed here are nicotinamide adenine dinucleotide, reduced nicotinamide dinucleotide phosphate, α-ketoglutarate, and β-hydroxybutyrate. These "hub" metabolites have signaling and epigenetic roles along with their canonical roles as co-factors or intermediates of carbon metabolism. Together these hub metabolites suggest a central role of the TCA cycle in signaling and metabolic dysregulation associated with aging.
Collapse
Affiliation(s)
- Rishi Sharma
- Buck Institute for Research on AgingNovatoCA94945USA
| | - Arvind Ramanathan
- Buck Institute for Research on AgingNovatoCA94945USA
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)Bengaluru560065India
| |
Collapse
|
337
|
Irie J, Inagaki E, Fujita M, Nakaya H, Mitsuishi M, Yamaguchi S, Yamashita K, Shigaki S, Ono T, Yukioka H, Okano H, Nabeshima YI, Imai SI, Yasui M, Tsubota K, Itoh H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J 2020; 67:153-160. [PMID: 31685720 DOI: 10.1507/endocrj.ej19-0313] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies have revealed that decline in cellular nicotinamide adenine dinucleotide (NAD+) levels causes aging-related disorders and therapeutic approaches increasing cellular NAD+ prevent these disorders in animal models. The administration of nicotinamide mononucleotide (NMN) has been shown to mitigate aging-related dysfunctions. However, the safety of NMN in humans have remained unclear. We, therefore, conducted a clinical trial to investigate the safety of single NMN administration in 10 healthy men. A single-arm non-randomized intervention was conducted by single oral administration of 100, 250, and 500 mg NMN. Clinical findings and parameters, and the pharmacokinetics of NMN metabolites were investigated for 5 h after each intervention. Ophthalmic examination and sleep quality assessment were also conducted before and after the intervention. The single oral administrations of NMN did not cause any significant clinical symptoms or changes in heart rate, blood pressure, oxygen saturation, and body temperature. Laboratory analysis results did not show significant changes, except for increases in serum bilirubin levels and decreases in serum creatinine, chloride, and blood glucose levels within the normal ranges, independent of the dose of NMN. Results of ophthalmic examination and sleep quality score showed no differences before and after the intervention. Plasma concentrations of N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-5-carboxamide were significantly increased dose-dependently by NMN administration. The single oral administration of NMN was safe and effectively metabolized in healthy men without causing any significant deleterious effects. Thus, the oral administration of NMN was found to be feasible, implicating a potential therapeutic strategy to mitigate aging-related disorders in humans.
Collapse
Affiliation(s)
- Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo 102- 0083, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Masataka Fujita
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hideaki Nakaya
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Masanori Mitsuishi
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kazuya Yamashita
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shuhei Shigaki
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Takashi Ono
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd, Toyonaka, Osaka 561-0825, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd, Toyonaka, Osaka 561-0825, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Keio University Global Research Institute (KGRI), Minato, Tokyo 108-8345, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Department of Gerontology, Institute of Biomedical Research and Innovation, Kobe, Hyogo 650-0047, Japan
| | - Shin-Ichiro Imai
- Laboratory of Molecular Life Science, Department of Gerontology, Institute of Biomedical Research and Innovation, Kobe, Hyogo 650-0047, Japan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Masato Yasui
- Keio University Global Research Institute (KGRI), Minato, Tokyo 108-8345, Japan
- Department of Pharmacology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Keio University Global Research Institute (KGRI), Minato, Tokyo 108-8345, Japan
| | - Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Keio University Global Research Institute (KGRI), Minato, Tokyo 108-8345, Japan
| |
Collapse
|
338
|
McReynolds MR, Chellappa K, Baur JA. Age-related NAD + decline. Exp Gerontol 2020; 134:110888. [PMID: 32097708 PMCID: PMC7442590 DOI: 10.1016/j.exger.2020.110888] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that is reported to decline in concentration in tissues of aged animals. Strategies to increase NAD+ availability have shown promise in treating many conditions in rodents, including age-related degeneration, which has in turn driven intense interest in the effects of supplements on human health. However, many aspects of NAD+ metabolism remain poorly understood, and human data are limited. Here, we discuss the state of the evidence for an age-related decline in NAD+, along with potential mechanistic explanations, including increased consumption or decreased synthesis of NAD+ and changes in the composition of cells or tissues with age. Key challenges for the field involve the development of better tools to resolve information on the NAD+ content of specific cells and subcellular compartments as well as determining the threshold levels at which NAD+ depletion triggers physiological consequences in different tissues. Understanding how NAD+ metabolism changes with age in humans may ultimately allow the design of more targeted strategies to maintain its availability, such as inhibition of key consumers in specific tissues or direct delivery of precursors to sites of deficiency. In the meantime, human clinical trials with oral supplements are poised to provide some of the first direct evidence as to whether increasing NAD+ availability can impact human physiology. Thus, it is an exciting time for NAD+ research, with much remaining to be learned in terms of both basic biology and potential therapeutic applications.
Collapse
Affiliation(s)
- Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, United States of America
| | - Karthikeyani Chellappa
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
339
|
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-Induced Tryptophan Breakdown is Related With Anemia, Fatigue, and Depression in Cancer. Front Immunol 2020; 11:249. [PMID: 32153576 PMCID: PMC7047328 DOI: 10.3389/fimmu.2020.00249] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many patients with cancer suffer from anemia, depression, and an impaired quality of life (QoL). These patients often also show decreased plasma tryptophan levels and increased kynurenine concentrations in parallel with elevated concentrations of Th1 type immune activation marker neopterin. In the course of anti-tumor immune response, the pro-inflammatory cytokine interferon gamma (IFN-γ) induces both, the enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme GTP-cyclohydrolase I to form neopterin. High neopterin concentrations as well as an increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along the kynurenine pathway is related to fatigue and anemia as well as to depression and a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown might greatly contribute to the development of anemia, fatigue, and depression in cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune regulatory mechanisms, which may impair anti-tumor immune responses. In addition, tumor cells can degrade tryptophan to weaken immune responses directed against them. High IDO expression in the tumor tissue is associated with a poor prognosis of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently tested in combination with established chemotherapies and with immune checkpoint inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on the development and persistence of anemia, fatigue, and depression in cancer patients are discussed.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Patricia Kink
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Maria Egger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol Centre for Personalized Cancer Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
340
|
Doig CL, Zielinska AE, Fletcher RS, Oakey LA, Elhassan YS, Garten A, Cartwright D, Heising S, Alsheri A, Watson DG, Prehn C, Adamski J, Tennant DA, Lavery GG. Induction of the nicotinamide riboside kinase NAD + salvage pathway in a model of sarcoplasmic reticulum dysfunction. Skelet Muscle 2020; 10:5. [PMID: 32075690 PMCID: PMC7031948 DOI: 10.1186/s13395-019-0216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
Background Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11β-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. Methods We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. Results H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD+/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability. Conclusions These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.
Collapse
Affiliation(s)
- Craig L Doig
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Agnieszka E Zielinska
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel S Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lucy A Oakey
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Yasir S Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK
| | - David Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Silke Heising
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Ahmed Alsheri
- Strathclyde Institute of Pharmacy and Medical Sciences, Hamnett Wing John Arbuthnott Building, Glasgow, G4 0RE, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Medical Sciences, Hamnett Wing John Arbuthnott Building, Glasgow, G4 0RE, UK
| | - Cornelia Prehn
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum Munchen GmbH, Ingolstadter Landstrasse 1, D-85764, Neuherberg, Germany.,Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum Munchen GmbH, Ingolstadter Landstrasse 1, D-85764, Neuherberg, Germany.,Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, 2nd Floor IBR Tower, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK. .,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
341
|
Cohen MS. Interplay between compartmentalized NAD + synthesis and consumption: a focus on the PARP family. Genes Dev 2020; 34:254-262. [PMID: 32029457 PMCID: PMC7050480 DOI: 10.1101/gad.335109.119] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a substrate for signaling enzymes. When used as a substrate by signaling enzymes, it is consumed, necessitating the recycling of NAD+ consumption products (i.e., nicotinamide) via a salvage pathway in order to maintain NAD+ homeostasis. A major family of NAD+ consumers in mammalian cells are poly-ADP-ribose-polymerases (PARPs). PARPs comprise a family of 17 enzymes in humans, 16 of which catalyze the transfer of ADP-ribose from NAD+ to macromolecular targets (namely, proteins, but also DNA and RNA). Because PARPs and the NAD+ biosynthetic enzymes are subcellularly localized, an emerging concept is that the activity of PARPs and other NAD+ consumers are regulated in a compartmentalized manner. In this review, I discuss NAD+ metabolism, how different subcellular pools of NAD+ are established and regulated, and how free NAD+ levels can control signaling by PARPs and redox metabolism.
Collapse
Affiliation(s)
- Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97210, USA
| |
Collapse
|
342
|
Kudo K, Nomura M, Sakamoto Y, Ito S, Morita M, Kawai M, Yamashita Y, Ito K, Yamada H, Shima H, Yaegashi N, Tanuma N. Divergent metabolic responses dictate vulnerability to NAMPT inhibition in ovarian cancer. FEBS Lett 2020; 594:1379-1388. [PMID: 31950503 DOI: 10.1002/1873-3468.13736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
It is of current interest to target cancer metabolism as treatment for many malignancies, including ovarian cancer (OVC), in which few druggable driver mutations have been identified. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, is a potential therapeutic target in OVC. However, factors that determine responsiveness to NAMPT inhibition are not fully understood. Here, we report that OVC cell lines can be divided into subgroups exhibiting NAMPT-dependent or NAMPT-independent glycolysis, and these metabolic differences correlate with vulnerability to NAMPT inhibition. Interestingly, cells showing NAMPT-dependent glycolysis were enriched in a group of cells lacking BRCA1/2 gene mutations. Our findings suggest the importance of selecting appropriate patients for NAMPT-targeting therapy in OVC.
Collapse
Affiliation(s)
- Kei Kudo
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Gynecology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shigemi Ito
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mami Morita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masaaki Kawai
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kiyoshi Ito
- Department of Gynecology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Gynecology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuo Yaegashi
- Department of Gynecology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
343
|
Lee P, Malik D, Perkons N, Huangyang P, Khare S, Rhoades S, Gong YY, Burrows M, Finan JM, Nissim I, Gade TPF, Weljie AM, Simon MC. Targeting glutamine metabolism slows soft tissue sarcoma growth. Nat Commun 2020; 11:498. [PMID: 31980651 PMCID: PMC6981153 DOI: 10.1038/s41467-020-14374-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.
Collapse
Affiliation(s)
- Pearl Lee
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Dania Malik
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas Perkons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peiwei Huangyang
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sanika Khare
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Seth Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao-Yu Gong
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer M Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terence P F Gade
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
344
|
Wilk A, Hayat F, Cunningham R, Li J, Garavaglia S, Zamani L, Ferraris DM, Sykora P, Andrews J, Clark J, Davis A, Chaloin L, Rizzi M, Migaud M, Sobol RW. Extracellular NAD + enhances PARP-dependent DNA repair capacity independently of CD73 activity. Sci Rep 2020; 10:651. [PMID: 31959836 PMCID: PMC6971268 DOI: 10.1038/s41598-020-57506-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Changes in nicotinamide adenine dinucleotide (NAD+) levels that compromise mitochondrial function trigger release of DNA damaging reactive oxygen species. NAD+ levels also affect DNA repair capacity as NAD+ is a substrate for PARP-enzymes (mono/poly-ADP-ribosylation) and sirtuins (deacetylation). The ecto-5′-nucleotidase CD73, an ectoenzyme highly expressed in cancer, is suggested to regulate intracellular NAD+ levels by processing NAD+ and its bio-precursor, nicotinamide mononucleotide (NMN), from tumor microenvironments, thereby enhancing tumor DNA repair capacity and chemotherapy resistance. We therefore investigated whether expression of CD73 impacts intracellular NAD+ content and NAD+-dependent DNA repair capacity. Reduced intracellular NAD+ levels suppressed recruitment of the DNA repair protein XRCC1 to sites of genomic DNA damage and impacted the amount of accumulated DNA damage. Further, decreased NAD+ reduced the capacity to repair DNA damage induced by DNA alkylating agents. Overall, reversal of these outcomes through NAD+ or NMN supplementation was independent of CD73. In opposition to its proposed role in extracellular NAD+ bioprocessing, we found that recombinant human CD73 only poorly processes NMN but not NAD+. A positive correlation between CD73 expression and intracellular NAD+ content could not be made as CD73 knockout human cells were efficient in generating intracellular NAD+ when supplemented with NAD+ or NMN.
Collapse
Affiliation(s)
- Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Richard Cunningham
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Leila Zamani
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Davide M Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Peter Sykora
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Amelia Technologies, 14676 Rothgeb Drive, Rockville, MD, 20850, USA
| | - Joel Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Amanda Davis
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34293, Montpellier, France
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Marie Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
345
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
346
|
Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer 2020; 122:30-44. [PMID: 31819194 PMCID: PMC6964670 DOI: 10.1038/s41416-019-0664-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Based on its effects on both tumour cell intrinsic malignant properties as well as anti-tumour immune responses, tryptophan catabolism has emerged as an important metabolic regulator of cancer progression. Three enzymes, indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) and tryptophan-2,3-dioxygenase (TDO2), catalyse the first step of the degradation of the essential amino acid tryptophan (Trp) to kynurenine (Kyn). The notion of inhibiting IDO1 using small-molecule inhibitors elicited high hopes of a positive impact in the field of immuno-oncology, by restoring anti-tumour immune responses and synergising with other immunotherapies such as immune checkpoint inhibition. However, clinical trials with IDO1 inhibitors have yielded disappointing results, hence raising many questions. This review will discuss strategies to target Trp-degrading enzymes and possible down-stream consequences of their inhibition. We aim to provide comprehensive background information on Trp catabolic enzymes as targets in immuno-oncology and their current state of development. Details of the clinical trials with IDO1 inhibitors, including patient stratification, possible effects of the inhibitors themselves, effects of pre-treatments and the therapies the inhibitors were combined with, are discussed and mechanisms proposed that might have compensated for IDO1 inhibition. Finally, alternative approaches are suggested to circumvent these problems.
Collapse
Affiliation(s)
- Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Luis F Somarribas Patterson
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Soumya R Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dyah L Dewi
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Surgical Oncology, Department of Surgery - Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Saskia Trump
- Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Unit for Molecular Epidemiology, Berlin, Germany
| |
Collapse
|
347
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
348
|
Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, Xu R. Nicotinamide Riboside Enhances Mitochondrial Proteostasis and Adult Neurogenesis through Activation of Mitochondrial Unfolded Protein Response Signaling in the Brain of ALS SOD1 G93A Mice. Int J Biol Sci 2020; 16:284-297. [PMID: 31929756 PMCID: PMC6949147 DOI: 10.7150/ijbs.38487] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, the brain stem, and the motor cortex. So far, there is still a lack of effective drugs. Nicotinamide adenine dinucleotide (NAD+) takes part in redox reactions and the NAD-dependent signaling pathway. The NAD+ decline is related with many neurological diseases, leading to the accumulation of neurotoxic protein in the central nervous system. Moreover, the NAD+ supplementation is shown to promote neural stem cells/neuronal precursor cells (NSCs/NPCs) pool maintenance. Regulatory mechanisms and functions of NAD+ metabolism in ALS are still unknown. Thus, we hypothesized the aggregation of human SOD1 toxic protein and the fate of NSCs/NPCs in the ALS disease could be improved by the administration of nicotinamide riboside (NR), an NAD+ precursor. In this study, we treated SOD1G93A transgenic and wild-type mice by the oral administration of 20 mg/ml NR starting at 50 days of age. Effects of NR on the body weight, the motor function, the onset and the survival were assessed during the experiment. The expression of mutant hSOD1 protein, mitochondrial unfolded protein response (UPRmt) related protein, mitophagy markers and NAD+ metabolism related protein were detected by immunoblotting. Effects of NR on the NSCs/NPCs in neurogenic niches of brain were identified by the immunofluorescence staining. Our investigation elucidated that the NR treatment exhibited better hanging wire endurance but did not postpone the onset or extend the life span of SOD1G93A mice. Besides, we observed that the NR repletion promoted the clearance of mitochondrial hSOD1 neurotoxic protein. Meanwhile, the mitochondrial function pathway was disrupted in the brain of SOD1G93A mice. What's more, we demonstrated that the inadequate function of NAD+ salvage synthesis pathway was the primary explanation behind the decline of NAD+, and the NR treatment enhanced the proliferation and migration of NSCs/NPCs in the brain of SOD1G93A mice. At last, we found that levels of UPRmt related protein were significantly increased in the brain of SOD1G93A mice after the NR treatment. In summary, these findings reveal that the administration of NR activates UPRmt signaling, modulates mitochondrial proteostasis and improves the adult neurogenesis in the brain of SOD1G93A mice.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiwen Qiu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yue Liu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fang Yang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- ✉ Corresponding author: Prof. Renshi Xu, or , Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China. Tel: +86 0791-88603798
| |
Collapse
|
349
|
Dollerup OL, Chubanava S, Agerholm M, Søndergård SD, Altıntaş A, Møller AB, Høyer KF, Ringgaard S, Stødkilde-Jørgensen H, Lavery GG, Barrès R, Larsen S, Prats C, Jessen N, Treebak JT. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol 2019; 598:731-754. [PMID: 31710095 DOI: 10.1113/jp278752] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.
Collapse
Affiliation(s)
- Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stine D Søndergård
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andreas B Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Kasper F Høyer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,The MR Research Centre, Aarhus University Hospital, Denmark
| | | | | | - Gareth G Lavery
- Clinical and Experimental Medicine, University of Birmingham, UK
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Clara Prats
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.,Department of Biomedicine, Aarhus University, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
350
|
Abstract
The mammalian kidney relies on abundant mitochondria in the renal tubule to generate sufficient ATP to provide the energy required for constant reclamation of solutes from crude blood filtrate. The highly metabolically active cells of the renal tubule also pair their energetic needs to the regulation of diverse cellular processes, including energy generation, antioxidant responses, autophagy and mitochondrial quality control. Nicotinamide adenine dinucleotide (NAD+) is essential not only for the harvesting of energy from substrates but also for an array of regulatory reactions that determine cellular health. In acute kidney injury (AKI), substantial decreases in the levels of NAD+ impair energy generation and, ultimately, the core kidney function of selective solute transport. Conversely, augmentation of NAD+ may protect the kidney tubule against diverse acute stressors. For example, NAD+ augmentation can ameliorate experimental AKI triggered by ischaemia–reperfusion, toxic injury and systemic inflammation. NAD+-dependent maintenance of renal tubular metabolic health may also attenuate long-term profibrotic responses that could lead to chronic kidney disease. Further understanding of the genetic, environmental and nutritional factors that influence NAD+ biosynthesis and renal resilience may lead to novel approaches for the prevention and treatment of kidney disease. Here, the authors discuss evidence for a role of NAD+ imbalance in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease (CKD). They suggest that disruption of NAD+ metabolism may contribute to mechanistic links among AKI, CKD and ageing. NAD+ has critical roles in the generation of ATP from fuel substrates and as a substrate for important enzymes that regulate cellular health and stress responses. The renal tubule is highly metabolically active and requires a constant supply of ATP to provide the energy required to pump solutes across unfavourable gradients. Experimental acute kidney injury (AKI) induced by various insults rapidly leads to a decrease in NAD+ levels that probably results from a combination of reduced NAD+ biosynthesis and increased NAD+ consumption. Renal NAD+ levels can be augmented using vitamin B3 analogues and related nutritional precursors. NAD+ augmentation can prevent and/or treat various aetiologies of experimental AKI and might also attenuate long-term profibrotic responses following AKI, suggesting a potential role in the treatment of chronic kidney disease.
Collapse
|