301
|
Myers S, Ortega JA, Cavalli A. Synthetic Lethality through the Lens of Medicinal Chemistry. J Med Chem 2020; 63:14151-14183. [PMID: 33135887 PMCID: PMC8015234 DOI: 10.1021/acs.jmedchem.0c00766] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Personalized medicine and therapies represent the goal of modern medicine, as drug discovery strives to move away from one-cure-for-all and makes use of the various targets and biomarkers within differing disease areas. This approach, especially in oncology, is often undermined when the cells make use of alternative survival pathways. As such, acquired resistance is unfortunately common. In order to combat this phenomenon, synthetic lethality is being investigated, making use of existing genetic fragilities within the cancer cell. This Perspective highlights exciting targets within synthetic lethality, (PARP, ATR, ATM, DNA-PKcs, WEE1, CDK12, RAD51, RAD52, and PD-1) and discusses the medicinal chemistry programs being used to interrogate them, the challenges these programs face, and what the future holds for this promising field.
Collapse
Affiliation(s)
- Samuel
H. Myers
- Computational
& Chemical Biology, Istituto Italiano
di Tecnologia, 16163 Genova, Italy
| | - Jose Antonio Ortega
- Computational
& Chemical Biology, Istituto Italiano
di Tecnologia, 16163 Genova, Italy
| | - Andrea Cavalli
- Computational
& Chemical Biology, Istituto Italiano
di Tecnologia, 16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, University
of Bologna, 40126 Bologna, Italy
| |
Collapse
|
302
|
Gaissmaier L, Christopoulos P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020; 99:1-27. [PMID: 33291116 DOI: 10.1159/000510385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
303
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
304
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
305
|
Li Y, Qi M, Ding F, Lv Y, Ma J, Zhu Y. Tumour targetable and microenvironment-responsive nanoparticles simultaneously disrupt the PD-1/PD-L1 pathway and MAPK/ERK/JNK pathway for efficient treatment of colorectal cancer. J Drug Target 2020; 29:454-465. [PMID: 33233956 DOI: 10.1080/1061186x.2020.1853750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study was aimed to develop a novel combination therapeutic strategy of gene therapy and immunotherapy for efficiently treatment of colorectal cancer (CRC). To achieve that goal, the polyethylene glycol-modified poly (2-(N,N-dimethylamino) ethyl methacrylate) (PEG-PDMAEMA)-based nanoparticles loaded with protein tyrosine phosphatase non-receptor type 6 (PTPN6) (NP-PTPN6) was developed first followed by conjugation with anti-PD-L1 monoclonal antibodies (aPD-L1) atezolizumab (aPD-L1NP-PTPN6). Importantly, the aPD-L1 was conjugated on the surface of NP-PTPN6 by the matrix metalloproteinases (MMPs)-cleavable linkage PLGLAG. Therefore, the aPD-L1 would be completely released once the aPD-L1NP-PTPN6 was entrapped into tumour tissues as demonstrated by the release assay. Tumour targeting assay demonstrated the aPD-L1NP-PTPN6 have high affinity to CRC cells and resulted in excellent tumour targeting drug delivery efficacy. Additionally, anti-tumour effect evaluation revealed that the aPD-L1NP-PTPN6 has greater ability to inhibit the growth, invasion and migration of CRC cells and finally led to longer survival time of tumour-bearing mice than other treatments. Further mechanisms studies demonstrated that treatment of CRC cells with aPD-L1NP-PTPN6 contributed to significant suppression of the MAPK/ERK signalling pathway. Besides, it was further demonstrated that treating CRC with aPD-L1NP-PTPN6 resulted in up-regulation of NK cells and T cells percentage within the tumour tissues.
Collapse
Affiliation(s)
- Yan Li
- Department of General Surgery, The First Affiliated Hospital of Jin Zhou Medical University, Jinzhou, China
| | - Ming Qi
- Department of Ultrasound, The First Affiliated Hospital of Jin Zhou Medical University, Jinzhou, China
| | - Feng Ding
- Department of General Surgery, The First Affiliated Hospital of Jin Zhou Medical University, Jinzhou, China
| | - Yong Lv
- Department of General Surgery, The First Affiliated Hospital of Jin Zhou Medical University, Jinzhou, China
| | - Jingyu Ma
- Department of General Surgery, The First Affiliated Hospital of Jin Zhou Medical University, Jinzhou, China
| | - Yufeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Jin Zhou Medical University, Jinzhou, China
| |
Collapse
|
306
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
307
|
Shuford RA, Cairns AL, Moaven O. Precision Approaches in the Management of Colorectal Cancer: Current Evidence and Latest Advancements Towards Individualizing the Treatment. Cancers (Basel) 2020; 12:E3481. [PMID: 33238500 PMCID: PMC7700522 DOI: 10.3390/cancers12113481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic and molecular underpinnings of metastatic colorectal cancer have been studied for decades, and the applicability of these findings in clinical decision making continues to evolve. Advancements in translating molecular studies have provided a basis for tailoring chemotherapeutic regimens in metastatic colorectal cancer (mCRC) treatment, which have informed multiple practice guidelines. Various genetic and molecular pathways have been identified as clinically significant in the pathogenesis of metastatic colorectal cancer. These include rat sarcoma (RAS), epithelial growth factor receptor (EGFR), vascular endothelial growth factor VEGF, microsatellite instability, mismatch repair, and v-raf murine sarcoma viral oncogene homolog b1 (BRAF) with established clinical implications. RAS mutations and deficiencies in the mismatch repair pathway guide decisions regarding the administration of anti-EGFR-based therapies and immunotherapy, respectively. Furthermore, there are several emerging pathways and therapeutic modalities that have not entered mainstream use in mCRC treatment and are ripe for further investigation. The well-established data in the arena of targeted therapies provide evidence-based support for the use or avoidance of various therapeutic regimens in mCRC treatment, while the emerging pathways and platforms offer a glimpse into the future of transforming a precision approach into a personalized treatment.
Collapse
Affiliation(s)
- Rebecca A. Shuford
- Department of Surgery, Wake Forest University, Winston-Salem, NC 27157, USA; (R.A.S.); (A.L.C.)
| | - Ashley L. Cairns
- Department of Surgery, Wake Forest University, Winston-Salem, NC 27157, USA; (R.A.S.); (A.L.C.)
| | - Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
308
|
Cheng H, Zong L, Kong Y, Gu Y, Yang J, Xiang Y. Emerging Targets of Immunotherapy in Gynecologic Cancer. Onco Targets Ther 2020; 13:11869-11882. [PMID: 33239889 PMCID: PMC7681579 DOI: 10.2147/ott.s282530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Although programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) have been successfully applied in the treatment of tumors, their efficiency is still not high enough. New immune targets need to be identified in order to seek alternative treatment strategies for patients with refractory tumors. Immune targets can be divided into stimulating and inhibiting molecules according to their function after receptor-ligand binding. We herein present a compendious summary of emerging immune targets in gynecologic tumors. These targets included coinhibitory molecules, such as T cell immunoglobulin-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte activation gene-3 (LAG-3), V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA), and B7-H3 and B7-H4, and co-stimulatory molecules, such as CD27, OX40, 4-1BB, CD40, glucocorticoid-induced tumor necrosis factor receptor (GITR) and inducible co-stimulator (ICOS). In this review, the characteristics and preclinical/clinical progress of gynecological malignancies are briefly discussed. However, the potential mechanisms and interactions of immune targets need to be elucidated in further studies.
Collapse
Affiliation(s)
- Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liju Zong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yujia Kong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Junjun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
309
|
Alfarra H, Weir J, Grieve S, Reiman T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front Immunol 2020; 11:575609. [PMID: 33304346 PMCID: PMC7693637 DOI: 10.3389/fimmu.2020.575609] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Innate immune surveillance of cancer involves multiple types of immune cells including the innate lymphoid cells (ILCs). Natural killer (NK) cells are considered the most active ILC subset for tumor elimination because of their ability to target infected and malignant cells without prior sensitization. NK cells are equipped with an array of activating and inhibitory receptors (IRs); hence NK cell activity is controlled by balanced signals between the activating and IRs. Multiple myeloma (MM) is a hematological malignancy that is known for its altered immune landscape. Despite improvements in therapeutic options for MM, this disease remains incurable. An emerging trend to improve clinical outcomes in MM involves harnessing the inherent ability of NK cells to kill malignant cells by recruiting NK cells and enhancing their cytotoxicity toward the malignant MM cells. Following the clinical success of blocking T cell IRs in multiple cancers, targeting NK cell IRs is drawing increasing attention. Relevant NK cell IRs that are attractive candidates for checkpoint blockades include KIRs, NKG2A, LAG-3, TIGIT, PD-1, and TIM-3 receptors. Investigating these NK cell IRs as pathogenic agents and therapeutic targets could lead to promising applications in MM therapy. This review describes the critical role of enhancing NK cell activity in MM and discusses the potential of blocking NK cell IRs as a future MM therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cytotoxicity, Immunologic/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy, Adoptive/adverse effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Molecular Targeted Therapy
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Receptors, Natural Killer Cell/antagonists & inhibitors
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Helmi Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Jackson Weir
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Stacy Grieve
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada
- Department of Medicine, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
310
|
Willemsen M, Melief CJM, Bekkenk MW, Luiten RM. Targeting the PD-1/PD-L1 Axis in Human Vitiligo. Front Immunol 2020; 11:579022. [PMID: 33240267 PMCID: PMC7677560 DOI: 10.3389/fimmu.2020.579022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Autoreactive CD8+ T cells play a pivotal role in melanocyte destruction in autoimmune vitiligo. Immunotherapy for melanoma often leads to autoimmune side-effects, among which vitiligo-like depigmentation, indicating that targeting immune checkpoints can break peripheral tolerance against self-antigens in the skin. Therapeutically enhancing immune checkpoint signaling by immune cells or skin cells, making self-reactive T cells anergic, seems a promising therapeutic option for vitiligo. Here, we review the current knowledge on the PD-1/PD-L1 pathway in vitiligo as new therapeutic target for vitiligo therapy.
Collapse
Affiliation(s)
- Marcella Willemsen
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | | | - Marcel W Bekkenk
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Rosalie M Luiten
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
311
|
Regulatory (FoxP3 +) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep 2020; 10:18994. [PMID: 33149213 PMCID: PMC7642363 DOI: 10.1038/s41598-020-76130-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023] Open
Abstract
Antitumor immune responses induced by immune checkpoint inhibitors anti-PD-1 or anti-PD-L1 have been used as therapeutic strategies in advanced non-small cell lung cancer (NSCLC) patients over the last decade. Favorable antitumor activity to immune checkpoint inhibitors is correlated with high PD-L1 expression, increased tumor-infiltrating lymphocytes, and decreased suppressive immune cells including Treg cells, myeloid-derived suppressor cells, or tumor-associated macrophages in various cancer types. In this study, we investigated the potential correlation between clinical outcomes and peripheral blood immune cell profiles, specifically focused on FoxP3+ Treg cells, collected at baseline and one week after anti-PD-1 therapy in two independent cohorts of patients with NSCLC: a discovery cohort of 83 patients and a validation cohort of 49 patients. High frequencies of circulating Treg cells one week after anti-PD-1 therapy were correlated with a high response rate, longer progression-free survival, and overall survival. Furthermore, high levels of TGF-β and Treg cells were associated with favorable clinical outcomes. Our results suggest that higher levels of FoxP3+ Treg cells and TGF-β can predict a favorable response to anti-PD-1 immunotherapy in patients with advanced NSCLC.
Collapse
|
312
|
Saleh R, Toor SM, Elkord E. Targeting TIM-3 in solid tumors: innovations in the preclinical and translational realm and therapeutic potential. Expert Opin Ther Targets 2020; 24:1251-1262. [PMID: 33103506 DOI: 10.1080/14728222.2020.1841750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have shown a great therapeutic efficacy in cancer patients. However, a significant proportion of cancer patients remain unresponsive or show limited response. T cell immunoglobulin and mucin-domain containing protein-3 (TIM-3) is a co-inhibitory receptor expressed on various cell types and is involved in the attenuation of immune responses. TIM-3 and its ligands are highly expressed in various solid malignancies and some studies have reported its association with worse disease outcomes. Thus, targeting TIM-3 could be a promising therapeutic approach to treat cancer patients. AREAS COVERED This review describes the role of TIM-3 and its ligands in regulating anti-tumor immunity and their contribution to cancer progression. Moreover, this review focuses on the preclinical models and translational data from important studies published in PubMed till October 2020, which demonstrate the therapeutic benefits of targeting TIM-3 signaling. EXPERT OPINION Despite the promising data obtained from targeting TIM-3 in preclinical models, precise mechanisms underlying the anti-tumor effects of TIM-3 inhibition are not fully elucidated. Therefore, mechanistic studies are required to provide better insights into the anti-tumor effects of targeting TIM-3, and clinical data are necessary to determine the safety profiles and therapeutic efficacy of TIM-3 inhibition in cancer patients.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford , Manchester, United Kingdom
| |
Collapse
|
313
|
Lodhi N, Tun M, Nagpal P, Inamdar AA, Ayoub NM, Siyam N, Oton-Gonzalez L, Gerona A, Morris D, Sandhu R, Suh KS. Biomarkers and novel therapeutic approaches for diffuse large B-cell lymphoma in the era of precision medicine. Oncotarget 2020; 11:4045-4073. [PMID: 33216822 PMCID: PMC7646825 DOI: 10.18632/oncotarget.27785] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Collapse
Affiliation(s)
- Niraj Lodhi
- Department of Immunotherapeutic and Biotechnology, Texas Tech Health Science Center, Abilene, TX, USA
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Moe Tun
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Poonam Nagpal
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- College of Natural, Applied, and Health Sciences, Kean University, Union, NJ, USA
| | - Arati A. Inamdar
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Siyam
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | | | - Angela Gerona
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Dainelle Morris
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Rana Sandhu
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Kwangsun Stephen Suh
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- DiagnoCine, Hackensack, NJ, USA
| |
Collapse
|
314
|
Jiang Y, Tu X, Zhang X, Liao H, Han S, Jiang W, Zheng Y, Zhao P, Tong Z, Fu Q, Qi Q, Shen J, Zhong L, Pan Y, Fang W. Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy. Support Care Cancer 2020; 28:5569-5579. [PMID: 32361828 DOI: 10.1007/s00520-020-05478-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to evaluate the nutrition and metabolism status alteration during immunotherapy in advanced hepatocellular carcinoma (HCC) patients. METHODS Patients with advanced HCC who participated in the clinical trials of single-agent anti-PD-1 immunotherapy or sorafenib were retrospectively included. We analyzed self-comparison of the nutritional and metabolic indices of patients in the anti-PD-1 and sorafenib treatment group. We conducted mutual-comparison of the mentioned indices between the disease progression group and disease control group among anti-PD-1 treatment patients. We further analyzed those indices with statistical differences by partial correlation and survival analysis. RESULTS Both self-comparison before and after treatment in the anti-PD-1 group and mutual-comparison of disease progression and the control group showed significant differences in multiple indices, but we did not observe significant differences in the sorafenib group. Strikingly, albumin (ALB)/prognostic nutritional index (PNI, calculated by serum albumin and lymphocyte count) decreased distinctly in the immunotherapy disease progression group patients. However, changes in ALB/PNI were not significant in disease progression patients from the sorafenib group or in the disease control patients with immunotherapy. Partial correlation analysis suggested that ALB and PNI were positively correlated with the efficacy of immunotherapy. Furthermore, survival analysis showed that the median progression-free survival and median overall survival of patients in the ALB/PNI decreased group were significantly shorter than those of patients from the ALB/PNI increased group. CONCLUSION Anti-PD-1 immunotherapy might alter the nutritional and metabolic status in advanced HCC patients. We also should pay attention to the nutritional and metabolic status of patients when drug resistance is detected.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Xiangying Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Haihong Liao
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Weiqin Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Qihan Fu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Liping Zhong
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
315
|
Zeng G, Jin L, Ying Q, Chen H, Thembinkosi MC, Yang C, Zhao J, Ji H, Lin S, Peng R, Zhang M, Sun D. Regulatory T Cells in Cancer Immunotherapy: Basic Research Outcomes and Clinical Directions. Cancer Manag Res 2020; 12:10411-10421. [PMID: 33116895 PMCID: PMC7586057 DOI: 10.2147/cmar.s265828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy is a promising approach that has recently gained its importance in treating cancer. Despite various approaches of immunotherapies being used to target cancer cells, they are either not effective against all types of cancer or for all patients. Although efforts are being made to improve the cancer immunotherapy in all possible ways, one important hindrance that lowers the immune response to kill cancer cells is the infiltration of Regulatory T (Treg) cells into the tumor cells, favoring tumor progression, on one hand, and inhibiting the activation of T cells to respond to cancer cells, on the other hand. Therefore, new anti-cancer drugs and vaccines fail to show promising results against cancer. This is due to the infiltration of Treg cells into the tumor region and suppression of anti-cancer activity. Thus, regardless of various types of immunotherapies being practiced, understanding the mechanisms of how Treg cells favor tumor progression and inhibition of anti-cancer activity is worthwhile. Therefore, the review highlights the importance of Tregs cells and how depletion of Treg cells can pave the way to an effective immunotherapy by activating the immune responses against cancer.
Collapse
Affiliation(s)
- Guoming Zeng
- Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China.,China Metallurgical Construction Engineering Group Co., Ltd., Chongqing 400044, People's Republic of China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China.,Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qinsi Ying
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Haojie Chen
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | | | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Jinlong Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Maolan Zhang
- Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China.,Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
316
|
Cilona M, Locatello LG, Novelli L, Gallo O. The Mismatch Repair System (MMR) in Head and Neck Carcinogenesis and Its Role in Modulating the Response to Immunotherapy: A Critical Review. Cancers (Basel) 2020; 12:cancers12103006. [PMID: 33081243 PMCID: PMC7602801 DOI: 10.3390/cancers12103006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The dysfunction of the mismatch repair system, an important mechanism for the detection and correction of DNA replication mistakes, may often lead to instability in the length of specific genetic sequences, known as microsatellites, and to the accumulation of mutations. Microsatellite instability is a well-known risk factor for the development of colorectal cancers and other types of tumors but is also considered a positive predictor of the immunotherapy response. Malignancies harboring such a specific genomic instability are very immunogenic because of the great number of aberrant antigens they produce. Therapies based on the blockade of specific immune checkpoints have shown to induce an effective immune response against microsatellite-unstable cancer. Many studies proved that microsatellite instability has a decisive role in the carcinogenesis and the malignant progression of head and neck cancer and, in the near future, it may become a useful tool in tailoring immunotherapy also in this field of precision oncology. Abstract The mismatch repair (MMR) system has a major role in the detection and correction of DNA replication errors, resulting from DNA polymerase slippage or nucleotides misincorporation. Specific inherited/acquired alterations or epigenetic inactivation of MMR genes are associated with microsatellite instability (MSI): the loss of crucial function in repairing DNA alterations can promote carcinogenesis by favoring the accumulation of thousands of mutations in a broad spectrum of different anatomic sites such as colon, stomach, prostate, esophagus, endometrium, lung and head and neck. Recent extensive data suggest that tumor mutational burden strongly correlates with a clinical response to immunotherapy using checkpoint inhibitors and this response is influenced by MMR deficiency in a wide range of human solid cancers. In this context, few data about this crucial point are available for head and neck cancer (HNC). In this review, we discuss the role of MMR alterations and the resulting MSI in HNC pathogenesis. Furthermore, by summarizing the clinical available data on how they influence the progression of precancerous lesions and the risk of recurrence or second primary tumors, we want to define the current role of MSI in the management of HNC. Finally, we analyze the complex interaction between cancer cells and the immune system addressing the data now available about a potential correlation between microsatellite instability and immunotherapy response in HNC.
Collapse
Affiliation(s)
- Maria Cilona
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
| | - Luca Giovanni Locatello
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
| | - Luca Novelli
- Department of Pathology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy;
| | - Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
- Correspondence: ; Tel.: +39-0557947989
| |
Collapse
|
317
|
Aghajani MJ, Yang T, Schmitz U, James A, McCafferty CE, de Souza P, Niles N, Roberts TL. Epithelial-to-mesenchymal transition and its association with PD-L1 and CD8 in thyroid cancer. Endocr Connect 2020; 9:1028-1041. [PMID: 33112841 PMCID: PMC7707834 DOI: 10.1530/ec-20-0268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) has recently been shown to play a role in the regulation of epithelial-to-mesenchymal transition (EMT); however, the relationship between PD-L1 expression, EMT and the inflammatory tumour microenvironment has yet to be investigated in thyroid cancer. To address this issue, we examined the expression of CD8, PD-L1 and the EMT markers E-cadherin and vimentin in a cohort of 74 papillary thyroid cancer (PTC) patients and investigated the association of these with clinicopathologic characteristics and disease-free survival (DFS). The relationship between PD-L1 and EMT was further examined in three thyroid cancer cell lines via Western blot and live cell imaging. In order to expand our in vitro findings, the normalised gene expression profiles of 516 thyroid cancer patients were retrieved and analysed from The Cancer Genome Atlas (TCGA). PD-L1 positivity was significantly higher in PTC patients exhibiting a mesenchymal phenotype (P = 0.012). Kaplan-Meier analysis revealed that PD-L1 (P = 0.045), CD8 (P = 0.038) and EMT status (P = 0.038) were all significant predictors for DFS. Sub-analysis confirmed that the poorest DFS was evident in PD-L1 positive patients with EMT features and negative CD8 expression (P < 0.0001). IFN-γ treatment induced upregulation of PD-L1 and significantly promoted an EMT phenotype in two thyroid cancer cell lines. Our findings suggest that PD-L1 signalling may play a role in stimulating EMT in thyroid cancer. EMT, CD8 and PD-L1 expression may serve as valuable predictive biomarkers in patients with PTC.
Collapse
Affiliation(s)
- Marra Jai Aghajani
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Correspondence should be addressed to M J Aghajani:
| | - Tao Yang
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Saint Vincent’s Clinical School, UNSW Sydney, Sydney, Australia
- SydPath, Saint Vincent’s Hospital, Sydney, Australia
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Charles Eugenio McCafferty
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Paul de Souza
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- School of Medicine, University of Wollongong, New South Wales, Australia
| | - Navin Niles
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- South West Sydney Clinical School, UNSW Sydney, Sydney, Australia
| |
Collapse
|
318
|
Su C, Wang H, Liu Y, Guo Q, Zhang L, Li J, Zhou W, Yan Y, Zhou X, Zhang J. Adverse Effects of Anti-PD-1/PD-L1 Therapy in Non-small Cell Lung Cancer. Front Oncol 2020; 10:554313. [PMID: 33072580 PMCID: PMC7531287 DOI: 10.3389/fonc.2020.554313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, immunotherapy has shown great efficacy in clinical trials, and monoclonal antibodies directed against immune checkpoint PD-1/PD-L1 have shown encouraging results in first-line or second-line treatment of non-small cell lung cancer patients. Meanwhile, anti-PD-1/PD-L1 immune checkpoint drugs combined with other treatments, such as chemotherapy, targeted therapy as well as anti-CTLA-4 checkpoint therapy, are considered an attractive treatment with higher efficacy. However, toxicity associated with PD-1/PD-L1 blockade is worth attention. Understanding the adverse effects caused by anti-PD-1/PD-L1 immunosuppressive agents is vital to guide the clinical rational use of drug. In this review, we summarized the adverse effects that occurred during the clinical use of anti-PD-1/PD-L1 inhibitors in the treatment of non-small cell lung cancer and discussed how to effectively manage and respond to these adverse reactions.
Collapse
Affiliation(s)
- Chaoyue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- School of Public Health, Hainan Medical University, Haikou, China
| | - Hui Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunru Liu
- School of Public Health, Hainan Medical University, Haikou, China
| | - Qiaoru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lingling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiajun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenmin Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanyan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Xinke Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- School of Public Health, Hainan Medical University, Haikou, China
| |
Collapse
|
319
|
Li Y, Zhang H, Li Q, Zou P, Huang X, Wu C, Tan L. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer. Cancer Lett 2020; 495:12-21. [PMID: 32941949 DOI: 10.1016/j.canlet.2020.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/12/2023]
Abstract
Immunogenic cell death (ICD) improves the T cell response against different tumors, indicating that ICD can enhance the antitumor immunity elicited by the anti-checkpoint antibody anti-programmed death 1 (anti-PD-1). In the present study, we reported a synergistic and durable immune-mediated antitumor response elicited by the combined treatment of SR-4835, a CDK12/13 specific inhibitor, with PD-1 blockade in a syngeneic mouse model. The developed combination therapy elicited antitumor activity in immunocompetent mouse tumor models. Furthermore, the SR-4835-treated tumor cells exhibited characteristics of ICD, including the release of high mobility group box 1 (HMGB1) and ATP and calreticulin (CRT) translocation. This activity led to a significant T-cell-dependent tumor suppression. The enhanced dendritic cell (DC) and infiltration of T cells activation in the tumors treated with both SR-4835 and anti-PD-1 indicate that this combination treatment promotes an improved immune response. Therefore, the results of the present study demonstrate the potential of CDK12/13 inhibition combined with checkpoint inhibition in breast cancer treatment.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qin Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pingjin Zou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chihua Wu
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Li Tan
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
320
|
CD19-CAR-T Cells Bearing a KIR/PD-1-Based Inhibitory CAR Eradicate CD19 +HLA-C1 - Malignant B Cells While Sparing CD19 +HLA-C1 + Healthy B Cells. Cancers (Basel) 2020; 12:cancers12092612. [PMID: 32933182 PMCID: PMC7564565 DOI: 10.3390/cancers12092612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary CD19-targeted chimeric antigen receptor (CAR) T (CD19-CAR-T) cell therapy usually causes B cell aplasia because of “on-target off-tumor” toxicity. The aim of the study was to assess the concept that the introduction of an inhibitory CAR (iCAR) into CAR-T cells could alleviate the side effect of CD19-CAR-T cell therapy. The results showed that CD19-CAR-T cells with a novel KIR (killer inhibitory receptor) /PD-1 (programmed death receptor-1)-based inhibitory CAR (iKP-19-CAR-T) exhibited more naïve, less exhausted phenotypes and preserved a higher proportion of central memory T cells (TCM). Furthermore, iKP-19-CAR-T cells exerted the similar level of cytotoxicity on CD19+HLA-C1− Burkitt’s lymphoma cells compared to CD19-CAR-T cells while sparing CD19+HLA-C1+ healthy human B cells both in vitro and in the xenograft model. Our data demonstrates that the KIR/PD-1-based inhibitory CAR can be a promising strategy to avoid B cell aplasia caused by CD19-CAR-T cell therapy. Abstract B cell aplasia caused by “on-target off-tumor” toxicity is one of the clinical side effects during CD19-targeted chimeric antigen receptor (CAR) T (CD19-CAR-T) cells treatment for B cell malignancies. Persistent B cell aplasia was observed in all patients with sustained remission, which increased the patients’ risk of infection. Some patients even died due to infection. To overcome this challenge, the concept of incorporating an inhibitory CAR (iCAR) into CAR-T cells was introduced to constrain the T cells response once an “on-target off-tumor” event occurred. In this study, we engineered a novel KIR/PD-1-based inhibitory CAR (iKP CAR) by fusing the extracellular domain of killer cell immunoglobulin-like receptors (KIR) 2DL2 (KIR2DL2) and the intracellular domain of PD-1. We also confirmed that iKP CAR could inhibit the CD19 CAR activation signal via the PD-1 domain and CD19-CAR-T cells bearing an iKP CAR (iKP-19-CAR-T) exerted robust cytotoxicity in vitro and antitumor activity in the xenograft model of CD19+HLA-C1− Burkitt’s lymphoma parallel to CD19-CAR-T cells, whilst sparing CD19+HLA-C1+ healthy human B cells both in vitro and in the xenograft model. Meanwhile, iKP-19-CAR-T cells exhibited more naïve, less exhausted phenotypes and preserved a higher proportion of central memory T cells (TCM). Our data demonstrates that the KIR/PD-1-based inhibitory CAR can be a promising strategy for preventing B cell aplasia induced by CD19-CAR-T cell therapy.
Collapse
|
321
|
Sirait-Fischer E, Olesch C, Fink AF, Berkefeld M, Huard A, Schmid T, Takeda K, Brüne B, Weigert A. Immune Checkpoint Blockade Improves Chemotherapy in the PyMT Mammary Carcinoma Mouse Model. Front Oncol 2020; 10:1771. [PMID: 33014872 PMCID: PMC7513675 DOI: 10.3389/fonc.2020.01771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the success of immune checkpoint blockade in cancer, the number of patients that benefit from this revolutionary treatment option remains low. Therefore, efforts are being undertaken to sensitize tumors for immune checkpoint blockade, which includes combining immune checkpoint blocking agents such as anti-PD-1 antibodies with standard of care treatments. Here we report that a combination of chemotherapy (doxorubicin) and immune checkpoint blockade (anti-PD-1 antibodies) induces superior tumor control compared to chemotherapy and immune checkpoint blockade alone in the murine autochthonous polyoma middle T oncogene-driven (PyMT) mammary tumor model. Using whole transcriptome analysis, we identified a set of genes that were upregulated specifically upon chemoimmunotherapy. This gene signature and, more specifically, a condensed four-gene signature predicted favorable survival of human mammary carcinoma patients in the METABRIC cohort. Moreover, PyMT tumors treated with chemoimmunotherapy contained higher levels of cytotoxic lymphocytes, particularly natural killer cells (NK cells). Gene set enrichment analysis and bead-based ELISA measurements revealed increased IL-27 production and signaling in PyMT tumors upon chemoimmunotherapy. Moreover, IL-27 signaling improved NK cell cytotoxicity against PyMT cells in vitro. Taken together, our data support recent clinical observations indicating a benefit of chemoimmunotherapy compared to monotherapy in breast cancer and suggest potential underlying mechanisms.
Collapse
Affiliation(s)
- Evelyn Sirait-Fischer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Matthias Berkefeld
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arnaud Huard
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kazuhiko Takeda
- Research Center of Oncology, ONO Pharmaceutical Co., LTD, Osaka, Japan
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
322
|
Yilmaz M. Atypical response patterns in metastatic melanoma and renal cell carcinoma patients treated with nivolumab: A single center experience. J Oncol Pharm Pract 2020; 27:1106-1111. [PMID: 32799776 DOI: 10.1177/1078155220949642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The response patterns of immune checkpoint inhibitors (ICIs) have been recognized to differ from those seen in standard cytotoxic and targeted therapy. Pseudoprogression and hyperprogression are new clinical phenomena specific to the field of immuno-oncology. In this study, we aimed to assess the frequency of hyperprogression and pseudoprogression in metastatic RCC and melanoma patients treated in our institution with the programmed cell death protein-1 inhibitor nivolumab. METHODS The medical records of all metastatic melanoma and renal cell carcinoma patients that were treated with nivolumab (n = 54) in Bakirkoy Dr. Sadi Konuk Training and Research Hospital (Istanbul-Turkey), Medical Oncology Clinic between June 2017 and December 2019 were retrospectively analyzed. RESULTS Hyperprogression and pseudoprogression rates were 12% and 9%, respectively and that is consistent with published data. DISCUSSION Pseudoprogression and hyperprogression are new radiologic response patterns with immunotherapy agents. It is critical to be aware of these two phenomena in order to make the right decisions for patients.
Collapse
Affiliation(s)
- Mesut Yilmaz
- Medical Oncology Department, Bakırkoy Sadi Konuk Training and Research Hospital, Bakırköy/Istanbul, Turkey
| |
Collapse
|
323
|
Qiu XT, Song YC, Liu J, Wang ZM, Niu X, He J. Identification of an immune-related gene-based signature to predict prognosis of patients with gastric cancer. World J Gastrointest Oncol 2020; 12:857-876. [PMID: 32879664 PMCID: PMC7443845 DOI: 10.4251/wjgo.v12.i8.857] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the most commonly diagnosed malignancy worldwide. Increasing evidence suggests that it is necessary to further explore genetic and immunological characteristics of GC. AIM To construct an immune-related gene (IRG) signature for accurately predicting the prognosis of patients with GC. METHODS Differentially expressed genes (DEGs) between 375 gastric cancer tissues and 32 normal adjacent tissues were obtained from The Cancer Genome Atlas (TCGA) GDC data portal. Then, differentially expressed IRGs from the ImmPort database were identified for GC. Cox univariate survival analysis was used to screen survival-related IRGs. Differentially expressed survival-related IRGs were considered as hub IRGs. Genetic mutations of hub IRGs were analyzed. Then, hub IRGs were selected to conduct a prognostic signature. Receiver operating characteristic (ROC) curve analysis was used to evaluate the prognostic performance of the signature. The correlation of the signature with clinical features and tumor-infiltrating immune cells was analyzed. RESULTS Among all DEGs, 70 hub IRGs were obtained for GC. The deletions and amplifications were the two most common types of genetic mutations of hub IRGs. A prognostic signature was identified, consisting of ten hub IRGs (including S100A12, DEFB126, KAL1, APOH, CGB5, GRP, GLP2R, LGR6, PTGER3, and CTLA4). This prognostic signature could accurately distinguish patients into high- and low- risk groups, and overall survival analysis showed that high risk patients had shortened survival time than low risk patients (P < 0.0001). The area under curve of the ROC of the signature was 0.761, suggesting that the prognostic signature had a high sensitivity and accuracy. Multivariate regression analysis demonstrated that the prognostic signature could become an independent prognostic predictor for GC after adjustment for other clinical features. Furthermore, we found that the prognostic signature was significantly correlated with macrophage infiltration. CONCLUSION Our study proposed an immune-related prognostic signature for GC, which could help develop treatment strategies for patients with GC in the future.
Collapse
Affiliation(s)
- Xiang-Ting Qiu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Yu-Cui Song
- Department of Operating Room, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Jian Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Zhen-Min Wang
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Xing Niu
- Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong Province, China
| |
Collapse
|
324
|
Li S, Sun Y, Huang J, Wang B, Gong Y, Fang Y, Liu Y, Wang S, Guo Y, Wang H, Xu Z, Guo Y. Anti-tumor effects and mechanisms of Astragalus membranaceus (AM) and its specific immunopotentiation: Status and prospect. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112797. [PMID: 32243990 DOI: 10.1016/j.jep.2020.112797] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
With cancer deaths increasing, the initiation, pathophysiology and curative management of cancer is receiving increasing attention. Traditional therapies such as surgery and chemoradiotherapy are often accompanied by suppression of host immunity, which increase the risk of metastasis. Astragalus membranceus (AM) is commonly utilized as one herbal medicine of traditional Chinese medicines (TCMs) with a variety of biological activities. Studies have shown that the active ingredients of AM and AM-based TCMs, combined with chemotherapy, can enhance anti-tumor efficacy in cancer patients, in addition to reduce complications and avoid side effects induced by chemotherapy. By using various cancer models and cell lines, AM has been found to be capable of shrinking or stabilizing tumors by direct anti-proliferation or pro-apoptosis effect on tumor cells. Further, AM ameliorates immunosuppression by activating M1 macrophages and T cells tumor-kill function in tumor microenvironment (TME). AM is also found to improve systemic immunity which may help promoting efficacy of chemotherapy and preventing metastasis. Thereby this review contributes to an understanding of AM as an adjunctive therapy in the whole course of cancer treatment, at the same time providing useful information for development of more effective anti-tumor medication. The combination of AM and immune checkpoint therapies has a promising therapeutic prospect, and the observation of direct efficacy and mechanisms on tumor growth and metastasis of AM combined with chemotherapies or other therapies require more in vivo validations and further clinical investigation as well.
Collapse
Affiliation(s)
- Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Sun
- Nephropathy and Rheumatology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Wang
- Tianjin Medical University Cancer Institute of Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
325
|
Profound Functional Suppression of Tumor-Infiltrating T-Cells in Ovarian Cancer Patients Can Be Reversed Using PD-1-Blocking Antibodies or DARPin® Proteins. J Immunol Res 2020; 2020:7375947. [PMID: 32832572 PMCID: PMC7424497 DOI: 10.1155/2020/7375947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022] Open
Abstract
PD-1/PD-L1 blockade has revolutionized the field of immunooncology. Despite the relative success, the response rate to anti-PD-1 therapy requires further improvements. Our aim was to explore the enhancement of T-cell function by using novel PD-1-blocking proteins and compare with clinically approved monoclonal antibodies (mAbs). We isolated T-cells from the ascites and tumor of 17 patients with advanced epithelial ovarian cancer (EOC) and analyzed the effects using the mAbs nivolumab and pembrolizumab and two novel engineered ankyrin repeat proteins (DARPin® proteins). PD-1 blockade with either mAb or DARPin® molecule significantly increased the release of IFN-γ, granzyme B, IL-2, and TNF-α, demonstrating successful reinvigoration. The monovalent DARPin® protein was less effective compared to its bivalent equivalent, demonstrating that bivalency brings an additional benefit to PD-1 blockade. Overall, we found a higher fold increase of lymphokine secretion in response to the PD-1 blockade by tumor-derived T-cells; however, the absolute amounts were significantly lower compared to the release from ascites-derived T-cells. Our results demonstrate that PD-1 blockade can only partially reinvigorate functionally suppressed T-cells from EOC patients. This warrants further investigation preferably in combination with other therapeutics. The study provides an early pilot proof-of-concept for the potential use of DARPin® proteins as eligible alternative scaffold proteins to block PD-1.
Collapse
|
326
|
Qian L, Shen Y, Xie J, Meng Z. Immunomodulatory effects of ablation therapy on tumors: Potentials for combination with immunotherapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188385. [PMID: 32554098 DOI: 10.1016/j.bbcan.2020.188385] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
327
|
Integrative bioinformatics analysis of a prognostic index and immunotherapeutic targets in renal cell carcinoma. Int Immunopharmacol 2020; 87:106832. [PMID: 32738597 DOI: 10.1016/j.intimp.2020.106832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies. The immunogenomic landscape signature significantly correlates with the progression and prognosis of RCC. Novel therapeutic targets and prognostic indices in RCC are highly desirable. The TCGA database enables comprehensive immunogenomic landscape analysis. Differentially expressed immune-related genes (IRGs) were obtained from TCGA and GO analyses, and KEGG pathway analyses were performed to explore their functions and molecular mechanisms. Multivariable Cox analysis was utilized to calculate the risk score of each patient and locate survival-associated IRGs, thereby constructing a novel immune-related gene-based prognostic index (IRGPI). The correlation between IRGPI and immune cell infiltration was also investigated. A total of 41 differentially expressed IRGs were notably related to prognosis in RCC. GO functions and KEGG pathway analyses demonstrated that these genes were primarily associated with the tumour immune response and cytokine-cytokine receptor interaction pathway. An IRGPI based on seventeen survival-associated differentially expressed IRGs was constructed and exhibited a moderate predictive value in the prognosis of RCC patients and a powerful identification ability in refining the risk stratification of RCC patients. A close correlation was found between IRGPI and specific clinicopathological parameters, including age, gender, pathological stage, tumour stage, lymph node metastasis and distant metastasis. A positive correlation was found between IRGPI and the infiltration levels of neutrophils, dendritic cells, CD8+ T cells and B cells. Our results demonstrated the clinical significance and potential function of IRGs, providing additional data for prognostic risk prediction and immunotherapeutic target selection in RCC.
Collapse
|
328
|
Zhang JZ, Ma YZ, Gu JL, Huo JG. Clinical research progress of immune checkpoint inhibitors in treatment of primary liver cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:605-616. [DOI: 10.11569/wcjd.v28.i14.605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer (PLC) is a common malignant tumor of the digestive system in China. At present, the main treatments for liver cancer (LC) are surgical resection, radiofrequency ablation, chemotherapy, transarterial chemoembolization, and liver transplantation. Due to the limited treatment options, the overall 5-year survival rate of patients with advanced LC is still low. New treatments are urgently needed to prolong their survival and improve their quality of life. In recent years, immune checkpoint inhibitors reprensented by programmed death receptor-1 and cytotoxic T lymphocyte-associated antigen-4 have made breakthrough progress in the treatment of LC, and bring new hope for LC patients. In this paper, the clinical research progress of immune checkpoint inhibitors in the treatment of PLC is reviewed.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| | - Yu-Zhu Ma
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| | - Jia-Lin Gu
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| | - Jie-Ge Huo
- The Third Clinical Medical College of Nanjing University Of Chinese Medicine, Jiangsu Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
329
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
330
|
Yin WM, Li YW, Gu YQ, Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:902-910. [PMID: 32398683 PMCID: PMC7470800 DOI: 10.1038/s41401-020-0417-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is rapidly changing the paradigm of cancer care and treatment by evoking host immunity to kill cancer cells. As clinical approval of checkpoint inhibitors (e.g., ipilimumab and pembrolizumab) has been accelerated by a dramatic improvement of long-term survival in a small subset of patients compared to conventional chemotherapy, growing interesting research has focused on immunotherapy. However, majority of patients have not benefited from checkpoint therapies that only partially remove the inhibition of T cell functions. Insufficient systemic T cell responses, low immunogenicity and the immunosuppressive environment of tumors, create great challenges on therapeutic efficiency. Nanotechnology can integrate multiple functions within controlled size and shape, and has been explored as a unique avenue for the development of cancer immunotherapy. In this review, we mainly address how nanoengineered vaccines can induce robust T cell responses against tumors, as well as how nanomedicine can remodel the tumor immunosuppressive microenvironment to boost antitumor immune responses.
Collapse
|
331
|
Abstract
PURPOSE OF REVIEW Neoadjuvant therapy in melanoma is an area of active investigation with numerous completed and ongoing trials studying a variety of therapeutic interventions utilizing diverse designs. Here, we review completed and ongoing neoadjuvant trials in melanoma, discuss endpoint assessment, and highlight biomarker development in this context. RECENT FINDINGS High-risk resectable melanoma with clinically detectable lymph node (LN) with or without in-transit and/or satellite metastases represent ~ 20% of melanoma patients and have a high risk of relapse despite definitive surgery. Adjuvant therapy with anti-PD-1 immunotherapy or BRAF/MEK-targeted therapy has improved relapse-free survival (RFS) and overall survival (OS) in large phase III trials and is approved for this indication. However, despite surgery and adjuvant therapy, many patients relapse and/or experience treatment-related toxicity, underscoring the need to identify and understand mechanisms of response and resistance. In melanoma, neoadjuvant therapy is an active area of research with numerous completed and ongoing trials utilizing FDA-approved and novel agents with intriguing results. Neoadjuvant therapy for regionally metastatic disease is an established standard in multiple cancers, where it has been shown to improve operability, facilitate biomarker development, and even is a registrational endpoint for drug development in breast cancer. Recently, a spate of neoadjuvant studies in melanoma has looked at a swathe of agents with promising clinical and biomarker results. Coordinated efforts are underway to translate these findings to earlier stage disease while prioritizing the evaluation of new strategies in unresectable disease.
Collapse
|
332
|
Padala SA, Patel SK, Vakiti A, Patel N, Gani I, Kapoor R, Muhammad S. Pembrolizumab-induced severe rejection and graft intolerance syndrome resulting in renal allograft nephrectomy. J Oncol Pharm Pract 2020; 27:470-476. [PMID: 32580640 DOI: 10.1177/1078155220934160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pembrolizumab is a selective anti-programmed cell death protein-1 (PD-1) humanized monoclonal antibody that inhibits PD-1 activity by binding to the PD-1 receptor that is found on activated T-cells. The goal of the treatment is to allow the immune system to target and destroy cancer cells by preventing cancer cells from binding to PD-1 receptors, leading to decreased tumor growth. The activation of T-cells by pembrolizumab not only leads to the destruction of malignant cells but also attacks the donor alloantigens that are present in a renal transplant, resulting in graft rejection. CASE REPORT We present a case of a 46-year-old African American female with history of renal transplant who was treated with pembrolizumab for stage IV B endometrial adenocarcinoma and experienced renal transplant rejection and severe graft intolerance syndrome.Management and outcome: Due to ongoing graft intolerance, a transplant nephrectomy was performed. Allograft pathology was consistent with non-viable kidney with tubulitis, interstitial fibrosis and necrosis consistent with transplant rejection without any evidence of malignancy. DISCUSSION As emphasized in our case, there is a very high risk of graft rejection in patients who need to be placed on immunomodulators such as pembrolizumab, so the risk versus benefit needs to be assessed and discussed. Our case is unique because pembrolizumab not only caused graft rejection but also severe graft intolerance syndrome which led to transplant nephrectomy. Further guidelines are needed in renal transplant patients requiring PD-1 inhibitors to establish the ideal treatment plan of immunosuppression management and anti-cancer treatments.
Collapse
Affiliation(s)
- Sandeep A Padala
- Department of Medicine, Nephrology, Augusta University, Medical College of Georgia, Augusta, USA
| | - Shivam K Patel
- Department of Medicine, Medical College of Georgia, Augusta, USA
| | - Anusha Vakiti
- Department of Medicine, Hematology-Oncology, Augusta University Medical Center, Medical College of Georgia, Augusta, USA
| | - Nikhil Patel
- Department of Pathology, Augusta University Medical Center, Medical College of Georgia, Augusta, USA
| | - Imran Gani
- Department of Medicine, Nephrology, Augusta University Medical Center, Medical College of Georgia, Augusta, USA
| | - Rajan Kapoor
- Department of Medicine, Nephrology, Augusta University Medical Center, Medical College of Georgia, Augusta, USA
| | - Saeed Muhammad
- Department of Surgery, Transplant Nephrology, Augusta University Medical Center, Medical College of Georgia, Augusta, USA
| |
Collapse
|
333
|
Sinha AA. Checking autoimmune genetic risk to stratify immune checkpoint inhibitor responders. Proc Natl Acad Sci U S A 2020; 117:13864-13866. [PMID: 32503915 PMCID: PMC7321960 DOI: 10.1073/pnas.2007744117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Affiliation(s)
- Animesh A Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY 14203
| |
Collapse
|
334
|
Martinsen JT, Gunst JD, Højen JF, Tolstrup M, Søgaard OS. The Use of Toll-Like Receptor Agonists in HIV-1 Cure Strategies. Front Immunol 2020; 11:1112. [PMID: 32595636 PMCID: PMC7300204 DOI: 10.3389/fimmu.2020.01112] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors and part of the first line of defense against invading microbes. In humans, we know of 10 different TLRs, which are expressed to varying degrees in immune cell subsets. Engaging TLRs through their specific ligands leads to activation of the innate immune system and secondarily priming of the adaptive immune system. Because of these unique properties, TLR agonists have been investigated as immunotherapy in cancer treatment for many years, but in recent years there has also been growing interest in the use of TLR agonists in the context of human immunodeficiency virus type 1 (HIV-1) cure research. The primary obstacle to curing HIV-1 is the presence of a latent viral reservoir in transcriptionally silent immune cells. Due to the very limited transcription of the integrated HIV-1 proviruses, latently infected cells cannot be targeted and cleared by immune effector mechanisms. TLR agonists are very interesting in this context because of their potential dual effects as latency reverting agents (LRAs) and immune modulatory compounds. Here, we review preclinical and clinical data on the impact of TLR stimulation on HIV-1 latency as well as antiviral and HIV-1-specific immunity. We also focus on the promising role of TLR agonists in combination strategies in HIV-1 cure research. Different combinations of TLR agonists and broadly neutralizing antibodies or TLRs agonists as adjuvants in HIV-1 vaccines have shown very encouraging results in non-human primate experiments and these concepts are now moving into clinical testing.
Collapse
Affiliation(s)
| | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
335
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
336
|
Satheeshkumar R, Zhu R, Feng B, Huang C, Gao Y, Gao LX, Shen C, Hou TJ, Xu L, Li J, Zhu YL, Zhou YB, Wang WL. Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorg Med Chem Lett 2020; 30:127170. [DOI: 10.1016/j.bmcl.2020.127170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/03/2023]
|
337
|
Kim VM, Pan X, Soares KC, Azad NS, Ahuja N, Gamper CJ, Blair AB, Muth S, Ding D, Ladle BH, Zheng L. Neoantigen-based EpiGVAX vaccine initiates antitumor immunity in colorectal cancer. JCI Insight 2020; 5:136368. [PMID: 32376802 DOI: 10.1172/jci.insight.136368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Metastatic colorectal cancer (CRC) is poorly immunogenic, with limited neoantigens that can be targeted by cancer vaccine. Previous approaches to upregulate neoantigen have had limited success. In this study, we investigated the role of a DNA methyltransferase inhibitor (DNMTi), 5-aza-2'-deoxycytidine (DAC), in inducing cancer testis antigen (CTA) expression and evaluated the antitumor efficacy of a combinatorial approach with an epigenetically regulated cancer vaccine EpiGVAX and DAC. A murine model of metastatic CRC treated with combination therapy with an irradiated whole-cell CRC vaccine (GVAX) and DAC was used to assess the antitumor efficacy. DAC significantly induced expression of CTAs in CRC, including a new CTA Tra-P1A with a known neoepitope, P1A. Epigenetically modified EpiGVAX with DAC improved survival outcomes of GVAX. Using the epigenetically regulated antigen Tra-P1A as an example, our study suggests that the improved efficacy of EpiGVAX with DAC may due in part to the enhanced antigen-specific antitumor immune responses. This study shows that epigenetic therapy with DNMTi can not only induce new CTA expression but may also sensitize tumor cells for immunotherapy. Neoantigen-based EpiGVAX combined with DAC can improve the antitumor efficacy of GVAX by inducing antigen-specific antitumor T cell responses to epigenetically regulated proteins.
Collapse
Affiliation(s)
- Victoria M Kim
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xingyi Pan
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Kevin C Soares
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nilofer S Azad
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Alex B Blair
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Ding Ding
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Brian H Ladle
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center.,Department of Oncology, and.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
338
|
Zhou Q, Zhou S, Wang H, Li Y, Xiao X, Yang J. Stable silencing of ROR1 regulates cell cycle, apoptosis, and autophagy in a lung adenocarcinoma cell line. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1108-1120. [PMID: 32509086 PMCID: PMC7270672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Lung cancer has the highest mortality and recurrence rate among cancers in the world. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been widely recognized for its role in promoting the growth and metastasis of lung cancer, but its comprehensive role and molecular mechanisms in regulating cell cycle, apoptosis, and autophagy remain unclear. In this study, a series of ROR1-stably silenced monoclonal clones from lung adenocarcinoma cell lines PC9, PC9erlo, and NCI-H1975 were successfully selected and confirmed by qRT-PCR, western blot, and flow cytometry, and used as cell models in the following assays. Our study clearly shows that blocking ROR1 significantly downregulates cell cycle-inducing molecules such as CDK4 and Cyclin E1, and anti-apoptotic molecules such as Bcl-XL and Bcl-2, while it markedly upregulates pro-apoptotic molecules such as Bak, Caspase-3, and Caspase-7, which extends our previous observation on the molecular mechanism of ROR1-mediated tumor growth in lung adenocarcinoma. Our data also show that silencing ROR1 promotes autophagy since the key molecules involved in autophagy including ATG7, ATG12, BNIP3L, LC3A, LC3B, and NBS1 were up-regulated. We further screened key phosphokinase signaling pathways downstream of ROR1 in lung adenocarcinoma by a human phospho-kinase array. Our data indicate that blocking ROR1 could deactivate Akt, then activate GSK-3α/β by de-phosphorylation, and finally deactivate mTOR. In this way blocking ROR1 could effectively regulate the cell cycle, apoptosis, and autophagy in lung cancer.
Collapse
Affiliation(s)
- Qi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, P. R. China
| | - Shiyi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, P. R. China
| | - Huili Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, P. R. China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, P. R. China
| | - Xiaoqian Xiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, P. R. China
| | - Jiahui Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, P. R. China
| |
Collapse
|
339
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 1002] [Impact Index Per Article: 200.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
340
|
Refolo MG, Lotesoriere C, Messa C, Caruso MG, D'Alessandro R. Integrated immune gene expression signature and molecular classification in gastric cancer: New insights. J Leukoc Biol 2020; 108:633-646. [PMID: 32170872 DOI: 10.1002/jlb.4mr0120-221r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is characterized by extreme heterogeneity due to histopathological differences, molecular characteristics, and immune gene expression signature. Until recently, several targeted therapies failed due to this complexity. The recent immunotherapy resulted in more effective and safe approaches in several malignancies. All tumors could be considered potentially immunogenic and the new knowledge regarding the interactions among tumor cells, immune cells, and tumor microenvironment (TME) allowed to reverse possible immune resistance. The immune response is a complex multisteps process that finely regulates the balance between the recognition of non-self and the prevention of autoimmunity. Cancer cells can use these pathways to suppress tumor immunity as a major mechanism of immune resistance. The recent molecular classifications of GCs by The Cancer Genome Atlas (TCGA) and by the Asian Cancer Research (ACRG) networks, together with the identification of multiple biomarkers, open new perspectives for stratification of patients who might benefit from a long-term immune checkpoint therapy. One of the major processes that contribute to an immunosuppressive microenvironment is represented by tumor angiogenesis. The cellular mechanisms inducing both angiogenesis and immunosuppressive responses are often reached by the same cell types and soluble factors, such as vascular endothelial growth factor A (VEGFA). Recent studies point out that combinatorial strategies should be adapted as useful therapeutic approach to reverse the immunosuppressive status of microenvironment occurring in a relevant percentage of gastric tumors.
Collapse
Affiliation(s)
- Maria Grazia Refolo
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, Castellana Grotte, Bari, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, "Saverio de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Caterina Messa
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, Castellana Grotte, Bari, Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology, "Saverio de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Rosalba D'Alessandro
- Laboratory of Cellular and Molecular Biology, Department of Clinical Pathology, Castellana Grotte, Bari, Italy
| |
Collapse
|
341
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, Montesano C, Bernardini R, Marek-Trzonkowska N. Adoptive Cell Therapy-Harnessing Antigen-Specific T Cells to Target Solid Tumours. Cancers (Basel) 2020; 12:683. [PMID: 32183246 PMCID: PMC7140076 DOI: 10.3390/cancers12030683] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, much research has been focused on the field of adoptive cell therapies (ACT) that use native or genetically modified T cells as therapeutic tools. Immunotherapy with T cells expressing chimeric antigen receptors (CARs) demonstrated great success in the treatment of haematologic malignancies, whereas adoptive transfer of autologous tumour infiltrating lymphocytes (TILs) proved to be highly effective in metastatic melanoma. These encouraging results initiated many studies where ACT was tested as a treatment for various solid tumours. In this review, we provide an overview of the challenges of T cell-based immunotherapies of solid tumours. We describe alternative approaches for choosing the most efficient T cells for cancer treatment in terms of their tumour-specificity and phenotype. Finally, we present strategies for improvement of anti-tumour potential of T cells, including combination therapies.
Collapse
Affiliation(s)
- Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Rafał Dziadziuszko
- Department of Oncology and Radiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Roberta Bernardini
- Department of Biology and Interdepartmental Center CIMETA, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
342
|
Astragalus membranaceus-Derived Anti-Programmed Death-1 Monoclonal Antibodies with Immunomodulatory Therapeutic Effects against Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3415471. [PMID: 32190660 PMCID: PMC7073506 DOI: 10.1155/2020/3415471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/12/2020] [Indexed: 11/19/2022]
Abstract
Astragalus membranaceus polysaccharide (APS) components are main ingredients of TCM and have proven efficacy to activate T cells and B cells, enhancing immunity in humans. In this study, elevated cytokine and anti-PD-1 antibody titers were found in mice after immunization with APS. Therefore, phage-display technology was utilized to isolate specific anti-programmed death-1 (PD-1) antibodies from mice stimulated by APS and to confirm whether the isolated anti-PD-1 antibody could inhibit the interaction of PD-1 with the programmed death-ligand 1 (PD-L1), resulting in tumor growth inhibition. The isolated single-chain fragment variable (scFv) S12 exhibited the highest binding affinity of 20 nM to PD-1, completed the interaction between PD-1 and PD-L1, and blocked the effect of PD-L1-induced T cell exhaustion in peripheral blood mononuclear cells in vitro. In the animal model, the tumor growth inhibition effect after scFv S12 treatment was approximately 48%. However, meaningful synergistic effects were not observed when scFv S12 was used as a cotreatment with ixabepilone. Moreover, this treatment caused a reduction in the number of tumor-associated macrophages in the tumor tissue. These experimental results indirectly indicate the ability of APS to induce specific antibodies associated with the immune checkpoint system and the potential benefits for improving immunity in humans.
Collapse
|
343
|
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020; 10:727-742. [PMID: 32266087 PMCID: PMC7136921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
Cancer immunotherapy has been accompanied by promising results over the past few years. Programmed Cell Death Protein 1 (PD-1) plays a vital role in inhibiting immune responses and promoting self-tolerance through modulating the activity of T-cells, activating apoptosis of antigen-specific T cells and inhibiting apoptosis of regulatory T cells. Programmed Cell Death Ligand 1 (PD-L1) is a trans-membrane protein that is considered to be a co-inhibitory factor of the immune response, it can combine with PD-1 to reduce the proliferation of PD-1 positive cells, inhibit their cytokine secretion and induce apoptosis. PD-L1 also plays an important role in various malignancies where it can attenuate the host immune response to tumor cells. Based on these perspectives, PD-1/PD-L1 axis is responsible for cancer immune escape and makes a huge effect on cancer therapy. This review is aimed to summarize the role of PD-1 and PD-L1 in cancer, looking forward to improve the therapy of cancer.
Collapse
Affiliation(s)
- Yanyan Han
- Pathology Department of Dalian Medical UniversityLiaoning 116044, China
| | - Dandan Liu
- The Fourth Medical Center of The General Hospital of The Chinese People’s Liberation ArmyBeijing 100048, China
| | - Lianhong Li
- Pathology Department of Dalian Medical UniversityLiaoning 116044, China
| |
Collapse
|
344
|
Kwiatkowska D, Reich A. Landscape of current and future therapies of Merkel cell carcinoma. Dermatol Ther 2020; 33:e13281. [PMID: 32083780 DOI: 10.1111/dth.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/14/2020] [Indexed: 12/30/2022]
Abstract
Merkel cell carcinoma is rare and aggressive skin cancer, which occurrence is linked to exposure to ultraviolet light and the Merkel-cell polyomavirus. In recent years, significant progress in understanding the mechanism of Merkel cell carcinoma pathogenesis has been observed. This neoplasm often expresses PD-L1, and MCPyV-specific T cells can express PD-1 thus PD-1/PD-L1 checkpoint therapies seem to be remarkably interesting treatment options. Many clinical trials are currently being conducted to confirm their effectiveness and safety for this group of patients. However, only about half of advanced Merkel cell carcinoma patients could achieve remission or disease stabilization through PD-1/PD-L1 checkpoint therapies thus innovative treatments are still needed. In this article, we have presented current and future directions in the development of Merkel cell carcinoma therapy.
Collapse
Affiliation(s)
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszów, Poland
| |
Collapse
|
345
|
Saab S, Zalzale H, Rahal Z, Khalifeh Y, Sinjab A, Kadara H. Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Front Immunol 2020; 11:159. [PMID: 32117295 PMCID: PMC7026250 DOI: 10.3389/fimmu.2020.00159] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related deaths. The malignancy is characterized by dismal prognosis and poor clinical outcome mostly due to advanced-stage at diagnosis, thereby inflicting a heavy burden on public health worldwide. Recent breakthroughs in immunotherapy have greatly benefited a subset of lung cancer patients, and more importantly, they are undauntedly bringing forth a paradigm shift in the drugs approved for cancer treatment, by introducing "tumor-type agnostic therapies". Yet, and to fulfill immunotherapy's potential of personalized cancer treatment, demarcating the immune and genomic landscape of cancers at their earliest possible stages will be crucial to identify ideal targets for early treatment and to predict how a particular patient will fare with immunotherapy. Recent genomic surveys of premalignant lung cancer have shed light on early alterations in the evolution of lung cancer. More recently, the advent of immunogenomic technologies has provided prodigious opportunities to study the multidimensional landscape of lung tumors as well as their microenvironment at the molecular, genomic, and cellular resolution. In this review, we will summarize the current state of immune-based therapies for cancer, with a focus on lung malignancy, and highlight learning outcomes from clinical and preclinical studies investigating the naïve immune biology of lung cancer. The review also collates immunogenomic-based evidence from seminal reports which collectively warrant future investigations of premalignancy, the tumor-adjacent normal-appearing lung tissue, pulmonary inflammatory conditions such as chronic obstructive pulmonary disease, as well as systemic microbiome imbalance. Such future directions enable novel insights into the evolution of lung cancers and, thus, can provide a low-hanging fruit of targets for early immune-based treatment of this fatal malignancy.
Collapse
Affiliation(s)
- Sara Saab
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Zalzale
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Rahal
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Khalifeh
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
346
|
Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, Zheng L, Liu Z, Qiu Y. Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:29. [PMID: 32024543 PMCID: PMC7003365 DOI: 10.1186/s13046-020-1536-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
Background Drug resistance is a major obstacle to treating cancers because it desensitizes cancer cells to chemotherapy. Recently, attention has been focused on changes in the tumor immune landscape after the acquisition of drug resistance. Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell-based immunity. Evidence has shown that acquired chemoresistance is associated with increased PD-L1 expression in cancer cells. However, the underlying mechanism is still largely unknown. Methods PD-L1 expression in three drug-resistant A549/CDDP, MCF7/ADR and HepG2/ADR cell lines was detected by qRT-PCR, western blotting and flow cytometry, and a T cell proliferation assay was performed to test its functional significance. Then, the potential roles of JNK/c-Jun, histone H3 acetylation, histone deacetylase 3 (HDAC3) and the E3 ligase COP1 in the PD-L1 increase were explored through ChIP assays and gain- and loss-of-function gene studies. Furthermore, murine xenograft tumor models were used to verify the role of JNK/c-Jun and HDAC3 in PD-L1 expression in A549/CDDP cells in vivo. Finally, the correlations of PD-L1, c-Jun and HDAC3 expression in clinical cisplatin-sensitive and cisplatin-resistant non-small cell lung cancer (NSCLC) tissues were analyzed by immunohistochemistry and Pearson’s correlation coefficient. Results PD-L1 expression was significantly increased in A549/CDDP, MCF7/ADR and HepG2/ADR cells and was attributed mainly to enhanced JNK/c-Jun signaling activation. Mechanistically, decreased COP1 increased c-Jun accumulation, which subsequently inhibited HDAC3 expression and thereby enhanced histone H3 acetylation of the PD-L1 promoter. Furthermore, PD-L1 expression could be inhibited by JNK/c-Jun inhibition or HDAC3 overexpression in vivo, which could largely reverse inhibited CD3+ T cell proliferation in vitro. PD-L1 expression was significantly increased in the cisplatin-resistant clinical NSCLC samples and positively correlated with c-Jun expression but negatively correlated with HDAC3 expression. Conclusions Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis was crucial for the PD-L1 increase in drug-resistant cancer cells. Our study reveals a novel regulatory network for the PD-L1 increase in drug-resistant cancer cells and that combined PD-L1-targeting strategies could improve T cell-based immunity in drug-resistant cancers.
Collapse
Affiliation(s)
- Haifang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chen Fu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rui He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaofeng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kui Li
- Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zongcai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yurong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, 510515, China.
| |
Collapse
|
347
|
Zebrafish Avatars towards Personalized Medicine-A Comparative Review between Avatar Models. Cells 2020; 9:cells9020293. [PMID: 31991800 PMCID: PMC7072137 DOI: 10.3390/cells9020293] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer frequency and prevalence have been increasing in the past decades, with devastating impacts on patients and their families. Despite the great advances in targeted approaches, there is still a lack of methods to predict individual patient responses, and therefore treatments are tailored according to average response rates. “Omics” approaches are used for patient stratification and choice of therapeutic options towards a more precise medicine. These methods, however, do not consider all genetic and non-genetic dynamic interactions that occur upon drug treatment. Therefore, the need to directly challenge patient cells in a personalized manner remains. The present review addresses the state of the art of patient-derived in vitro and in vivo models, from organoids to mouse and zebrafish Avatars. The predictive power of each model based on the retrospective correlation with the patient clinical outcome will be considered. Finally, the review is focused on the emerging zebrafish Avatars and their unique characteristics allowing a fast analysis of local and systemic effects of drug treatments at the single-cell level. We also address the technical challenges that the field has yet to overcome.
Collapse
|
348
|
Lerrer S, Mor A. Immune checkpoint inhibitors and the shared epitope theory: from hypothesis to practice. Transl Cancer Res 2019; 8:S625-S627. [PMID: 33665153 PMCID: PMC7928436 DOI: 10.21037/tcr.2019.07.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Shalom Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
349
|
Giannini EG, Aglitti A, Borzio M, Gambato M, Guarino M, Iavarone M, Lai Q, Levi Sandri GB, Melandro F, Morisco F, Ponziani FR, Rendina M, Russo FP, Sacco R, Viganò M, Vitale A, Trevisani F. Overview of Immune Checkpoint Inhibitors Therapy for Hepatocellular Carcinoma, and The ITA.LI.CA Cohort Derived Estimate of Amenability Rate to Immune Checkpoint Inhibitors in Clinical Practice. Cancers (Basel) 2019; 11:1689. [PMID: 31671581 PMCID: PMC6896125 DOI: 10.3390/cancers11111689] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Despite progress in our understanding of the biology of hepatocellular carcinoma (HCC), this tumour remains difficult-to-cure for several reasons, starting from the particular disease environment where it arises-advanced chronic liver disease-to its heterogeneous clinical and biological behaviour. The advent, and good results, of immunotherapy for cancer called for the evaluation of its potential application also in HCC, where there is evidence of intra-hepatic immune response activation. Several studies advanced our knowledge of immune checkpoints expression in HCC, thus suggesting that immune checkpoint blockade may have a strong rationale even in the treatment of HCC. According to this background, initial studies with tremelimumab, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) antibody, showed promising results, and further studies exploring the effects of other immune checkpoint inhibitors, alone or with other drugs, are currently underway. However, we are still far from the identification of the correct setting, and sequence, where these drugs might be used in clinical practice, and their actual applicability in real-life is unknown. This review focuses on HCC immunobiology and on the potential of immune checkpoint blockade therapy for this tumour, with a critical evaluation of the available trials on immune checkpoint blocking antibodies treatment for HCC. Moreover, it assesses the potential applicability of immune checkpoint inhibitors in the real-life setting, by analysing a large, multicentre cohort of Italian patients with HCC.
Collapse
Affiliation(s)
- Edoardo G Giannini
- Gastroenterology Unit, Department of Internal Medicine, Università di Genova, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Andrea Aglitti
- Department of Medicine and Surgery, Internal Medicine and Hepatology Unit, University of Salerno, 84084 Fisciano, Italy.
| | - Mauro Borzio
- Unità Operativa Complessa (UOC) Gastroenterologia ed Endoscopia Digestiva, ASST (Azienda Socio Sanitaria Territoriale) Melegnano Martesana, 20063 Milan, Italy.
| | - Martina Gambato
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, 35124 Padua, Italy.
| | - Maria Guarino
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy.
| | - Massimo Iavarone
- CRC "A. M. and A. Migliavacca" Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Quirino Lai
- Liver Transplantation Program, Sapienza University, 00185 Rome, Italy.
| | | | - Fabio Melandro
- Dipartimento Assistenziale Integrato di Chirurgia Generale, Unità Operativa Complessa Epatica e Trapianto Fegato, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy.
| | - Filomena Morisco
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Maria Rendina
- UOC Gastroenterologia Universitaria, Dipartimento Emergenza e trapianti di organo, Azienda Policlinico-Universita' di Bari, 70124 Bari, Italy.
| | - Francesco Paolo Russo
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35124 Padua, Italy.
| | - Rodolfo Sacco
- UOC Gastroenterologia ed Endoscopia Digestiva, Azienda Ospedaliera Universitaria "Ospedali Riuniti", 71122 Foggia, Italy.
| | - Mauro Viganò
- Division of Hepatology, Ospedale San Giuseppe, University of Milan, 20122 Milan, Italy.
| | - Alessandro Vitale
- UOC di Chirurgia Epatobiliare, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche, Azienda Università di Padova, 35124 Padua, Italy.
| | - Franco Trevisani
- Dipartimento di Scienze Mediche e Chirurgiche Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy.
| |
Collapse
|
350
|
Classical Hodgkin's Lymphoma in the Era of Immune Checkpoint Inhibition. J Clin Med 2019; 8:jcm8101596. [PMID: 31581738 PMCID: PMC6832444 DOI: 10.3390/jcm8101596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
The ligation of programmed cell death 1 (PD-1) with programmed cell death ligand PD-L activates the immune checkpoint leading to T-cell dysfunction, exhaustion, and tolerance, especially in Hodgkin lymphoma (HL) where the PD-L/ Janus kinase (Jak) signaling was frequently found altered. Anti-PD-1 or anti-PD-L1 monoclonal antibodies can reverse this immune checkpoint, releasing the brake on T-cell responses. The characterization of the mechanisms regulating both the expression of PD-1 and PD-L and their function(s) in HL is ongoing. We provide in this review the recent findings focused on this aim with special attention on the major research topics, such as adverse events and resistance to PD-1–PD-L1 inhibitor treatment, together with a part about angiogenesis, extracellular vesicles, and microbiome in HL pathogenesis.
Collapse
|