301
|
Dissection of the Drosophila neuropeptide F circuit using a high-throughput two-choice assay. Proc Natl Acad Sci U S A 2017; 114:E8091-E8099. [PMID: 28874527 DOI: 10.1073/pnas.1710552114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.
Collapse
|
302
|
Sagarkar S, Mahajan S, Choudhary AG, Borkar CD, Kokare DM, Sakharkar AJ. Traumatic stress-induced persistent changes in DNA methylation regulate neuropeptide Y expression in rat jejunum. Neurogastroenterol Motil 2017; 29. [PMID: 28418087 DOI: 10.1111/nmo.13074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Stress-induced chronic neuropsychiatric conditions such as anxiety are often co-morbid with gastrointestinal malfunctions. While we find enduring anxiety-like symptoms following minimal traumatic brain injury (MTBI) in rats, gastrointestinal consequences of MTBI remain elusive. METHODS In this study, we examined the effects of MTBI on a major gut peptide, neuropeptide Y (NPY) and gut motility. DNA methylation was studied as a possible epigenetic mechanism operative in the regulation of NPY expression in the gut. KEY RESULTS Minimal traumatic brain injury reduced the gut motility 48 hours and 30 days after trauma. The expression of DNA methyltransferase isoforms (DNMT1, DNMT3a, and DNMT3b) was altered in the jejunum 48 hours and 30 days after MTBI. However, the mRNA levels of growth arrest and DNA damage 45 (GADD45) isoforms, GADD45a, and GADD45b, which are believed to be involved in active DNA demethylation, initially decreased at 48 hours but subsequently increased after 30 days of trauma. Similarly, DNA hypomethylation at the NPY promoter region in the jejunum was correlated with the increase in NPY mRNA and protein levels 30 days post-trauma. On the other hand, DNA hypomethylation at 48 hours was associated with a decline in NPY expression. Treatment with 5-azacytidine (5-AzaC), a DNMT inhibitor, retarded DNA methylation and restored the NPY mRNA levels in the jejunum of MTBI-induced rats. CONCLUSIONS & INFERENCES These results suggest that DNA demethylation could be operative as an epigenetic mechanism in the long-term regulation of NPY gene expression to alter the gut motility during traumatic stress.
Collapse
Affiliation(s)
- S Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - S Mahajan
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - A G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - C D Borkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - D M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - A J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
303
|
Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety. J Neurosci 2017; 37:23-37. [PMID: 28053027 DOI: 10.1523/jneurosci.2599-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner.
Collapse
|
304
|
Differences in Neuropeptide Y Secretion Between Intracerebral Hemorrhage and Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2017; 29:312-316. [DOI: 10.1097/ana.0000000000000333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
305
|
Shi Z, Madden CJ, Brooks VL. Arcuate neuropeptide Y inhibits sympathetic nerve activity via multiple neuropathways. J Clin Invest 2017. [PMID: 28628036 PMCID: PMC5490747 DOI: 10.1172/jci92008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity increases sympathetic nerve activity (SNA) via activation of proopiomelanocortin neurons in the arcuate nucleus (ArcN), and this action requires simultaneous withdrawal of tonic neuropeptide Y (NPY) sympathoinhibition. However, the sites and neurocircuitry by which NPY decreases SNA are unclear. Here, using designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate or inhibit ArcN NPY neurons expressing agouti-related peptide (AgRP) in mice, we have demonstrated that this neuronal population tonically suppresses splanchnic SNA (SSNA), arterial pressure, and heart rate via projections to the paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH). First, we found that ArcN NPY/AgRP fibers closely appose PVN and DMH presympathetic neurons. Second, nanoinjections of NPY or an NPY receptor Y1 (NPY1R) antagonist into PVN or DMH decreased or increased SSNA, respectively. Third, blockade of DMH NPY1R reversed the sympathoinhibition elicited by selective, DREADD-mediated activation of ArcN NPY/AgRP neurons. Finally, stimulation of ArcN NPY/AgRP terminal fields in the PVN and DMH decreased SSNA. Considering that chronic obesity decreases ArcN NPY content, we propose that the ArcN NPY neuropathway to the PVN and DMH is pivotal in obesity-induced elevations in SNA.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology and
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
306
|
Al Shweiki MHDR, Oeckl P, Steinacker P, Hengerer B, Schönfeldt-Lecuona C, Otto M. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies. Expert Rev Proteomics 2017; 14:499-514. [DOI: 10.1080/14789450.2017.1336435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
307
|
Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5856071. [PMID: 28593174 PMCID: PMC5448050 DOI: 10.1155/2017/5856071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.
Collapse
|
308
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
309
|
Mendes NF, Castro G, Guadagnini D, Tobar N, Cognuck SQ, Elias LLK, Boer PA, Prada PO. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior. Metabolism 2017; 70:1-11. [PMID: 28403933 DOI: 10.1016/j.metabol.2017.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. RESULTS Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. CONCLUSIONS Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders.
Collapse
Affiliation(s)
| | - Gisele Castro
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Natalia Tobar
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, USP, Brazil
| | | | - Patricia Aline Boer
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Patricia Oliveira Prada
- School of Applied Sciences, State University of Campinas, UNICAMP, Brazil; Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil.
| |
Collapse
|
310
|
Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017; 11:231. [PMID: 28487631 PMCID: PMC5403923 DOI: 10.3389/fnins.2017.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette F Taché
- Vatche and Tamar Manoukian Digestive Diseases Division, CURE Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA.,VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
311
|
Serova L, Mulhall H, Sabban E. NPY1 Receptor Agonist Modulates Development of Depressive-Like Behavior and Gene Expression in Hypothalamus in SPS Rodent PTSD Model. Front Neurosci 2017; 11:203. [PMID: 28469551 PMCID: PMC5395638 DOI: 10.3389/fnins.2017.00203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/24/2017] [Indexed: 02/04/2023] Open
Abstract
Delivery of neuropeptide Y (NPY) to the brain by intranasal infusion soon after traumatic stress has shown therapeutic potential, and prevented development of many behavioral and neuroendocrine impairments in the single prolonged stress (SPS) animal model of PTSD. Therefore, we examined whether the Y1R preferring agonist [Leu31Pro34]NPY is sufficient to prevent development of SPS induced depressive-like behavioral changes, and hypothalamic gene expression as obtained with intranasal NPY intervention. Male Sprague-Dawely rats were given intranasal infusion of either NPY (150 μg/rat), a low (68 μg /rat), or high (132 μg/rat) dose of [Leu31Pro34]NPY or vehicle immediately following the last SPS stressor, left undisturbed for 1 week and then tested for depressive-like behavior together with naïve unstressed controls. Vehicle treated animals had elevated immobility forced swim test (FST) and reduced sucrose preference, which were not observed in animals given NPY or the higher dose of [Leu31Pro34]NPY. This dose of [Leu31Pro34]NPY, like NPY, also prevented the SPS-elicited induction of CRF mRNA in the mediobasal hypothalamus. However, [Leu31Pro34]NPY did not prevent, but rather enhanced, the SPS-triggered induction of GR and FKBP5 mRNA levels in the mediobasal hypothalamus. Thus, [Leu31Pro34]NPY may be as effective as NPY and displays therapeutic potential for preventing development of depressive-like behaviors and dysregulation of the CRF/HPA system in PTSD. However, due to its different effects compared to NPY on GR and FKBP5 a broader agonist, such as NPY, may be more desirable.
Collapse
Affiliation(s)
- Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical CollegeValhalla, NY, USA
| | - Hannah Mulhall
- Department of Biochemistry and Molecular Biology, New York Medical CollegeValhalla, NY, USA
| | - Esther Sabban
- Department of Biochemistry and Molecular Biology, New York Medical CollegeValhalla, NY, USA
| |
Collapse
|
312
|
Morosawa S, Iritani S, Fujishiro H, Sekiguchi H, Torii Y, Habuchi C, Kuroda K, Kaibuchi K, Ozaki N. Neuropeptide Y neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Neuropeptides 2017; 62:27-35. [PMID: 28073591 DOI: 10.1016/j.npep.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/18/2016] [Accepted: 12/22/2016] [Indexed: 11/23/2022]
Abstract
Neuropeptide Y (NPY) has been found to play a critical role in various mental functions as a neurotransmitter and is involved in the development of schizophrenia, a particularly intractable psychiatric disease whose precise etiology remains unknown. Recent molecular biological investigations have identified several candidate genes which may be associated with this disease, including disrupted-in-schizophrenia 1 (DISC1). The role of DISC1 would involve neurogenesis and neuronal migration. However, the functional consequences of this gene defect have not yet been fully clarified in neuronal systems. In the present study, to clarify the neuropathological changes associated with the function of DISC1, we explored how DISC1 dysfunction can induce abnormalities in the NPY neuronal network in the central nervous system. We performed immunohistochemical analyses (including the observation of the distribution and density) of prefrontal cortex specimens from DISC1-knockout (KO) mice, which are considered to be a novel animal model of schizophrenia. We then evaluated the number and size of NPY-immunoreactive (NPY-IR) neurons and the length of NPY-IR fibers. The number of NPY-IR neurons and the length of the fibers were decreased in the prefrontal cortex of DISC1-KO mice. The decrease was particularly prominent in the superficial regions, and the distribution of NPY-IR neurons differed between wild-type and DISC1-KO mice. However, the size of the neurons in the cortices of the DISC1-KO and wild-type mice did not differ markedly. Our findings suggest that dysfunction of DISC1 may lead to the alteration of NPY neurons and neurotransmission issues in NPY-containing neuron systems, which seem to play important roles in both the mental function and neuronal development. DISC1 dysfunction may be involved in the pathogenesis of schizophrenia through the impairment of the NPY neuronal network.
Collapse
Affiliation(s)
- Shunsuke Morosawa
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Shuji Iritani
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Hiroshige Fujishiro
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Youta Torii
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Chikako Habuchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
313
|
Effect of Xiaoyao San on the brain-gut axis in rats after chronic immobilization stress. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
314
|
Bahry MA, Chowdhury VS, Yang H, Tran PV, Do PH, Han G, Ikeda H, Cockrem JF, Furuse M. Central administration of neuropeptide Y differentially regulates monoamines and corticosterone in heat-exposed fed and fasted chicks. Neuropeptides 2017; 62:93-100. [PMID: 27979380 DOI: 10.1016/j.npep.2016.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/17/2016] [Accepted: 11/27/2016] [Indexed: 12/23/2022]
Abstract
Recently, we demonstrated that brain neuropeptide Y (NPY) mRNA expression was increased in heat exposed chicks. However, the functions of brain NPY during heat stress are unknown. This study was conducted to investigate whether centrally administered NPY affects food intake, rectal temperature, monoamines, stress hormones and plasma metabolites in chicks under high ambient temperatures (HT). Five or six-day-old chicks were centrally injected with 0, 188 or 375pmol of NPY and exposed to either HT (35±1°C) or a control thermoneutral temperature (CT; 30±1°C) for 3h whilst fed or fasted. NPY increased food intake under both CT and HT. NPY reduced rectal temperature 1 and 2h after central administration under CT, but not under HT. Interestingly, NPY decreased brain serotonin and norepinephrine concentrations in fed chicks, but increased concentrations of brain dopamine and its metabolites in fasted and fed chicks, respectively. Plasma epinephrine was decreased by NPY in fed chicks, but plasma concentrations of norepinephrine and epinephrine were increased significantly by NPY in fasted-heat exposed chicks. Furthermore, NPY significantly reduced plasma corticosterone concentrations in fasted chicks. Plasma glucose and triacylglycerol were increased by NPY in fed chicks, but triacylglycerol declined in fasted NPY-injected chicks. In conclusion, brain NPY may attenuate the reduction of food intake during heat stress and the increased brain NPY might be a potential regulator of the monoamines and corticosterone to modulate stress response in heat-exposed chicks.
Collapse
Affiliation(s)
- Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - John F Cockrem
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
315
|
Coccurello R, Romano A, Giacovazzo G, Tempesta B, Fiore M, Giudetti AM, Marrocco I, Altieri F, Moles A, Gaetani S. Increased intake of energy-dense diet and negative energy balance in a mouse model of chronic psychosocial defeat. Eur J Nutr 2017; 57:1485-1498. [PMID: 28314964 DOI: 10.1007/s00394-017-1434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Chronic exposure to stress may represent a risk factor for developing metabolic and eating disorders, mostly driven by the overconsumption of easily accessible energy-dense palatable food, although the mechanisms involved remain still unclear. In this study, we used an ethologically oriented murine model of chronic stress caused by chronic psychosocial defeat (CPD) to investigate the effects of unrestricted access to a palatable high fat diet (HFD) on food intake, body weight, energy homeostasis, and expression of different brain neuropeptides. Our aim was to shed light on the mechanisms responsible for body weight and body composition changes due to chronic social stress. METHODS In our model of subordinate (defeated), mice (CPD) cohabitated in constant sensory contact with dominants, being forced to interact on daily basis, and were offered ad libitum access either to an HFD or to a control diet (CD). Control mice (of the same strain as CPD mice) were housed in pairs and left unstressed in their home cage (UN). In all these mice, we evaluated body weight, different adipose depots, energy metabolism, caloric intake, and neuropeptide expression. RESULTS CPD mice increased the intake of HFD and reduced body weight in the presence of enhanced lipid oxidation. Resting energy expenditure and interscapular brown adipose tissue (iBAT) were increased in CPD mice, whereas epididymal adipose tissue increased only in HFD-fed unstressed mice. Propiomelanocortin mRNA levels in hypothalamic arcuate nucleus increased only in HFD-fed unstressed mice. Oxytocin mRNA levels in the paraventricular nucleus and neuropeptide Y mRNA levels within the arcuate were increased only in CD-fed CPD mice. In the arcuate, CART was increased in HFD-fed UN mice and in CD-fed CPD mice, while HFD intake suppressed CART increase in defeated animals. In the basolateral amygdala, CART expression was increased only in CPD animals on HFD. CONCLUSIONS CPD appears to uncouple the intake of HFD from energy homeostasis causing higher HFD intake, larger iBAT accumulation, increased energy expenditure and lipid oxidation, and lower body weight. Overall, the present study confirms the notion that the chronic activation of the stress response can be associated with metabolic disorders, altered energy homeostasis, and changes of orexigenic and anorexigenic signaling. These changes might be relevant to better understand the etiology of stress-induced obesity and eating disorders and might represent a valid therapeutic approach for the development of new therapies in this field.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via del Fosso di Fiorano, 64, 00143, Roma, Italy. .,Fondazione Santa Lucia (FSL-IRCCS), Via del Fosso di Fiorano, 64, 00143, Roma, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le A. Moro, 5, 00185, Roma, Italy
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via del Fosso di Fiorano, 64, 00143, Roma, Italy.,Fondazione Santa Lucia (FSL-IRCCS), Via del Fosso di Fiorano, 64, 00143, Roma, Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le A. Moro, 5, 00185, Roma, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via del Fosso di Fiorano, 64, 00143, Roma, Italy.,Fondazione Santa Lucia (FSL-IRCCS), Via del Fosso di Fiorano, 64, 00143, Roma, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Ilaria Marrocco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena, 291, 00161, Roma, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena, 291, 00161, Roma, Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via del Fosso di Fiorano, 64, 00143, Roma, Italy. .,Genomia srl, Via L. Ariosto 21, 20091, Bresso, Milan, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le A. Moro, 5, 00185, Roma, Italy
| |
Collapse
|
316
|
Das SK, Patri M. Neuropeptide Y expression confers benzo[a]pyrene induced anxiolytic like behavioral response during early adolescence period of male Wistar rats. Neuropeptides 2017; 61:23-30. [PMID: 27402563 DOI: 10.1016/j.npep.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
Abstract
Environmental neurotoxicant like benzo[a]pyrene (B[a]P) is known to induce neurobehavioral changes. Our previous reports address the adverse effect of B[a]P on the neurobehavioral responses and neuromorphology of sensitive brain regions in adolescent rats. Present study was conducted on male Wistar rat neonates at postnatal day 5 (PND5) to ascertain B[a]P induced anxiolytic like behavioral response could be an outcome of neuropeptide Y (NPY) overexpression in brain. Single intracisternal administration of B[a]P was carried out at PND5 to elucidate the role of NPY on neurobehavioral responses at PND30. The behavioral studies showed anxiolytic like effect of B[a]P in both light and dark box and elevated plus maze tests. Antioxidant assay involving glutathione peroxidase activity was significantly decreased where as lipid peroxidation was significantly augmented in both hippocampus and hypothalamus of B[a]P treated group as compared to naive and control. The neurotransmitter estimation by HPLC-ECD showed significant increase in 5-HT level in both hippocampus and hypothalamus of B[a]P treated group. Significant elevation in NPY expression was observed in both hippocampus and hypothalamus of B[a]P group. Intracellular Ca2+ estimation using Fura-2AM by fluorometry showed that B[a]P induced increase in Ca2+ influx was associated with augmented NPY expression in brain. As NPY has orexigenic effect, our result revealed that there was a significant increase in body weight at PND30 following B[a]P administration to rat neonates at PND5. These findings suggested that NPY overexpression in brain regions might be associated with anxiolytic like behavioral response and orexigenic effect in rats following single intracisternal B[a]P administration. Future research directing towards understanding the signaling cascades of B[a]P induced biochemical and neuromorphological alteration might address the independent pathway which induce neurodegeneration despite NPY overexpression in brain regions of adolescent rats.
Collapse
Affiliation(s)
- Saroj Kumar Das
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Odisha, India
| | - Manorama Patri
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Odisha, India.
| |
Collapse
|
317
|
Rendel F, Alfredsson CF, Bornehag C, Sundström BE, Nånberg E. Retracted: Effects of Di‐isononyl Phthalate on Neuropeptide Y Expression in Differentiating Human Neuronal Cells. Basic Clin Pharmacol Toxicol 2017; 120:318-323. [DOI: 10.1111/bcpt.12670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Filip Rendel
- Biomedical Sciences Karlstad University Karlstad Sweden
| | | | - Carl‐Gustaf Bornehag
- Public Health Science Department of Health Sciences Faculty of Health, Science and Technology Karlstad University Karlstad Sweden
- Icahn School of Medicine at Mount Sinai New York NYUSA
| | | | - Eewa Nånberg
- Biomedical Sciences Karlstad University Karlstad Sweden
| |
Collapse
|
318
|
Wang L, Goebel-Stengel M, Yuan PQ, Stengel A, Taché Y. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones. Biol Sex Differ 2017; 8:2. [PMID: 28101317 PMCID: PMC5237138 DOI: 10.1186/s13293-016-0122-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/14/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. METHODS Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. RESULTS Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. CONCLUSIONS These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| | - Miriam Goebel-Stengel
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA ; Present address: Department for Internal Medicine, Martin-Luther-Krankenhaus, Caspar-Theyß-Str. 27-31, 14193 Berlin, Germany
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| | - Andreas Stengel
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA ; Present address: Department for Psychosomatic Medicine, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| |
Collapse
|
319
|
Albrecht A, Müller I, Ardi Z, Çalışkan G, Gruber D, Ivens S, Segal M, Behr J, Heinemann U, Stork O, Richter-Levin G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neurosci Biobehav Rev 2017; 74:21-43. [PMID: 28088535 DOI: 10.1016/j.neubiorev.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
ALBRECHT, A., MÜLLER, I., ARDI, Z., ÇALIŞKAN, G., GRUBER, D., IVENS, S., SEGAL, M., BEHR, J., HEINEMANN, U., STORK, O., and RICHTER-LEVIN, G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. NEUROSCI BIOBEHAV REV XXX-XXX, 2016.- Childhood adversity is among the most potent risk factors for developing mood and anxiety disorders later in life. Therefore, understanding how stress during childhood shapes and rewires the brain may optimize preventive and therapeutic strategies for these disorders. To this end, animal models of stress exposure in rodents during their post-weaning and pre-pubertal life phase have been developed. Such 'juvenile stress' has a long-lasting impact on mood and anxiety-like behavior and on stress coping in adulthood, accompanied by alterations of the GABAergic system within core regions for the stress processing such as the amygdala, prefrontal cortex and hippocampus. While many regionally diverse molecular and electrophysiological changes are observed, not all of them correlate with juvenile stress-induced behavioral disturbances. It rather seems that certain juvenile stress-induced alterations reflect the system's attempts to maintain homeostasis and thus promote stress resilience. Analysis tools such as individual behavioral profiling may allow the association of behavioral and neurobiological alterations more clearly and the dissection of alterations related to the pathology from those related to resilience.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Iris Müller
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| | - Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - David Gruber
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Sebastian Ivens
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Herzl St 234, 7610001 Rehovot, Israel
| | - Joachim Behr
- Research Department of Experimental and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Garystraße 5, 14195 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Brandenburg Medical School - Campus Neuruppin, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | - Uwe Heinemann
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Psychology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| |
Collapse
|
320
|
Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods Mol Biol 2017; 1598:117-154. [PMID: 28508360 DOI: 10.1007/978-1-4939-6952-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - James Meyerhoff
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA.
| |
Collapse
|
321
|
Schmeltzer SN, Herman JP, Sah R. Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Exp Neurol 2016; 284:196-210. [PMID: 27377319 PMCID: PMC8375392 DOI: 10.1016/j.expneurol.2016.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-evoked syndrome, with variable prevalence within the human population due to individual differences in coping and resiliency. In this review, we discuss evidence supporting the relevance of neuropeptide Y (NPY), a stress regulatory transmitter in PTSD. We consolidate findings from preclinical, clinical, and translational studies of NPY that are of relevance to PTSD with an attempt to provide a current update of this area of research. NPY is abundantly expressed in forebrain limbic and brainstem areas that regulate stress and emotional behaviors. Studies in rodents demonstrate a role for NPY in stress responses, anxiety, fear, and autonomic regulation, all relevant to PTSD symptomology. Genetic studies support an association of NPY polymorphisms with stress coping and affect. Importantly, cerebrospinal fluid (CSF) measurements in combat veterans provide direct evidence of NPY association with PTSD diagnosis and symptomology. In addition, NPY involvement in pain, depression, addiction, and metabolism may be relevant to comorbidities associated with PTSD. Collectively, the literature supports the relevance of NPY to PTSD pathophysiology, although knowledge gaps remain. The NPY system is an attractive target in terms of understanding the physiological basis of PTSD as well as treatment of the disorder.
Collapse
Affiliation(s)
- Sarah N Schmeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States; VA Medical Center, Cincinnati, OH, 45220, United States.
| |
Collapse
|
322
|
Abstract
The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota.
Collapse
Affiliation(s)
- P Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
323
|
Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C, Fröhlich E, Kashofer K, Gorkiewicz G, Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 2016; 56:140-55. [PMID: 26923630 PMCID: PMC5014122 DOI: 10.1016/j.bbi.2016.02.020] [Citation(s) in RCA: 504] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Angela Jačan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Bernhard Wagner
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Erwin Zinser
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Natalie Bordag
- Center for Biomarker Research in Medicine, CBmed GmbH, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Microscopy, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; BioTechMed-Graz, Krenngasse 37/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| |
Collapse
|
324
|
Borrow AP, Stranahan AM, Suchecki D, Yunes R. Neuroendocrine Regulation of Anxiety: Beyond the Hypothalamic-Pituitary-Adrenal Axis. J Neuroendocrinol 2016; 28. [PMID: 27318180 DOI: 10.1111/jne.12403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
The central nervous system regulates and responds to endocrine signals, and this reciprocal relationship determines emotional processing and behavioural anxiety. Although the hypothalamic-pituitary-adrenal (HPA) axis remains the best-characterised system for this relationship, other steroid and peptide hormones are increasingly recognised for their effects on anxiety-like behaviour and reward. The present review examines recent developments related to the role of a number of different hormones in anxiety, including pregnane neurosteroids, gut peptides, neuropeptides and hormonal signals derived from fatty acids. Findings from both basic and clinical studies suggest that these alternative systems may complement or occlude stress-induced changes in anxiety and anxiety-like behaviour. By broadening the scope of mechanisms for depression and anxiety, it may be possible to develop novel strategies to attenuate stress-related psychiatric conditions. The targets for these potential therapies, as discussed in this review, encompass multiple circuits and systems, including those outside of the HPA axis.
Collapse
Affiliation(s)
- A P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - D Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R Yunes
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Mendoza, Mendoza, Argentina
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
325
|
Reichmann F, Wegerer V, Jain P, Mayerhofer R, Hassan AM, Fröhlich EE, Bock E, Pritz E, Herzog H, Holzer P, Leitinger G. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice. Sci Rep 2016; 6:28182. [PMID: 27305846 PMCID: PMC4910086 DOI: 10.1038/srep28182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
Abstract
Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation.
Collapse
Affiliation(s)
- Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Vanessa Wegerer
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Piyush Jain
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Ahmed M. Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Esther E. Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Elisabeth Bock
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Elisabeth Pritz
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Gerd Leitinger
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
326
|
Lu Y, Ho RCM. An association between neuropeptide Y levels and leukocyte subsets in stress-exacerbated asthmatic mice. Neuropeptides 2016; 57:53-8. [PMID: 26673939 DOI: 10.1016/j.npep.2015.11.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 02/07/2023]
Abstract
Neuropeptide Y (NPY) was recently proposed to be associated with stress and airway inflammation; however, this has rarely been studied in animal models of asthma. Twenty-four C57BL/6 mice were randomly divided into 3 groups of 8 each: naive control group, asthma group (with an established asthma model), and stressed asthma group (with established asthma and stress models). Bronchoalveolar lavage (BAL) fluid was collected for total cell counts using a hemocytometer and for cytological examinations by Wright stain. Differential inflammatory cell counts were performed to identify eosinophils, macrophages, neutrophils, and lymphocytes. NPY and corticosterone serum levels were determined with enzyme immunoassay kits. Stress was associated with increased airway inflammatory response, which was manifested by the accumulation of total leukocytes and eosinophils in the BAL fluid in comparison with the asthma and the control groups. The levels of NPY (p<0.05) and corticosterone (p<0.01) were elevated in the stressed asthma group in comparison with the control and asthma groups. The concentration of NPY and corticosterone positively correlated with the total leukocyte count (r=0.892, p<0.05 and r=0.937, p<0.01 respectively) and eosinophil numbers (r=0.806, p=0.053 and r=0.885, p<0.01 respectively). Stress may be associated with elevated peripheral NPY level, which was observed to be associated with exacerbated airway inflammation in asthmatic mice.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | - Roger Chun-Man Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
327
|
Wagner L, Kaestner F, Wolf R, Stiller H, Heiser U, Manhart S, Hoffmann T, Rahfeld JU, Demuth HU, Rothermundt M, von Hörsten S. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation. Neuropeptides 2016; 57:21-34. [PMID: 26988064 DOI: 10.1016/j.npep.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP4; EC 3.4.14.5; CD26) is a membrane-bound or shedded serine protease that hydrolyzes dipeptides from the N-terminus of peptides with either proline or alanine at the penultimate position. Substrates of DPP4 include several stress-related neuropeptides implicated in anxiety, depression and schizophrenia. A decline of DPP4-like activity has been reported in sera from depressed patient, but not fully characterized regarding DPP4-like enzymes, therapeutic interventions and protein. METHODS Sera from 16 melancholic- and 16 non-melancholic-depressed patients were evaluated for DPP4-like activities and the concentration of soluble DPP4 protein before and after treatment by anti-depressive therapies. Post-translational modification of DPP4-isoforms and degradation of NPY, Peptide YY (PYY), Galanin-like peptide (GALP), Orexin B (OrxB), OrxA, pituitary adenylate cyclase-activating polypeptide (PACAP) and substance P (SP) were studied in serum and in ex vivo human blood. N-terminal truncation of biotinylated NPY by endothelial membrane-bound DPP4 versus soluble DPP4 was determined in rat brain perfusates and spiked sera. RESULTS Lower DPP4 activities in depressed patients were reversed by anti-depressive treatment. In sera, DPP4 contributed to more than 90% of the overall DPP4-like activity and correlated with its protein concentration. NPY displayed equal degradation in serum and blood, and was equally truncated by serum and endothelial DPP4. In addition, GALP and rat OrxB were identified as novel substrates of DPP4. CONCLUSION NPY is the best DPP4-substrate in blood, being truncated by soluble and membrane DPP4, respectively. The decline of soluble DPP4 in acute depression could be reversed upon anti-depressive treatment. Peptidases from three functional compartments regulate the bioactivity of NPY in blood.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e,V., Stuttgart, Germany; Probiodrug AG, Halle, Germany; Universitätsklinikum Erlangen, Department of Experimental Therapy, Erlangen, Germany.
| | - Florian Kaestner
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Raik Wolf
- Center for Clinical Chemistry, Microbiology and Transfusion, Klinikum St. Georg gGmbH, Germany; Probiodrug AG, Halle, Germany
| | | | | | | | - Torsten Hoffmann
- Center for Clinical Chemistry, Microbiology and Transfusion, Klinikum St. Georg gGmbH, Germany
| | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Münster, Münster, Germany; St. Rochus-Hospital Telgte, 48291 Telgte, Germany
| | - Stephan von Hörsten
- Universitätsklinikum Erlangen, Department of Experimental Therapy, Erlangen, Germany.
| |
Collapse
|