301
|
Wang H, Feng J, Ao F, Tang Y, Xu P, Wang M, Huang M. Tumor-derived exosomal microRNA-7-5p enhanced by verbascoside inhibits biological behaviors of glioblastoma in vitro and in vivo. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:569-582. [PMID: 33768139 PMCID: PMC7972934 DOI: 10.1016/j.omto.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Verbascoside (VB), a glycosylated phenylpropane compound, has been widely used in traditional medicine showing anti-inflammatory and anti-tumor effects in many diseases. The current study aimed to investigate the mechanism underlying the inhibitor effect of VB on glioblastoma (GBM). We isolated and identified the tumor-derived exosomes (TEXs) secreted by GBM cells before and after treatment with VB, after which, we detected expression of microRNA (miR)-7-5p in cells and TEXs by qRT-PCR. Loss- and gain-function assays were conducted to determine the role of miR-7-5p in GBM cells with the proliferation, apoptosis, invasion, migration, and microtubule formation of GBM cells detected. A subcutaneous tumor model and tumor metastasis model of nude mice were established to validate the in vitro findings. We found that VB promoted the expression of miR-7-5p in GBM and transferred miR-7-5p to recipient GBM cells by exosomal delivery. Consequently, miR-7-5p downregulated epidermal growth factor receptor (EGFR) expression to inactivate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, causing inhibition in the proliferation, migration, invasion, and microtubule formation of GBM cells in vitro, as well as decline in tumor formation and metastasis in vivo. Overall, VB can promote the expression of miR-7-5p in GBM cells and transfer miR-7-5p via exosomes, thereby inhibiting the occurrence of GBM.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Jiangxi Provincial Corps Hospital of Chinese People’s Armed Police Forces, Nanchang 330001, PR China
| | - Jiugeng Feng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Fan Ao
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, PR China
| | - Yiqiang Tang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, PR China
| | - Pengliang Xu
- Department of Neurosurgery, Jiangxi Provincial Corps Hospital of Chinese People’s Armed Police Forces, Nanchang 330001, PR China
| | - Min Wang
- Department of Neurosurgery, Jiangxi Provincial Corps Hospital of Chinese People’s Armed Police Forces, Nanchang 330001, PR China
| | - Min Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, PR China
- Corresponding author: Min Huang, Department of Radiation Oncology, Jiangxi Cancer Hospital, No. 519, Eastern Beijing Road, Nanchang 330029, Jiangxi Province, PR China.
| |
Collapse
|
302
|
Wang GH, Wang LY, Zhang C, Zhang P, Wang CH, Cheng S. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B. Open Med (Wars) 2020; 15:872-881. [PMID: 33336045 PMCID: PMC7712056 DOI: 10.1515/med-2020-0156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022] Open
Abstract
This study attempted to research the molecular mechanism underlying the inhibitory role of miR-1225-5p in the malignant progression of glioblastoma. Bioinformatics analyses based on the gene expression omnibus (GEO) and Chinese glioma genome atlas (CGGA) databases showed that miR-1225-5p, as a favorable prognostic factor, was expressed at low levels in glioblastoma, and its expression was also related to WHO grade and age. The subsequent CCK-8 assay indicated that miR-1225-5p might prevent the malignant progression of glioblastoma, which was represented by that miR-1225-5p mimic reduced the viability of glioblastoma cells. Then, we predicted that FNDC3B might be a potential target gene of miR-1225-5p, and it was negatively correlated with the level of miR-1225-5p, which were confirmed by dual-luciferase reporter assay, qRT-PCR and western blot assays. Moreover, based on the analyses of the cancer genome atlas (TCGA), Oncomine and CGGA databases, FNDC3B was enriched in glioblastoma and high expression of FNDC3B led to poor prognosis. Finally, CCK8 and transwell experiments showed that the ability of miR-1225-5p to inhibit glioblastoma cell viability, invasion and migration was at least partially achieved by targeting FNDC3B. In general, these results revealed that the miR-1225-5p/FNDC3B axis contributes to inhibiting the malignant phenotype of glioblastoma cells, which lays a foundation for molecular diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Guo-Hua Wang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Liang-Yan Wang
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong , 261000, People's Republic of China
| | - Cui Zhang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Chuan-Hui Wang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Shuai Cheng
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| |
Collapse
|
303
|
Ardizzone A, Scuderi SA, Giuffrida D, Colarossi C, Puglisi C, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers (Basel) 2020; 12:E3825. [PMID: 33352931 PMCID: PMC7766440 DOI: 10.3390/cancers12123825] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Despite pharmacological treatments and surgical practice options, the mortality rate of astrocytomas and glioblastomas remains high, thus representing a medical emergency for which it is necessary to find new therapeutic strategies. Fibroblast growth factors (FGFs) act through their associated receptors (FGFRs), a family of tyrosine kinase receptors consisting of four members (FGFR1-4), regulators of tissue development and repair. In particular, FGFRs play an important role in cell proliferation, survival, and migration, as well as angiogenesis, thus their gene alteration is certainly related to the development of the most common diseases, including cancer. FGFRs are subjected to multiple somatic aberrations such as chromosomal amplification of FGFR1; mutations and multiple dysregulations of FGFR2; and mutations, translocations, and significant amplifications of FGFR3 and FGFR4 that correlate to oncogenesis process. Therefore, the in-depth study of these receptor systems could help to understand the etiology of both astrocytoma and glioblastoma so as to achieve notable advances in more effective target therapies. Furthermore, the discovery of FGFR inhibitors revealed how these biological compounds improve the neoplastic condition by demonstrating efficacy and safety. On this basis, this review focuses on the role and involvement of FGFRs in brain tumors such as astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Dario Giuffrida
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Caterina Puglisi
- IOM Ricerca Srl, Via Penninazzo 11, 95029 Viagrande (CT), Italy;
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| |
Collapse
|
304
|
Mitra R, Ayyannan SR. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview. ChemMedChem 2020; 16:777-787. [PMID: 33210828 DOI: 10.1002/cmdc.202000706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a dreadful cancer characterised by poor prognosis, low survival rate and difficult clinical correlations. Several signalling pathways and molecular mediators are known to precipitate GBM, and small-molecular targets of these mediators have become a favoured thrust area for researchers to develop potent anti-GBM drugs. Shp2, an important phosphatase of the nonreceptor type protein tyrosine phosphatase (PTPN) subfamily is responsible for master regulation of several such signalling pathways in normal and glioma cells. Thus, inhibition of Shp2 is a logical strategy for the design and development of anti-neoplastic drugs against GBM. Though tapping the full potential of Shp2 binding sites has been challenging, nevertheless, many synthetic and natural scaffolds have been documented as possessing potent and selective anti-Shp2 activities in biochemical and cellular assays, through either active-site or allosteric binding. Most of these scaffolds share a few common pharmacophoric features, a thorough study of which is useful in paving the way for the design and development of improved Shp2 inhibitors. This minireview summarizes the current scenario of potent small-molecule Shp2 inhibitors and emphasizes the anti-GBM potential of some important scaffolds that have shown promising GBM-specific activity in in vitro and in vivo models, thus proving their efficacy in GBM therapy. This review could guide researchers to design new and improved anti-Shp2 pharmacophores and develop them as anti-GBM agents by employing GBM-centric drug-discovery protocols.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
305
|
Wan J, Guo AA, King P, Guo S, Saafir T, Jiang Y, Liu M. TRPM7 Induces Tumorigenesis and Stemness Through Notch Activation in Glioma. Front Pharmacol 2020; 11:590723. [PMID: 33381038 PMCID: PMC7768084 DOI: 10.3389/fphar.2020.590723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
We have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database. Next, we determined whether TRPM7 silencing by siRNA TRPM7 (siTRPM7) induces cell growth arrest or apoptosis to reduce glioma cell proliferation using cell cycle analysis and annexin V staining assay. We then examined the correlations between the expression of TRPM7 and Notch signaling activity as well as the expression of GSC markers CD133 and ALDH1 in GBM by downregulating TRPM7 through siTRPM7 or upregulating TRPM7 through overexpression of human TRPM7 (M7-wt). To distinguish the different function of channel and kinase domain of TRPM7, we further determined how the α-kinase-dead mutants of TRPM7 (α-kinase domain deleted/M7-DK and K1648R point mutation/M7-KR) affect Notch activities and CD133 and ALDH1 expression. Lastly, we determined the changes in TRPM7-mediated regulation of glioma cell growth/proliferation, cell cycle, and apoptosis by targeting Notch1. The Oncomine data revealed a significant increase in TRPM7 mRNA expression in anaplastic astrocytoma, diffuse astrocytoma, and GBM patients compared to that in normal brain tissues. TRPM7 silencing reduced glioma cell growth by inhibiting cell entry into S and G2/M phases and promoting cell apoptosis. TRPM7 expression in GBM cells was found to be positively correlated with Notch1 signaling activity and CD133 and ALDH1 expression; briefly, downregulation of TRPM7 by siTRPM7 decreased Notch1 signaling whereas upregulation of TRPM7 increased Notch1 signaling. Interestingly, kinase-inactive mutants (M7-DK and M7-KR) resulted in reduced activation of Notch1 signaling and decreased expression of CD133 and ALDH1 compared to that of wtTRPM7. Finally, targeting Notch1 effectively suppressed TRPM7-induced growth and proliferation of glioma cells through cell G1/S arrest and apoptotic induction. TRPM7 is responsible for sustained Notch1 signaling activation, enhanced expression of GSC markers CD133 and ALDH1, and regulation of glioma stemness, which contributes to malignant glioma cell growth and invasion.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu,
| |
Collapse
|
306
|
Mondal I, Kulshreshtha R. Potential of microRNA based diagnostics and therapeutics in glioma: a patent review. Expert Opin Ther Pat 2020; 31:91-106. [PMID: 33054467 DOI: 10.1080/13543776.2021.1837775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Glioma is a group of tumors that are usually derived from the glial cells of the central nervous system and glioblastoma is the deadliest among them. It has a dismal prognosis and no potential cure at this point. Thus, there is an utmost need for novel, more effective therapeutics, and early and accurate diagnostics for improved survival of glioma patients. MicroRNAs, having altered expression in glioma and being excellent regulators of gene expression with multi-pathway targeting abilities, offer to be a suitable candidate. AREAS COVERED This review summarizes microRNA-based patents that have been granted in the fields of diagnostics and therapeutics of glioma until May 2020. A comprehensive discussion has been attempted, delving into the claims and basis of each patent. EXPERT OPINION MicroRNA-based anti-cancer research has been extensively carried out throughout the last decade and the results look promising. These molecules can be efficient biomarkers of glioma and used as therapeutic targets/agents. But, just like any other evolving medical technology, it also faces challenges for moving from the bench to the bedside. However, if correctly addressed, these problems can be overcome, and microRNA-based technologies can advance to be efficient tools for the treatment of glioma.
Collapse
Affiliation(s)
- Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , New Delhi, India
| |
Collapse
|
307
|
Advanced magnetic resonance imaging to support clinical drug development for malignant glioma. Drug Discov Today 2020; 26:429-441. [PMID: 33249294 DOI: 10.1016/j.drudis.2020.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Even though the treatment options and survival of patients with glioblastoma multiforme (GBM), the most common type of malignant glioma, have improved over the past decade, there is still a high unmet medical need to develop novel therapies. Complexity in pathology and therapy require biomarkers to characterize tumors, to define malignant and active areas, to assess disease prognosis, and to quantify and monitor therapy response. While conventional magnetic resonance imaging (MRI) techniques have improved these assessments, limitations remain. In this review, we evaluate the role of various non-invasive biomarkers based on advanced structural and functional MRI techniques in the context of GBM drug development over the past 5 years.
Collapse
|
308
|
Xu H, Han Y, Zhao G, Zhang L, Zhao Z, Wang Z, Zhao L, Hua L, Naveena K, Lu J, Yu R, Liu H. Hypoxia-Responsive Lipid-Polymer Nanoparticle-Combined Imaging-Guided Surgery and Multitherapy Strategies for Glioma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52319-52328. [PMID: 33166112 DOI: 10.1021/acsami.0c12971] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glioma is the most prevalent type of malignant brain tumor and is usually very aggressive. Because of the high invasiveness and aggressive proliferative growth of glioma, it is difficult to resect completely or cure with surgery. Residual glioma cells are a primary cause of postoperative recurrence. Herein, we describe a hypoxia-responsive lipid polymer nanoparticle (LN) for fluorescence-guided surgery, chemotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT) combination multitherapy strategies targeting glioma. The hypoxia-responsive LN [LN (DOX + ICG)] contains a hypoxia-responsive component poly(nitroimidazole)25 [P-(Nis)25], the glioma-targeting peptide angiopep-2 (A2), indocyanine green (ICG), and doxorubicin (DOX). LN (DOX + ICG) comprises four distinct functional components: (1) A2: A2 modified nanoparticles effectively target gliomas, enhancing drug concentration in gliomas; (2) P-(Nis)25: (i) the hydrophobic component of LN (DOX + ICG) with hypoxia responsive ability to encapsulate DOX and ICG; (ii) allows rapid release of DOX from LN (DOX + ICG) after 808 nm laser irradiation; (3) ICG: (i) ICG allows imaging-guided surgery, combining PDT and PTT therapies; (ii) upon irradiation with an 808 nm laser, ICG creates a hypoxic environment; (4) DOX inhibits glioma growth. This work demonstrates that LN (DOX + ICG) might provide a novel clinical approach to preventing post-surgical recurrence of glioma.
Collapse
Affiliation(s)
- Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Yuhan Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Zhen Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Liang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Lei Hua
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Konduru Naveena
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| |
Collapse
|
309
|
LNX1 Modulates Notch1 Signaling to Promote Expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 2020; 12:cancers12123505. [PMID: 33255632 PMCID: PMC7759984 DOI: 10.3390/cancers12123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common adult malignant brain tumor. It is an aggressive tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation. Our goal was to understand what genes are altered by temozolomide and how those genes may contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases the expression of Notch1, a gene important for glioblastoma progression. We further showed that the elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together, these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of Notch1 activity and the stem cell population, potentially resulting in increased patient survival. Abstract Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100% recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion, we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25). The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD). Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations. In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated Notch1 signaling promotes stemness and contributes to therapeutic resistance.
Collapse
|
310
|
Anastasi F, Greco F, Dilillo M, Vannini E, Cappello V, Baroncelli L, Costa M, Gemmi M, Caleo M, McDonnell LA. Proteomics analysis of serum small extracellular vesicles for the longitudinal study of a glioblastoma multiforme mouse model. Sci Rep 2020; 10:20498. [PMID: 33235327 PMCID: PMC7686310 DOI: 10.1038/s41598-020-77535-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Longitudinal analysis of disease models enables the molecular changes due to disease progression or therapeutic intervention to be better resolved. Approximately 75 µl of serum can be drawn from a mouse every 14 days. To date no methods have been reported that are able to analyze the proteome of small extracellular vesicles (sEV’s) from such low serum volumes. Here we report a method for the proteomics analysis of sEV's from 50 µl of serum. Two sEV isolation procedures were first compared; precipitation based purification (PPT) and size exclusion chromatography (SEC). The methodological comparison confirmed that SEC led to purer sEV’s both in terms of size and identified proteins. The procedure was then scaled down and the proteolytic digestion further optimized. The method was then applied to a longitudinal study of serum-sEV proteome changes in a glioblastoma multiforme (GBM) mouse model. Serum was collected at multiple time points, sEV’s isolated and their proteins analyzed. The protocol enabled 274 protein groups to be identified and quantified. The longitudinal analysis revealed 25 deregulated proteins in GBM serum sEV's including proteins previously shown to be associated with GBM progression and metastasis (Myh9, Tln-1, Angpt1, Thbs1).
Collapse
Affiliation(s)
- Federica Anastasi
- NEST Laboratories, Scuola Normale Superiore, 56127, Pisa, Italy.,Fondazione Pisana per la Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy
| | - Francesco Greco
- Fondazione Pisana per la Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy
| | - Marialaura Dilillo
- Fondazione Pisana per la Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy
| | - Eleonora Vannini
- CNR, Neuroscience Institute, 56124, Pisa, Italy.,Fondazione Umberto Veronesi, 20122, Milano, Italy
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, 56127, Pisa, Italy
| | - Laura Baroncelli
- CNR, Neuroscience Institute, 56124, Pisa, Italy.,IRCCS Fondazione Stella Maris, 56018, Calambrone, PI, Italy
| | - Mario Costa
- CNR, Neuroscience Institute, 56124, Pisa, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, 56127, Pisa, Italy
| | - Matteo Caleo
- CNR, Neuroscience Institute, 56124, Pisa, Italy.,Department of Biomedical Sciences, University of Padua, 335122, Padua, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy.
| |
Collapse
|
311
|
Eisenhut F, Schmidt MA, Putz F, Lettmaier S, Fröhlich K, Arinrad S, Coras R, Luecking H, Lang S, Fietkau R, Doerfler A. Classification of Primary Cerebral Lymphoma and Glioblastoma Featuring Dynamic Susceptibility Contrast and Apparent Diffusion Coefficient. Brain Sci 2020; 10:brainsci10110886. [PMID: 33233698 PMCID: PMC7699775 DOI: 10.3390/brainsci10110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to differentiate primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) via multimodal MRI featuring radiomic analysis. MRI data sets of patients with histological proven PCNSL and GBM were analyzed retrospectively. Diffusion-weighted imaging (DWI) and dynamic susceptibility contrast (DSC) perfusion imaging were evaluated to differentiate contrast enhancing intracerebral lesions. Selective (contrast enhanced tumor area with the highest mean cerebral blood volume (CBV) value) and unselective (contouring whole contrast enhanced lesion) Apparent diffusion coefficient (ADC) measurement was performed. By multivariate logistic regression, a multiparametric model was compiled and tested for its diagnostic strength. A total of 74 patients were included in our study. Selective and unselective mean and maximum ADC values, mean and maximum CBV and ratioCBV as quotient of tumor CBV and CBV in contralateral healthy white matter were significantly larger in patients with GBM than PCNSL; minimum CBV was significantly lower in GBM than in PCNSL. The highest AUC for discrimination of PCNSL and GBM was obtained for selective mean and maximum ADC, mean and maximum CBV and ratioCBV. By integrating these five in a multiparametric model 100% of the patients were classified correctly. The combination of perfusion imaging (CBV) and tumor hot-spot selective ADC measurement yields reliable radiological discrimination of PCNSL from GBM with highest accuracy and is readily available in clinical routine.
Collapse
Affiliation(s)
- Felix Eisenhut
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany; (M.A.S.); (H.L.); (S.L.); (A.D.)
- Correspondence: ; Tel.: +49-9131-853-9388
| | - Manuel A. Schmidt
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany; (M.A.S.); (H.L.); (S.L.); (A.D.)
| | - Florian Putz
- Department of Radiation Oncology, University of Erlangen-Nuremberg, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (S.L.); (R.F.)
| | - Sebastian Lettmaier
- Department of Radiation Oncology, University of Erlangen-Nuremberg, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (S.L.); (R.F.)
| | - Kilian Fröhlich
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany;
| | - Soheil Arinrad
- Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany;
| | - Roland Coras
- Department of Neuropathology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany;
| | - Hannes Luecking
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany; (M.A.S.); (H.L.); (S.L.); (A.D.)
| | - Stefan Lang
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany; (M.A.S.); (H.L.); (S.L.); (A.D.)
| | - Rainer Fietkau
- Department of Radiation Oncology, University of Erlangen-Nuremberg, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (S.L.); (R.F.)
| | - Arnd Doerfler
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany; (M.A.S.); (H.L.); (S.L.); (A.D.)
| |
Collapse
|
312
|
Lu L, Chen H, Wang L, Zhao L, Cheng Y, Wang A, Wang F, Zhang X. A Dual Receptor Targeting- and BBB Penetrating- Peptide Functionalized Polyethyleneimine Nanocomplex for Secretory Endostatin Gene Delivery to Malignant Glioma. Int J Nanomedicine 2020; 15:8875-8892. [PMID: 33209022 PMCID: PMC7669533 DOI: 10.2147/ijn.s270208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Vascular endothelial growth factor receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1) are two prominent synergistic receptors overexpressed on new blood vessels in glioma and may be promising targets for antiglioma therapy. The aim of this study was to design a dual receptor targeting and blood-brain barrier (BBB) penetrating peptide-modified polyethyleneimine (PEI) nanocomplex that can efficiently deliver the angiogenesis-inhibiting secretory endostatin gene (pVAXI-En) to treat glioma. MATERIALS AND METHODS We first constructed the tandem peptide TAT-AT7 by conjugating AT7 to TAT and evaluated its binding affinity to VEGFR-2 and NRP-1, vasculature-targeting ability and BBB crossing capacity. Then, TAT-AT7-modified PEI polymer (PPTA) was synthesized, and a pVAXI-En-loaded PPTA nanocomplex (PPTA/pVAXI-En) was prepared. The physicochemical properties, cytotoxicity, transfection efficiency, capacities to cross the BBB and BTB (blood-tumor barrier) and glioma-targeting properties of PPTA/pVAXI-En were investigated. Moreover, the in vivo anti-angiogenic behaviors and anti-glioma effects of PPTA/pVAXI-En were evaluated in nude mice. RESULTS The binding affinity of TAT-AT7 to VEGFR-2 and NRP-1 was approximately 3 to 10 times greater than that of AT7 or TAT. The cellular uptake of TAT-AT7 in endothelial cells was 5-fold and 119-fold greater than that of TAT and AT7 alone, respectively. TAT-AT7 also displayed remarkable efficiency in penetrating the BBB and glioma tissue in vivo. PPTA/pVAXI-En exhibited lower cytotoxicity, stronger BBB and BTB traversing abilities, higher selective glioma targeting and better gene transfection efficiency than PEI/pVAXI-En. More importantly, PPTA/pVAXI-En significantly suppressed the tube formation and migration of endothelial cells, inhibited glioma growth, and reduced the microvasculature in orthotopic U87 glioma-bearing nude mice. CONCLUSION Our study demonstrates that PPTA/pVAXI-En can be exploited as an efficient dual-targeting nanocomplex to cross the BBB and BTB, and hence it represents a feasible and promising nonviral gene delivery system for effective glioma therapy.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanna Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, UC Davis Health Medical Center, Sacramento, CA, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
313
|
Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int J Biol Macromol 2020; 167:906-920. [PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India.
| | - Nishant Rasal
- Department of Chemistry, Baburaoji Gholap College (affiliated to Savitribai Phule Pune University), Sangvi, Pune 411027, Maharashtra, India
| | - Rahul Sonawane
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh-30450, Perak, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| |
Collapse
|
314
|
Gregory JV, Kadiyala P, Doherty R, Cadena M, Habeel S, Ruoslahti E, Lowenstein PR, Castro MG, Lahann J. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat Commun 2020; 11:5687. [PMID: 33173024 PMCID: PMC7655867 DOI: 10.1038/s41467-020-19225-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM), the most aggressive form of brain cancer, has witnessed very little clinical progress over the last decades, in part, due to the absence of effective drug delivery strategies. Intravenous injection is the least invasive drug delivery route to the brain, but has been severely limited by the blood-brain barrier (BBB). Inspired by the capacity of natural proteins and viral particulates to cross the BBB, we engineered a synthetic protein nanoparticle (SPNP) based on polymerized human serum albumin (HSA) equipped with the cell-penetrating peptide iRGD. SPNPs containing siRNA against Signal Transducer and Activation of Transcription 3 factor (STAT3i) result in in vitro and in vivo downregulation of STAT3, a central hub associated with GBM progression. When combined with the standard of care, ionized radiation, STAT3i SPNPs result in tumor regression and long-term survival in 87.5% of GBM-bearing mice and prime the immune system to develop anti-GBM immunological memory.
Collapse
Affiliation(s)
- Jason V Gregory
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, 1500 E. Medical Center Drive SPC 5338, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, 1500 E. Medical Center Drive SPC 5338, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Melissa Cadena
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Samer Habeel
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, Building 235, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Pedro R Lowenstein
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, University of Michigan Medical School, 1500 E. Medical Center Drive SPC 5338, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Neurosurgery, University of Michigan Medical School, 1500 E. Medical Center Drive SPC 5338, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
315
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
316
|
Temozolomide Treatment Increases Fatty Acid Uptake in Glioblastoma Stem Cells. Cancers (Basel) 2020; 12:cancers12113126. [PMID: 33114573 PMCID: PMC7693784 DOI: 10.3390/cancers12113126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Patients diagnosed with glioblastoma (GBM) brain tumors typically survive less than two years, despite aggressive therapy with surgery, radiation, and chemotherapy. A major factor underlying this lethality is the ability of GBM tumors to adapt to stress, including the stress of treatment. The role of metabolism in this process remains incompletely understood. We, therefore, explored the connection between cellular phenotype, chemotherapeutic stress, and metabolism in GBM. We found that inducing changes in GBM phenotypes led to alterations in metabolic behavior. Further, during treatment with chemotherapy, GBM cells that became resistant to therapy increased their fatty acid uptake. These therapy-induced alterations in nutrient uptake may underlie therapy resistance and deadly recurrence. Abstract Among all cancers, glioblastoma (GBM) remains one of the least treatable. One key factor in this resistance is a subpopulation of tumor cells termed glioma stem cells (GSCs). These cells are highly resistant to current treatment modalities, possess marked self-renewal capacity, and are considered key drivers of tumor recurrence. Further complicating an understanding of GBM, evidence shows that the GSC population is not a pre-ordained and static group of cells but also includes previously differentiated GBM cells that have attained a GSC state secondary to environmental cues. The metabolic behavior of GBM cells undergoing plasticity remains incompletely understood. To that end, we probed the connection between GSCs, environmental cues, and metabolism. Using patient-derived xenograft cells, mouse models, transcriptomics, and metabolic analyses, we found that cell state changes are accompanied by sharp changes in metabolic phenotype. Further, treatment with temozolomide, the current standard of care drug for GBM, altered the metabolism of GBM cells and increased fatty acid uptake both in vitro and in vivo in the plasticity driven GSC population. These results indicate that temozolomide-induced changes in cell state are accompanied by metabolic shifts—a potentially novel target for enhancing the effectiveness of current treatment modalities.
Collapse
|
317
|
Zhao L, Zhu J, Gong J, Song N, Wu S, Qiao W, Yang J, Zhu M, Zhao J. Polyethylenimine-based theranostic nanoplatform for glioma-targeting single-photon emission computed tomography imaging and anticancer drug delivery. J Nanobiotechnology 2020; 18:143. [PMID: 33054757 PMCID: PMC7557081 DOI: 10.1186/s12951-020-00705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Glioma is the deadliest brain cancer in adults because the blood–brain-barrier (BBB) prevents the vast majority of therapeutic drugs from entering into the central nervous system. The development of BBB-penetrating drug delivery systems for glioma therapy still remains a great challenge. In this study, we aimed to design and develop a theranostic nanocomplex with enhanced BBB penetrability and tumor-targeting efficiency for glioma single-photon emission computed tomography (SPECT) imaging and anticancer drug delivery. Results This multifunctional nanocomplex was manufactured using branched polyethylenimine (PEI) as a template to sequentially conjugate with methoxypolyethylene glycol (mPEG), glioma-targeting peptide chlorotoxin (CTX), and diethylenetriaminepentaacetic acid (DTPA) for 99mTc radiolabeling on the surface of PEI. After the acetylation of the remaining PEI surface amines using acetic anhydride (Ac2O), the CTX-modified PEI (mPEI-CTX) was utilized as a carrier to load chemotherapeutic drug doxorubicin (DOX) in its interior cavity. The formed mPEI-CTX/DOX complex had excellent water dispersibility and released DOX in a sustainable and pH-dependent manner; furthermore, it showed targeting specificity and therapeutic effect of DOX toward glioma cells in vitro and in vivo (a subcutaneous tumor mouse model). Owing to the unique biological properties of CTX, the mPEI-CTX/DOX complex was able to cross the BBB and accumulate at the tumor site in an orthotopic rat glioma model. In addition, after efficient radiolabeling of PEI with 99mTc via DTPA, the 99mTc-labeled complex could help to visualize the drug accumulation in tumors of glioma-bearing mice and the drug delivery into the brains of rats through SPECT imaging. Conclusions These results indicate the potential of the developed PEI-based nanocomplex in facilitating glioma-targeting SPECT imaging and chemotherapy. ![]()
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Ningning Song
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Shan Wu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Wenli Qiao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
318
|
Li F, Shen ZZ, Xiao CM, Sha QK. YY1-mediated up-regulation of lncRNA LINC00466 facilitates glioma progression via miR-508/CHEK1. J Gene Med 2020; 23:e3287. [PMID: 33037684 DOI: 10.1002/jgm.3287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The abnormal expression of lncRNA LINC00466 (LINC00466) has been demonstrated in several tumor types. However, the expression pattern and functions of LINC00466 in glioma remain uninvestigated. METHODS A reverse transcriptase-polymerase chain reaction (RT-PCR) was utilized to analyze LINC00466 in human glioma tissues and cell lines. Luciferase reporter assays were performed to explore whether YY1 could bind to the promoter region of LINC00466. Cell counting kit-8, flow cytometry, colony-formation, transwell migration and invasion assays were carried out to determine the involvement of INC00466 in glioma. Luciferase assays and pulldown assays were conducted to verify the binding sites. RESULTS We report that LINC00466 expression is increased in glioma cells and tissues. YY1 transcription factor (YY1) can bind directly to the LINC00466 promoter region. Clinical studies revealed that the elevated expression of LINC00466 is closely correlated with an advanced World Health Organization grade (p = 0.008), Karnofsky Performance Status score (p = 0.004) and a short overall survival (p = 0.0035) of glioma patients. Functional assays revealed that LINC00466 knockdown distinctly suppresses glioma cell proliferation, migration, invasion and epithelial-mesenchymal progress, and also promotes apoptosis. Moreover, dual-luciferase reporter assays indicated that LINC00466 acts as an endogenous sponge via binding to miR-508 and decreasing its expression. Luciferase assays and RT-PCR assays demonstrated that checkpoint kinase 1 (CHEK1) is a target of miR-508, and LINC00466 modulates CHEK1 levels by competing for miR-508. LINC00466 may exhibit its anti-oncogenic roles through targeting the miR-508/CHEK1 axis. CONCLUSIONS Our findings identified a novel glioma-related long non-coding RNA, LINC00466, which may provide a potential novel prognostic and therapeutic target for glioma.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacy, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Zheng-Ze Shen
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chao-Ming Xiao
- Department of Neurology, the Second People's Hospital of Chongqing Dazu District, Chongqing, China
| | - Qian-Kun Sha
- Department of Pharmacy, Chongqing Yangdu Biology Institute, Chongqing, China
| |
Collapse
|
319
|
Current Perspectives on Therapies, Including Drug Delivery Systems, for Managing Glioblastoma Multiforme. ACS Chem Neurosci 2020; 11:2962-2977. [PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
Collapse
|
320
|
Zhou Y, Wang Y, Wu S, Yan Y, Hu Y, Zheng Z, Li J, Wu W. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells. Cell Death Dis 2020; 11:819. [PMID: 33004792 PMCID: PMC7530759 DOI: 10.1038/s41419-020-03024-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
Here we uncovered the involved subcellular mechanisms that sulforaphane-cysteine (SFN-Cys) inhibited invasion in human glioblastoma (GBM). SFN-Cys significantly upregulated 45 and downregulated 14 microtubule-, mitophagy-, and invasion-associated proteins in GBM cells via HPLC-MS/MS and GEO ontology analysis; SFN-Cys disrupted microtubule by ERK1/2 phosphorylation-mediated downregulation of α-tubulin and Stathmin-1 leading to the inhibition of cell migration and invasion; SFN-Cys downregulated invasion-associated Claudin-5 and S100A4, and decreased the interaction of α-tubulin to Claudin-5. Knockdown of Claudin-5 and S100A4 significantly reduced the migration and invasion. Besides, SFN-Cys lowered the expressions of α-tubulin-mediated mitophagy-associated proteins Bnip3 and Nix. Transmission electron microscopy showed more membrane-deficient mitochondria and accumulated mitophagosomes in GBM cells, and mitochondria fusion might be downregulated because that SFN-Cys downregulated mitochondrial fusion protein OPA1. SFN-Cys increased the colocalization and interplay of LC3 to lysosomal membrane-associated protein LAMP1, aggravating the fusion of mitophagosome to lysosome. Nevertheless, SFN-Cys inhibited the lysosomal proteolytic capacity causing LC3II/LC3I elevation but autophagy substrate SQSTM1/p62 was not changed, mitophagosome accumulation, and the inhibition of migration and invasion in GBM cells. These results will help us develop high-efficiency and low-toxicity anticancer drugs to inhibit migration and invasion in GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yalin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory for Invasion and Metastasis, Capital Medical University, No. 10, Xitoutiao, You An Men Wai Ave., Feng Tai District, Beijing, 100069, China.
| |
Collapse
|
321
|
Tan AW, Weljie AM. Metabolite Imaging at the Margin: Visualizing Metabolic Tumor Gradients Using Mass Spectrometry. Cancer Res 2020; 80:1231-1233. [PMID: 32169889 DOI: 10.1158/0008-5472.can-20-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) tumors are highly metabolic and vascularized, yet little has been reported regarding the spatial localization of metabolic activity within these tumors. A mass spectrometry imaging (MSI) study by Randall and colleagues in this issue provides provocative observations of metabolic gradients in xenograft GBM models. The intensity of acylcarnitines is dramatically increased at tumor margins, which interface with normal tissue, but not in tumor margins at the edge of the brain. A secondary examination of drug metabolites suggests that the observed metabolic gradients are pharmacologically relevant. These findings underscore previously undescribed spatial metabolic heterogeneity in GBM biology and opportunities for MSI investigations.See related article by Randall et al., p. 1258.
Collapse
Affiliation(s)
- Ai Wen Tan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
322
|
Portela M, Mitchell T, Casas-Tintó S. Cell-to-cell communication mediates glioblastoma progression in Drosophila. Biol Open 2020; 9:bio053405. [PMID: 32878880 PMCID: PMC7541342 DOI: 10.1242/bio.053405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and lethal tumour of the central nervous system (CNS). GB cells grow rapidly and display a network of projections, ultra-long tumour microtubes (TMs), that mediate cell to cell communication. GB-TMs infiltrate throughout the brain, enwrap neurons and facilitate the depletion of the signalling molecule wingless (Wg)/WNT from the neighbouring healthy neurons. GB cells establish a positive feedback loop including Wg signalling upregulation that activates cJun N-terminal kinase (JNK) pathway and matrix metalloproteases (MMPs) production, which in turn promote further TMs infiltration, GB progression and neurodegeneration. Thus, cellular and molecular signals other than primary mutations emerge as central players of GB. Using a Drosophila model of GB, we describe the temporal organisation of the main cellular events that occur in GB, including cell-to-cell interactions, neurodegeneration and TM expansion. We define the progressive activation of JNK pathway signalling in GB mediated by the receptor Grindelwald (Grnd) and activated by the ligand Eiger (Egr)/TNFα produced by surrounding healthy brain tissue. We propose that cellular interactions of GB with the healthy brain tissue precede TM expansion and conclude that non-autonomous signals facilitate GB progression. These results contribute to deciphering the complexity and versatility of these incurable tumours.
Collapse
Affiliation(s)
- Marta Portela
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, 3086 Melbourne, Australia
| | - Teresa Mitchell
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| |
Collapse
|
323
|
Sphenopalatine Ganglion Stimulation Upregulates Transport of Temozolomide across the Blood-Brain Barrier. Sci Pharm 2020. [DOI: 10.3390/scipharm88030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sphenopalatine ganglion (SPG) stimulation has been shown to reversibly alter blood-brain barrier (BBB) permeability. It is widely used for the treatment of cluster headaches in Europe and is well tolerated in humans. The therapeutic potential for SPG stimulation in other central nervous system (CNS) diseases has yet to be explored. Glioblastoma Multiforme (GBM) remains one of the most difficult primary CNS neoplasms to treat, with an average survival of approximately 18 months at the time of diagnosis. Since 2004, the gold standard of treatment for GBM in the United States includes surgery followed by treatment with temozolomide (TMZ) and radiation. We sought to determine if SPG stimulation could increase chemotherapy concentrations in rodent brains with an intact BBB. Here, we show a statistically significant (p = 0.0006), five-fold upregulation of TMZ crossing the BBB and reaching brain parenchyma in rats receiving low-frequency (LF, 10 Hz) SPG stimulation. All the measurements were performed using a highly sensitive liquid chromatography mass spectrometry (LCMS) method that was developed for quantitation of TMZ in plasma and brain tissue. Our treatment paradigm shows novel delivery route by which we could more effectively and safely deliver TMZ in a targeted manner, to minimize systemic toxicity and maximize action at the target tissue.
Collapse
|
324
|
Wu H, Wang C, Liu Y, Yang C, Liang X, Zhang X, Li X. miR-138-5p suppresses glioblastoma cell viability and leads to cell cycle arrest by targeting cyclin D3. Oncol Lett 2020; 20:264. [PMID: 32989398 PMCID: PMC7517571 DOI: 10.3892/ol.2020.12127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Although malignant glioblastoma (GBM) treatment has significantly improved in the past few decades, the prognosis of GBM remains unsatisfactory. MicroRNA (miR)-138-5p has been reported as a tumor suppressor in several types of human cancer; however, little is known about the function of miR-138-5p in GBM. The present study aimed to investigate the role of miR-138-5p in GBM as well as the underlying molecular mechanisms. The present study performed bioinformatics analysis, reverse transcription-quantitative (RT-q)PCR, western blotting, cell viability assays, colony formation assays, invasion assays and cell cycle analysis to investigate the biological function of miR-138-5p in both patient tissues and cell lines. In addition, miR-138-5p targets in GBM were predicted using Gene Expression Omnibus website and further validated by a dual luciferase reporter gene assay. The results revealed that miR-138-5p expression levels in patients with GBM from a Gene Expression Omnibus dataset were significantly downregulated. RT-qPCR analysis of miR-138-5p expression levels also revealed similar results in GBM tissues and cell lines. The upregulation of miR-138-5p expression levels using a mimic significantly inhibited the cell viability, colony formation and the G0/G1 to S progression in GBM cell lines, suggesting that miR-138-5p may be a tumor suppressor. Moreover, miR-138-5p was discovered to directly target cyclin D3 (CCND3), a protein that serves an important role in the cell cycle, and inhibited its expression. Finally, silencing CCND3 using small interfering RNA suppressed the viability of GBM cells. In conclusion, the results of the present study suggested that miR-138-5p may function as a tumor suppressor in GBM by targeting CCND3, indicating that miR-138-5p may be a novel therapeutic target for patients with GBM.
Collapse
Affiliation(s)
- Henggang Wu
- Department of Neurosurgery, Wenrong Hospital of Hengdian, Jinhua, Zhejiang 322118, P.R. China
| | - Cheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yajun Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaolong Liang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
325
|
Xiong Y, Lai X, Xiang W, Zhou J, Han J, Li H, Deng H, Liu L, Peng J, Chen L. Galangin (GLN) Suppresses Proliferation, Migration, and Invasion of Human Glioblastoma Cells by Targeting Skp2-Induced Epithelial-Mesenchymal Transition (EMT). Onco Targets Ther 2020; 13:9235-9244. [PMID: 32982310 PMCID: PMC7505705 DOI: 10.2147/ott.s264209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background Galangin (GLN), a pure natural flavonoid compound found in plants, has been shown to exert anti-cancer effects against multiple cancer types, including glioma. However, its underlying molecular mechanism remains unclear. Epithelial-to-mesenchymal transition (EMT) performs an important function in the genesis and development of cancer. Skp2, a pivotal component of SCFSkp2 E3 ubiquitin ligase, has been shown to function as an oncogene in GBM invasion that contributes to the EMT process. Thus, we explored whether GLN inhibited Skp2-mediated EMT and the mechanism underlying the Skp2 degradation pathway. Methods CCK-8 assay, wound healing assay and transwell assay were used to examine cell proliferation, migration, and invasion after treatment with or without GLN. RT-PCR and Western blotting analysis were performed to evaluate mRNA and protein expression, respectively. Co-immunoprecipitation was conducted to detect ubiquitinated Skp2 levels in vitro and in vivo after GLN treatment. Bioluminescence imaging was performed to examine the intracranial tumor size of U87 xenograft mice. Microscale thermophoresis (MST) experiment was used to detect interactions between Skp2 and GLN. Results GLN suppressed GBM cell growth, migration, and invasion, and also downregulated the expression of Skp2 and mesenchymal markers (Zeb1, N-cadherin, snail, vimentin) in vitro. Moreover, the overexpression of Skp2 in GBM cells decreased the effect of GLN on EMT. Furthermore, we demonstrated that GLN degraded skp2 protein through the ubiquitination proteasome pathway and directly interacted with skp2 protein, as shown through the MST assay. Conclusion This study is the first to identify Skp2 as a novel target of GLN for the treatment of GBM and report of Skp2 protein degradation in a ubiquitination proteasome pathway. Results from our study indicated the potential of GLN for the treatment of GBM through ubiquitin-mediated degradation of Skp2.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Xue Lai
- Day Surgery Center, Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Jizhong Han
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Hao Li
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Luotong Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Jianhua Peng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou 646000 People's Republic of China.,Academician (Expert) Workstation of Sichuan Province
| |
Collapse
|
326
|
Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, Kim DH. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release 2020; 328:350-367. [PMID: 32896613 DOI: 10.1016/j.jconrel.2020.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a particularly aggressive and malignant type of brain tumor, notorious for its high recurrence rate and low survival rate. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. These obstacles originate from a variety of factors such as genetics, anatomy, and cytology, all of which collectively hinder the treatment of GBM. Recent advances in materials and device engineering have presented new perspectives with regard to unconventional drug administration methods for GBM treatment. Such novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In this review, we first recapitulate the first-line therapy and clinical challenges in the current treatment of GBM. Afterwards, we introduce the latest technological advances in drug delivery strategies to improve the efficiency for GBM treatment, mainly focusing on materials and devices. We describe such efforts by classifying them into two categories, systemic and local drug delivery. Finally, we discuss unmet challenges and prospects for the clinical translation of these drug delivery technologies.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
327
|
Mendes M, Basso J, Silva J, Cova T, Sousa J, Pais A, Vitorino C. Biomimeting ultra-small lipid nanoconstructs for glioblastoma treatment: A computationally guided experimental approach. Int J Pharm 2020; 587:119661. [DOI: 10.1016/j.ijpharm.2020.119661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
|
328
|
Wei D, Hou J, Zheng K, Jin X, Xie Q, Cheng L, Sun X. Suicide Gene Therapy Against Malignant Gliomas by the Local Delivery of Genetically Engineered Umbilical Cord Mesenchymal Stem Cells as Cellular Vehicles. Curr Gene Ther 2020; 19:330-341. [PMID: 31657679 DOI: 10.2174/1566523219666191028103703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant tumor that is difficult to eliminate, and new therapies are thus strongly desired. Mesenchymal stem cells (MSCs) have the ability to locate to injured tissues, inflammation sites and tumors and are thus good candidates for carrying antitumor genes for the treatment of tumors. Treating GBM with MSCs that have been transduced with the herpes simplex virus thymidine kinase (HSV-TK) gene has brought significant advances because MSCs can exert a bystander effect on tumor cells upon treatment with the prodrug ganciclovir (GCV). OBJECTIVE In this study, we aimed to determine whether HSV-TK-expressing umbilical cord mesenchymal stem cells (MSCTKs) together with prodrug GCV treatment could exert a bystander killing effect on GBM. METHODS AND RESULTS Compared with MSCTK: U87 ratio at 1:10,1:100 and 1:100, GCV concentration at 2.5µM or 250µM, when MSCTKs were cocultured with U87 cells at a ratio of 1:1, 25 µM GCV exerted a more stable killing effect. Higher amounts of MSCTKs cocultured with U87 cells were correlated with a better bystander effect exerted by the MSCTK/GCV system. We built U87-driven subcutaneous tumor models and brain intracranial tumor models to evaluate the efficiency of the MSCTK/GCV system on subcutaneous and intracranial tumors and found that MSCTK/GCV was effective in both models. The ratio of MSCTKs and tumor cells played a critical role in this therapeutic effect, with a higher MSCTK/U87 ratio exerting a better effect. CONCLUSION This research suggested that the MSCTK/GCV system exerts a strong bystander effect on GBM tumor cells, and this system may be a promising assistant method for GBM postoperative therapy.
Collapse
Affiliation(s)
- Dan Wei
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - JiaLi Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Ke Zheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xin Jin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Qi Xie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| |
Collapse
|
329
|
Li M, Shao X, Wu C, Lu D, Liu K, Wang W, Liu J, Li H, Su W, Fang L. Chlorotoxin-derived bicyclic peptides for targeted imaging of glioblastomas. Chem Commun (Camb) 2020; 56:9537-9540. [PMID: 32691026 DOI: 10.1039/d0cc01089h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and efficient strategy was developed for accessing chlorotoxin-derived bicyclic peptide-biomolecule conjugates by cyclizing fully-unprotected linear peptides with a designed tetrafunctional chemical linker. Among these peptides, bicycle-P3 bearing the N-terminal sequence of chlorotoxin shows high tumor selectivity and penetration ability, which is promising for treatment of gliomas.
Collapse
Affiliation(s)
- Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Danyi Lu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wei Wang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jiakai Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
330
|
Zhou JX, Chen KF, Hu S, Dong JR, Wang HX, Su X, Wang YH, Chu JS. Up-regulation of circular RNA hsa_circ_01844 induces apoptosis and suppresses proliferation and migration of glioblastoma cells. Chin Med J (Engl) 2020; 134:81-87. [PMID: 32804726 PMCID: PMC7862802 DOI: 10.1097/cm9.0000000000000979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that various circular RNAs are involved in the malignant proliferation of cancers, such as liver cancer, lung cancer, breast cancer, and others. The potential role of circular RNAs in glioblastoma, however, is still uncertain. In this study, we aimed to study the potential role of hsa_circ_01844 in glioblastoma. METHODS Using reverse transcription-polymerase chain reaction (RT-PCR) method, hsa_circ_01844 expression was measured in five glioblastoma samples and five normal brain samples. To evaluate the potential function of hsa_circ_01844 in glioblastoma, hsa_circ_01844 was overexpressed in glioblastoma cell lines (U251 and U87 cells). Using these two cell lines, in vitro experiments including the flow cytometry assay, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Transwell assay, and cell apoptosis assay were performed to investigate the role of hsa_circ_01844 in glioblastoma. Student t test and one-way analysis of variance were used for statistical analysis. RESULTS The expression of circular RNA hsa_circ_01844 was lower in glioblastoma tissues when compared with the normal brain tissues by RT-PCR method (0.034 ± 0.036 vs. 1.630 ± 0.891, P < 0.001). Using two glioblastoma cell lines, we found that overexpression of hsa_circ_01844 in glioblastoma cells suppressed their proliferation, colony formation, migration, and increased the apoptotic rate compared with empty vector group and blank control group (all P < 0.05). CONCLUSION Hsa_circ_01844 shows decreased expression in glioblastoma and its overexpression induces apoptosis and inhibits proliferation, migration, and invasion of glioblastoma cells.
Collapse
Affiliation(s)
- Jin-Xu Zhou
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Ke-Fei Chen
- Department of Neurosurgery, Wuxi People's Hospital, Wuxi, Jiangsu 214000, China
| | - Shuai Hu
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Ji-Rong Dong
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Hong-Xiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200001, China
| | - Xin Su
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Jun-Sheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China
| |
Collapse
|
331
|
Wan X, Saban DV, Kim SN, Weng Y, Dammann P, Keyvani K, Sure U, Zhu Y. PDCD10-Deficiency Promotes Malignant Behaviors and Tumor Growth via Triggering EphB4 Kinase Activity in Glioblastoma. Front Oncol 2020; 10:1377. [PMID: 32850441 PMCID: PMC7427606 DOI: 10.3389/fonc.2020.01377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
We previously reported an angiogenic and tumor-suppressor-like function of programmed cell death 10 (PDCD10) in glioblastoma (GBM). However, the underlying mechanism remains to be elucidated. We hypothesized that loss of PDCD10 activates GBM cells and tumor progression via EphB4. To this end, PDCD10 was knocked down in U87 and T98g by lentiviral mediated shRNA transduction (shPDCD10). GBM cell phenotype in vitro and tumor growth in a mouse xenograft model were investigated in presence or absence of the treatment with a specific EphB4 kinase inhibitor NVP-BHG712 (NVP). We demonstrated that knockdown of PDCD10 in GBM cells significantly upregulated the mRNA and protein expression of EphB4 accompanied by the activation of Erk1/2. EphB4 kinase activity, reflected by phospho-EphB4, significantly increased in shPDCD10 GBM cells, and in tumors derived from shPDCD10 GBM xenografts, which was abolished by the treatment with NVP. Furthermore, NVP treatment significantly suppressed PDCD10-knockdown mediated aggressive GBM cell phenotype in vitro and extensive tumor cell proliferation, the tumor neo-angiogenesis, and a quick progression of tumor formation in vivo. In summary, loss of PDCD10 activates GBM cells and promotes tumor growth via triggering EphB4. Targeting EphB4 might be an effective strategy particularly for the personalized therapy in GBM patients with PDCD10-deficiency.
Collapse
Affiliation(s)
- Xueyan Wan
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dino Vitali Saban
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yinlun Weng
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
332
|
Malueka RG, Dwianingsih EK, Bayuangga HF, Panggabean AS, Argo IW, Donurizki AD, Shaleh S, Wicaksono AS, Dananjoyo K, Asmedi A, Hartanto RA. Clinicopathological Features and Prognosis of Indonesian Patients with Gliomas with IDH Mutation: Insights into Its Significance in a Southeast Asian Population. Asian Pac J Cancer Prev 2020; 21:2287-2295. [PMID: 32856857 PMCID: PMC7771930 DOI: 10.31557/apjcp.2020.21.8.2287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Gliomas remain one of the most common primary brain tumors. Mutations in the isocitrate dehydrogenase (IDH) gene are associated with a distinct set of clinicopathological profiles. However, the distribution and significance of these mutations have never been studied in the Indonesian population. This study aimed to elucidate the association between IDH mutations and clinicopathological as well as prognostic profiles of Indonesian patients with gliomas. Methods: In total, 106 patients with gliomas were recruited from a tertiary academic medical center in Yogyakarta, Indonesia. Formalin-fixed paraffin-embedded and fresh tissue specimens were obtained and sectioned for hematoxylin-eosin staining and immunohistochemical examinations. Genomic DNA was isolated and analyzed for the presence of IDH mutations using standard polymerase chain reaction and nucleotide sequencing methods. Clinicopathological data were collected from medical records. Results: Although no IDH2 mutation was identified, IDH1 mutations were found in 23 (21.7%) of the patients. Patients with IDH1 mutations tended to have a history of smoking and a shorter interval between onset of symptoms and initial surgical interventions. Frontal lobe involvement, oligodendroglial histology, lower Ki67 expression, WHO grades II and III gliomas, and methylated O6-methylguanine-DNA methyltransferase (MGMT) promoters were significantly associated with the presence of IDH1 mutations. Compared with patients with IDH1-wild-type, patients with IDH1 mutation were observed to have a longer overall survival. Conclusions: IDH1 mutations are associated with certain clinicopathological and prognostic profiles in Indonesian patients with gliomas. This finding demonstrates the importance of identifying IDH mutations as part of the management of patients with glioma in Indonesia.
Collapse
Affiliation(s)
- Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Halwan Fuad Bayuangga
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ibnu Widya Argo
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Aditya Dwi Donurizki
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Sabillal Shaleh
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Adiguno Suryo Wicaksono
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Kusumo Dananjoyo
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Asmedi
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rachmat Andi Hartanto
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
333
|
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Mercea PA, Jaklin FJ, Hervey-Jumper S, Roessler K, Berger MS, Widhalm G, Erhart F. TCGA mRNA Expression Analysis of the Heme Biosynthesis Pathway in Diffusely Infiltrating Gliomas: A Comparison of Typically 5-ALA Fluorescent and Non-Fluorescent Gliomas. Cancers (Basel) 2020; 12:cancers12082043. [PMID: 32722247 PMCID: PMC7466145 DOI: 10.3390/cancers12082043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a fluorescent dye that after metabolization to Protoporphyrin IX (PpIX) by the heme biosynthesis pathway typically leads to visible fluorescence in WHO grade IV but not grade II gliomas. The exact mechanism for high PpIX levels in WHO grade IV gliomas and low PpIX levels in WHO grade II gliomas is not fully clarified. To detect relevant changes in mRNA expression, we performed an in-silico analysis of WHO grade II and IV glioma sequencing datasets provided by The Cancer Genome Atlas (TCGA) to investigate mRNA expression levels of relevant heme biosynthesis genes: Solute Carrier Family 15 Member 1 and 2 (SLC15A1 and SLC15A2), Aminolevulinate-Dehydratase (ALAD), Hydroxymethylbilane-Synthase (HMBS), Uroporphyrinogen-III-Synthase (UROS), Uroporphyrinogen-Decarboxylase (UROD), Coproporphyrinogen-Oxidase (CPOX), Protoporphyrinogen-Oxidase (PPOX), ATP-binding Cassette Subfamily B Member 6 (ABCB6)/G Member 2 (ABCG2) and Ferrochelatase (FECH). Altogether, 258 WHO grade II and 166 WHO grade IV samples were investigated. The mRNA expression levels showed significant differences in 8 of 11 examined genes between WHO grade II and IV gliomas. Significant differences in mRNA expression included increases of HMBS, UROD, FECH and PPOX as well as decreases of SLC15A2, ALAD, UROS and ABCB6 in WHO IV gliomas. Since the majority of changes was found in directions that might actually impair PpIX accumulation in WHO grade IV gliomas, additional studies are needed to analyze the corresponding factors of the heme biosynthesis also on protein level.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Daniela Lötsch
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Thomas Roetzer
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Borkovec
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Department of Statistics, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Petra A. Mercea
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Florian J. Jaklin
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Karl Roessler
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-45650
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| |
Collapse
|
334
|
Gudbergsson JM, Christensen E, Kostrikov S, Moos T, Duroux M, Kjær A, Johnsen KB, Andresen TL. Conventional Treatment of Glioblastoma Reveals Persistent CD44 + Subpopulations. Mol Neurobiol 2020; 57:3943-3955. [PMID: 32632605 DOI: 10.1007/s12035-020-02004-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most frequent and devastating primary tumor of the central nervous system with a median survival of 12 to 15 months after diagnosis. GBM is highly difficult to treat due to its delicate location, inter- and intra-tumoral heterogeneity, and high plasticity in response to treatment. In this study, we intracranially implanted primary GBM cells into mice which underwent conventional GBM treatments, including irradiation, temozolomide, and a combination. We obtained single cell suspensions through a combination of mechanical and enzymatic dissociation of brain tissue and investigated in detail the changes in GBM cells in response to conventional treatments in vivo using multi-color flow cytometry and cluster analysis. CD44 expression was elevated in all treatment groups, which was confirmed by subsequent immunohistochemistry. High CD44 expression was furthermore shown to correlate with poor prognosis of GBM and low-grade glioma (LGG) patients. Together, these results indicate a key role for CD44 in glioma pathogenesis.
Collapse
Affiliation(s)
- Johann Mar Gudbergsson
- Neurobiology Research & Drug Delivery, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark. .,Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kongens Lyngby, Denmark.
| | - Esben Christensen
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kongens Lyngby, Denmark
| | - Serhii Kostrikov
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kongens Lyngby, Denmark
| | - Torben Moos
- Neurobiology Research & Drug Delivery, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Meg Duroux
- Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department for Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Bendix Johnsen
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kongens Lyngby, Denmark.
| | - Thomas Lars Andresen
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
335
|
Liu W, Lin Q, Fu Y, Huang S, Guo C, Li L, Wang L, Zhang Z, Zhang L. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J Control Release 2020; 323:191-202. [DOI: 10.1016/j.jconrel.2019.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023]
|
336
|
Hao C, Chen G, Zhao H, Li Y, Chen J, Zhang H, Li S, Zhao Y, Chen F, Li W, Jiang WG. PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Front Oncol 2020; 10:1015. [PMID: 32670884 PMCID: PMC7326811 DOI: 10.3389/fonc.2020.01015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
Background: The clinical and prognostic value of programmed death-ligand 1, PD-L1, in glioblastoma remains controversial. The present study aimed to identify the expression of PD-L1 for its prognostic value in glioblastoma. Methods: A comprehensive literature search was performed using the PubMed and CNKI databases. The overall survival (OS) and disease-free survival (DFS) of GBM was analyzed based on Hazard ratios (HRs) and 95% confidence intervals (CIs). Furthermore, Odds ratios (ORs) and 95% CIs were summarized for clinicopathological parameters. The statistical analysis was using RevMan 5.3 software. Results: The meta-analysis was performed by using total nine studies including 806 patients who had glioblastoma. The pooled results indicated that PD-L1 expression in tumor tissues was significantly related to a poor OS (HR = 1.63, 95%CI: 1.19–2.24, P = 0.003, random effects model) with heterogeneity (I2 = 51%). In subgroup analyses, PD-L1 positivity was significantly associated with a worse OS for patients of American and Asian regions, but not for those of European regions. Moreover, PD-L1 expression implied a trend toward the mutation status of the IDH1 gene [coding the Isocitrate Dehydrogenase (NADP(+))-1 protein] (HR = 9.92, 95%CI: 1.85–53.08, P = 0.007, fixed effects model). However, the prediction overall survival (OS) of the patients showed that PD-L1 expression was independent from other clinicopathological features, such as gender and age. Conclusions: Our analyses indicated that high expression of PD-L1 in glioblastoma tumor tissues is associated with poor survival of patients, and PD-L1 may act as a prognostic predictor and an effective therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chengcheng Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Gang Chen
- Beijing Qinglian Biotech, Co., Ltd., Beijing, China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianxin Chen
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongmei Zhang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuze Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
337
|
Wang WH, Shen CY, Chien YC, Chang WS, Tsai CW, Lin YH, Hwang JJ. Validation of Enhancing Effects of Curcumin on Radiotherapy with F98/ FGT Glioblastoma-Bearing Rat Model. Int J Mol Sci 2020; 21:ijms21124385. [PMID: 32575632 PMCID: PMC7352749 DOI: 10.3390/ijms21124385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma, the most common and aggressive brain tumor with low survival rate, is difficult to be cured by neurosurgery or radiotherapy. Mounting evidence has reported the anti-inflammatory and anticancer effects of curcumin on several types of cancer in preclinical studies and clinical trials. To our knowledge, there is no platform or system that could be used to effectively and real-timely evaluate the therapeutic efficacy of curcumin for glioblastoma multiforme (GBM). In this study, we constructed a lentivirus vector with triple-reporter genes (Fluc/GFP/tk) and transduced into rat F98 glioblastoma cells to establish an orthotopic F98/FGT glioma-bearing rat model. In the model, the therapeutic efficacies for curcumin alone, radiation alone, and their combination were evaluated via noninvasive bioluminescent imaging and overall survival measurements. At the cell level, curcumin is capable of causing a G2/M cell cycle arrest and sensitizing the F98 cells to radiation. In animal model, curcumin synergistically enhances the effects of radiotherapy on suppressing the growth of both transplanted glioma cells and in situ brain tumors, and extending the overall survival periods longer than those of curcumin alone and radiation alone treatments. In conclusion, we have demonstrated that curcumin may serve as a novel radiosensitizer to combine with radiotherapy using the triple-reporter F98/FGT animal model for effective and simultaneous evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chao-Yu Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; or
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Chun Chien
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Yi-Hsien Lin
- Division of Radiotherapy, Cheng Hsin General Hospital, No. 45, Cheng Hsin St, Beitou, Taipei 112, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo North Road, Taichung 402, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| |
Collapse
|
338
|
Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, Louis C, Zahi I, Buronfosse T, Roger T, Ponce F. Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One 2020; 15:e0234772. [PMID: 32555746 PMCID: PMC7302492 DOI: 10.1371/journal.pone.0234772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the most aggressive primary brain tumor leading to death in most of patients. It comprises almost 50-55% of all gliomas with an incidence rate of 2-3 per 100,000. Despite its rarity, overall mortality of glioblastoma is comparable to the most frequent tumors. The current standard treatment combines surgical resection, radiotherapy and chemotherapy with temozolomide. In spite of this aggressive multimodality protocol, prognosis of glioblastoma is poor and the median survival remains about 12-14.5 months. In this regard, new therapeutic approaches should be developed to improve the life quality and survival time of the patient after the initial diagnosis. Before switching to clinical trials in humans, all innovative therapeutic methods must be studied first on a relevant animal model in preclinical settings. In this regard, we validated the feasibility of intratumoral delivery of a holmium (Ho) microparticle suspension to an induced U87 glioblastoma model. Among the different radioactive beta emitters, 166Ho emits high-energy β(-) radiation and low-energy γ radiation. β(-) radiation is an effective means for tumor destruction and γ rays are well suited for imaging (SPECT) and consequent dosimetry. In addition, the paramagnetic Ho nucleus is a good asset to perform MRI imaging. In this study, five minipigs, implanted with our glioblastoma model were used to test the injectability of 165Ho (stable) using a bespoke injector and needle. The suspension was produced in the form of Ho microparticles and injected inside the tumor by a technique known as microbrachytherapy using a stereotactic system. At the end of this trial, it was found that the 165Ho suspension can be injected successfully inside the tumor with absence or minimal traces of Ho reflux after the injections. This injection technique and the use of the 165Ho suspension needs to be further assessed with radioactive 166Ho in future studies.
Collapse
Affiliation(s)
- Mehrdad Khoshnevis
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Claude Carozzo
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | | | | | - Catherine Bonnefont-Rebeix
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Sara Belluco
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | | | - Lionel Marcon
- Institut Lumière Matière, UMR CNRS 5306, UCBL, Campus LyonTech—La Doua, Villeurbanne, France
| | - Olivier Tillement
- Institut Lumière Matière, UMR CNRS 5306, UCBL, Campus LyonTech—La Doua, Villeurbanne, France
| | | | | | - Ilyes Zahi
- Advanced Accelerator Applications, Saint-Genis Pouilly, France
| | - Thierry Buronfosse
- Department of Endocrinology, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Thierry Roger
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Frédérique Ponce
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
- Clinical Oncology Unit, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| |
Collapse
|
339
|
Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. Hypocrellin-Based Multifunctional Phototheranostic Agent for NIR-Triggered Targeted Chemo/Photodynamic/Photothermal Synergistic Therapy against Glioblastoma. ACS APPLIED BIO MATERIALS 2020; 3:3817-3826. [PMID: 35025252 DOI: 10.1021/acsabm.0c00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A huge challenge exists in the diagnosis and treatment of malignant glioblastoma (GBM) due to the presence of the blood-brain barrier (BBB). Herein, a multifunctional phototheranostic agent is designed on the basis of an octadecane-modified temozolomide (TMZ-C18) for chemotherapy, a dicysteamine-modified hypocrellin derivative (DCHB) as a natural-origin photosensitizer with a singlet oxygen (1O2) quantum yield of 0.51, and a cyclic peptide (cRGD) as a targeting unit against glioblastoma. Co-encapsulated DCHB and TMZ-C18 assembly with cRGD decoration, referred to as DTRGD NPs, shows a wide absorption at the NIR region peaked at 703 nm, an NIR emission peak at 720 nm, good photostability, high photothermal conversion efficiency (33%), and effective degradation of TMZ-C18. More importantly, DTRGD NPs can efficiently break through the blood-brain barrier and enrich in the orthotopic glioblastoma. The treatment of subcutaneous U87MG tumor beard mice demonstrates that DTRGD NPs present remarkable anticancer efficiency and the targeted chemo/photodynamic/photothermal synergistic therapy can be achieved with almost no toxicity. This multifunctional phototheranostic agent shows great potential for the diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
340
|
Src Inhibitors Pyrazolo[3,4-d]pyrimidines, Si306 and Pro-Si306, Inhibit Focal Adhesion Kinase and Suppress Human Glioblastoma Invasion In Vitro and In Vivo. Cancers (Basel) 2020; 12:cancers12061570. [PMID: 32545852 PMCID: PMC7352231 DOI: 10.3390/cancers12061570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), as the most aggressive brain tumor, displays a high expression of Src tyrosine kinase, which is involved in the survival, migration, and invasiveness of tumor cells. Thus, Src emerged as a potential target for GBM therapy. The effects of Src inhibitors pyrazolo[3,4-d]pyrimidines, Si306 and its prodrug pro-Si306 were investigated in human GBM cell lines (U87 and U87-TxR) and three primary GBM cell cultures. Primary GBM cells were more resistant to Si306 and pro-Si306 according to the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. However, the ability of all GBM cells to degrade the extracellular matrix was considerably compromised after Si306 and pro-Si306 applications. Besides reducing the phosphorylation of Src and its downstream signaling pathway components, both compounds decreased the phosphorylated form of focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) expression, showing the potential to suppress the aggressiveness of GBM. In vivo, Si306 and pro-Si306 displayed an anti-invasive effect against U87 xenografts in the zebrafish embryo model. Considering that Si306 and pro-Si306 are able to cross the blood–brain barrier and suppress the spread of GBM cells, we anticipate their clinical testing in the near future. Moreover, the prodrug showed similar efficacy to the drug, implying the rationality of its use in clinical settings.
Collapse
|
341
|
Salvati M, Tariciotti L, Brunetto GM, Gallo G, Santoro F, Frati A, Santoro A. Glioblastoma: Molecular profile and immunophenotypic analysis as prognostic tools for tailored therapy and decision making in a recent surgical series. INTERDISCIPLINARY NEUROSURGERY 2020; 20:100697. [DOI: 10.1016/j.inat.2020.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
342
|
Hypofractioned radiotherapy versus conventional radiotherapy for the treatment of multiform glioblastoma in adults over 70 years old. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s146039691900044x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAim:Multiform glioblastoma (MG) represents 70% of all gliomas, with half of patients older than 65 years with median survival of 12–18 months, hypofractionation seeks to reduce the intensity and duration of treatment without impacting on survival rates. The objective was to determine the global survival and recurrence-free survival of adults over 70 years old with MG treated with hypofractionated radiotherapy and standard scheme. The review of patients older than 70 years treated with radiotherapy from 2013 to 2016 was performed.Results:Twenty-four patients were analysed, with a median follow-up of 239 days, and there is no difference in overall survival 12·3 versus 10·5 months (p = 0·55) and recurrence-free survival 8·3 versus 3·4 months (p = 0·48) between both schemes, conventional versus hypofractioanted, respectively.Conclusion:The results in this study show that hypofractionated scheme could be comparable in overall survival and recurrence-free survival to conventional fractionation, but a longer patients’ trial should be done.
Collapse
|
343
|
Khan I, Bui L, Bachoo R, Kim YT, Chuong CJ. Differences in creep response of GBM cells migrating in confinement. Int Biomech 2020; 7:44-57. [PMID: 33998389 PMCID: PMC8130729 DOI: 10.1080/23335432.2020.1757509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Using a microfluidic platform to apply negative aspiration pressure (–20, –25, –30, –35 and –40 cm H2O), we compared the differences in creep responses of Glioblastoma Multiforme (GBM) cells while migrating in confinement and at a stationary state on a 2D substrate. Cells were either migrating in a channel of 5 x 5 μm cross-section or stationary at the entrance to the channel. In response to aspiration pressure, we found actively migrating GBM cells exhibited a higher stiffness than stationary cells. Additionally, migrating cells absorbed more energy elastically with a relatively small dissipative energy loss. At elevated negative pressure loads up to – 30 cm H2O, we observed a linear increase in elastic deformation and a higher distribution in elastic storage than energy loss, and the response plateaued at further increasing negative pressure loads. To explore the underlying cause, we carried out immuno-cytochemical studies of these cells and found a polarized actin and myosin distribution at the front and posterior ends of the migrating cells, whereas the distribution of the stationary group demonstrated no specific regional differences. These differences in creep response and cytoskeletal protein distribution demonstrate the importance of a migrating cell’s kinematic state to the mechanism of cell migration.
Collapse
Affiliation(s)
- Ishan Khan
- Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas
| | - Loan Bui
- Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas
| | - Robert Bachoo
- Department of Neurology & Neurotherapeutics University of Texas Southwestern Medical Center at Dallas , Dallas, Texas.,Department of Bioengineering, University of Texas at Arlington , Texas
| | - Young-Tae Kim
- Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas
| | - Cheng-Jen Chuong
- Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas
| |
Collapse
|
344
|
Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis. Mol Med Rep 2020; 22:859-869. [PMID: 32467990 PMCID: PMC7339479 DOI: 10.3892/mmr.2020.11160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor of the adult central nervous system and is associated with poor prognosis. The present study aimed to identify the hub genes in GBM in order to improve the current understanding of the underlying mechanism of GBM. The RNA-seq data were downloaded from The Cancer Genome Atlas database. The edgeR package in R software was used to identify differentially expressed genes (DEGs) between two groups: Glioblastoma samples and normal brain samples. Gene Ontology (GO) functional enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed using Database for Annotation, Visualization and Integrated Discovery software. Additionally, Cytoscape and Search Tool for the Retrieval of Interacting Genes/Proteins tools were used for the protein-protein interaction network, while the highly connected modules were extracted from this network using the Minimal Common Oncology Data Elements plugin. Next, the prognostic significance of the candidate hub genes was analyzed using UALCAN. In addition, the identified hub genes were verified by reverse transcription-quantitative (RT-q) PCR. In total, 1,483 DEGs were identified between GBM and control samples, including 954 upregulated genes and 529 downregulated genes (P<0.01; fold-change >16) and these genes were involved in different GO terms and signaling pathways. Furthermore, CDK1, BUB1, BUB1B, CENPA and GNG3 were identified as key genes in the GBM samples. The UALCAN tool verified that higher expression level of CENPA was relevant to poorer overall survival rates. In conclusion, CDK1, BUB1, BUB1B, CENPA and GNG3 were found to be potential biomarkers for GBM. Additionally, ‘cell cycle’ and ‘γ-aminobutyric acid signaling’ pathways may serve a significant role in the pathogenesis of GBM.
Collapse
|
345
|
Greco C, Taresco V, Pearce AK, Vasey CE, Smith S, Rahman R, Alexander C, Cavanagh RJ, Musumeci F, Schenone S. Development of Pyrazolo[3,4- d]pyrimidine Kinase Inhibitors as Potential Clinical Candidates for Glioblastoma Multiforme. ACS Med Chem Lett 2020; 11:657-663. [PMID: 32435367 DOI: 10.1021/acsmedchemlett.9b00530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. Residual cells at the tumor margin are responsible for up to 85% of GBM recurrences after standard treatment. Despite this evidence, the identification of compounds active on this cell population is still an underexplored field. Herein, starting from the knowledge that kinases are implicated in GBM, we evaluated three in-house pyrazolo[3,4-d]pyrimidines active as Src, Fyn, and SGK1 kinase inhibitors against patient derived cell lines from either the invasive region or contrast-enhanced core of GBM. We identified our Src inhibitor, SI306, as a promising lead compound for eradicating invasive GBM cells. Furthermore, aiming at the development of a feasible oral treatment for GBM, we performed a formulation study using 2D inkjet printing to generate soluble polymer-drug dispersions. Overall, this study led to the identification of a set of polymer-formulated pyrazolo[3,4-d]pyrimidine kinase inhibitors as promising candidates for GBM preclinical efficacy studies.
Collapse
Affiliation(s)
- Chiara Greco
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Catherine E. Vasey
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Robert J. Cavanagh
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
346
|
Manou D, Bouris P, Kletsas D, Götte M, Greve B, Moustakas A, Karamanos NK, Theocharis AD. Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biol Plus 2020; 6-7:100033. [PMID: 33543029 PMCID: PMC7852318 DOI: 10.1016/j.mbplus.2020.100033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the functional role of serglycin as an intracellular proteoglycan, a variety of malignant cells depends on its expression and constitutive secretion to advance their aggressive behavior. Serglycin arose to be a biomarker for glioblastoma, which is the deadliest and most treatment-resistant form of brain tumor, but its role in this disease is not fully elucidated. In our study we suppressed the endogenous levels of serglycin in LN-18 glioblastoma cells to decipher its involvement in their malignant phenotype. Serglycin suppressed LN-18 (LN-18shSRGN) glioblastoma cells underwent astrocytic differentiation characterized by induced expression of GFAP, SPARCL-1 and SNAIL, with simultaneous loss of their stemness capacity. In particular, LN-18shSRGN cells presented decreased expression of glioma stem cell-related genes and ALDH1 activity, accompanied by reduced colony formation ability. Moreover, the suppression of serglycin in LN-18shSRGN cells retarded the proliferative and migratory rate, the invasive potential in vitro and the tumor burden in vivo. The lack of serglycin in LN-18shSRGN cells was followed by G2 arrest, with subsequent reduction of the expression of cell-cycle regulators. LN-18shSRGN cells also exhibited impaired expression and activity of proteolytic enzymes such as MMPs, TIMPs and uPA, both in vitro and in vivo. Moreover, suppression of serglycin in LN-18shSRGN cells eliminated the activation of pro-tumorigenic signal transduction. Of note, LN-18shSRGN cells displayed lower expression and secretion levels of IL-6, IL-8 and CXCR-2. Concomitant, serglycin suppressed LN-18shSRGN cells demonstrated repressed phosphorylation of ERK1/2, p38, SRC and STAT-3, which together with PI3K/AKT and IL-8/CXCR-2 signaling control LN-18 glioblastoma cell aggressiveness. Collectively, the absence of serglycin favors an astrocytic fate switch and a less aggressive phenotype, characterized by loss of pluripotency, block of the cell cycle, reduced ability for ECM proteolysis and pro-tumorigenic signaling attenuation.
Collapse
Key Words
- ALDH1, aldehyde dehydrogenase 1
- Astrocytic differentiation
- CXCR, C-X-C chemokine receptor
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ERK, extracellular-signal-regulated kinase
- GFAP, glial fibrillary acid protein
- Glioblastoma
- IL, interleukin
- Interleukins
- MAPK, mitogen-activated protein kinase
- MMPs, metalloproteinases
- PGs, proteoglycans
- PI3K, phosphoinositide 3-kinase
- Proteoglycans
- Proteolytic enzymes
- SRGN, serglycin
- STAT-3, signal transducer and activator of transcription 3
- Serglycin
- Signaling
- Stemness
- TIMPs, tissue inhibitors of metalloproteinases
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital, Muenster, Germany
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
347
|
Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy. Int J Pharm 2020; 581:119283. [DOI: 10.1016/j.ijpharm.2020.119283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
|
348
|
Samiei E, Seyfoori A, Toyota B, Ghavami S, Akbari M. Investigating Programmed Cell Death and Tumor Invasion in a Three-Dimensional (3D) Microfluidic Model of Glioblastoma. Int J Mol Sci 2020; 21:E3162. [PMID: 32365781 PMCID: PMC7246580 DOI: 10.3390/ijms21093162] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a rapidly progressive and deadly form of brain tumor with a median survival rate of ~15 months. GBMs are hard to treat and significantly affect the patient's physical and cognitive abilities and quality of life. Temozolomide (TMZ)-an alkylating agent that causes DNA damage-is the only chemotherapy choice for the treatment of GBM. However, TMZ also induces autophagy and causes tumor cell resistance and thus fails to improve the survival rate among patients. Here, we studied the drug-induced programmed cell death and invasion inhibition capacity of TMZ and a mevalonate cascade inhibitor, simvastatin (Simva), in a three-dimensional (3D) microfluidic model of GBM. We elucidate the role of autophagy in apoptotic cell death by comparing apoptosis in autophagy knockdown cells (Atg7 KD) against their scrambled counterparts. Our results show that the cells were significantly less sensitive to drugs in the 3D model as compared to monolayer culture systems. An immunofluorescence analysis confirmed that apoptosis is the mechanism of cell death in TMZ- and Simva-treated glioma cells. However, the induction of apoptosis in the 3D model is significantly lower than in monolayer cultures. We have also shown that autophagy inhibition (Atg7 KD) did not change TMZ and Simva-induced apoptosis in the 3D microfluidic model. Overall, for the first time in this study we have established the simultaneous detection of drug induced apoptosis and autophagy in a 3D microfluidic model of GBM. Our study presents a potential ex vivo platform for developing novel therapeutic strategies tailored toward disrupting key molecular pathways involved in programmed cell death and tumor invasion in glioblastoma.
Collapse
Affiliation(s)
- Ehsan Samiei
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Amir Seyfoori
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Brian Toyota
- Department of Surgery, Queens University, Kingston, ON K7L 2V7, Canada;
| | - Saeid Ghavami
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- The Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
349
|
Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM, Ainslie KM. Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. J Control Release 2020; 323:282-292. [PMID: 32335153 DOI: 10.1016/j.jconrel.2020.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/12/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous form of brain cancer. Genotypic and phenotypic heterogeneity drives drug resistance and tumor recurrence. Combination chemotherapy could overcome drug resistance; however, GBM's location behind the blood-brain barrier severely limits chemotherapeutic options. Interstitial therapy, delivery of chemotherapy locally to the tumor site, via a biodegradable polymer implant can overcome the blood-brain barrier and increase the range of drugs available for therapy. Ideal drug candidates for interstitial therapy are those that are potent against GBM and work in combination with both standard-of-care therapy and new precision medicine targets. Herein we evaluated paclitaxel for interstitial therapy, investigating the effect of combination with both temozolomide, a clinical standard-of-care chemotherapy for GBM, and everolimus, a mammalian target of rapamycin (mTOR) inhibitor that modulates aberrant signaling present in >80% of GBM patients. Tested against a panel of GBM cell lines in vitro, paclitaxel was found to be effective at nanomolar concentrations, complement therapy with temozolomide, and synergize strongly with everolimus. The strong synergism seen with paclitaxel and everolimus was then explored in vivo. Paclitaxel and everolimus were separately formulated into fibrous scaffolds composed of acetalated dextran, a biodegradable polymer with tunable degradation rates, for implantation in the brain. Acetalated dextran degradation rates were tailored to attain matching release kinetics (~3% per day) of both paclitaxel and everolimus to maintain a fixed combination ratio of the two drugs. Combination interstitial therapy of both paclitaxel and everolimus significantly reduced GBM growth and improved progression free survival in two clinically relevant orthotopic models of GBM resection and recurrence. This work illustrates the advantages of synchronized interstitial therapy of paclitaxel and everolimus for post-surgical tumor control of GBM.
Collapse
Affiliation(s)
- Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
350
|
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor. In spite of the rigorous multimodal treatment involving surgery and radiochemotherapy, GBM has a dismal prognosis and rapid relapsing potential. Hence, search for novel therapeutic agents still continues. Neoantigens are the tumor-specific antigens which arise due to somatic mutations in the tumor genome. In recent years, personalized vaccine approach targeting neoantigens has been explored widely in cancer immunotherapy and several efforts have also been made to revolutionize the immunotherapy of cold tumors such as GBM using neoantigen targeted vaccines. AREAS COVERED In this review, we discuss the clinical application of personalized neoantigen targeted vaccine strategy in GBM immunotherapy. While discussing this strategy, we brief about the current challenges faced in GBM treatment by the novel immunotherapeutics. EXPERT OPINION To date, very few vaccines developed for GBM have reached till phase III clinical development. Early-phase clinical trials of GBM neoantigen vaccines have shown promising clinical outcomes and therefore, its rapid clinical development is warranted. Advent of newer and faster techniques such as next-generation sequencing will drive the faster clinical development of multiplex neoantigen vaccines and hence, increase in the clinical trials is expected.
Collapse
Affiliation(s)
- Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| | - Varada Date
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| |
Collapse
|