301
|
Mallet DG, Pettet GJ. A mathematical model of integrin-mediated haptotactic cell migration. Bull Math Biol 2006; 68:231-53. [PMID: 16794929 DOI: 10.1007/s11538-005-9032-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 07/29/2005] [Indexed: 11/24/2022]
Abstract
Haptotactic cell migration, a directed response to gradients of cell-extracellular matrix adhesion, is an important process in a number of biological phenomena such as wound healing and tumour cell invasion. Previously, mathematical models of haptotaxis have been developed on the premise that cells migrate in response to gradients in the density of the extracellular matrix. In this paper, we develop a novel mathematical model of haptotaxis which includes the adhesion receptors known as integrins and a description of their functional activation, local recruitment and protrusion as part of lamellipodia. Through the inclusion of integrins, the modelled cell matter is able to respond to a true gradient of cell-matrix adhesion, represented by functionally active integrins. We also show that previous matrix-mediated models are in fact a subset of the novel integrin-mediated models, characterised by specific choices of diffusion and haptotaxis coefficients in their model equations. Numerical solutions suggest the existence of travelling waves of cell migration that are confirmed via a phase plane analysis of a simplified model.
Collapse
Affiliation(s)
- D G Mallet
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | | |
Collapse
|
302
|
Nikolić DL, Boettiger AN, Bar-Sagi D, Carbeck JD, Shvartsman SY. Role of boundary conditions in an experimental model of epithelial wound healing. Am J Physiol Cell Physiol 2006; 291:C68-75. [PMID: 16495370 DOI: 10.1152/ajpcell.00411.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis, but our understanding of the mechanisms that coordinate the behavior of multiple cells in these processes is far from complete. Recent experiments with Madin-Darby canine kidney epithelial monolayers revealed a wave-like pattern of injury-induced MAPK activation and showed that it is essential for collective cell migration after wounding. To investigate the effects of the different aspects of wounding on cell sheet migration, we engineered a system that allowed us to dissect the classic wound healing assay. We studied Madin-Darby canine kidney sheet migration under three different conditions: 1) the classic wound healing assay, 2) empty space induction, where a confluent monolayer is grown adjacent to a slab of polydimethylsiloxane and the monolayer is not injured but allowed to migrate upon removal of the slab, and 3) injury via polydimethylsiloxane membrane peel-off, where an injured monolayer migrates onto plain tissue culture surface, as in the case of empty space induction allowing for direct comparison. By tracking the motion of individual cells within the sheet under these three conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet and is coordinated with the activation of ERK1/2 MAPK. In addition, we demonstrate that the propagation of the waves of MAPK activation depends on the generation of reactive oxygen species at the wound edge.
Collapse
Affiliation(s)
- Djordje L Nikolić
- Department of Chemical Engineering, Princeton University, New Jersey, USA
| | | | | | | | | |
Collapse
|
303
|
Schmidt O, Schreiber A. Integration of cell adhesion reactions—a balance of forces? J Theor Biol 2006; 238:608-15. [PMID: 16098540 DOI: 10.1016/j.jtbi.2005.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 05/29/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
The rearrangement of receptors by oligomeric adhesion molecules constitutes a configurational mechanism able to sculpture membranes and dislocate receptors from cytoplasmic anchorage. This provides a conceptual framework for complex cellular processes in mechanical terms, as a dynamic balance between extracellular and intracellular driving forces.
Collapse
Affiliation(s)
- Otto Schmidt
- University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | |
Collapse
|
304
|
Säfholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T. A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 2005; 281:2740-9. [PMID: 16330545 DOI: 10.1074/jbc.m508386200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of Wnt-5a protein expression is associated with shorter recurrence-free survival in breast carcinoma patients and increased motility in mammary cell lines. Based on sequence analysis of Wnt-5a, we identified 14 peptide fragments and investigated their ability to mimic the effects of Wnt-5a on mammary cell adhesion and migration. Two of these peptides significantly increased adhesion and impaired migration in the non-tumorigenic HB2 breast epithelial cell line and in the MDA-MB-468 breast cancer cell line, both of which show little endogenous expression of the Wnt-5a protein. We removed two amino acids at a time from the N terminus of the shorter of these two peptides to identify the shortest peptide that still inhibited migration. The influence on tumor cell adhesion was gradually lost and was no longer detectable when only six amino acids remained. However, formylation of the N-terminal methionine of this hexapeptide restored its effect on adhesion and reduced tumor cell motility via a Frizzled-5 receptor-dependent mechanism, even at a low pH such as encountered in breast tumor tissue. This formylated hexapeptide ligand induced a rapid cytosolic calcium signal, whereas it did not affect the cellular levels of unphosphorylated beta-catenin or active JNK. The novel formyl-Met-Asp-Gly-Cys-Glu-Leu peptide ligand is not only a valuable experimental tool but has also a potential role in antimetastatic treatment of the 50% of human breast cancer patients that have reduced endogenous Wnt-5a protein expression.
Collapse
Affiliation(s)
- Annette Säfholm
- Department of Laboratory Medicine, Experimental Pathology, Lund University, Malmö University Hospital, SE20502 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
305
|
Zemani F, Benisvy D, Galy-Fauroux I, Lokajczyk A, Colliec-Jouault S, Uzan G, Fischer AM, Boisson-Vidal C. Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochem Pharmacol 2005; 70:1167-75. [PMID: 16153611 DOI: 10.1016/j.bcp.2005.07.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Endothelial progenitor cell (EPC) transplantation is a potential means of inducing neovascularization in vivo. However, the number of circulating EPC is relatively small, it may thus be necessary to enhance their proangiogenic properties ex vivo prior to injection in vivo. Fucoidan has previously been shown to potentiate in vitro tube formation by mature endothelial cells in the presence of basic fibroblast growth factor (FGF-2). We therefore examined whether fucoidan, alone or combined with FGF-2, could increase EPC proangiogenic potency in vitro. EPC exposure to 10 microg/ml fucoidan induced a proangiogenic phenotype, including cell proliferation (p < 0.01) and migration (p < 0.01); moreover, differentiation into vascular cords occurred in the presence of FGF-2 (p < 0.01). This latter effect correlated with upregulation of the cell-surface #alpha6 integrin subunit of the laminin receptor (p < 0.05). Compared to untreated HUVEC, untreated EPC #alpha6 expression and adhesion to laminin were enhanced two-fold. Fucoidan treatment further enhanced HUVEC but not EPC adhesion to laminin. These results show that fucoidan enhances the proangiogenic properties of EPC and suggest that ex vivo fucoidan preconditioning of EPC might lead to increased neovascularization when injected into ischemic tissues.
Collapse
|
306
|
Harms BD, Bassi GM, Horwitz AR, Lauffenburger DA. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J 2005; 88:1479-88. [PMID: 15713602 PMCID: PMC1305149 DOI: 10.1529/biophysj.104.047365] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Migrating cells can sustain a relatively constant direction of lamellipodial protrusion and locomotion over timescales ranging from minutes to hours. However, individual waves of lamellipodial extension occur over much shorter characteristic times. Little understanding exists regarding how cells might integrate biophysical processes across these disparate timescales to control the directional persistence of locomotion. We address this issue by examining the effects of epidermal growth factor (EGF) stimulation on long-timescale directional persistence and short-timescale lamellipodial dynamics of EGF receptor-transfected Chinese hamster ovary cells migrating on fibronectin-coated substrata. Addition of EGF increased persistence, with the magnitude of increase correlating with fibronectin coating concentration. Kymographic analysis of EGF-stimulated lamellipodial dynamics revealed that the temporal stability of lamellipodial protrusions similarly increased with fibronectin concentration. A soluble RGD peptide competitor reduced both the persistence of long-timescale cell paths and the stability of short-timescale membrane protrusions, indicating that cell-substratum adhesion concomitantly influences lamellipodial dynamics and directional persistence. These results reveal the importance of adhesion strength in regulating the directional motility of cells and suggest that the short-timescale kinetics of adhesion complex formation may play a key role in modulating directional persistence over much longer timescales.
Collapse
Affiliation(s)
- Brian D Harms
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
307
|
Rigort A, Grünewald J, Herzog V, Kirfel G. Release of integrin macroaggregates as a mechanism of rear detachment during keratinocyte migration. Eur J Cell Biol 2005; 83:725-33. [PMID: 15679117 DOI: 10.1078/0171-9335-00431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-substrate adhesion can be mediated by the relatively short-lived focal complexes and focal adhesions and by the more stable hemidesmosomes. During cell migration both types of cell-substrate adhesions must be disrupted allowing the cell rear to detach. Rear detachment has been described to be accompanied by membrane ripping and the loss of cellular material in a variety of cell types including fibroblasts and chondrocytes, but also in fast moving cells such as keratinocytes. Here we show that migrating keratinocytes leave behind "migration tracks" of cellular remnants that can be classified due to their size, distribution and molecular composition. Type I macroaggregates appeared as spherical and tubular structures with a diameter of about 50-100 nm that were arranged like "pearls on a string". These structures apparently derived from fragmentation of long tubular extensions, the retracting fibers, at the cell rear and contained high amounts of beta1 integrin and different alpha integrins that are components of fibronectin and laminin receptors in migrating keratinocytes usually found in focal adhesions. Type II macroaggregates were recognized as spherical structures with a diameter of about 30 - 50 nm that were arranged in clusters scattered over the gaps between type I, macroaggregates. In contrast to type I type II macroaggregates contained high amounts of beta4 integrin and seemed to derive from former hemidesmosomes. Both types of macroaggregates were completely membrane covered, impermeable compartments devoid of cytosolic proteins. Our observations strongly support the concept that the release of macroaggregates represents a distinct cellular mechanism of rear detachment based on the loss of adhesive receptors embedded in membrane-covered cellular remnants.
Collapse
|
308
|
Kirfel G, Rigort A, Borm B, Herzog V. Cell migration: mechanisms of rear detachment and the formation of migration tracks. Eur J Cell Biol 2005; 83:717-24. [PMID: 15679116 DOI: 10.1078/0171-9335-00421] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell migration is central to many biological and pathological processes, including embryogenesis, tissue repair and regeneration as well as cancer and the inflammatory response. In general, cell migration can be usefully conceptualized as a cyclic process. The initial response of a cell to a migration-promoting agent is to polarize and extend protrusions in the direction of migration. These protrusions can be large, broad lamellipodia or spike-like filopodia, are usually driven by actin polymerization, and are stabilized by adhering to the extracellular matrix (ECM) via transmembrane receptors of the integrin family linked to the actin cytoskeleton. These adhesions serve as traction sites for migration as the cell moves forward over them, and they must be disassembled at the cell rear, allowing it to detach. The mechanisms of rear detachment and the regulatory processes involved are not well understood. The disassembly of adhesions that is required for detachment depends on a coordinated interaction of actin and actin-binding proteins, signaling molecules and effector enzymes including proteases, kinases and phosphatases. Originally, the biochemically regulated processes leading to rear detachment of migrating cells were thought not to be necessarily accompanied by any loss of cell material. However, it has been shown that during rear detachment long tubular extensions, the retracting fibers, are formed and that "membrane ripping" occurs at the cell rear. By this process, a major fraction of integrin-containing cellular material is left behind forming characteristic migration tracks that exactly mark the way a cell has taken.
Collapse
Affiliation(s)
- Gregor Kirfel
- Institute of Cell Biology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
309
|
Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA. Computational model for cell migration in three-dimensional matrices. Biophys J 2005; 89:1389-97. [PMID: 15908579 PMCID: PMC1366623 DOI: 10.1529/biophysj.105.060723] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although computational models for cell migration on two-dimensional (2D) substrata have described how various molecular and cellular properties and physiochemical processes are integrated to accomplish cell locomotion, the same issues, along with certain new ones, might contribute differently to a model for migration within three-dimensional (3D) matrices. To address this more complicated situation, we have developed a computational model for cell migration in 3D matrices using a force-based dynamics approach. This model determines an overall locomotion velocity vector, comprising speed and direction, for individual cells based on internally generated forces transmitted into external traction forces and considering a timescale during which multiple attachment and detachment events are integrated. Key parameters characterize cell and matrix properties, including cell/matrix adhesion and mechanical and steric properties of the matrix; critical underlying molecular properties are incorporated explicitly or implicitly. Model predictions agree well with experimental results for the limiting case of migration on 2D substrata as well as with recent experiments in 3D natural tissues and synthetic gels. Certain predicted features such as biphasic behavior of speed with density of matrix ligands for 3D migration are qualitatively similar to their 2D counterparts, but new effects generally absent in 2D systems, such as effects due to matrix sterics and mechanics, are now predicted to arise in many 3D situations. As one particular sample manifestation of these effects, the optimal levels of cell receptor expression and matrix ligand density yielding maximal migration are dependent on matrix mechanical compliance.
Collapse
Affiliation(s)
- Muhammad H Zaman
- Whitehead Institute for Biomedical Research, Biological Engineering Division, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02142, USA.
| | | | | | | |
Collapse
|
310
|
Abstract
Cell adhesion to extracellular matrix is mediated by receptor-ligand interactions. When a cell first contacts a surface, it spreads, exerting traction forces against the surface and forming new bonds as its contact area expands. Here, we examined the changes in shape, actin polymerization, focal adhesion formation, and traction stress generation that accompany spreading of endothelial cells over a period of several hours. Bovine aortic endothelial cells were plated on polyacrylamide gels derivatized with a peptide containing the integrin binding sequence RGD, and changes in shape and traction force generation were measured. Notably, both the rate and extent of spreading increase with the density of substrate ligand. There are two prominent modes of spreading: at higher surface ligand densities cells tend to spread isotropically, whereas at lower densities of ligand the cells tend to spread anisotropically, by extending pseudopodia randomly distributed along the cell membrane. The extension of pseudopodia is followed by periods of growth in the cell body to interconnect these extensions. These cycles occur at very regular intervals and, furthermore, the extent of pseudopodial extension can be diminished by increasing the ligand density. Measurement of the traction forces exerted by the cell reveals that a cell is capable of exerting significant forces before either notable focal adhesion or stress fiber formation. Moreover, the total magnitude of force exerted by the cell is linearly related to the area of the cell during spreading. This study is the first to monitor the dynamic changes in the cell shape, spreading rate, and forces exerted during the early stages (first several hours) of endothelial cell adhesion.
Collapse
Affiliation(s)
- Cynthia A Reinhart-King
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
311
|
Teckchandani AM, Panetti TS, Tsygankov AY. c-Cbl regulates migration of v-Abl-transformed NIH 3T3 fibroblasts via Rac1. Exp Cell Res 2005; 307:247-58. [PMID: 15922744 DOI: 10.1016/j.yexcr.2005.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 01/06/2023]
Abstract
Cellular events like cell adhesion and migration involve complex rearrangements of the actin cytoskeleton. We have previously shown that the multidomain adaptor protein c-Cbl facilitates actin cytoskeletal reorganizations that result in the adhesion of v-Abl-transformed NIH 3T3 fibroblasts. In this report, we demonstrate that c-Cbl also enhances migration of v-Abl-transformed NIH 3T3 fibroblasts. This effect of c-Cbl depends on its tyrosine phosphorylation, specifically on phosphorylation of its Tyr-731, which is required for binding of PI-3' kinase to c-Cbl. Furthermore, we demonstrate that the effect of c-Cbl on migration of v-Abl-transformed fibroblasts is mediated by active PI-3' kinase and the small GTPase Rac1. Our results also indicate that ubiquitin ligase activity of c-Cbl is required, while spatial localization of c-Cbl to the pseudopodia is not required for the observed effects of c-Cbl on cell migration.
Collapse
Affiliation(s)
- Anjali M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
312
|
Doyle AD, Lee J. Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 2005; 118:369-79. [PMID: 15632107 DOI: 10.1242/jcs.01590] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of stretch-activated calcium channels (SACs) in keratocytes can induce spatially coordinated increases in traction stress that promote protrusion at the cell front, while simultaneously inducing retraction at the rear. To investigate how this occurs, we correlated calcium-induced changes in traction stress with alterations in cell speed and shape. Cyclic changes in these parameters were associated with each calcium transient. In addition, an inverse relationship was found between traction stress and cell speed, suggesting that alternating changes in adhesiveness were occurring at the rear. We investigated this further by inhibiting or inducing calcium transients and observing the effects on traction stress, cell speed and shape. Inhibition of calcium transients prevented retraction and led to a slow increase in traction stress. In addition, large aggregates of vinculin developed at the lateral rear edges of treated keratocytes, consistent with an increase in adhesiveness. Induction of a calcium transient resulted in a rapid retraction, involving both increased traction stress and adhesion disassembly at the rear. We also found that keratocytes exhibiting frequent transients generated larger traction stress and moved significantly faster than other cells. Together, these data suggest that calcium transients coordinate changes in adhesiveness with SAC-mediated cycles of mechano-chemical feedback.
Collapse
Affiliation(s)
- Andrew D Doyle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
313
|
Rubinstein B, Jacobson K, Mogilner A. MULTISCALE TWO-DIMENSIONAL MODELING OF A MOTILE SIMPLE-SHAPED CELL. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2005; 3:413-439. [PMID: 19116671 PMCID: PMC2610680 DOI: 10.1137/04060370x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell crawling is an important biological phenomenon underlying coordinated cell movement in morphogenesis, cancer, and wound healing. In recent decades the process of cell crawling has been experimentally and theoretically dissected into further subprocesses: protrusion of the cell at its leading edge, retraction of the cell body, and graded adhesion. A number of one-dimensional (1-D) models explain successfully a proximal-distal organization and movement of the motile cell. However, more adequate two-dimensional (2-D) models are lacking. We propose a multiscale 2-D computational model of the lamellipodium (motile appendage) of a simply shaped, rapidly crawling fish keratocyte cell. We couple submodels of (i) protrusion and adhesion at the leading edge, (ii) the elastic 2-D lamellipodial actin network, (iii) the actin-myosin contractile bundle at the rear edge, and (iv) the convection-reaction-diffusion actin transport on the free boundary lamellipodial domain. We simulate the combined model numerically using a finite element approach. The simulations reproduce observed cell shapes, forces, and movements and explain some experimental results on perturbations of the actin machinery. This novel 2-D model of the crawling cell makes testable predictions and posits questions to be answered by future modeling.
Collapse
|
314
|
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47-55. [PMID: 15637621 DOI: 10.1038/nbt1055] [Citation(s) in RCA: 3095] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New generations of synthetic biomaterials are being developed at a rapid pace for use as three-dimensional extracellular microenvironments to mimic the regulatory characteristics of natural extracellular matrices (ECMs) and ECM-bound growth factors, both for therapeutic applications and basic biological studies. Recent advances include nanofibrillar networks formed by self-assembly of small building blocks, artificial ECM networks from protein polymers or peptide-conjugated synthetic polymers that present bioactive ligands and respond to cell-secreted signals to enable proteolytic remodeling. These materials have already found application in differentiating stem cells into neurons, repairing bone and inducing angiogenesis. Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
Collapse
Affiliation(s)
- M P Lutolf
- Integrative Biosciences Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Building AA-B 039, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
315
|
Costa EP, Santos MF. Jararhagin, a snake venom metalloproteinase-disintegrin, stimulates epithelial cell migration in an in vitro restitution model. Toxicon 2004; 44:861-70. [PMID: 15530968 DOI: 10.1016/j.toxicon.2004.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 08/19/2004] [Indexed: 11/18/2022]
Abstract
The snake venom metalloproteinase-disintegrin jararhagin (JG) has no chemotactic activity but stimulates the migration of neutrophils in vivo through a mechanism still unclear. In this study we investigated the effects of jararhagin on epithelial cell adhesion and migration in vitro. F-actin arrangement and the distribution of laminin, fibronectin, several integrins and phosphorylated Focal Adhesion Kinase (FAK) were studied using rhodamine-phalloidin and immunofluorescence. Maximum stimulation of migration (about 100%) was obtained with 5 microg/ml JG, with about 38% inhibition of cellular adhesion. In migratory cells the toxin stimulated the formation of filopodia, lamellipodia and stress fibers. The pericellular fibronectin matrix was lost in migrating cells, while laminin was less affected. The toxin stimulated FAK phosphorylation and the recruitment of alphav-containing integrins to focal contacts, whereas integrins containing the alpha2 subunit were reduced in these junctions. Inactivation of the toxin with 1,10 phenanthroline showed that the catalytic activity is important for the effect of jararhagin on cell migration, FAK phosphorylation and for the recruitment of alphav, but not as much for the anti-adhesive effect. In conclusion, jararhagin stimulates the migration of epithelial cells in vitro through a mechanism that involves its proteolytic activity, qualitative changes in cellular adhesion and the formation of actin-rich cellular processes.
Collapse
Affiliation(s)
- Erica Pereira Costa
- Department of Developmental and Cell Biology, Institute of Biomedical Sciences, University of São Paulo, ICB/USP, Av. Prof. Lineu Prestes 1524, São Paulo, SP CEP 05508-000, Brazil
| | | |
Collapse
|
316
|
Dallon JC, Othmer HG. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J Theor Biol 2004; 231:203-22. [PMID: 15380385 PMCID: PMC6457452 DOI: 10.1016/j.jtbi.2004.06.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/28/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum (Dd). We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dd cells, the results suggest that this behavior will be found in many developing systems.
Collapse
Affiliation(s)
- John C Dallon
- Department of Mathematics, Brigham Young University, 312 TMCB, Provo, UT 84602-6539, USA.
| | | |
Collapse
|
317
|
Jurado C, Haserick JR, Lee J. Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin. Mol Biol Cell 2004; 16:507-18. [PMID: 15548591 PMCID: PMC545886 DOI: 10.1091/mbc.e04-10-0860] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fish keratocytes can generate rearward directed traction forces within front portions of the lamellipodium, suggesting that a retrograde flow of actin may also occur here but this was not detected by previous photoactivation experiments. To investigate the relationship between retrograde flow and traction force generation, we have transfected keratocytes with GFP-actin and used fluorescent speckle microscopy, to observe speckle flow. We detected a retrograde flow of actin within the leading lamellipodium that is inversely proportional to both protrusion rate and cell speed. To observe the effect of reducing contractility, we treated transfected cells with ML7, a potent inhibitor of myosin II. Surprisingly, ML7 treatment led to an increase in retrograde flow rate, together with a decrease in protrusion and cell speed, but only in rapidly moving cells. In slower moving cells, retrograde flow decreased, whereas protrusion rate and cell speed increased. These results suggest that there are two mechanisms for producing retrograde flow. One involves slippage between the cytoskeleton and adhesions, that decreases traction force production. The other involves slippage between adhesions and the substratum, which increases traction force production. We conclude that a biphasic relationship exists between retrograde actin flow and adhesiveness in moving keratocytes.
Collapse
Affiliation(s)
- Carlos Jurado
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
318
|
Shiu YT, Li S, Marganski WA, Usami S, Schwartz MA, Wang YL, Dembo M, Chien S. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys J 2004; 86:2558-65. [PMID: 15041692 PMCID: PMC1304103 DOI: 10.1016/s0006-3495(04)74311-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The migration of vascular endothelial cells in vivo occurs in a fluid dynamic environment due to blood flow, but the role of hemodynamic forces in cell migration is not yet completely understood. Here we investigated the effect of shear stress, the frictional drag of blood flowing over the cell surface, on the migration speed of individual endothelial cells on fibronectin-coated surfaces, as well as the biochemical and biophysical bases underlying this shear effect. Under static conditions, cell migration speed had a bell-shaped relationship with fibronectin concentration. Shear stress significantly increased the migration speed at all fibronectin concentrations tested and shifted the bell-shaped curve upwards. Shear stress also induced the activation of Rho GTPase and increased the traction force exerted by endothelial cells on the underlying substrate, both at the leading edge and the rear, suggesting that shear stress enhances both the frontal forward-pulling force and tail retraction. The inhibition of a Rho-associated kinase, p160ROCK, decreased the traction force and migration speed under both static and shear conditions and eliminated the shear-enhancement of migration speed. Our results indicate that shear stress enhances the migration speed of endothelial cells by modulating the biophysical force of tractions through the biochemical pathway of Rho-p160ROCK.
Collapse
Affiliation(s)
- Yan-Ting Shiu
- Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, California 92093-0427, USA
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Lynch L, Vodyanik PI, Boettiger D, Guvakova MA. Insulin-like growth factor I controls adhesion strength mediated by alpha5beta1 integrins in motile carcinoma cells. Mol Biol Cell 2004; 16:51-63. [PMID: 15509657 PMCID: PMC539151 DOI: 10.1091/mbc.e04-05-0399] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One of the intriguing questions regarding cell motility concerns the mechanism that makes stationary cells move. Here, we provide the first physical evidence that the onset of breast cancer cell motility in response to insulin-like growth factor I (IGF-I) correlates with lowering of adhesion strength from 2.52 +/- 0.20 to 1.52 +/- 0.13 microdynes/microm2 in cells attached to fibronectin via alpha5beta1 integrin. The adhesion strength depends on the dose of IGF-I and time of IGF-I treatment. Weakening of cell-matrix adhesion is blocked significantly (p < 0.01) by the catalytically inactive IGF-I receptor (IGF-IR) and the phosphoinositide 3-kinase (PI-3 kinase) inhibitor LY-294002, but it is unaffected by mitogen-activated protein kinase kinase inhibitor UO-126 and Src kinase inhibitor PP2. Sustained blockade of Rho-associated kinase (ROCK) with Y-27632 down-regulates adhesion strength in stationary, but not in IGF-I-treated, cells. Jasplakinolide, a drug that prevents actin filament disassembly, counteracts the effect of IGF-I on integrin-mediated cell adhesion. In the absence of growth factor signaling, ROCK supports a strong adhesion via alpha5beta1 integrin, whereas activation of the IGF-IR kinase reduces cell-matrix adhesion through a PI-3K-dependent, but ROCK-independent, mechanism. We propose that disassembly of the actin filaments via PI-3 kinase pathway contributes to weakening of adhesion strength and induction of cell movement. Understanding how cell adhesion and migration are coordinated has an important application in cancer research, developmental biology, and tissue bioengineering.
Collapse
Affiliation(s)
- Laura Lynch
- Department of Microbiology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
320
|
Gaudet C, Marganski WA, Kim S, Brown CT, Gunderia V, Dembo M, Wong JY. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys J 2004; 85:3329-35. [PMID: 14581234 PMCID: PMC1303610 DOI: 10.1016/s0006-3495(03)74752-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We examine the relationships of three variables (projected area, migration speed, and traction force) at various type I collagen surface densities in a population of fibroblasts. We observe that cell area is initially an increasing function of ligand density, but that above a certain transition level, increases in surface collagen cause cell area to decline. The threshold collagen density that separates these two qualitatively different regimes, approximately 160 molecules/ microm(2), is approximately equal to the cell surface density of integrin molecules. These results suggest a model in which collagen density induces a qualitative transition in the fundamental way that fibroblasts interact with the substrate. At low density, the availability of collagen binding sites is limiting and the cells simply try to flatten as much as possible by pulling on the few available sites as hard as they can. The force per bond under these conditions approaches 100 pN, approximately equal to the force required for rupture of integrin-peptide bonds. In contrast, at high collagen density adhesion, traction force and motility are limited by the availability of free integrins on the cell surface since so many of these receptors are bound to the surface ligand and the force per bond is very low.
Collapse
Affiliation(s)
- Christianne Gaudet
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
321
|
Walmod PS, Hartmann-Petersen R, Prag S, Lepekhin EL, Röpke C, Berezin V, Bock E. Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1. Exp Cell Res 2004; 295:407-20. [PMID: 15093740 DOI: 10.1016/j.yexcr.2004.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Indexed: 11/26/2022]
Abstract
To study cell motility in different phases of the cell cycle, time-lapse recording by computer-assisted microscopy of unsynchronised cells from three mammalian cell lines (L929, BT4Cn, HeLa) was used for the determination of the displacements of individual cells. The displacements were used for calculation of three key parameters describing cell motility: speed, persistence time and rate of diffusion. All investigated cell lines demonstrated a lower cell displacement in the G2 phase than in the G1/S phases. This was caused by a decrease in speed and/or persistence time. The decrease in motility was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner, and that an enhancement of Rac1 activity is sufficient for a delay of the reduced cell displacement otherwise seen in G2.
Collapse
Affiliation(s)
- P S Walmod
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
322
|
Mardilovich A, Kokkoli E. Biomimetic Peptide−Amphiphiles for Functional Biomaterials: The Role of GRGDSP and PHSRN. Biomacromolecules 2004; 5:950-7. [PMID: 15132686 DOI: 10.1021/bm0344351] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study we present involves the use of a biomimetic system that allows us to study specific interactions in the alpha(5)beta(1) receptor-GRGDSP ligand system with an atomic force microscope (AFM). Bioartificial membranes that mimic the adhesion domain of the extracellular matrix protein fibronectin are constructed from peptide-amphiphiles. A novel peptide-amphiphile is designed that contains both GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro, the primary recognition site for alpha(5)beta(1)) and PHSRN (Pro-His-Ser-Arg-Asn, the synergy binding site for alpha(5)beta(1)) sequences in a single peptide formulation, separated by a spacer. Two different antibodies are used to immobilize and activate isolated alpha(5)beta(1) integrins on the AFM tip. The interaction measured between immobilized alpha(5)beta(1) integrins and peptide-amphiphiles is specific for integrin-peptide binding and is affected by divalent cations in a way that accurately mimics the adhesion function of the alpha(5)beta(1) receptor. The strength of the PHSRN synergistic effect depends on the accessibility of this sequence to alpha(5)beta(1) integrins. An increase in adhesion is observed compared to surfaces displaying only GRGDSP peptides when the new biomimetic peptide-amphiphiles are diluted with lipidated poly(ethylene glycol), which provides more space for the peptide headgroups to bend and expose more of the PHSRN at the interface.
Collapse
Affiliation(s)
- Anastasia Mardilovich
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
323
|
Kevil CG, Orr AW, Langston W, Mickett K, Murphy-Ullrich J, Patel RP, Kucik DF, Bullard DC. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem 2004; 279:19230-8. [PMID: 14985356 DOI: 10.1074/jbc.m312025200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coordinated regulation of endothelial cell migration is an integral process during angiogenesis. However, molecular mechanisms regulating endothelial cell migration remain largely unknown. Increased expression of cell adhesion molecules has been implicated during angiogenesis, yet the precise role of these molecules is unclear. Here, we examined the hypothesis that intercellular adhesion molecule-1 (ICAM-1) is important for endothelial cell migration. Total cell displacement and directional migration were significantly attenuated in ICAM-1-deficient endothelium. Closer examination of ICAM-1-deficient cells revealed decreased Akt Thr(308) and endothelial nitric-oxide synthase Ser(1177) phosphorylation and NO bioavailability, increased actin stress fiber formation, and a lack of distinct cell polarity compared with wild-type endothelium. Supplementation of ICAM-1 mutant cells with the NO donor DETA NONOate (0.1 microM) corrected the migration defect, diminished stress fiber formation, and enhanced pseudopod and uropod formation. These data demonstrate that ICAM-1 facilitates the development of cell polarity and modulates endothelial cell migration through a pathway regulating endothelial nitric-oxide synthase activation and organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Choi YS, Lee J, Lui R. Traveling wave solutions for a one-dimensional crawling nematode sperm cell model. J Math Biol 2004; 49:310-28. [PMID: 15293016 DOI: 10.1007/s00285-003-0255-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Indexed: 11/25/2022]
Abstract
In this paper, we proved that the one-dimensional crawling nematode sperm cell model proposed by Mogilner and Verzi (2003) supports traveling wave solutions if there is no disassembly of unbundled filaments in the cell. Uniqueness of traveling wave is established under additional assumptions and numerical examples are also given in the paper. Mathematical methods used include dynamical system techniques, implicit function theorem and global bifurcation theory.
Collapse
Affiliation(s)
- Y S Choi
- Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
325
|
Peppas NA, Langer R. Origins and development of biomedical engineering within chemical engineering. AIChE J 2004. [DOI: 10.1002/aic.10048] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
326
|
MacArthur BD, Please CP, Taylor M, Oreffo ROC. Mathematical modelling of skeletal repair. Biochem Biophys Res Commun 2004; 313:825-33. [PMID: 14706616 DOI: 10.1016/j.bbrc.2003.11.171] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue engineering offers significant promise as a viable alternative to current clinical strategies for replacement of damaged tissue as a consequence of disease or trauma. Since mathematical modelling is a valuable tool in the analysis of complex systems, appropriate use of mathematical models has tremendous potential for advancing the understanding of the physical processes involved in such tissue reconstruction. In this review, the potential benefits, and limitations, of theoretical modelling in tissue engineering applications are examined with specific emphasis on tissue engineering of bone. A central tissue engineering approach is the in vivo implantation of a biomimetic scaffold seeded with an appropriate population of stem or progenitor cells. This review will therefore consider the theory behind a number of key factors affecting the success of such a strategy including: stem cell or progenitor population expansion and differentiation ex vivo; cell adhesion and migration, and the effective design of scaffolds; and delivery of nutrient to avascular structures. The focus will be on current work in this area, as well as on highlighting limitations and suggesting possible directions for future work to advance health-care for all.
Collapse
Affiliation(s)
- B D MacArthur
- University Orthopaedics, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
327
|
Krooshoop DJEB, Torensma R, van den Bosch GJM, Nelissen JMDT, Figdor CG, Raymakers RAP, Boezeman JBM. An automated multi well cell track system to study leukocyte migration. J Immunol Methods 2003; 280:89-102. [PMID: 12972190 DOI: 10.1016/s0022-1759(03)00262-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Design of automated image processing systems to determine migration characteristics of individual cells is not trivial. Every test sample requires separate recording and the analysis of individual cell tracks in two- or three-dimensional migration systems by time-lapse microscopy is extremely laborious. Here, we describe a new Automated Cell Track System (ACTS). In addition to contrast differences, which are used by existing analysis systems, the ACTS algorithms recognize cells on the basis of morphological similarities in successive images and adapt to the continuous shape changes of individual cells during migration. The system facilitates simultaneous analysis of multiple cells and the measurement of multiple wells in one single experiment. We validated the system studying HSB-2 T cell migration in standard 96-well microtiter plates coated with ICAM-1-Fc protein or control CD14-Fc protein. Migration of HSB-2 T cells on ICAM-1-Fc is Leukocyte Function-associated Antigen-1 (LFA-1)-mediated and both the number and the speed of migrating cells depend on the ICAM-1-Fc concentration. We show that automated analysis of the migration data yields similar results as manual analysis, but in a fraction of the time. We conclude that this system is extremely well suited to precisely monitor the migratory behavior of individual cells. The analysis of multiple wells in parallel makes this set-up appropriate in high throughput screening in which multiple components are simultaneously tested for their effect on cell migration.
Collapse
|
328
|
Lauffenburger DA, Wells A. Quantitative parsing of cell multi-tasking in wound repair and tissue morphogenesis. Biophys J 2003; 84:3499-500. [PMID: 12770862 PMCID: PMC1302938 DOI: 10.1016/s0006-3495(03)75084-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Douglas A Lauffenburger
- Biological Engineering Division, Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
329
|
Ideker T, Lauffenburger D. Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol 2003; 21:255-62. [PMID: 12788545 DOI: 10.1016/s0167-7799(03)00115-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Computational cellular models are becoming crucial for the analysis of complex biological systems. An important new paradigm for cellular modeling involves building a comprehensive scaffold of molecular interactions and then mining this scaffold to reveal a hierarchy of signaling, regulatory and metabolic pathways. We review the important trends that make this approach feasible and describe how they are spurring the development of models at multiple levels of abstraction. Pathway maps can be extracted from the scaffold using "high-level" computational models, which identify the key components, interactions and influences required for more detailed "low-level" models. Large-scale experimental measurements validate high-level models, whereas targeted experimental manipulations and measurements test low-level models.
Collapse
Affiliation(s)
- Trey Ideker
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | |
Collapse
|
330
|
Scotchford CA, Ball M, Winkelmann M, Vörös J, Csucs C, Brunette DM, Danuser G, Textor M. Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. Biomaterials 2003; 24:1147-58. [PMID: 12527255 DOI: 10.1016/s0142-9612(02)00488-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein adsorption and adhesion of primary human osteoblasts on chemically patterned, metal-oxide-based surfaces comprising combinations of titanium, aluminium, vanadium and niobium were investigated. Single metal samples with a homogeneous surface and bimetal samples with a surface pattern produced by photolithographic techniques were used. The physical and chemical properties of the samples have been extensively characterised and are presented in a companion paper. Here, we describe their properties in terms of cell responses during the initial 24h of cell culture. Regarding the cell number and activity there was no significant difference between any of the single metal surfaces. However the morphology of cells on vanadium surfaces became spindle-like. In contrast to the behaviour on single metal samples, cells exhibited a pronounced reaction on bimetallic surfaces that contained aluminium. Cells tended to stay away from aluminium, which was the least favoured metal in all two-metal combinations. An initial cell alignment relative to the pattern geometry was detectable after 2h and was fully developed after 18h of incubation. The organisation of f-actin and microtubules as well as the localisation of vinculin were all more pronounced on non-aluminium regions. We hypothesised that the differences in cell response could be associated with differences in the adsorption of serum proteins onto the various metal oxides. Protein adsorption experiments were performed using microscopy in conjunction with immunofluorescent stains. They indicated that both fibronectin and albumin adsorption were significantly greater on the non-aluminium regions, suggesting that differences in cellular response correlate with a modulation of the concentration of serum proteins on the surface.
Collapse
Affiliation(s)
- C A Scotchford
- Schools of Biomedical Sciences and Mechanical Materials Manufacturing Engineering and Management, University of Nottingham, Wolfson Building University Park, NG9 2RD, Nottingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Lishko VK, Yakubenko VP, Ugarova TP. The interplay between integrins alphaMbeta2 and alpha5beta1 during cell migration to fibronectin. Exp Cell Res 2003; 283:116-26. [PMID: 12565824 DOI: 10.1016/s0014-4827(02)00024-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A directed migration of leukocytes through the extracellular matrix requires the regulated engagement of integrin cell adhesion receptors. The integrin alpha(M)beta(2) (CD11b/CD18, Mac-1) is progressively upregulated to high levels on migrating phagocytic leukocytes in response to inflammatory stimuli and is able to bind numerous ligands in the interstitial matrix. The role of alpha(M)beta(2) in migration of leukocytes through the extracellular matrix and its cooperation with other leukocyte integrins during migration are not understood. Using a model system consisting of cells that express different levels of alpha(M)beta(2) and an invariable level of endogenous integrin alpha(5)beta(1), we have explored a situation relevant to migrating neutrophils when alpha(M)beta(2) and alpha(5)beta(1) engage the same ligand, fibronectin. We show that fibronectin is a ligand for alpha(M)beta(2) and that both alpha(M)beta(2) and alpha(5)beta(1) on the alpha(M)beta(2)-expressing cells contribute to adhesion to fibronectin. However, migration of these cells to fibronectin is mediated by alpha(5)beta(1), whereas alpha(M)beta(2) retards migration. The decrease in migration correlates directly with the increased alpha(M)beta(2) density. Ligation of alpha(M)beta(2) with function-blocking antibodies can reverse this effect. The restorative effects of antibodies are caused by the removal of restraint imposed by the excess of alpha(M)beta(2)-fibronectin adhesive bonds. These findings indicate that alpha(M)beta(2) can increase general cell adhesiveness which results in braking of cell migration mediated by integrin alpha(5)beta(1). Because alpha(M)beta(2) binds numerous proteins in the extracellular matrix with a specificity overlapping that of the beta(1) integrins, the results suggest that alpha(M)beta(2) can affect the beta(1) integrin-mediated cell migration.
Collapse
Affiliation(s)
- Valeryi K Lishko
- Joseph J Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
332
|
Dejmek J, Dib K, Jönsson M, Andersson T. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer 2003; 103:344-51. [PMID: 12471617 DOI: 10.1002/ijc.10752] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The collagen-induced phosphorylation of discoidin domain receptor 1 (DDR1) in Wnt-5a-expressing HB2 mammary cells was effectively inhibited by pertussis toxin, but not by cholera toxin or antibodies blocking beta(1) integrins. Moreover, pertussis toxin reduced adhesion of the cells to collagen by approximately 50%, and antibodies against beta(1) integrins had a similar effect that was in fact additive to that of pertussis toxin. Cholera toxin had accordingly no such effect on adhesion. By comparison, pertussis toxin did not influence adhesion of Wnt-5a-antisense HB2 cells or MCF-7 mammary tumor cells, neither of which express Wnt-5a or exhibit activation of DDR1. In accordance with these results, direct mastoparan-induced activation of G-proteins in Wnt-5a-deficient MCF-7 cells enabled collagen-induced phosphorylation of DDR1 and enhanced their adhesion. The inactive analogue mastoparan-17 had no such effects on MCF-7 cells nor did active mastoparan affect adhesion of Wnt-5a-expressing HB2 cells. A possible explanation for how DDR1, a receptor tyrosine kinase (RTK), potentiates mammary cell adhesion comes from our observations that pertussis toxin also inhibited the recruitment of the cytoskeletal regulator phosphatidylinositol 3-kinase (PI3K) to DDR1 as well as its phosphorylation/activation. In accordance with that, the PI3K inhibitor wortmannin significantly impaired adhesion of normal Wnt-5a-expressing HB2 cells but had little effect on adhesion of Wnt-5a-antisense HB2 cells. Thus, a G(i/o)-protein signaling pathway mediates the effect of Wnt-5a expression by enabling collagen-induced activation of DDR1, which, in parallel with beta(1) integrins, regulates adhesion of mammary cells.
Collapse
Affiliation(s)
- Janna Dejmek
- Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Sweden
| | | | | | | |
Collapse
|
333
|
Sethi KK, Mudera V, Sutterlin R, Baschong W, Brown RA. Contraction-mediated pinocytosis of RGD-peptide by dermal fibroblasts: inhibition of matrix attachment blocks contraction and disrupts microfilament organisation. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:231-41. [PMID: 12112137 DOI: 10.1002/cm.10047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Force generation in collagen and matrix contraction are basic functions of fibroblasts and important elements of tissue repair. Cell-matrix attachment is critical to this contraction, involving RGD-binding integrins. We have investigated how this process operates, in terms of force generation (in the Culture Force Monitor) and cytoskeletal structure, using a synthetic RGD-decapeptide. The RGD-peptide blocked force generation over the first 6 h, followed by near complete recovery by 20 h. However, dose response was complex indicating multiple processes were operating. Analysis of cytoskeletal structure after treatment with RGD-peptide indicated major disruption with condensed aggregates of actin and microtubular fragmentation. Fluorescent labeling and tracking of the RGD-peptide demonstrated intracellular uptake into discrete cytoplasmic aggregates. Critically, these RGD-peptide pools co-localised with the condensed actin microfilament aggregates. It is concluded that RGD-peptide uptake was by a form of contraction-mediated pinocytosis, resulting from mechanical tension applied to the untethered RGD-peptide-integrin, as contractile microfilament were assembled. These findings emphasize the importance of sound mechanical attachment of ligand-occupied integrins (e.g., to extracellular matrix) for normal cytoskeletal function. Conversely, this aspect of unrestrained cytoskeletal contraction may have important pathogenic and therapeutic applications.
Collapse
Affiliation(s)
- K K Sethi
- University College London, Tissue Repair and Engineering Centre (TREC), Institute of Orthopaedics, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | | | | | | | | |
Collapse
|
334
|
Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 2002; 16:1195-204. [PMID: 12153987 DOI: 10.1096/fj.02-0038com] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.
Collapse
Affiliation(s)
- Kevin Kit Parker
- Department of Pathology and Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Larreta-Garde V, Berry H. Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle. J Theor Biol 2002; 217:105-24. [PMID: 12183135 DOI: 10.1006/jtbi.2002.3010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.
Collapse
Affiliation(s)
- Veronique Larreta-Garde
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Université de Cergy-Pontoise, 2 Avenue A. Chauvin, 222, 95302 Cergy Pontoise Cedex, France
| | | |
Collapse
|
336
|
Abstract
Biomaterials and scaffolds play an essential role in tissue engineering by guiding new tissue growth in vivo and in vitro. While adaptation of existing surgical materials has fulfilled some needs in the field, new applications demand better control of bulk properties such as degradation and of surface properties that control cell interactions. Advances in molecular cell biology are driving the incorporation of new biological moieties into materials, and a set of design principles based on quantitative analysis of key cellular processes involved in regeneration is emerging. At the same time, new materials-processing methodologies are emerging to allow fabrication of these fragile materials into devices appropriate for delivery.
Collapse
Affiliation(s)
- Linda G Griffith
- Biological Engineering Division and Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm. 66-466, Cambridge, MA 02139, USA.
| |
Collapse
|
337
|
Décavé E, Garrivier D, Bréchet Y, Fourcade B, Bruckert F. Shear flow-induced detachment kinetics of Dictyostelium discoideum cells from solid substrate. Biophys J 2002; 82:2383-95. [PMID: 11964228 PMCID: PMC1302030 DOI: 10.1016/s0006-3495(02)75583-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using Dictyostelium discoideum as a model organism of specific and nonspecific adhesion, we studied the kinetics of shear flow-induced cell detachment. For a given cell, detachment occurs for values of the applied hydrodynamic stress above a threshold. Cells are removed from the substrate with an apparent first-order rate constant that strongly depends on the applied stress. The threshold stress depends on cell size and physicochemical properties of the substrate, but is not affected by depolymerization of the actin and tubulin cytoskeleton. In contrast, the kinetics of cell detachment is almost independent of cell size, but is strongly affected by a modification of the substrate and the presence of an intact actin cytoskeleton. These results are interpreted in the framework of a peeling model. The threshold stress and the cell-detachment rate measure the local equilibrium energy and the dissociation rate constant of the adhesion bridges, respectively.
Collapse
Affiliation(s)
- Emmanuel Décavé
- Département de Biologie Moléculaire et Structurale/BBSI, Commissariat à l'Energie Atomique Grenoble, 38054 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
338
|
Tjia JS, Moghe PV. Regulation of cell motility on polymer substrates via "dynamic," cell internalizable, ligand microinterfaces. TISSUE ENGINEERING 2002; 8:247-61. [PMID: 12031114 DOI: 10.1089/107632702753725012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo, motile epidermal tissues frequently encounter ligand microinterfaces that are dynamic, owing to rapid cell-mediated substrate phagocytosis. In this study, we have examined cell motility phenomena in response to the adhesion ligand, collagen, which was presented on cell-internalizable 400-nm colloidal gold microcarriers. Normal human keratinocytes were seeded onto collagen-adsorbed poly(lactide-co-glycolide) (PLGA) films that were predeposited with varying densities of the ligand-associated microcarriers (LAMs), such that the overall ligand density and the ligand loading per microcarrier were invariant. Cells seeded on LAMs exhibited rapid and distinct cytoskeletal redistribution resulting in numerous filopodial extensions, indicative of activation of cell motility processes. We report that the population-averaged cell migration rate of cells, mu, was increased from 2 microm2/min on collagen substrates lacking the microcarriers, to approximately 50 microm2/min on collagen presenting LAMs. An increase in LAM density to 1.2 LAMs per microm2 was found to maximize mu, as well as the directional persistence and speed of cell migration, whereas very high LAM densities saturated cell internalization and diminished migration rates. The cell-LAM interactions essential to enhanced migration were ligand-activated, as mu; values were reduced 400% on internalizable microcarriers lacking ligands; moreover, cooperative ligand elicitation was possible, for example, when 10 microg/mL soluble fibronectin was introduced as a costimulant of keratinocytes, yielding the highest reported mu values (80 microm2/min) on collagen LAM-PLGA substrates. Notably, cell migration rates were severely repressed when cell internalization processes were challenged through covalent conjugation of ligand carriers to the substrate, indicating that signals from cell-LAM binding alone were inadequate for elevated levels of cell migration. Further analysis indicated that the presence of LAMs did not alter the protease-resistant adhesivity between the cell and the underlying substrate, suggesting that the activation governing ligand interactions likely arose at the cell-LAM interface rather than the cell-substrate interface. This study highlights the novel use of secondary ligand-presenting microscale/nanoscale depots at polymer substrates to elicit, via dynamic cell internalization processes, significantly enhanced levels of cell migration over traditional interfaces with ligand-bearing substrates.
Collapse
Affiliation(s)
- Jane S Tjia
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
339
|
Chon JH, Chaikof EL. A von Willebrand factor-derived heparin-binding peptide regulates cell--substrate adhesive strength and chemokinesis behavior. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:195-208. [PMID: 11853892 DOI: 10.1016/s0167-4889(01)00181-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ability of a soluble heparin-binding oligopeptide sequence derived from the von Willebrand factor (vWF) to modulate the adhesion and chemokinetic migration behavior of arterial smooth muscle cells was assessed using a novel glass microsphere centrifugation assay and automated time-lapse fluorescence videomicroscopy, respectively. Treatment of cells grown on fibronectin-coated substrates with the heparin-binding peptide resulted in the disassembly of focal adhesions, as assessed by immunohistochemical staining. These observations were consistent with six-fold decrease in cell--substrate adhesive strength (P<0.001), a biphasic effect on migration speed (P<0.05), as well as a dose-dependent reduction in the percentage of motile cells and the cell dispersion coefficient (mu=S(2)T/2). The specificity of this response to the vWF-derived heparin-binding peptide was supported by the absence of an observed effect in the presence of either a scrambled peptide or a consensus heparin-binding peptide sequence of similar heparin affinity. These data support the notion that competitive interactions between cell surface heparan sulfates with heparin-binding peptide domains located in soluble peptide fragments may modulate chemokinetic cell migration behavior and other adhesion-related processes.
Collapse
Affiliation(s)
- John H Chon
- Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
340
|
Abstract
Strategies for rationally manipulating cell behavior in cell-based technologies and molecular therapeutics and understanding effects of environmental agents on physiological systems may be derived from a mechanistic understanding of underlying signaling mechanisms that regulate cell functions. Three crucial attributes of signal transduction necessitate modeling approaches for analyzing these systems: an ever-expanding plethora of signaling molecules and interactions, a highly interconnected biochemical scheme, and concurrent biophysical regulation. Because signal flow is tightly regulated with positive and negative feedbacks and is bidirectional with commands traveling both from outside-in and inside-out, dynamic models that couple biophysical and biochemical elements are required to consider information processing both during transient and steady-state conditions. Unique mathematical frameworks will be needed to obtain an integrated perspective on these complex systems, which operate over wide length and time scales. These may involve a two-level hierarchical approach wherein the overall signaling network is modeled in terms of effective "circuit" or "algorithm" modules, and then each module is correspondingly modeled with more detailed incorporation of its actual underlying biochemical/biophysical molecular interactions.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
341
|
Allen FD, Asnes CF, Chang P, Elson EL, Lauffenburger DA, Wells A. Epidermal growth factor induces acute matrix contraction and subsequent calpain-modulated relaxation. Wound Repair Regen 2002; 10:67-76. [PMID: 11983008 DOI: 10.1046/j.1524-475x.2002.10701.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During wound healing, dermal fibroblasts switch from a migratory, repopulating phenotype to a contractile, matrix-reassembling phenotype. The mechanisms controlling this switch are unknown. A possible explanation is suggested by the finding that chemokines that appear late in wound repair prevent growth factor-induced cell-substratum de-adhesion by blocking calpain activation. In this study, we tested the specific hypothesis that fibroblast contraction of the matrix is promoted by a pro-repair growth factor, epidermal growth factor, and is modulated by calpain-mediated release of adhesions. We employed an isometric force transduction system designed to measure the contraction of a collagen matrix under tension by a population of NR6 fibroblasts transfected with the human epidermal growth factor receptor. By maintaining a fixed level of strain, we could monitor both the initial contraction and subsequent relaxation of the matrix. Epidermal growth factor stimulated a transient, dose-dependent increase in matrix contraction that peaked within 60 minutes and then decayed over the ensuing 3 to 6 hours. Calpain inhibitor I (ALLN) prevented epidermal growth factor-stimulated cell de-adhesion and resulted in a significantly slower decay of matrix contraction, with only a slight decrease of the peak magnitude of contraction. The mitogen-activated protein kinase kinase-1-selective inhibitor PD 98059 that blocks signaling through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway, required for epidermal growth factor receptor-mediated activation of calpain and de-adhesion, does not significantly affect the magnitude of matrix contraction within minutes of epidermal growth factor addition, but slows the decay similarly to calpain inhibition. Epidermal growth factor receptor signaling thus stimulates the complementary mechanisms of intracellular contractile force generation and calpain-mediated de-adhesion, which are known to coordinately facilitate cell migration. These findings suggest that calpain can act as a functional switch for transmission of intracellular contractile force to the surrounding matrix, with calpain-mediated de-adhesion reducing this transmission and corresponding matrix contraction. Countervailing processes that down-regulate calpain activation can, accordingly, direct the transition of cell function from locomotion to matrix contraction.
Collapse
Affiliation(s)
- Fred D Allen
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
342
|
Abstract
BACKGROUND Upon explant, parathyroid tissue (PTH) upregulates vascular endothelial growth factor (VEGF), a potent endothelial cell mitogen, yet PTH induces a more robust angiogenic response than VEGF alone. This implies that other angiogenic factors are also produced. We tested PTH for production and function of angiopoietin-2 (Ang-2), a protein known to modulate VEGF response. METHODS With use of reverse transcriptase-polymerase chain reaction and SELDI (Surface Enhanced Laser Desorption/Ionization) (Ciphergen, Freemont, Calif) technology, we tested explanted PTH for Ang-2 production and determined the time sequence of Ang-2 upregulation. With use of an in vitro rat microvessel angiogenesis assay, we determined the angiogenic response to PTH-produced Ang-2. RESULTS Ang-2 messenger RNA was induced within 1 hour of parathyroid explant, with a maximum level detectable at 24 hours. Ang-2 protein production was maximal at 24 hours, with elimination by 48 hours. Ang-2 supplemented gels appeared to prompt earlier angiogenic induction, whereas sequestration of Ang-2 with soluble Tie2 receptor appeared to delay angiogenic induction. Soluble Tie2 treatment did not significantly decrease cumulative microvessel length, and no significant increase in neovessel length was seen with Ang-2 supplemented gels. CONCLUSIONS PTH upregulates Ang-2 upon explantation, with peak protein production by 24 hours. Ang-2 appears to functionally enhance initiation of PTH-induced angiogenesis, although the ultimate neovessel length appears to be dependent on other PTH-produced factors.
Collapse
Affiliation(s)
- W B Carter
- Division of Surgical Oncology, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
343
|
Tan J, Shen H, Saltzman WM. Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte migration. Biophys J 2001; 81:2569-79. [PMID: 11606271 PMCID: PMC1301725 DOI: 10.1016/s0006-3495(01)75901-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Microfabrication technology was used to create regular arrays of micron-size holes (2 microm x 2 microm x 210 nm) on fused quartz and photosensitive polyimide surfaces. The patterned surfaces, which possessed a basic structural element of a three-dimensional (3-D) network (i.e., spatially separated mechanical edges), were used as a model system for studying the effect of substrate microgeometry on neutrophil migration. The edge-to-edge spacing between features was systematically varied from 6 microm to 14 microm with an increment of 2 microm. In addition, collagen was used to coat the patterned quartz surfaces in an attempt to change the adhesive properties of the surfaces. A radial flow detachment assay revealed that cell adhesion was the strongest on the quartz surface (approximately 50% cell attached), whereas it was relatively weaker on polyimide and collagen-coated quartz (approximately 25% cell attached). Cell adhesion to each substrate was not affected either by the presence of holes or by the spacing between holes. A direct visualization assay showed that neutrophil migration on each patterned surface could be characterized as a persistent random walk; the dependence of the random motility coefficient (mu) as a function of spacing was biphasic with the optimal spacing at approximately 10 microm on each substrate. The presence of evenly distributed holes at the optimal spacing of 10 microm enhanced mu by a factor of 2 on polyimide, a factor of 2.5 on collagen-coated quartz, and a factor of 10 on uncoated quartz. The biphasic dependence on the mechanical edges of neutrophil migration on 2-D patterned substrate was strikingly similar to that previously observed during neutrophil migration within 3-D networks, suggesting that microfabricated materials provide relevant models of 3-D structures with precisely defined physical characteristics. In addition, our results demonstrate that the microgeometry of a substrate, when considered separately from adhesion, can play a significant role in cell migration.
Collapse
Affiliation(s)
- J Tan
- School of Chemical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
344
|
Libotte T, Kaiser HW, Alt W, Bretschneider T. Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp Cell Res 2001; 270:129-37. [PMID: 11640877 DOI: 10.1006/excr.2001.5339] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Keratinocyte migration on a two-dimensional substrate can be split into four distinct phases: cell extension, attachment, contraction, and detachment. It is preceded by polarization of the cell which leads to a functional asymmetry observable by the formation of a leading lamella. In this work variation of fibronectin coating concentrations and competitive inhibition with RGD peptides are used to investigate the dependency of polarization, migration, lamella dynamics, and ruffling on substrate adhesiveness. Looking at migrating human epidermal keratinocytes with a well-defined polarity we find that a fibronectin-coating concentration of 10 microg/cm(2) stimulates migration and ruffling speed twofold, whereas protrusion speed increases only by 20% (compared to 2.5 microg/cm(2) fibronectin). Nonpolar cells show a constant migration and ruffling speed independent of the amount of fibronectin. In contrast protrusion speeds of polar and nonpolar cells are equal. Treatment of cells on 10 microg/cm(2) fibronectin with 1 mg/ml GRGDS reduces the characteristic migration, protrusion, and ruffling speed of polar cells which corresponds to lowering the effective coating concentration to under 5 microg/cm(2). The probability of being polarized (quantified by a polarity index) increases with increasing fibronectin concentration. However, addition of soluble RGD on 10 microg/cm(2) fibronectin does not simply reduce the polarity index like one would expect from the corresponding changes in the other motility parameters, but it remains unchanged.
Collapse
Affiliation(s)
- T Libotte
- Department of Theoretical Biology, Botanical Institute, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany.
| | | | | | | |
Collapse
|
345
|
Abstract
In a variety of adult CNS injury models, embryonic neurons exhibit superior regenerative performance when compared with adult neurons. It is unknown how young neurons extend axons in the injured adult brain, in which adult neurons fail to regenerate. This study shows that cultured adult neurons do not adapt to conditions that are characteristic of the injured adult CNS: low levels of growth-promoting molecules and the presence of inhibitory proteoglycans. In contrast, young neurons readily adapt to these same conditions, and adaptation is accompanied by an increase in the expression of receptors for growth-promoting molecules (receptors of the integrin family). Surprisingly, the regenerative performance of adult neurons can be restored to that of young neurons by gene transfer-mediated expression of a single alpha-integrin.
Collapse
|
346
|
Condic ML. Adult neuronal regeneration induced by transgenic integrin expression. J Neurosci 2001; 21:4782-8. [PMID: 11425905 PMCID: PMC6762359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
In a variety of adult CNS injury models, embryonic neurons exhibit superior regenerative performance when compared with adult neurons. It is unknown how young neurons extend axons in the injured adult brain, in which adult neurons fail to regenerate. This study shows that cultured adult neurons do not adapt to conditions that are characteristic of the injured adult CNS: low levels of growth-promoting molecules and the presence of inhibitory proteoglycans. In contrast, young neurons readily adapt to these same conditions, and adaptation is accompanied by an increase in the expression of receptors for growth-promoting molecules (receptors of the integrin family). Surprisingly, the regenerative performance of adult neurons can be restored to that of young neurons by gene transfer-mediated expression of a single alpha-integrin.
Collapse
Affiliation(s)
- M L Condic
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132-0002, USA.
| |
Collapse
|
347
|
Jönsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 2001; 114:2043-53. [PMID: 11493640 DOI: 10.1242/jcs.114.11.2043] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Wnt-5a gene encodes a secreted protein that controls several normal processes during embryogenesis and development of adult tissues by as yet unknown mechanisms. Endogenous expression of Wnt-5a mRNA is known to occur in both mouse and human mammary cell lines. To investigate the biological role of Wnt-5a in the human mammary epithelial cell line HB2, we used an antisense approach to repress endogenous expression of Wnt-5a protein. We also generated a cell population that constitutively overexpresses this protein. We found that overexpression of Wnt-5a protein enhanced cell-to-collagen binding and abolished hepatocyte growth factor-stimulated migration of HB2 transfectants through collagen matrices. Conversely, repression of Wnt-5a protein led to cell scattering, impaired cell-collagen interaction and enhanced cell motility. As we were searching for modified collagen receptors in antisense cells, we discovered that the collagen-binding discoidin domain receptor 1 (DDR1) failed to undergo phosphorylation. In reciprocal experiments, phosphorylation of DDR1 was consistently enabled by expression of Wnt-5a-HA protein in non-Wnt-5a-producing MCF-7 breast cancer cells. Activation of the Wnt/β-catenin signalling pathway did not influence or mimic the Wnt-5a-mediated effect on DDR1 phosphorylation. These data demonstrate that Wnt-5a protein participates in regulation of adhesion to and migration through collagen and is also a co-factor necessary for collagen-induced activation of DDR1 receptors in mammary epithelial cells.
Collapse
Affiliation(s)
- M Jönsson
- Division of Experimental Pathology, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden.
| | | |
Collapse
|
348
|
Chon JH, Chaikof EL. Soluble heparin-binding peptides regulate chemokinesis and cell adhesive forces. Am J Physiol Cell Physiol 2001; 280:C1394-402. [PMID: 11350734 DOI: 10.1152/ajpcell.2001.280.6.c1394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of a soluble heparin-binding peptide sequence derived from fibronectin to modulate the adhesion and chemokinetic migration behavior of arterial smooth muscle cells was assessed using a novel glass microsphere centrifugation assay and automated time-lapse fluorescence videomicroscopy, respectively. Treatment of cells grown on fibronectin-coated substrates with the soluble heparin-binding peptide resulted in the disassembly of focal adhesions, as assessed by immunohistochemical staining. These observations were consistent with an observed dose-dependent two- to fivefold reduction in cell-substrate adhesive strength ( P < 0.001) and a biphasic effect on migration speed ( P < 0.05). Moreover, heparin-binding peptides induced a twofold reduction ( P < 0.01) in two-dimensional cell dispersion in the presence of a non-heparin-binding growth factor, platelet-derived growth factor-AB (PDGF-AB). Heparin-binding peptides were unable to mediate these effects when cells were grown on substrates lacking a heparin-binding domain. These data support the notion that competitive interactions between cell surface heparan sulfates with heparin-binding peptides may modulate chemokinetic cell migration behavior and other adhesion-related processes.
Collapse
Affiliation(s)
- J H Chon
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
349
|
Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 2001; 107:785-90. [PMID: 11285293 PMCID: PMC199582 DOI: 10.1172/jci12609] [Citation(s) in RCA: 347] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as shown by the red arrows. The significance of each adhesive state for cell behavior is indicated beneath the cells. The weak adhesive state would be consistent with cells undergoing apoptosis during remodeling or those undergoing cytokinesis. The strong adhesive state is characteristic of a differentiated, quiescent cell, whereas cells in the intermediate adhesive state would include those involved in responding to injury during wound healing or in tissue remodeling during morphogenesis.
Collapse
Affiliation(s)
- J E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, G038 Volker Hall, 1670 University Boulevard, Birmingham, Alabama 35294-0019, USA.
| |
Collapse
|
350
|
Munevar S, Wang Y, Dembo M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 2001; 80:1744-57. [PMID: 11259288 PMCID: PMC1301364 DOI: 10.1016/s0006-3495(01)76145-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mechanical interactions between cell and substrate are involved in vital cellular functions from migration to signal transduction. A newly developed technique, traction force microscopy, makes it possible to visualize the dynamic characteristics of mechanical forces exerted by fibroblasts, including the magnitude, direction, and shear. In the present study such analysis is applied to migrating normal and transformed 3T3 cells. For normal cells, the lamellipodium provides almost all the forces for forward locomotion. A zone of high shear separates the lamellipodium from the cell body, suggesting that they are mechanically distinct entities. Timing and distribution of tractions at the leading edge bear no apparent relationship to local protrusive activities. However, changes in the pattern of traction forces often precede changes in the direction of migration. These observations suggest a frontal towing mechanism for cell migration, where dynamic traction forces at the leading edge actively pull the cell body forward. For H-ras transformed cells, pockets of weak, transient traction scatter among small pseudopods and appear to act against one another. The shear pattern suggests multiple disorganized mechanical domains. The weak, poorly coordinated traction forces, coupled with weak cell-substrate adhesions, are likely responsible for the abnormal motile behavior of H-ras transformed cells.
Collapse
Affiliation(s)
- S Munevar
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|