301
|
Reti IM, Reddy R, Worley PF, Baraban JM. Prominent Narp expression in projection pathways and terminal fields. J Neurochem 2002; 82:935-44. [PMID: 12358799 DOI: 10.1046/j.1471-4159.2002.01051.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Narp (neuronal activity regulated pentraxin) is a secreted immediate early gene product that is induced by synaptic activity. Recent studies have indicated that Narp may be an extracellular aggregating factor for AMPA receptors. Immunohistochemical studies have revealed prominent expression of Narp in the mossy fiber pathway of the dentate gyrus, suggesting it may be released pre-synaptically. However, in vitro studies using recombinant Narp indicate that Narp may act when expressed by either pre- or post-synaptic elements. To help define Narp's mode of action, we have examined its localization in the habenula-interpeduncular pathway which also displays robust Narp expression. Focusing on this pathway as well as hippocampal and cortical Narp expression, we found prominent Narp staining in projection pathways and terminal fields. In contrast, Narp expression in dendrites was minimal in these neuronal populations. These findings indicate that, under physiological conditions, Narp is targeted to the synapse from pre- rather than post-synaptic elements. Our results also suggest that future studies focusing on these projection pathways that express high levels of Narp, in vivo, may help to understand the regulation and function of endogenous Narp.
Collapse
Affiliation(s)
- Irving M Reti
- Department of Psychiatry, Neuroscience and Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
302
|
GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J Neurosci 2002. [PMID: 12077177 DOI: 10.1523/jneurosci.22-12-04805.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rat hippocampal cultures, we show by multilabeling immunocytochemistry that pyramidal cells, which receive little or no GABAergic input, mistarget alpha2-GABA(A) receptors and gephyrin to glutamatergic terminals. This mismatch does not occur in neurons innervated by numerous GABAergic terminals. A similar phenomenon has been reported for isolated autaptic hippocampal neurons (Rao et al., 2000). GABAergic synapses typically form multiple release sites apposed to GABA(A) receptor and gephyrin clusters. Remarkably, dystrophin, a protein highly abundant in skeletal muscle membranes, is extensively colocalized with alpha2-GABA(A) receptors exclusively opposite GABAergic terminals. In addition, selective apposition of syntrophin and beta-dystroglycan to GABAergic presynaptic terminals suggests that the entire dystrophin-associated protein complex (DPC) clusters at GABAergic synapses. In contrast to gephyrin and GABA(A) receptors, DPC proteins are not mistargeted to glutamatergic synapses, indicating independent clustering mechanisms. This was confirmed in hippocampal neurons cultured from GABA(A) receptor gamma2 subunit-deficient mice. Clustering of GABA(A) receptor and gephyrin in these neurons was strongly impaired, whereas clustering of dystrophin and associated proteins was unaffected by the absence of the gamma2 subunit. Our results indicate that accumulation of dystrophin and DPC proteins at GABAergic synapses occurs independently of postsynaptic GABA(A) receptors and gephyrin. We suggest that selective signaling from GABAergic terminals contributes to postsynaptic clustering of dystrophin.
Collapse
|
303
|
Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J Neurosci 2002. [PMID: 12040056 DOI: 10.1523/jneurosci.22-11-04487.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity regulated pentraxin (Narp) has been implicated in the aggregation of AMPA-type glutamate receptors (GluR) at excitatory synapses. In the present paper, we examine the role of endogenous Narp in excitatory synapse formation by using novel, dominant-negative Narp mutants (dnNarp) that selectively bind endogenous Narp and prevent its accumulation at synapses. Axons from neurons transfected with wild-type Narp showed an increase in their ability to cluster AMPA receptors on spinal neurons, whereas axons from neurons transfected with dnNarp showed a marked decrease in their ability to induce GluR1 clusters on contacted dendrites. Despite their marked effect at excitatory synapses, dnNarp and wild-type Narp had no effect on the postsynaptic clustering of the inhibitory protein gephyrin or the percentage of contacts associated with staining for the presynaptic vesicle proteins GAD or synaptophysin. Use of the dnNarp mutants to suppress endogenous Narp expression by postsynaptic dendrites showed a complementary role for dendritic Narp in the clustering of synaptic AMPA receptors, as well as a reduction in the total number of excitatory synapses on transfected neurons. Together these experiments suggest an important role for Narp in the formation of excitatory synapses in cultured spinal neurons.
Collapse
|
304
|
Kaiser S, Blank M, Berg DK. Maturation of postsynaptic nicotinic structures on autonomic neurons requires innervation but not cholinergic transmission. Eur J Neurosci 2002; 16:1-10. [PMID: 12153526 DOI: 10.1046/j.1460-9568.2002.02050.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Postsynaptic development at the neuromuscular junction depends on nicotinic transmission and secreted components from the presynaptic motor nerve terminal. Similarly, secreted components and synaptic activity are both thought to guide development of glutamatergic synapses in the CNS. Nicotinic synapses on chick ciliary neurons are structurally complex: a large presynaptic calyx engulfs the postsynaptic neuron and overlays a series of discrete mats of receptor-rich somatic spines tightly interwoven and folded against the soma. We used fluorescence imaging of alpha 7-containing nicotinic receptors and the spine constituent drebrin to monitor postsynaptic development. The results show that surgical disruption of the preganglionic input or removal of the ganglionic synaptic target tissue after synapses form in the ganglion does not disrupt the receptor-rich spine mats. Similarly, removal of the target tissue even prior to synapse formation in the ganglion does not prevent subsequent formation of the receptor clusters and associated spine constituents. Postsynaptic development is arrested, however, if normal innervation is prevented by ablating the preganglionic neurons prior to synapse formation. In this case the neurons express reduced levels of nicotinic receptors and cytoskeletal components and organize them only into early-stage clusters. Even low levels of residual innervation, however, can restore much of the normal postsynaptic receptor patterns. Chronic pharmacological blockade of cholinergic synaptic activity fails to replicate the effects of ablating the preganglionic nucleus. The results indicate that ciliary neurons are programmed to express postsynaptic components and can initiate clustering of alpha 7-containing receptors but need presynaptic guidance for maturation of the postsynaptic structure.
Collapse
Affiliation(s)
- Sergio Kaiser
- Neurobiology Section, Division of Biology, 0357, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
305
|
Lu W, Marinelli M, Xu D, Worley PF, Wolf ME. Amphetamine and cocaine do not increase Narp expression in rat ventral tegmental area, nucleus accumbens or prefrontal cortex, but Narp may contribute to individual differences in responding to a novel environment. Eur J Neurosci 2002; 15:2027-36. [PMID: 12099908 DOI: 10.1046/j.1460-9568.2002.02036.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Narp is an immediate early gene product that acts extracellularly to cluster AMPA receptors at excitatory synapses. The present study tested the hypothesis that drugs of abuse alter Narp expression and thereby influence AMPA receptor transmission in addiction-related circuits. Immunohistochemical studies demonstrated the existence of Narp-positive cells in hippocampus, prefrontal cortex (PFC) and nucleus accumbens (NAc), with lower levels of staining in the ventral tegmental area (VTA). To study the effects of psychomotor stimulants, Narp levels were quantified by Western blotting and normalized to actin. There were no differences in Narp levels in any brain region between rats treated with repeated saline injections, a single amphetamine injection (5 mg/kg), repeated amphetamine injections (5 mg/kg x 5 days), or repeated cocaine injections (20 mg/kg twice daily x 7 days). We also examined the possible role of Narp in individual differences in responding to a novel environment, a predictor of behavioural responses to psychomotor stimulant drugs including the propensity to acquire drug self-administration. Narp levels in the PFC, but not other regions, were significantly correlated with locomotor activity in a novel environment. These findings suggest that differential Narp expression in the PFC may be involved in determining individual vulnerability to drugs of abuse, perhaps by influencing the activity of its excitatory projections.
Collapse
Affiliation(s)
- W Lu
- Department of Neuroscience, The Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
306
|
Ujike H, Takaki M, Kodama M, Kuroda S. Gene expression related to synaptogenesis, neuritogenesis, and MAP kinase in behavioral sensitization to psychostimulants. Ann N Y Acad Sci 2002; 965:55-67. [PMID: 12105085 DOI: 10.1111/j.1749-6632.2002.tb04151.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most important characteristic of behavioral sensitization to psychostimulants, such as amphetamine and cocaine, is the very long-lasting hypersensitivity to the drug after cessation of exposure. Rearrangement and structural modification of neural networks in CNS must be involved in behavioral sensitization. Previous microscopic studies have shown that the length of dendrites and density of dendritic spines increased in the nucleus accumbens and frontal cortex after repeated exposure to amphetamine and cocaine, but the molecular mechanisms responsible are not well understood. We investigated a set of genes related to synaptogenesis, neuritogenesis, and mitogen-activated protein (MAP) kinase after exposure to methamphetamine. Synaptophysin mRNA, but not VAMP2 (synaptobrevin 2) mRNA, which are considered as synaptogenesis markers, increased in the accumbens, striatum, hippocampus, and several cortices, including the medial frontal cortex, after a single dose of 4 mg/kg methamphetamine. Stathmin mRNA, but not neuritin or narp mRNA, which are markers for neuritic sprouting, increased in the striatum, hippocampus, and cortices after a single dose of methamphetamine. The mRNA of arc, an activity-regulated protein associated with cytoskeleton, but not of alpha-tubulin, as markers for neuritic elongation, showed robust increases in the striatum, hippocampus, and cortices after a single dose of methamphetamine. The mRNAs of MAP kinase phosphatase-1 (MKP-1), MKP-3, and rheb, a ras homologue abundant in brain, were investigated to assess the MAP kinase cascades. MKP-1 and MKP-3 mRNAs, but not rheb mRNA, increased in the striatum, thalamus, and cortices, and in the striatum, hippocampus, and cortices, respectively, after a single methamphetamine. Synaptophysin and stathmin mRNAs did not increase again after chronic methamphetamine administration, whereas the increases in arc, MKP-1, and MKP-3 mRNAs persisted in the brain regions after chronic methamphetamine administration. These findings indicate that the earlier induction process in behavioral sensitization may require various plastic modifications, such as synaptogenesis, neuritic sprouting, neuritic elongation, and activation of MAP kinase cascades, throughout almost the entire brain. In contrast, later maintenance process of sensitization may require only limited plastic modification in restricted regions.
Collapse
Affiliation(s)
- Hiroshi Ujike
- Department of Neuropsychiatry, Okayama University Medical School and Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | |
Collapse
|
307
|
Schwarz DA, Barry G, Mackay KB, Manu F, Naeve GS, Vana AM, Verge G, Conlon PJ, Foster AC, Maki RA. Identification of differentially expressed genes induced by transient ischemic stroke. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 101:12-22. [PMID: 12007827 DOI: 10.1016/s0169-328x(02)00135-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have used a rat model of focal cerebral ischemia to investigate changes in gene expression that occur during stroke. To monitor these changes, we employed representational difference analysis-polymerase chain reaction (PCR). A total of 128 unique gene fragments were isolated, and we selected 13 of these for quantitative reverse transcriptase-PCR analysis. Of these 13 genes, we found seven that were differentially expressed. Four of these genes have not previously been implicated in stroke, and include neuronal activity regulated pentraxin (Narp), cysteine rich protein 61 (Cyr61), Bcl-2 binding protein BIS (Bcl-2-interacting death suppressor), and lectin-like ox-LDL receptor (LOX-1). We demonstrated differential expression of each gene by quantitative PCR analysis, and in the case of LOX-1, we further confirmed differential expression by in situ hybridization. LOX-1 expression is induced greater than ten fold at the core lesion site, and is essentially localized to the ipsilateral half of the brain. LOX-1 appears to be expressed in a non-neuronal cell type, and it does not appear to be expressed in vascular endothelial cells within the brain. This suggests that LOX-1 may serve a novel function in the brain.
Collapse
Affiliation(s)
- David A Schwarz
- Neurocrine Biosciences, Inc., 10555 Science Center Drive, San Diego, CA 92121-1102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Synapses of the mammalian CNS are asymmetric sites of cell-cell adhesion between nerve cells. They are designed to mediate the rapid and efficient transmission of signals from the presynaptic bouton of one neuron to the postsynaptic plasma membrane of a second neuron. Significant progress has been made in the characterization of the structural, functional and developmental assembly of CNS synapses. Recent progress has been made in understanding the molecular and cellular mechanisms that underlie synaptogenesis, in particular that of glutamatergic synapses of the CNS.
Collapse
Affiliation(s)
- Craig C Garner
- Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | | | |
Collapse
|
309
|
Cornish T, Branch DW, Wheeler BC, Campanelli JT. Microcontact printing: a versatile technique for the study of synaptogenic molecules. Mol Cell Neurosci 2002; 20:140-53. [PMID: 12056845 DOI: 10.1006/mcne.2002.1101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During synaptogenesis information exchanged locally between synaptic partners results in precise alignment of morphological and molecular specializations. For example, agrin derived from motoneurons induces localized postsynaptic differentiation at the neuromuscular synapse. Similar information molecules are thought to act at other synapses; however, techniques for directly evaluating synaptogenic activities of such molecules are lacking. Here we use agrin-induced differentiation as a model system to validate a novel approach for characterizing synaptogenic molecules. Proteins are patterned with micron scale resolution on glass coverslips by covalent microcontact printing and these substrates are used for cell culture. Postsynaptic molecules accumulate specifically at sites of contact between muscle cells and patterned agrin: a response which is quantifiable. Our results demonstrate that microcontact printing is applicable to the analysis of cellular response to locally immobilized information molecules.
Collapse
Affiliation(s)
- Toby Cornish
- Neuroscience Program, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | | | | | | |
Collapse
|
310
|
Molnar E, Pickard L, Duckworth JK. Developmental changes in ionotropic glutamate receptors: lessons from hippocampal synapses. Neuroscientist 2002; 8:143-53. [PMID: 11954559 DOI: 10.1177/107385840200800210] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glutamatergic synapses are the primary source of excitatory transmission in the central nervous system (CNS), and their formation is critical in the establishment of neuronal connections. The refinement of these connections occurs during development and also it is postulated during learning and memory. Recent progress in understanding the molecular components of synaptic junctions, together with advances in imaging techniques, has started to offer new insights into the development of excitatory synapses. Studies performed on low-density primary neuronal cultures have enabled dissection of the temporal sequence of events, which have lead to the differentiation of pre- and postsynaptic components. A central feature of the development of excitatory synapses is the accumulation of glutamatergic receptors (GluRs) at the postsynaptic site. These receptors need to be localized and fixed opposite nerve terminals that release glutamate. But for this to occur, neurons require intracellular anchoring molecules, as well as mechanisms that ensure the efficient turnover and transport of receptor proteins. This review focuses on some of the developmental changes observed in the subcellular distribution and molecular organization of AMPA and NMDA type ionotropic GluRs (iGluRs), which mediate the majority of fast excitatory neurotransmission in the CNS.
Collapse
Affiliation(s)
- Elek Molnar
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, UK.
| | | | | |
Collapse
|
311
|
GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons. J Neurosci 2002. [PMID: 11826098 DOI: 10.1523/jneurosci.22-03-00684.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have studied the effects of GABAergic innervation on the clustering of GABA(A) receptors (GABA(A)Rs) in cultured hippocampal neurons. In the absence of GABAergic innervation, pyramidal cells form small (0.36 +/- 0.01 micrometer diameter) GABA(A)R clusters at their surface in the dendrites and soma. When receiving GABAergic innervation from glutamic acid decarboxylase-containing interneurons, pyramidal cells form large (1.62 +/- 0.08 micrometer breadth) GABA(A)R clusters at GABAergic synapses. This is accompanied by a disappearance of the small GABA(A)R clusters in the local area surrounding each GABAergic synapse. Although the large synaptic GABA(A)R clusters of any neuron contained all GABA(A)R subunits and isoforms expressed by that neuron, the small clusters not localized at GABAergic synapses showed significant heterogeneity in subunit and isoform composition. Another difference between large GABAergic and small non-GABAergic GABA(A)R clusters was that a significant proportion of the latter was juxtaposed to postsynaptic markers of glutamatergic synapses such as PSD-95 and AMPA receptor GluR1 subunit. The densities of both the glutamate receptor-associated and non-associated small GABA(A)R clusters were decreased in areas surrounding GABAergic synapses. However, no effect on the density or distribution of glutamate receptor clusters was observed. The results suggest that there are local signals generated at GABAergic synapses that induce both assembly of large synaptic GABA(A)R clusters at the synapse and disappearance of the small GABA(A)R clusters in the surrounding area. In the absence of GABAergic innervation, weaker GABA(A)R-clustering signals, generated at glutamatergic synapses, induce the formation of small postsynaptic GABA(A)R clusters that remain juxtaposed to glutamate receptors at glutamatergic synapses.
Collapse
|
312
|
Tao X, West AE, Chen WG, Corfas G, Greenberg ME. A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 2002; 33:383-95. [PMID: 11832226 DOI: 10.1016/s0896-6273(01)00561-x] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription of the brain-derived neurotrophic factor (BDNF) gene is regulated in a calcium- and neuron-selective manner; however, the mechanisms that underlie this selectivity are not known. We have characterized a new calcium-response element, CaRE1, that is required for activity-dependent transcription of BDNF exon III and have cloned a transcription factor, CaRF, that activates transcription from BDNF promoter III in a CaRE1-dependent manner. The transcriptional activity of CaRF is regulated in a calcium- and neuron-selective manner, suggesting that CaRF may confer selectivity upon the activity-dependent induction of BDNF exon III expression.
Collapse
Affiliation(s)
- Xu Tao
- Division of Neuroscience, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
313
|
Lüscher B, Fritschy JM. Subcellular localization and regulation of GABAA receptors and associated proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:31-64. [PMID: 11526740 DOI: 10.1016/s0074-7742(01)48013-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- B Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
314
|
Shu F, Ohno K, Wang T, Kuriyama K, Ueki T, Kanayama N, Sato K. Developmental changes in PSD-95 and Narp mRNAs in the rat olfactory bulb. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 132:91-5. [PMID: 11744111 DOI: 10.1016/s0165-3806(01)00268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamate is the main neurotransmitter in the olfactory bulb. Recently, postsynaptic-density 95 (PSD-95) and neuronal activity-regulated pentraxin (Narp) have been reported to be pivotal for targeting and clustering of NMDA receptors and AMPA receptors, respectively. We thus investigated the expressions of PSD-95 and Narp mRNAs in the rat developing olfactory bulb. PSD-95 mRNA was already expressed in most neurons on the first postnatal day (P1). On the other hand, Narp mRNA expression was weakly seen only in mitral cells on P1. Thereafter, we found initial expression of Narp mRNA on P7 in periglomerular cells, and on P14 in granular cells, indicating that in the developing olfactory bulb PSD-95 mRNA expression precedes Narp mRNA expression, and that the expression pattern of Narp mRNA seems to be well correlated with the maturation of the neurons. These results indicate that PSD-95 and Narp play important roles in making efficient excitatory synapses in the developing rat olfactory bulb, and suggest that olfactory neurons might first express PSD-95 for making efficient NMDA receptors and thereafter express Narp for efficient AMPA receptors.
Collapse
Affiliation(s)
- F Shu
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handa Yama, Hamamatsu, Shizuoka, 431-3192, Japan.
| | | | | | | | | | | | | |
Collapse
|
315
|
McEwen BS. Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol (1985) 2001; 91:2785-801. [PMID: 11717247 DOI: 10.1152/jappl.2001.91.6.2785] [Citation(s) in RCA: 474] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Besides their well-established actions on reproductive functions, estrogens exert a variety of actions on many regions of the nervous system that influence higher cognitive function, pain mechanisms, fine motor skills, mood, and susceptibility to seizures; they also appear to have neuroprotective actions in relation to stroke damage and Alzheimer's disease. Estrogen actions are now recognized to occur via two different intracellular estrogen receptors, ER-alpha and ER-beta, that reside in the cell nuclei of some nerve cells, as well as by some less well-characterized mechanisms. In the hippocampus, such nerve cells are sparse in number and yet appear to exert a powerful influence on synapse formation by neurons that do not have high levels of nuclear estrogen receptors. However, we also find nonnuclear estrogen receptors outside of the cell nuclei in dendrites, presynaptic terminals, and glial cells, where estrogen receptors may couple to second messenger systems to regulate a variety of cellular events and signal to the nuclear via transcriptional regulators such as CREB. Sex differences exist in many of the actions of estrogens in the brain, and the process of sexual differentiation appears to affect many brain regions outside of the traditional brain areas involved in reproductive functions. Finally, the aging brain is responsive to actions of estrogens, which have neuroprotective effects both in vivo and in vitro. However, in an animal model, the actions of estrogens on the hippocampus appear to be somewhat attenuated with age. In the future, estrogen actions over puberty and in pregnancy and lactation should be further explored and should be studied in both the hypothalamus and the extrahypothalamic regions.
Collapse
Affiliation(s)
- B S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Ave., New York, NY 10021, USA.
| |
Collapse
|
316
|
Tong L, Shen H, Perreau VM, Balazs R, Cotman CW. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 2001; 8:1046-56. [PMID: 11741400 DOI: 10.1006/nbdi.2001.0427] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise has beneficial effects on brain function, including the promotion of plasticity and the enhancement of learning and memory performance. Previously we found that exercise increases the expression of certain neurotrophic factors including brain derived neurotrophic factor in the rat hippocampus. To further explore the molecular mechanisms underlying these changes, we used high-density oligonucleotide microarrays containing probe sets representing approximately 5000 genes to analyze the level of gene transcripts in the hippocampus of rats voluntary running for 3 weeks in comparison with sedentary animals. An improved statistical approach for the analysis of DNA microarray data, Cyber-T, was utilized in data analysis. Here we show that exercise leads to changes in the level of a large number of gene transcripts, many of which are known to be associated with neuronal activity, synaptic structure, and neuronal plasticity. Our data indicate that exercise elicits a differential gene expression pattern with significant changes in genes of relevance for brain function.
Collapse
Affiliation(s)
- L Tong
- University of California, Irvine Institute for Brain and Dementia, California 92697-4540, USA.
| | | | | | | | | |
Collapse
|
317
|
Affiliation(s)
- D L Benson
- Fishberg Research Center for Neurobiology, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York 10029, USA.
| | | | | |
Collapse
|
318
|
Lüthi A, Schwyzer L, Mateos JM, Gähwiler BH, McKinney RA. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat Neurosci 2001; 4:1102-7. [PMID: 11687815 DOI: 10.1038/nn744] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activity-dependent synaptic plasticity triggered by N-methyl-d-aspartate (NMDA) receptor activation is a fundamental property of many glutamatergic synapses and may be critical for the shaping and refinement of the structural and functional properties of neuronal circuits during early postnatal development. Using a combined morphological and electrophysiological approach, we showed that chronic blockade of NMDA receptors in hippocampal slice cultures during the first two weeks of postnatal development leads to a substantial increase in synapse number and results in a more complex dendritic arborization of CA1 pyramidal cells. Thus, the development of excitatory circuitry in the hippocampus is determined by two opposing processes: NMDA receptor-independent synapse formation and NMDA receptor-dependent attenuation of synaptogenesis.
Collapse
Affiliation(s)
- A Lüthi
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
319
|
Iwakura Y, Nagano T, Kawamura M, Horikawa H, Ibaraki K, Takei N, Nawa H. N-methyl-D-aspartate-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor down-regulation involves interaction of the carboxyl terminus of GluR2/3 with Pick1. Ligand-binding studies using Sindbis vectors carrying AMPA receptor decoys. J Biol Chem 2001; 276:40025-32. [PMID: 11498531 DOI: 10.1074/jbc.m103125200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamics of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors, as represented by their exocytosis, endocytosis and cytoskeletal linkage, has often been implicated in N-methyl-d-aspartate (NMDA)-dependent synaptic plasticity. To explore the molecular mechanisms underlying the AMPA receptor dynamics, cultured hippocampal neurons were stimulated with 100 microm NMDA, and the biochemical and pharmacological changes in the ligand binding activity of AMPA receptor complexes and its subunits, GluR1 and GluR2/3, were investigated. The NMDA treatment reduced the total amount of bound [(3)H]AMPA on the surface of the neurons but not in their total membrane fraction. This process was mimicked by a protein kinase C activator, phorbol ester, but blocked by an inhibitor of the same kinase, calphostin C. The NMDA-induced down-regulation of the ligand binding activity was also reflected by the decreased AMPA-triggered channel activity as well as by the cells' reduced immunoreactivity for GluR1. In parallel, the NMDA treatment markedly altered the interaction between the AMPA receptor subunits and their associating molecule(s); the association of PDZ molecules, including Pick1, with GluR2/3 was enhanced in a protein-kinase-C-dependent manner. Viral expression vectors carrying GluR1 and GluR2 C-terminal decoys, both fused to enhanced green fluorescent protein, were transfected into hippocampal neurons to disrupt their interactions. The overexpression of the C-terminal decoy for GluR2 specifically and significantly blocked the NMDA-triggered reduction in [(3)H]AMPA binding, whereas that for GluR1 had no effects. Co-immunoprecipitation using anti-Pick1 antibodies revealed that the overexpressed GluR2 C-terminal decoy indeed prevented Pick1 from interacting with the endogenous GluR2/3. Therefore, these observations suggest that the NMDA-induced down-regulation of the functional AMPA receptors involves the interaction between GluR2/3 subunits and Pick1.
Collapse
Affiliation(s)
- Y Iwakura
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
The glutamatergic synapse is the main type of excitatory synapse in the mammalian brain. The formation of each glutamatergic synapse is associated with the recruitment of numerous (probably hundreds) different molecules and their assimilation into functional assemblies. Intense research has revealed the identity of many of these molecules, provided information as to interactions they are involved in, and offered clues as to their roles in synaptic function. Recent work has also begun to shed light on fundamental mechanisms underlying molecule recruitment to developing glutamatergic synapses. Current data indicate that the formation of presynaptic active zones-sites of neurotransmitter release-may be realized by the insertion of precursor vesicles containing multiple active zone components, possibly in pre-assembled form. The assembly of the postsynaptic reception apparatus, on the other hand, seems to occur via the sequential recruitment of molecules to the postsynaptic membrane and their assimilation in situ. Several molecules and mechanisms have been identified that display a capacity for inducing pre- or postsynaptic differentiation. These exciting findings are starting to provide a rudimentary framework for understanding key processes underlying the formation of glutamatergic synaptic connections.
Collapse
Affiliation(s)
- N E Ziv
- Rappaport Institute and the Department of Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
321
|
Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2001; 2:695-703. [PMID: 11584307 DOI: 10.1038/35094560] [Citation(s) in RCA: 884] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
People take addictive drugs to elevate mood, but with repeated use these drugs produce serious unwanted effects, which can include tolerance to some drug effects, sensitization to others, and an adapted state - dependence - which sets the stage for withdrawal symptoms when drug use stops. The most serious consequence of repetitive drug taking, however, is addiction: a persistent state in which compulsive drug use escapes control, even when serious negative consequences ensue. Addiction is characterized by a long-lasting risk of relapse, which is often initiated by exposure to drug-related cues. Substantial progress has been made in understanding the molecular and cellular mechanisms of tolerance, dependence and withdrawal, but as yet we understand little of the neural substrates of compulsive drug use and its remarkable persistence. Here we review evidence for the possibility that compulsion and its persistence are based on a pathological usurpation of molecular mechanisms that are normally involved in memory.
Collapse
Affiliation(s)
- S E Hyman
- National Institute of Mental Health, 6001 Executive Boulevard, Bethesda, Maryland 20892-9669, USA.
| | | |
Collapse
|
322
|
Ziv NE, Garner CC. Principles of glutamatergic synapse formation: seeing the forest for the trees. Curr Opin Neurobiol 2001; 11:536-43. [PMID: 11595485 DOI: 10.1016/s0959-4388(00)00246-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
General principles regarding glutamatergic synapse formation in the central nervous system are beginning to emerge. These principles concern the specific roles that dendrites and axons play in the induction of synaptic differentiation, the modes of presynaptic and postsynaptic assembly, the time course of synapse formation and maturation, and the roles of synaptic activity in these processes.
Collapse
Affiliation(s)
- N E Ziv
- Rappaport Institute and the Departmentof Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine, Technion, PO Box 9649, Bat Galim, Haifa 31096, Israel.
| | | |
Collapse
|
323
|
Ravizza T, Moneta D, Bottazzi B, Peri G, Garlanda C, Hirsch E, Richards GJ, Mantovani A, Vezzani A. Dynamic induction of the long pentraxin PTX3 in the CNS after limbic seizures: evidence for a protective role in seizure-induced neurodegeneration. Neuroscience 2001; 105:43-53. [PMID: 11483299 DOI: 10.1016/s0306-4522(01)00177-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentraxin 3, a prototypic long pentraxin, is induced by proinflammatory signals in the brain. Inflammatory cytokines are rapidly induced in glia by epileptic activity. We show that pentraxin 3 immunoreactivity and mRNA are enhanced in the rat forebrain above undetectable control levels by limbic seizures with a dual pattern of induction. Within 6 h from seizure onset, pentraxin 3 immunoreactivity was increased in astrocytes. Eighteen to 48 h later, specific neuronal populations and leucocytes were strongly immunoreactive only in areas of neurodegeneration. This staining was abolished when neuronal cell loss, but not seizures, was prevented by blocking N-methyl-D-aspartate receptors. Pentraxin 3 -/- mice had a more widespread seizure-related neuronal damage in the forebrain than their wild-type littermates although both groups had similar epileptic activity. Our results provide evidence that pentraxin 3 is synthesized in brain after seizures and may exert a protective role in seizure-induced neurodegeneration.
Collapse
Affiliation(s)
- T Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Abstract
Transcellular retrograde signaling from the postsynaptic target cell to the presynaptic neuron plays critical roles in the formation, maturation, and plasticity of synaptic connections. We here review recent progress in our understanding of the retrograde signaling at developing central synapses. Three forms of potential retrograde signals-membrane-permeant factors, membrane-bound factors, and secreted factors-have been implicated at both developing and mature synapses. Although many of these signals may be active constitutively, retrograde factors produced in association with activity-dependent synaptic plasticity, e.g., long-term potentiation and long-term depression, are of particular interest, because they may induce modification of neuronal excitability and synaptic transmission, functions directly related to the processing and storage of information in the nervous system.
Collapse
Affiliation(s)
- H W Tao
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 97420, USA
| | | |
Collapse
|
325
|
Olivera S, Rodriguez-Ithurralde D, Henley JM. Regional localization and developmental profile of acetylcholinesterase-evoked increases in [(3)H]-5-fluororwillardiine binding to AMPA receptors in rat brain. Br J Pharmacol 2001; 133:1055-62. [PMID: 11487516 PMCID: PMC1572873 DOI: 10.1038/sj.bjp.0704167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In addition to its role in hydrolyzing the neurotransmitter acetylcholine, the synaptically enriched enzyme acetylcholinesterase (AChE) has been reported to play an important role in the development and remodelling of neural processes and synapses. We have shown previously that AChE causes an increase in binding of the specific AMPA receptor ligand (S)-[(3)H]-5-fluorowillardiine ([(3)H]-FW) to rat brain membranes. In this study we have used quantitative autoradiography to investigate the regional distribution and age-dependence of AChE-evoked increases in the binding of [(3)H]-FW in rat brain. Pretreatment of rat brain sections with AChE caused a marked enhancement of [(3)H]-FW binding to many, but not all, brain areas. The increased [(3)H]-FW binding was blocked by the specific AChE inhibitor BW 284c51. The maximal potentiation of [(3)H]-FW binding occurred at different developmental age-points in different regions with a profile consistent with the peak periods for synaptogenesis in any given region. In addition to its effects on brain sections, AChE also strongly potentiated [(3)H]-FW binding to detergent solubilized AMPA receptors suggesting a direct action on the receptors themselves rather than an indirect effect on the plasma membrane. These findings suggest that modulation of AMPA receptors could provide one molecular mechanism for the previously reported effects of AChE on synapse formation, synaptic plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Silvia Olivera
- MRC Centre for Synaptic Plasticity, Anatomy Department, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD
| | - Daniel Rodriguez-Ithurralde
- Molecular Neuroscience Unit, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, Anatomy Department, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD
- Author for correspondence: uk
| |
Collapse
|
326
|
Abstract
It has been widely speculated that actin plays a central role in CNS synapse assembly, but such a requirement for actin filaments (F-actin) has not yet been demonstrated experimentally. We used hippocampal neurons grown in culture and the actin depolymerizing agent, latrunculin A, to examine directly the relationship between F-actin and synapse formation and maturation. During the first week in culture, actin depolymerization results in a near complete loss of synapses defined by synaptophysin-labeled vesicle clusters, synaptic vesicle recycling, and ultrastructure. Over the second week in culture, F-actin becomes increasingly stable, but actin depolymerization no longer disrupts basic synaptic structure. There is, however, a reduction in the number and size of synaptophysin-labeled clusters and in the size of vesicle clusters undergoing FM4-64 recycling, suggesting that synaptic vesicle anchoring remains partially dependent on F-actin. By 18 d in culture, synaptophysin clusters and synaptic vesicle recycling are largely resistant to F-actin depolymerization. The decrease in synapse dependence on F-actin correlates well with the acquisition and retention of presynaptic scaffolding proteins such as Bassoon and postsynaptic scaffolding proteins such as those of the postsynaptic density-95 family. Increased activity stabilizes F-actin and its associated proteins at synaptic sites, suggesting a correlation between active synapses, actin stability, and synapse stability. Our findings demonstrate that F-actin is essential for the development and maintenance of young synapses. Because F-actin is also highly regulatable, we propose that F-actin may be a principal target for stabilizing or destabilizing signals that ultimately result in synapse maintenance or elimination.
Collapse
|
327
|
Affiliation(s)
- P Verstreken
- Department of Molecular and Human Genetics, Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
328
|
Saitoe M, Schwarz TL, Umbach JA, Gundersen CB, Kidokoro Y. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 2001; 293:514-7. [PMID: 11463917 DOI: 10.1126/science.1061270] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Little is known about the functional significance of spontaneous miniature synaptic potentials, which are the result of vesicular exocytosis at nerve terminals. Here, by using Drosophila mutants with specific defects in presynaptic function, we found that glutamate receptors clustered normally at neuromuscular junctions of mutants that retained spontaneous transmitter secretion but had lost the ability to release transmitter in response to action potentials. In contrast, receptor clustering was defective in mutants in which both spontaneous and evoked vesicle exocytosis were absent. Thus, spontaneous vesicle exocytosis appears to be tightly linked to the clustering of glutamate receptors during development.
Collapse
Affiliation(s)
- M Saitoe
- Institute for Behavioral Sciences, Gunma University School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | |
Collapse
|
329
|
Schultz K, Janssen-Bienhold U, Weiler R. Selective synaptic distribution of AMPA and kainate receptor subunits in the outer plexiform layer of the carp retina. J Comp Neurol 2001; 435:433-49. [PMID: 11406824 DOI: 10.1002/cne.1042] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The subunit composition of ionotropic glutamate receptors (GluRs) is extremely diverse and responsible for the diversity of postsynaptic responses to the release of glutamate, which is the major excitatory neurotransmitter in the retina. To understand the functional consequences of this diversity, it is necessary to reveal the synaptic localization and subunit composition of GluRs. We have used immuno light and electron microscopy to localize AMPA and kainate (GluR1, GluR2/3, GluR4, GluR5-7) subunits in identified carp retinal neurons contributing to the outer plexiform layer. GluR1 could not be detected within the outer plexiform layer. Rod and cone horizontal cells all express only GluR2/3 at the tips of their invaginating dendrites. These receptors are also inserted into the membrane of spinules, light-dependent protrusions of the horizontal cell dendrites, flanking the synaptic ribbon of the cone synapse. Bipolar cells express GluR2/3, GluR4, and GluR5-7 at their terminal dendrites invaginating cone pedicles and rod spherules. Colocalization data suggest that each subunit is expressed by a distinct bipolar cell type. The majority of bipolar cells expressing these receptors seem to be of the functional OFF-type; however, in a few instances, GluR2/3 could also be detected on dendrites of bipolar cells that, based on their localization within the cone synaptic complex, appeared to be of the functional ON-type. The spatial arrangement of the different subunits within the cavity of the cone pedicle appeared not to be random: GluR2/3 was found predominantly at the apex of the cavity, GluR4 at its base and GluR5-7 dispersed between the two.
Collapse
Affiliation(s)
- K Schultz
- Department of Neurobiology, University of Oldenburg, Oldenburg D-26111, Germany
| | | | | |
Collapse
|
330
|
Dev KK, Nakanishi S, Henley JM. Regulation of mglu(7) receptors by proteins that interact with the intracellular C-terminus. Trends Pharmacol Sci 2001; 22:355-61. [PMID: 11431030 DOI: 10.1016/s0165-6147(00)01684-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The metabotropic glutamate type 7 (mglu(7)) receptor is a widely distributed, mainly presynaptic Group III mglu receptor that can regulate glutamate release. Recently, largely as a result of the identification of specific proteins that interact with the C-terminal domain of this receptor, considerable progress has been made towards understanding some of the mechanisms that underlie the regulation, signal transduction pathways and targeting of mglu(7) receptors. This has led to the proposal that there are three distinct functionally relevant domains present in the intracellular C-terminus of this receptor: (1) a proximal intracellular signalling domain that interacts with G-protein betagamma-subunits and the Ca(2+) sensor Ca(2+)-calmodulin, and is phosphorylated by protein kinase; (2) a central domain thought to provide a signal for axonal targeting; and (3) an extreme PDZ-binding motif that interacts with the protein kinase C interacting protein, PICK1.
Collapse
Affiliation(s)
- K K Dev
- Novartis Pharma AG, Nervous System Research, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
331
|
McEwen B, Akama K, Alves S, Brake WG, Bulloch K, Lee S, Li C, Yuen G, Milner TA. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc Natl Acad Sci U S A 2001; 98:7093-100. [PMID: 11416193 PMCID: PMC34628 DOI: 10.1073/pnas.121146898] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogens (E) and progestins regulate synaptogenesis in the CA1 region of the dorsal hippocampus during the estrous cycle of the female rat, and the functional consequences include changes in neurotransmission and memory. Synapse formation has been demonstrated by using the Golgi technique, dye filling of cells, electron microscopy, and radioimmunocytochemistry. N-methyl-d-aspartate (NMDA) receptor activation is required, and inhibitory interneurons play a pivotal role as they express nuclear estrogen receptor alpha (ERalpha) and show E-induced decreases of GABAergic activity. Although global decreases in inhibitory tone may be important, a more local role for E in CA1 neurons seems likely. The rat hippocampus expresses both ERalpha and ERbeta mRNA. At the light microscopic level, autoradiography shows cell nuclear [3H]estrogen and [125I]estrogen uptake according to a distribution that primarily reflects the localization of ERalpha-immunoreactive interneurons in the hippocampus. However, recent ultrastructural studies have revealed extranuclear ERalpha immunoreactivity (IR) within select dendritic spines on hippocampal principal cells, axon terminals, and glial processes, localizations that would not be detectable by using standard light microscopic methods. Based on recent studies showing that both types of ER are expressed in a form that activates second messenger systems, these findings support a testable model in which local, non-genomic regulation by estrogen participates along with genomic actions of estrogens in the regulation of synapse formation.
Collapse
Affiliation(s)
- B McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Craig AM, Boudin H. Molecular heterogeneity of central synapses: afferent and target regulation. Nat Neurosci 2001; 4:569-78. [PMID: 11369937 DOI: 10.1038/88388] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrophysiological recordings show a functional spectrum even within a single class of synapse, with individual synapses ranging widely in fundamental properties, including release probability, unitary response and effects of previous stimulation on subsequent response. Molecular and cellular biological approaches have shown a corresponding diversity in the complement of ion channels, receptors, scaffolds and signal transducing proteins that make up individual synapses. Indeed, we believe that each individual synapse is unique, a function of presynaptic cell type, postsynaptic cell type, environment, developmental stage and history of activity. We review here the molecular diversity of glutamatergic and GABAergic synapses in the mammalian brain in the context of potential cell biological mechanisms that may explain how individual cells develop and maintain such a mosaic of synaptic connections.
Collapse
Affiliation(s)
- A M Craig
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid, Campus Box 8108, 958 McDonnell Sciences Building, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
333
|
Carroll RC, Beattie EC, von Zastrow M, Malenka RC. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2001; 2:315-24. [PMID: 11331915 DOI: 10.1038/35072500] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activity-mediated changes in the strength of synaptic communication are important for the establishment of proper neuronal connections during development and for the experience-dependent modification of neural circuitry that is believed to underlie all forms of behavioural plasticity. Owing to the wide-ranging significance of synaptic plasticity, considerable efforts have been made to identify the mechanisms by which synaptic changes are triggered and expressed. New evidence indicates that one important expression mechanism of several long-lasting forms of synaptic plasticity might involve the physical transport of AMPA-type glutamate receptors in and out of the synaptic membrane. Here, we focus on the rapidly accumulating evidence that AMPA receptors undergo regulated endocytosis, which is important for long-term depression.
Collapse
Affiliation(s)
- R C Carroll
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
334
|
Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, Barres BA. Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 2001; 30:105-19. [PMID: 11343648 DOI: 10.1016/s0896-6273(01)00266-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.
Collapse
Affiliation(s)
- M R Kaplan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
335
|
Abstract
Nearly all excitatory input in the hippocampus impinges on dendritic spines which serve as multifunctional compartments that can, at the very least, selectively isolate and amplify incoming signals. Their importance to normal brain function is highlighted by the severe mental impairment observed in most individuals having poorly developed spines (Purpura, Science 1974;186:1126-1128). Distinct groups of membrane proteins, cytoskeletal elements, scaffolding proteins, and second messenger-related proteins are concentrated particularly in dendritic spines, but their ability to generate, maintain, and coordinately regulate spine structure or function is poorly understood. Here we review the unique molecular composition of dendritic spines along with the factors known to influence dendritic spine development in order to construct a model of dendritic spine development in relation to synaptogenesis.
Collapse
Affiliation(s)
- W Zhang
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029,USA
| | | |
Collapse
|
336
|
French PJ, O'Connor V, Jones MW, Davis S, Errington ML, Voss K, Truchet B, Wotjak C, Stean T, Doyère V, Maroun M, Laroche S, Bliss TV. Subfield-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo. Eur J Neurosci 2001; 13:968-76. [PMID: 11264669 DOI: 10.1046/j.0953-816x.2001.01467.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is not known whether NMDA receptor-dependent long-term potentiation (LTP) is mediated by similar molecular mechanisms in different hippocampal areas. To address this question we have investigated changes in immediate early gene and protein expression in two hippocampal subfields following the induction of LTP in vivo and in vitro. In granule cells of the dentate gyrus, LTP induced in vivo by tetanic stimulation of the perforant path was followed by strong induction of the immediate early genes (IEGs) Zif268, Arc and Homer. The increase in Zif268 mRNA was accompanied by an increase in protein expression. In contrast, we were unable to detect modulation of the IEGs Zif268, Arc, Homer and HB-GAM following induction of LTP by high-frequency stimulation of the commissural projection to CA1 pyramidal cells in vivo. In this pathway, we also failed to detect modulation of Zif268 protein levels. Zif268, Arc and Homer can be modulated in CA1 pyramidal cells approximately twofold after electroshock-induced maximal seizure, which demonstrates potential responsiveness to electrical stimuli. When LTP was induced in vitro neither CA1 pyramidal cells nor granule cells showed an increase in Zif268, Arc or Homer mRNA. However, in the slice preparation, granule cells have a different transcriptional state as basal IEG levels are elevated. These results establish the existence of subfield-specific transcriptional responses to LTP-inducing stimulation in the hippocampus of the intact animal, and demonstrate that in area CA1-enhanced transcription of Zif268, Arc and Homer is not required for the induction of late LTP.
Collapse
Affiliation(s)
- P J French
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Abstract
To determine whether presynaptic input is necessary for postsynaptic differentiation, we isolated hippocampal neurons in microisland culture and thus deprived pyramidal cells of GABA input and GABAergic neurons of glutamate input. We find that glutamate input is necessary for clustering the AMPA-type glutamate receptor but not for clustering the NMDA receptor or the associated PSD-95 family scaffold in GABAergic cells; GABA input is not necessary for clustering the GABA(A) receptor or gephyrin in pyramidal cells. Isolated neurons showed a surprising mismatch of presynaptic and postsynaptic components. For example, in isolated pyramidal neurons, although GABA(A) receptor clusters covered <4% of the dendritic surface and presynaptic boutons covered <12%, a full two-thirds of the GABA(A) receptor clusters were localized inappropriately opposite the non-GABAergic, presumed glutamatergic, terminals. Furthermore, inhibitory and excitatory postsynaptic components were segregated into separate clusters in isolated cells and apposed to separate boutons of a single axon. Thus, GABA(A) receptors were clustered opposite some terminals, whereas NMDA receptors were clustered opposite other terminals of a single axon. These results suggest the involvement of a synaptogenic signal common to glutamate and GABA synapses that permits experimentally induced mismatching of presynaptic and postsynaptic components in isolated neurons, as well as a second specificity-conferring signal that mediates appropriate matching in mixed cultures.
Collapse
|
338
|
Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 2001. [PMID: 11007883 DOI: 10.1523/jneurosci.20-19-07258.2000] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PSD-95, DLG, ZO-1 (PDZ) domain-mediated protein interactions have been shown to play important roles in the regulation of glutamate receptor function at excitatory synapses. Recent studies demonstrating the rapid regulation of AMPA receptor function during synaptic plasticity have suggested that AMPA receptor interaction with PDZ domain-containing proteins may be dynamically modulated. Here we show that PKC phosphorylation of the AMPA receptor GluR2 subunit differentially modulates its interaction with the PDZ domain-containing proteins GRIP1 and PICK1. The serine residue [serine-880 (Ser880)] in the GluR2 C-terminal sequence (IESVKI) critical for PDZ domain binding is a substrate of PKC and is phosphorylated in vivo. In vitro binding and coimmunoprecipitation studies show that phosphorylation of serine-880 within the GluR2 PDZ ligand significantly decreases GluR2 binding to GRIP1 but not to PICK1. Immunostaining of cultured hippocampal neurons demonstrates that the Ser880-phosphorylated GluR2 subunits are enriched and colocalized with PICK1 in the dendrites, with very little staining observed at excitatory synapses. Interestingly, PKC activation in neurons increases the Ser880 phosphorylation of GluR2 subunits and recruits PICK1 to excitatory synapses. Moreover, PKC stimulation in neurons results in rapid internalization of surface GluR2 subunits. These results suggest that GluR2 phosphorylation of serine-880 may be important in the regulation of the AMPA receptor internalization during synaptic plasticity.
Collapse
|
339
|
Abstract
Agrin controls the formation of the neuromuscular junction. Whether it regulates the differentiation of other types of synapses remains unclear. Therefore, we have studied the role of agrin in cultured hippocampal neurons. Synaptogenesis was severely compromised when agrin expression or function was suppressed by antisense oligonucleotides and specific antibodies. The effects of antisense oligonucleotides were found to be highly specific because they were reversed by adding recombinant agrin and could not be detected in cultures from agrin-deficient animals. Interestingly, the few synapses formed in reduced agrin conditions displayed diminished vesicular turnover, despite a normal appearance at the EM level. Thus, our results demonstrate the necessity of agrin for synaptogenesis in hippocampal neurons.
Collapse
|
340
|
Abstract
Little is known about the development of presynaptic specializations. Recent studies that visualize tagged synaptic components in cultured cells and in vivo have identified molecular participants and reveal common features in cellular processes of presynaptic assembly.
Collapse
Affiliation(s)
- A M Schaefer
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St Louis, MO 63110, USA.
| | | |
Collapse
|
341
|
Abstract
Synapses are highly specialized structures designed to guarantee precise and efficient communication between neurons and their target cells. Molecules of the extracellular matrix have an instructive role in the formation of the neuromuscular junction, the best-characterized synapse. In this review, the molecular mechanisms underlying these instructive signals will be discussed with particular emphasis on the receptors involved. Additionally, recent evidence for the involvement of specific adhesion complexes in the formation and modulation of synapses in the central nervous system will be reviewed. Synapses are specialized junctions between neurons and their target cells where information is transferred from the pre- to the postsynaptic cell. At most vertebrate synapses, this transfer is accomplished by the release of a specific neurotransmitter from the presynaptic nerve terminal. The release of neurotransmitter is initiated by the action potential and the subsequent influx of Ca(2+) into the presynaptic nerve terminal. This results in the rapid fusion of vesicles with the nerve membrane and the release of the neurotransmitter into the synaptic cleft. The neurotransmitter then diffuses across the cleft and binds to specific postsynaptic receptors, resulting in a change in the membrane potential of the postsynaptic cell. This can result in the generation of an action potential. The high precision of synaptic transmission requires that pre- and postsynaptic structures are both highly organized and in juxtaposition to each other. In addition, alterations in synaptic transmission are the basis of learning and memory and are likely to be accompanied by the remodeling of synaptic structures (Toni et al., 1999). Thus, the study of how synapses are formed during development is also of relevance for the understanding of the cellular and molecular processes involved in learning and memory. This review focuses on the molecular mechanisms involved in the formation and the function of synapses.
Collapse
Affiliation(s)
- M A Ruegg
- Department of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
342
|
DeGregorio-Rocasolano N, Gasull T, Trullas R. Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K(+) in cerebellar granule cells. J Biol Chem 2001; 276:796-803. [PMID: 11031272 DOI: 10.1074/jbc.m007967200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mature cerebellar granule cells in culture die by a process that requires new RNA and protein synthesis when deprived of depolarizing concentrations of potassium. We investigated gene expression during the early phase of the cell death program evoked by potassium deprivation. Using a differential gene display technique, we isolated a cDNA that was increased by potassium deprivation. This cDNA was homologous to the 3' mRNA end of neuronal pentraxin 1 (NP1), a gene encoding a secreted glycoprotein whose expression is restricted to the nervous system. Reverse-Northern and Northern blot analyses confirmed that treatment with low potassium induces overexpression of NP1 mRNA, with a subsequent increase in NP1 protein levels. Time-course studies indicated that overexpression of NP1 protein reaches a maximum after 4 h of exposure to potassium deprivation and 4 h before significant cell death. Incubation of cerebellar granule cells with an antisense oligodeoxyribonucleotide directed against NP1 mRNA reduced low potassium-evoked NP1 protein levels by 60% and attenuated neuronal death by 50%, whereas incubation with the corresponding sense oligodeoxyribonucleotide was ineffective. Furthermore, acute treatment with lithium significantly inhibited both overexpression of NP1 and cell death evoked by low potassium. These results indicate that NP1 is part of the gene expression program of apoptotic cell death activated by nondepolarizing culture conditions in cerebellar granule cells.
Collapse
Affiliation(s)
- N DeGregorio-Rocasolano
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Cientificas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 161, 08036 Barcelona, Spain
| | | | | |
Collapse
|
343
|
Zhu JJ, Esteban JA, Hayashi Y, Malinow R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat Neurosci 2000; 3:1098-106. [PMID: 11036266 DOI: 10.1038/80614] [Citation(s) in RCA: 335] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine how functional circuits are established in the brain, we studied excitatory transmission in early postnatal hippocampus. Spontaneous neural activity was sufficient to selectively deliver GluR4-containing AMPA receptors (AMPA-Rs) into synapses. This delivery allowed non-functional connections to transmit at resting potentials and required NMDA receptors (NMDA-Rs) but not CaMKII activation. Subsequently, these delivered receptors were exchanged with non-synaptic GluR2-containing AMPA-Rs in a manner requiring little neuronal activity. The enhanced transmission resulting from this delivery and subsequent exchange was maintained for at least several days and required an interaction between GluR2 and NSF. Thus, this sequence of subunit-specific trafficking events triggered by spontaneous activity in early postnatal development may be crucial for initial establishment of long-lasting functional circuitry.
Collapse
Affiliation(s)
- J J Zhu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
344
|
Scannevin RH, Huganir RL. Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 2000; 1:133-41. [PMID: 11252776 DOI: 10.1038/35039075] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dynamic regulation of synaptic efficacy is one of the mechanisms thought to underlie learning and memory. Many of the observed changes in efficacy, such as long-term potentiation and long-term depression, result from the functional alteration of excitatory neurotransmission mediated by postsynaptic glutamate receptors. These changes may result from the modulation of the receptors themselves and from regulation of protein networks associated with glutamate receptors. Understanding the interactions in this synaptic complex will yield invaluable insight into the molecular basis of synaptic function. This review focuses on the molecular organization of excitatory synapses and the processes involved in the dynamic regulation of glutamate receptors.
Collapse
Affiliation(s)
- R H Scannevin
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Department of Neuroscience, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
345
|
Abstract
AMPA receptors expressed at auditory nerve synapses in the mammalian and avian cochlear nuclei display exceptionally rapid channel gating, an adaptation well suited for acoustic processing. We examined whether cellular interactions during development might determine the subunit composition of these receptors. After synapse formation in the avian nucleus magnocellularis (nMag) in vivo, the rate of receptor desensitization increased threefold, sensitivity to channel block by polyamines increased, and sensitivity to cyclothiazide, an inhibitor of desensitization, increased, indicating a reduction in glutamate receptor subunit 2 and of flip splice variants. This phenotypic switch was prevented, but not reversed, by isolating nMag neurons in a cell-culture environment. We propose that the switch in receptor kinetics is an outcome of cellular interactions during a critical period that result in the long-term determination of receptor phenotype.
Collapse
|
346
|
Friedman HV, Bresler T, Garner CC, Ziv NE. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 2000; 27:57-69. [PMID: 10939331 DOI: 10.1016/s0896-6273(00)00009-x] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Time-lapse microscopy, retrospective immunohistochemistry, and cultured hippocampal neurons were used to determine the time frame of individual glutamatergic synapse assembly and the temporal order in which specific molecules accumulate at new synaptic junctions. New presynaptic boutons capable of activity-evoked vesicle recycling were observed to form within 30 min of initial axodendritic contact. Clusters of the presynaptic active zone protein Bassoon were present in all new boutons. Conversely, clusters of the postsynaptic molecule SAP90/PSD-95 and glutamate receptors were found on average only approximately 45 min after such boutons were first detected. AMPA- and NMDA-type glutamate receptors displayed similar clustering kinetics. These findings suggest that glutamatergic synapse assembly can occur within 1-2 hr after initial contact and that presynaptic differentiation may precede postsynaptic differentiation.
Collapse
Affiliation(s)
- H V Friedman
- Rappaport Institute and Department of Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
347
|
Affiliation(s)
- A Rao
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
348
|
Abstract
Nicotinic acetylcholine receptors serve a variety of signaling functions in the nervous system depending on cellular location, but little is known about mechanisms responsible for tethering them at specific sites. Among the most interesting are receptors containing the alpha7 gene product, because of their abundance and high relative permeability to calcium. On chick ciliary ganglion neurons alpha7-containing receptors are highly concentrated on somatic spines folded into discrete patches on the cell. We show that the spines contain filamentous actin and drebrin. After cell dissociation, the actin slowly redistributes, the spines retract, and the alpha7-containing receptors disperse and are subsequently lost from the surface. Latrunculin A, a drug that depolymerizes filamentous actin, accelerates receptor dispersal, whereas jasplikinolide, a drug that stabilizes the actin cytoskeleton, preserves large receptor clusters and prevents receptor loss from the surface. The receptors are resistant to extraction by nonionic detergent even after latrunculin A treatment. Other, less abundant, nicotinic receptors on the neurons are readily solubilized by the detergent even though these receptors are located in part on the spines. The results demonstrate that the actin cytoskeleton is important for retaining receptor-rich spines and indicate that additional cytoskeletal elements or molecular interactions specific for alpha7-containing receptors influence their fate in the membrane. The cytoskeletal elements involved are not dependent on the architecture of the postsynaptic density because alpha7-containing receptors are excluded from such sites on ciliary ganglion neurons.
Collapse
|
349
|
Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 2000. [PMID: 10818134 DOI: 10.1523/jneurosci.20-11-03993.2000] [Citation(s) in RCA: 728] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is widely believed that the brain processes information and stores memories by modifying and stabilizing synaptic connections between neurons. In experimental models of synaptic plasticity, such as long-term potentiation (LTP), the stabilization of changes in synaptic strength requires rapid de novo RNA and protein synthesis. Candidate genes, which could underlie activity-dependent plasticity, have been identified on the basis of their rapid induction in brain neurons. Immediate-early genes (IEGs) are induced in hippocampal neurons by high-frequency electrical stimulation that induces LTP and by behavioral training that results in long-term memory (LTM) formation. Here, we investigated the role of the IEG Arc (also termed Arg3.1) in hippocampal plasticity. Arc protein is known to be enriched in dendrites of hippocampal neurons where it associates with cytoskeletal proteins (Lyford et al., 1995). Arc is also notable in that its mRNA and protein accumulate in dendrites at sites of recent synaptic activity (Steward et al., 1998). We used intrahippocampal infusions of antisense oligodeoxynucleotides to inhibit Arc protein expression and examined the effect of this treatment on both LTP and spatial learning. Our studies show that disruption of Arc protein expression impairs the maintenance phase of LTP without affecting its induction and impairs consolidation of LTM for spatial water task training without affecting task acquisition or short-term memory. Thus, Arc appears to play a fundamental role in the stabilization of activity-dependent hippocampal plasticity.
Collapse
|
350
|
Kirkpatrick LL, Matzuk MM, Dodds DC, Perin MS. Biochemical interactions of the neuronal pentraxins. Neuronal pentraxin (NP) receptor binds to taipoxin and taipoxin-associated calcium-binding protein 49 via NP1 and NP2. J Biol Chem 2000; 275:17786-92. [PMID: 10748068 DOI: 10.1074/jbc.m002254200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal pentraxin 1 (NP1), neuronal pentraxin 2 (NP2), and neuronal pentraxin receptor (NPR) are members of a new family of proteins identified through interaction with a presynaptic snake venom toxin taipoxin. We have proposed that these three neuronal pentraxins represent a novel neuronal uptake pathway that may function during synapse formation and remodeling. We have investigated the mutual interactions of these proteins by characterizing their enrichment on taipoxin affinity columns; by expressing NP1, NP2, and NPR singly and together in Chinese hamster ovary cells; and by generating mice that fail to express NP1. NP1 and NP2 are secreted, exist as higher order multimers (probably pentamers), and interact with taipoxin and taipoxin-associated calcium-binding protein 49 (TCBP49). NPR is expressed on the cell membrane and does not bind taipoxin or TCBP49 by itself, but it can form heteropentamers with NP1 and NP2 that can be released from cell membranes. This is the first demonstration of heteromultimerization of pentraxins and release of a pentraxin complex by proteolysis. These processes are likely to directly effect the localization and function of neuronal pentraxins in neuronal uptake or synapse formation and remodeling.
Collapse
Affiliation(s)
- L L Kirkpatrick
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|