301
|
Lauschke VM, Vorrink SU, Moro SML, Rezayee F, Nordling Å, Hendriks DFG, Bell CC, Sison-Young R, Park BK, Goldring CE, Ellis E, Johansson I, Mkrtchian S, Andersson TB, Ingelman-Sundberg M. Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology 2016; 64:1743-1756. [PMID: 27532775 DOI: 10.1002/hep.28780] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo. However, in two-dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more-accurate and relevant long-term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly-l-lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down-regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more-efficient differentiation protocols for stem-cell-derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. CONCLUSION miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro. (Hepatology 2016;64:1743-1756).
Collapse
Affiliation(s)
- Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina M L Moro
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatemah Rezayee
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Delilah F G Hendriks
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catherine C Bell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Christopher E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inger Johansson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tommy B Andersson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Diseases Innovative Medicines, DMPK, AstraZeneca R&D, Mölndal, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
302
|
MicroRNA-941 Expression in Polymorphonuclear Granulocytes Is Not Related to Granulomatosis with Polyangiitis. PLoS One 2016; 11:e0164985. [PMID: 27755585 PMCID: PMC5068789 DOI: 10.1371/journal.pone.0164985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022] Open
Abstract
Jumonji Domain-Containing Protein 3 (JMJD3)/lysine demethylase 6B (KDM6B) is an epigenetic modulator that removes repressive histone marks on genes. Expression of KDM6B mRNA is elevated in leukocytes from patients with ANCA-associated vasculitis (AAV) and has been suggested to be the reason for higher proteinase 3 (PR3) mRNA expression in these cells due to derepression of PRTN3 gene transcription. MicroRNA-941 (miR-941) has been shown to target KDM6B mRNA and inhibit JMJD3 production. We therefore investigated whether polymorphonuclear granulocytes (PMNs) from patients suffering from granulomatosis with polyangiitis (GPA) have lower expression of miR-941 than healthy control donors as a biological cause for higher JMJD3 levels. We found no significant difference in the degree of maturation of PMNs from GPA patients (n = 8) and healthy controls (n = 11) as determined from cell surface expression of the neutrophil maturation marker CD16 and gene expression profile of FCGR3B. The expression of PRTN3 and KDM6B mRNAs and miR-941 was not significantly different in GPA patients and healthy controls. Transfection of pre-miR-941 into the neutrophil promyelocyte cell line PLB-985 cells did not result in reduction of the KDM6B mRNA level as shown previously in a hepatocellular carcinoma cell line. The amount of PR3 in PMNs from GPA patients and healthy controls was comparable. In conclusion, we found that PRTN3 mRNA, KDM6B mRNA, and miR-941 expression levels in PMNs do not differ between GPA patients and healthy controls, and that miR-941 does not uniformly regulate KDM6B mRNA levels by inducing degradation of the transcript. Thus, decreased miR-941 expression in PMNs cannot be part of the pathogenesis of GPA.
Collapse
|
303
|
Habacher C, Guo Y, Venz R, Kumari P, Neagu A, Gaidatzis D, Harvald EB, Færgeman NJ, Gut H, Ciosk R. Ribonuclease-Mediated Control of Body Fat. Dev Cell 2016; 39:359-369. [PMID: 27746047 DOI: 10.1016/j.devcel.2016.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/27/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023]
Abstract
Obesity is a global health issue, arousing interest in molecular mechanisms controlling fat. Transcriptional regulation of fat has received much attention, and key transcription factors involved in lipid metabolism, such as SBP-1/SREBP, LPD-2/C/EBP, and MDT-15, are conserved from nematodes to mammals. However, there is a growing awareness that lipid metabolism can also be controlled by post-transcriptional mechanisms. Here, we show that the Caenorhabditis elegans RNase, REGE-1, related to MCPIP1/Zc3h12a/Regnase-1, a key regulator of mammalian innate immunity, promotes accumulation of body fat. Using exon-intron split analysis, we find that REGE-1 promotes fat by degrading the mRNA encoding ETS-4, a fat-loss-promoting transcription factor. Because ETS-4, in turn, induces rege-1 transcription, REGE-1 and ETS-4 appear to form an auto-regulatory module. We propose that this type of fat regulation may be of key importance when, if faced with an environmental change, an animal must rapidly but precisely remodel its metabolism.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Yanwu Guo
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Richard Venz
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Pooja Kumari
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Eva B Harvald
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Villum Center for Bioanalytical Sciences, 5230 Odense M, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Villum Center for Bioanalytical Sciences, 5230 Odense M, Denmark
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland.
| |
Collapse
|
304
|
Jain CV, Jessmon P, Kilburn BA, Jodar M, Sendler E, Krawetz SA, Armant DR. Regulation of HBEGF by Micro-RNA for Survival of Developing Human Trophoblast Cells. PLoS One 2016; 11:e0163913. [PMID: 27701455 PMCID: PMC5049799 DOI: 10.1371/journal.pone.0163913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction The growth factor HBEGF is upregulated post-transcriptionally in the low O2 environment of the human placenta during the first 10 weeks of pregnancy. We have examined the possible roles of HBEGF turnover and micro-RNA (miRNA) in its regulation by O2 in human first trimester trophoblast. Methods HTR-8/SVneo trophoblast cells were cultured at 2% or 20% O2. The cells were transfected with a dual luciferase reporter construct (psiCHECK-2) containing no insert (control), the HBEGF 3’ untranslated region (3’UTR), or sub-regions of the 3’UTR, as well as with siRNA for DGCR8. RNA was extracted from trophoblast cells cultured at 2% O2 for 0–4 h for next-generation sequencing. HBEGF was quantified by ELISA. HBEGF, DGCR8, and β–actin were examined by western blotting. Results Protein turnover studies, using 10 μg/ml cyclohexamide, 1 μg/ml lactocystin, or 100 μg/ml MG132, demonstrated faster HBEGF degradation at 20% O2 than 2% O2, mediated by the proteasome. However, proteasome inhibition failed to initiate HBEGF accumulation at 20% O2. Reporter assays, comparing to empty vector, demonstrated that the intact HBEGF 3’ UTR inhibited expression (0.26), while fragments containing only its flanking regions increased reporter activity (3.15; 3.43). No differential expression of miRNAs was found in trophoblast cells cultured at 2% and 20% O2. Nevertheless, HBEGF upregulation at 2% O2 was blocked when the miRNA-processing protein DGCR8 was silenced, suggesting a role for miRNA. Conclusion Our findings suggest involvement of flanking regions of the 3’UTR in activating HBEGF protein synthesis in response to 2% O2, possibly through a miRNA-mediated mechanism.
Collapse
Affiliation(s)
- Chandni V. Jain
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Philip Jessmon
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brian A. Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Edward Sendler
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
305
|
Abstract
MicroRNAs (miRNAs) are non-coding RNAs generated from endogenous hairpin-shaped transcripts that powerfully regulate gene expression at post-transcriptional level. Each miRNA is capable to regulate the expression levels of hundreds of transcripts and each mRNA may have more than one miRNA recognition sequence. There is emerging evidence that deregulation of miRNA expression leads to the alteration of pivotal physiological functions contributing to the development of diseases and neoplasms, including pituitary adenoma. This review is aimed at providing the up-to-date knowledge concerning deregulated miRNAs of pituitary tumors and their functions. In order to take stock, pituitary tumors have been sub-divided in different classes on the basis of tumor features (histotype, dimension, aggressiveness). The overview takes full consideration of the recent advances in miRNAs role as potential therapeutics and biomarkers.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Ettore Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy.
| |
Collapse
|
306
|
Feller SM, Lewitzky M. Hunting for the ultimate liquid cancer biopsy - let the TEP dance begin. Cell Commun Signal 2016; 14:24. [PMID: 27677261 PMCID: PMC5039897 DOI: 10.1186/s12964-016-0147-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
Non-protein coding RNAs in different flavors (miRNAs, piRNAs, snoRNAs, lncRNAs, SHOT-RNAs), exosomes, large oncosomes, exoDNA and now tumor-educated platelets (TEPs) have emerged as crucial signal transmitting, transporting and regulating devices of cells in the last two decades. They are also establishing themselves increasingly in the realm of tumor research. We are currently witnessing a mushrooming of candidate entities for diagnostic and prognostic cancer detection and characterization tests that could have a major impact on how this diverse group of diseases is initially spotted and subsequently treated in the near future. But how do the new kids on the block stand up to the more established circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA)? Without question, much earlier disease detection would be expected to save numerous lives. With all these new players around, will we finally win a major battle in the never-ending war against cancer?
Collapse
Affiliation(s)
- Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Marc Lewitzky
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
307
|
Fang ZH, Wang SL, Zhao JT, Lin ZJ, Chen LY, Su R, Xie ST, Carter BZ, Xu B. miR-150 exerts antileukemia activity in vitro and in vivo through regulating genes in multiple pathways. Cell Death Dis 2016; 7:e2371. [PMID: 27899822 PMCID: PMC5059860 DOI: 10.1038/cddis.2016.256] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs, a class of small noncoding RNAs, have been implicated to regulate gene expression in virtually all important biological processes. Although accumulating evidence demonstrates that miR-150, an important regulator in hematopoiesis, is deregulated in various types of hematopoietic malignancies, the precise mechanisms of miR-150 action are largely unknown. In this study, we found that miR-150 is downregulated in samples from patients with acute lymphoblastic leukemia, acute myeloid leukemia, and chronic myeloid leukemia, and normalized after patients achieved complete remission. Restoration of miR-150 markedly inhibited growth and induced apoptosis of leukemia cells, and reduced tumorigenicity in a xenograft leukemia murine model. Microarray analysis identified multiple novel targets of miR-150, which were validated by quantitative real-time PCR and luciferase reporter assay. Gene ontology and pathway analysis illustrated potential roles of these targets in small-molecule metabolism, transcriptional regulation, RNA metabolism, proteoglycan synthesis in cancer, mTOR signaling pathway, or Wnt signaling pathway. Interestingly, knockdown one of four miR-150 targets (EIF4B, FOXO4B, PRKCA, and TET3) showed an antileukemia activity similar to that of miR-150 restoration. Collectively, our study demonstrates that miR-150 functions as a tumor suppressor through multiple mechanisms in human leukemia and provides a rationale for utilizing miR-150 as a novel therapeutic agent for leukemia treatment.
Collapse
Affiliation(s)
- Zhi Hong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Si Li Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jin Tao Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhi Juan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Lin Yan Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Si Ting Xie
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| |
Collapse
|
308
|
Monte E, Rosa-Garrido M, Vondriska TM, Wang J. Undiscovered Physiology of Transcript and Protein Networks. Compr Physiol 2016; 6:1851-1872. [PMID: 27783861 PMCID: PMC10751805 DOI: 10.1002/cphy.c160003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The past two decades have witnessed a rapid evolution in our ability to measure RNA and protein from biological systems. As a result, new principles have arisen regarding how information is processed in cells, how decisions are made, and the role of networks in biology. This essay examines this technological evolution, reviewing (and critiquing) the conceptual framework that has emerged to explain how RNA and protein networks control cellular function. We identify how future investigations into transcriptomes, proteomes, and other cellular networks will enable development of more robust, quantitative models of cellular behavior whilst also providing new avenues to use knowledge of biological networks to improve human health. © 2016 American Physiological Society. Compr Physiol 6:1851-1872, 2016.
Collapse
Affiliation(s)
- Emma Monte
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Manuel Rosa-Garrido
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Thomas M. Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Jessica Wang
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
309
|
da Silva BDO, Lima KF, Gonçalves LR, da Silveira MB, Moraes KCM. MicroRNA Profiling of the Effect of the Heptapeptide Angiotensin-(1-7) in A549 Lung Tumor Cells Reveals a Role for miRNA149-3p in Cellular Migration Processes. PLoS One 2016; 11:e0162094. [PMID: 27598578 PMCID: PMC5012581 DOI: 10.1371/journal.pone.0162094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the most frequent types of cancer in humans and a leading cause of death worldwide. The high mortality rates are correlated with late diagnosis, which leads to high rates of metastasis found in patients. Thus, despite all the improvement in therapeutic approaches, the development of new drugs that control cancer cell migration and metastasis are required. The heptapeptide angiotensin-(1-7) [ang-(1-7)] has demonstrated the ability to control the growth rates of human lung cancer cells in vitro and in vivo, and the elucidation of central elements that control the fine-tuning of cancer cells migration in the presence of the ang-(1-7), will support the development of new therapeutic approaches. Ang-(1-7) is a peptide hormone of the renin-angiotensin system (RAS) and this study investigates the modulatory effect of the heptapeptide on the expression pattern of microRNAs (miRNAs) in lung tumor cells, to elucidate mechanistic concerns about the effect of the peptide in the control of tumor migratory processes. Our primary aim was to compare the miRNA profiling between treated and untreated-heptapeptide cells to characterize the relevant molecule that modulates cellular migration rates. The analyses selected twenty one miRNAs, which are differentially expressed between the groups; however, statistical analyses indicated miRNA-149-3p as a relevant molecule. Once functional analyses were performed, we demonstrated that miRNA-149-3p plays a role in the cellular migration processes. This information could be useful for future investigations on drug development.
Collapse
Affiliation(s)
| | - Kelvin Furtado Lima
- Institute of Chemistry, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, SP, Brazil
| | - Letícia Rocha Gonçalves
- Molecular Biology Laboratory, Departament of Biology, Bioscience Institute, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
| | - Marina Bonfogo da Silveira
- Molecular Biology Laboratory, Departament of Biology, Bioscience Institute, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
| | - Karen C. M. Moraes
- Molecular Biology Laboratory, Departament of Biology, Bioscience Institute, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
- * E-mail:
| |
Collapse
|
310
|
Novel microRNA revealed by systematic analysis of the microRNA transcriptome in dentate gyrus granule cells. Neurosci Lett 2016; 707:132280. [PMID: 27612590 DOI: 10.1016/j.neulet.2016.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/22/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Post-transcriptional control of gene expression by microRNAs provides an important regulatory system within neurons, allowing co-ordinate and fine-tuned expression of plasticity-related proteins. Indeed, specific microRNAs have been shown to be regulated by synaptic activity in the dentate gyrus, and contribute to the regulated gene expression that underlies the persistence of long-term potentiation (LTP), a model of memory. To fully explore the contribution of microRNAs in synaptic plasticity, it is important to characterize the complete microRNA transcriptome in regions such as the dentate gyrus. Accordingly we used deep sequencing and miRDeep* analysis to search for novel microRNAs expressed in the dentate gyrus granule cell layer. Drawing on combined sequencing and bioinformatics analyses, including hairpin stability and patterns of precursor microRNA processing, we identified nine putative novel microRNAs. We did not find evidence of differential expression of any of these putative microRNAs following LTP at perforant path-granule cell synapses in awake rats (5 h post-tetanus; p > 0.05). Focusing on novel_miR-1, the most abundant novel miRNA, we showed that this sequence could be amplified from RNA extracted from dentate gyrus granule cells by reverse transcription-quantitative polymerase chain reaction. Further, by computationally predicting mRNA targets of this microRNA, we found that this novel microRNA likely contributes to the regulation of proteins that function at synapses.
Collapse
|
311
|
Fesler A, Xu X, Zheng X, Li X, Jiang J, Russo JJ, Ju J. Identification of miR-215 mediated targets/pathways via translational immunoprecipitation expression analysis (TrIP-chip). Oncotarget 2016; 6:24463-73. [PMID: 26287603 PMCID: PMC4695198 DOI: 10.18632/oncotarget.4425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 01/28/2023] Open
Abstract
Steady state mRNA expression profiling can identify the majority of miRNA targets. However, some translationally repressed miRNA targets are missed and thus not considered for functional validation. Therefore, analysis of mRNA translation can enhance miRNA target identification for functional studies. We have applied a unique approach to identify miRNA targets in a small number of cells. Actively translating mRNAs are associated with polyribosomes and newly synthesized peptide chains are associated with molecular chaperones such as HSP70s. Affinity capture beads were used to capture HSP70 chaperones associated with polyribosome complexes. The isolated actively translating mRNAs were used for high throughput expression profiling analysis. miR-215 is an important miRNA in colorectal cancer and loss of miR-215 is significantly associated with prognosis of this disease. miR-215 suppresses the expression of several key targets. We utilized the affinity capture approach to isolate miR-215 mediated mRNA target transcripts. This approach provides a unique way to identify targets regulated by non-coding RNAs and RNA binding proteins from a small number of cells.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY, USA
| | - Xiao Xu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao Zheng
- The Third Affiliated Hospital, Soochow University, China
| | - Xiaodong Li
- The Third Affiliated Hospital, Soochow University, China
| | - Jingting Jiang
- The Third Affiliated Hospital, Soochow University, China
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Jingfang Ju
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
312
|
Abstract
Noncoding RNAs are important regulatory molecules of cellular processes. MicroRNAs (miRNAs) are small noncoding RNAs that bind to complementary sequences in the 3' untranslated region of target mRNAs, leading to degradation of the target mRNAs and/or inhibition of their translation. Some miRNAs are essential for normal animal development; however, many other miRNAs are dispensable for development but play a critical role in pathological conditions, including tumorigenesis and metastasis. miRNA genes often reside at fragile chromosome sites and are deregulated in cancer. Some miRNAs function as oncogenes or tumor suppressors, collectively termed "oncomirs." Specific metastasis-regulating miRNAs, collectively termed "metastamirs," govern molecular processes and pathways in malignant progression in either a tumor cell-autonomous or a cell-nonautonomous manner. Recently, exosome-transferred miRNAs have emerged as mediators of the tumor-stroma cross talk. In this chapter, we focus on the functions, mechanisms of action, and therapeutic potential of miRNAs, particularly oncomirs and metastamirs.
Collapse
Affiliation(s)
- L Ma
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
313
|
McDonald MK, Ramanathan S, Touati A, Zhou Y, Thanawala RU, Alexander GM, Sacan A, Ajit SK. Regulation of proinflammatory genes by the circulating microRNA hsa-miR-939. Sci Rep 2016; 6:30976. [PMID: 27498764 PMCID: PMC4976376 DOI: 10.1038/srep30976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating microRNAs are beneficial biomarkers because of their stability and dysregulation in diseases. Here we sought to determine the role of miR-939, a miRNA downregulated in patients with complex regional pain syndrome (CRPS). Hsa-miR-939 is predicted to target several proinflammatory genes, including IL-6, VEGFA, TNFα, NFκB2, and nitric oxide synthase 2 (NOS2A). Binding of miR-939 to the 3' untranslated region of these genes was confirmed by reporter assay. Overexpression of miR-939 in vitro resulted in reduction of IL-6, NOS2A and NFκB2 mRNAs, IL-6, VEGFA, and NOS2 proteins and NFκB activation. We observed a significant decrease in the NOS substrate l-arginine in plasma from CRPS patients, suggesting reduced miR-939 levels may contribute to an increase in endogenous NOS2A levels and NO, and thereby to pain and inflammation. Pathway analysis showed that miR-939 represents a critical regulatory node in a network of inflammatory mediators. Collectively, our data suggest that miR-939 may regulate multiple proinflammatory genes and that downregulation of miR-939 in CRPS patients may increase expression of these genes, resulting in amplification of the inflammatory pain signal transduction cascade. Circulating miRNAs may function as crucial signaling nodes, and small changes in miRNA levels may influence target gene expression and thus disease.
Collapse
Affiliation(s)
- Marguerite K McDonald
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.,Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Suite 2000, Translational Research Laboratories (TRL), 125 S. 31st Street, Philadelphia, PA 19104-3403, USA
| | - Sujay Ramanathan
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Andrew Touati
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yiqian Zhou
- School of Biomedical Engineering, Science &Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Rushi U Thanawala
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Guillermo M Alexander
- Neurology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science &Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
314
|
STEPICHEVA NADEZDAA, SONG JIAL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev 2016; 83:654-74. [PMID: 27405090 PMCID: PMC6040227 DOI: 10.1002/mrd.22678] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Mol. Reprod. Dev. 83: 654-674, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - JIA L. SONG
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
315
|
Di Meco A, Praticò D. MicroRNAs as Therapeutic Targets for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:367-72. [DOI: 10.3233/jad-160203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
316
|
Meryet-Figuière M, Lambert B, Gauduchon P, Vigneron N, Brotin E, Poulain L, Denoyelle C. An overview of long non-coding RNAs in ovarian cancers. Oncotarget 2016; 7:44719-44734. [PMID: 26992233 PMCID: PMC5190131 DOI: 10.18632/oncotarget.8089] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
As with miRNAs a decade ago, the scientific community recently understood that lncRNAs represent a new layer of complexity in the regulation of gene expression. Although only a subset of lncRNAs has been functionally characterized, it is clear that they are deeply involved in the most critical physiological and pathological biological processes. This review shows that in ovarian carcinoma, data already available testify to the importance of lncRNAs and that the demonstration of an ever-growing role of lncRNAs in the biology of this malignancy can be expected from future studies. We also underline the importance of their relationship with associated protein partners and miRNAs. Together, the available information suggests that the emerging field of lncRNAs will pave the way for a better understanding of ovarian cancer biology and might lead to the development of innovative therapeutic approaches. Moreover, lncRNAs expression signatures either alone or in combination with other types of markers (miRNAs, mRNAs, proteins) could prove useful to predict outcome or treatment follow-up in order to improve the therapeutic care of ovarian carcinoma patients.
Collapse
Affiliation(s)
- Matthieu Meryet-Figuière
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
| | - Bernard Lambert
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
- CNRS, Paris, France
| | - Pascal Gauduchon
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
| | - Nicolas Vigneron
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
| | - Emilie Brotin
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
| | - Laurent Poulain
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
| | - Christophe Denoyelle
- Inserm U1199, Biology and Innovative Therapeutics for Locally Aggressive Cancer (BioTICLA) Unit, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
- Comprehensive Cancer Center CLCC François Baclesse, Unicancer, Caen, France
| |
Collapse
|
317
|
Tang D, Chen Y, He H, Huang J, Chen W, Peng W, Lu Q, Dai Y. Integrated analysis of mRNA, microRNA and protein in systemic lupus erythematosus-specific induced pluripotent stem cells from urine. BMC Genomics 2016; 17:488. [PMID: 27402083 PMCID: PMC4940874 DOI: 10.1186/s12864-016-2809-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Background In clinical practice, it is difficult to monitor the repeating relapse in patients who have been suffering from systemic lupus erythematosus (SLE). The underlying etiology remains largely unknown. Methods Aiming to understand the pathogenesis of SLE, a detailed study was conducted. Renal tubular cells–derived iPSCs were successfully obtained from the urine of SLE patients and healthy controls. With the purpose to identify simultaneous expression profiling of microRNA, mRNA and protein, Illumina HiSeq™ 2000 System and iTRAQ-coupled 2D LC-MS/MS analysis were utilized in systemic lupus erythematosus-specific induced pluripotent stem cells (SLE-iPSCs) and normal control-iPSCs (NC-iPSCs). The integration of multiple profiling datasets was realized since it could facilitate the identification of non-seed miRNA targets, as well as differentially expressed mRNAs and proteins. Results For this study, profiling datasets of 1099 differentially expressed mRNAs, 223 differentially expressed microRNAs and 94 differentially expressed proteins were integrated. In order to investigate the influence of miRNA on the processes of regulating mRNAs and proteins’ levels, potential targets of differentially expressed mRNAs and proteins were predicted using miRanda, TargetScan and Pictar. Multiple profiling datasets were integrated to facilitate the identification of miRNA targets, as well as differentially expressed mRNAs and proteins. Through gene ontology (GO) analysis of differentially expressed mRNAs and proteins, biological processes that drive proliferation were identified, such as mRNA processing and translation. Western blot and Q-PCR confirmed AK4 protein and mRNA up-regulation. The findings also showed that TAGLN’s protein and mRNA level were down-regulated in SLE-iPSCs, both miR-371a-5p and let-7a-5p in SLE-iPSC were down-regulated and verified using Q-PCR. The up-regulation of AK4 involved in nucleotide biosynthesis suggested a general acceleration of anabolic metabolism induced by down-regulated miR-371a-5p, which might contribute to SLE. Conclusion Based on high throughput analysis, integrated miRNA, mRNA, and protein expression data were generated. Differentially expressed dates were also adopted in conjunction with in-silico tools to identify potential candidates for SLE-iPSCs. Representative miRNA, mRNA and proteins were verified. It was also expected that the knowledge gained from this study can be applied to assess the usefulness of pathogenesis and novel biomarker candidates of SLE, which may develop a new way for SLE diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2809-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donge Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yuyu Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Huiyan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Jianrong Huang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wenbiao Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wujian Peng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, 410011, People's Republic of China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
318
|
Fujino T, Yokosuka A, Higurashi H, Yokokawa R, Sakurai R, Harashima W, Miki Y, Fujiwara Y, Mimaki Y, Hayakawa M. AU-1 from Agavaceae plants causes transient increase in p21/Cip1 expression in renal adenocarcinoma ACHN cells in an miR-34-dependent manner. J Nat Med 2016; 71:36-43. [PMID: 27388719 DOI: 10.1007/s11418-016-1024-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Here, we show that AU-1, spirostanol saponin isolated from Agavaceae plants, causes a transient increase in cyclin-dependent kinase inhibitor (CDKI) p21/Cip1 through the upregulation of miRNAs, miR-34 and miR-21. AU-1 stimulated p21/Cip1 expression without exerting cytotoxicity against different types of carcinoma cell lines. In renal adenocarcinoma ACHN cells, AU-1 transiently elevated the expression level of p21/Cip1 protein without marked increases in p21/Cip1 mRNA levels. Rapid and transient increases in miR-34 and miR-21, both of which are known to upregulate p21/Cip1, were observed in AU-1-treated cells. Inhibitor for miR-34 and for miR-21 significantly blocked the AU-1-caused increase in p21/Cip1, indicating that elevation of p21/Cip1 protein by AU-1 is dependent on these microRNAs. We further clarified that NAD-dependent deacetylase SIRT1, a direct target of miR-34, is decreased by the treatment with AU-1. Furthermore, we found that SIRT1-knockdown increases p21/Cip1 protein levels in an miR-21-dependent manner. On the other hand, ectopic expression of p21/Cip1 resulted in the lowered expression of miR-34 and miR-21, suggesting that reciprocal regulation exists between p21/Cip1 and these miRNAs. We propose that the following feedback network composed of miR-34/SIRT1/miR-21/p21 is triggered by the treatment with AU-1: in cells treated with AU-1, transient elevation of miR-34 leads to the downregulation of SIRT1, thereby miR-21 is freed from SIRT1-dependent suppression. Then, elevated miR-21 upregulates p21/Cip1 protein, followed by the suppression of miR-34 expression.
Collapse
Affiliation(s)
- Tomofumi Fujino
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan.
| | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Hideaki Higurashi
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Rina Yokokawa
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Ryo Sakurai
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Wataru Harashima
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Yuichi Miki
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| | - Makio Hayakawa
- Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachiōji, Tokyo, 192-0392, Japan
| |
Collapse
|
319
|
Hyrsova L, Smutny T, Trejtnar F, Pavek P. Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation. Drug Metab Rev 2016; 48:139-58. [DOI: 10.1080/03602532.2016.1188936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
320
|
MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell 2016; 7:489-500. [PMID: 27245166 PMCID: PMC4930766 DOI: 10.1007/s13238-016-0272-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/13/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.
Collapse
|
321
|
Huntley RP, Sitnikov D, Orlic-Milacic M, Balakrishnan R, D'Eustachio P, Gillespie ME, Howe D, Kalea AZ, Maegdefessel L, Osumi-Sutherland D, Petri V, Smith JR, Van Auken K, Wood V, Zampetaki A, Mayr M, Lovering RC. Guidelines for the functional annotation of microRNAs using the Gene Ontology. RNA (NEW YORK, N.Y.) 2016; 22:667-76. [PMID: 26917558 PMCID: PMC4836642 DOI: 10.1261/rna.055301.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/19/2016] [Indexed: 05/07/2023]
Abstract
MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual).
Collapse
Affiliation(s)
- Rachael P Huntley
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | | | | | - Rama Balakrishnan
- Department of Genetics, Stanford University, MC-5477 Stanford, California 94305, USA
| | - Peter D'Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York 10016, USA
| | - Marc E Gillespie
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, USA
| | - Doug Howe
- Zebrafish Model Organism Database, 5291 University of Oregon Eugene, Oregon 97403-5291, USA
| | - Anastasia Z Kalea
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Lars Maegdefessel
- Karolinska Institute, Department of Medicine, Center for Molecular Medicine (CMM) L8:03, Stockholm 17176, Sweden
| | - David Osumi-Sutherland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, Cambridge, UK
| | - Victoria Petri
- Human and Molecular Genetics Center, Medical College of Wisconsin Department of Physiology, Medical College of Wisconsin Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Jennifer R Smith
- Human and Molecular Genetics Center, Medical College of Wisconsin Department of Physiology, Medical College of Wisconsin Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Kimberly Van Auken
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Valerie Wood
- Cambridge Systems Biology and Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, United Kingdom
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | - Ruth C Lovering
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
322
|
Hall AE, Lu WT, Godfrey JD, Antonov AV, Paicu C, Moxon S, Dalmay T, Wilczynska A, Muller PAJ, Bushell M. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis 2016; 7:e2184. [PMID: 27054339 PMCID: PMC4855670 DOI: 10.1038/cddis.2016.91] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway.
Collapse
Affiliation(s)
- A E Hall
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - W-T Lu
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - J D Godfrey
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - A V Antonov
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - C Paicu
- The Genome Analysis Centre, Norwich, UK.,School of Computing Sciences, University of East Anglia, Norwich, UK
| | - S Moxon
- The Genome Analysis Centre, Norwich, UK
| | - T Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A Wilczynska
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - P A J Muller
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| | - M Bushell
- Medical Research Council (MRC), Toxicology Unit, Leicester, UK
| |
Collapse
|
323
|
Ludwig KR, Dahl R, Hummon AB. Evaluation of the mirn23a Cluster through an iTRAQ-based Quantitative Proteomic Approach. J Proteome Res 2016; 15:1497-505. [PMID: 27028342 DOI: 10.1021/acs.jproteome.5b01101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that are implicated in a number of disease states. MiRNAs can exist as individual entities or may be clustered and transcribed as a single polycistron. The mirn23a cluster consists of three miRNAs: miR-23a, miR-24-2, and miR-27a. Although these miRNAs are transcribed together, they often exist at varying levels in the cell. Despite the fact that the mirn23a cluster is known to play a role in a number of diseases and developmental processes, few direct targets have been identified. In this study, we examined the effects of miR-23a, miR-24-2, miR-27a, or the mirn23a cluster overexpression on the proteome of 70Z/3 pre-B lymphoblast cells. Quantitative mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ) allowed for the global profiling of cell lines after miRNA overexpression. We identified a number of targets of each miRNA that contained predicted miRNA seed sequences and are likely direct targets. In addition, we discovered a cohort of shared miRNA targets and cluster targets, demonstrating the importance of studying miRNA clusters in their entirety.
Collapse
Affiliation(s)
- Katelyn R Ludwig
- Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46617 United States
| | - Richard Dahl
- Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46617 United States.,Department of Microbiology and Immunology, Indiana University School of Medicine , South Bend, Indiana 46202 United States
| | - Amanda B Hummon
- Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46617 United States
| |
Collapse
|
324
|
Ziemniak M, Mugridge JS, Kowalska J, Rhoads RE, Gross JD, Jemielity J. Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex. RNA (NEW YORK, N.Y.) 2016; 22:518-29. [PMID: 26826132 PMCID: PMC4793208 DOI: 10.1261/rna.055152.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
325
|
Liu Y, Zhao R, Wang H, Luo Y, Wang X, Niu W, Zhou Y, Wen Q, Fan S, Li X, Xiong W, Ma J, Li X, Tan M, Li G, Zhou M. miR-141 is involved in BRD7-mediated cell proliferation and tumor formation through suppression of the PTEN/AKT pathway in nasopharyngeal carcinoma. Cell Death Dis 2016; 7:e2156. [PMID: 27010857 PMCID: PMC4823963 DOI: 10.1038/cddis.2016.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Bromodomain containing 7 (BRD7) was identified as a nuclear transcriptional regulatory factor. BRD7 functions as a tumor suppressor in multiple cancers, including nasopharyngeal carcinoma (NPC). In this study, we reported a novel mechanism of BRD7 in NPC progression. We demonstrated that the expression of miR-141 was remarkably increased in NPC tissues and was negatively correlated with the expression of BRD7 and the survival rate of NPC patients. Decreased expression levels of miR-141, including the primary, the precursor and the mature forms of miR-141, were found in BRD7-overexpressing HEK293, 5-8F and HNE1 cells compared the control cells, while there was no obvious effect on the expression levels of the two critical enzymes Drosha and Dicer. BRD7 can negatively regulate the promoter activity of miR-141, while no obvious binding site of BRD7 was found in the potential promoter region of miR-141. Moreover, ectopic expression of miR-141 can significantly promote cell proliferation and inhibit apoptosis in NPC, and rescuing the expression of miR-141 in BRD7-overexpressing NPC cells could partially reverse the tumor suppressive effect of BRD7 on cell proliferation and tumor growth in vitro and in vivo. Furthermore, the activation of the PTEN/AKT pathway mediated by the overexpression of BRD7 could be inhibited by rescuing the expression of miR-141, which accordingly results in the partial restoration of cell proliferation and tumor growth. Our findings demonstrate that the BRD7/miR-141/PTEN/AKT axis has critical roles in the progression of NPC and provide some promising targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Y Liu
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - R Zhao
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - H Wang
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - Y Luo
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - X Wang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - W Niu
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - Y Zhou
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - Q Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - S Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - X Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - W Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - J Ma
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - X Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - M Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - G Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - M Zhou
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| |
Collapse
|
326
|
Role of MicroRNA in Governing Synaptic Plasticity. Neural Plast 2016; 2016:4959523. [PMID: 27034846 PMCID: PMC4808557 DOI: 10.1155/2016/4959523] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 12/21/2022] Open
Abstract
Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases.
Collapse
|
327
|
El-Gewely MR, Andreassen M, Walquist M, Ursvik A, Knutsen E, Nystad M, Coucheron DH, Myrmel KS, Hennig R, Johansen SD. Differentially Expressed MicroRNAs in Meningiomas Grades I and II Suggest Shared Biomarkers with Malignant Tumors. Cancers (Basel) 2016; 8:E31. [PMID: 26950155 PMCID: PMC4810115 DOI: 10.3390/cancers8030031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
Meningiomas represent the most common primary tumors of the central nervous system, but few microRNA (miRNA) profiling studies have been reported so far. Deep sequencing of small RNA libraries generated from two human meningioma biopsies WHO grades I (benign) and II (atypical) were compared to excess dura controls. Nineteen differentially expressed miRNAs were validated by RT-qPCR using tumor RNA from 15 patients and 5 meninges controls. Tumor suppressor miR-218 and miR-34a were upregulated relative to normal controls, however, miR-143, miR-193b, miR-451 and oncogenic miR-21 were all downregulated. From 10 selected putative mRNA targets tested by RT-qPCR only four were differentially expressed relative to normal controls. PTEN and E-cadherin (CDH1) were upregulated, but RUNX1T1 was downregulated. Proliferation biomarker p63 was upregulated with nuclear localization, but not detected in most normal arachnoid tissues. Immunoreactivity of E-cadherin was detected in the outermost layer of normal arachnoids, but was expressed throughout the tumors. Nuclear Cyclin D1 expression was positive in all studied meningiomas, while its expression in arachnoid was limited to a few trabecular cells. Meningiomas of grades I and II appear to share biomarkers with malignant tumors, but with some additional tumor suppressor biomarkers expression. Validation in more patients is of importance.
Collapse
Affiliation(s)
- Mohamed Raafat El-Gewely
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Morten Andreassen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Mari Walquist
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Anita Ursvik
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Mona Nystad
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
- Department of Obstetrics and Gynecology, University Hospital of North Norway, NO-9038 Tromsø, Norway.
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, NO-9038 Tromsø, Norway.
| | - Dag H Coucheron
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | | | - Rune Hennig
- Department of Neurosurgery, University Hospital of North Norway, NO-9038 Tromsø, Norway.
- Department of Clinical Medicine, Division of Neurosurgery, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
- Marine Genomics Group, Faculty of Biosciences and Aquaculture, Nord University NO-8049 Bodø, Norway.
| |
Collapse
|
328
|
Maalouf SW, Smith CL, Pate JL. Changes in MicroRNA Expression During Maturation of the Bovine Corpus Luteum: Regulation of Luteal Cell Proliferation and Function by MicroRNA-34a. Biol Reprod 2016; 94:71. [PMID: 26864197 DOI: 10.1095/biolreprod.115.135053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/28/2023] Open
Abstract
The corpus luteum (CL) develops from the remnants of the ovulatory follicle and produces progesterone, required for maintenance of pregnancy in mammals. The differentiation of granulosal and thecal cells into luteal cells is accompanied by hypertrophy and hyperplasia of cells. As the CL matures, growth ceases and in ruminants, the tissue acquires the ability to undergo regression in response to prostaglandin F2alpha. The regulators of this transition are poorly understood. MicroRNA, which are posttranscriptional regulators of tissue development and function, are expressed in the CL. However, the pattern of their expression and their function during the transition from developing to functional CL is not known. The objectives of this study were to profile the expression of miRNA in developing versus mature bovine CL and determine effects of miRNA on bovine luteal cell survival and function. Knockdown of Drosha in midcycle (MC) luteal cells decreased progesterone and increased luteal cell apoptosis in the presence or absence of proinflammatory cytokines. Microarray analysis demonstrated that a greater number of miRNA were expressed in MC compared to D4 CL. Ingenuity pathway analysis (IPA) predicted that D4-specific miRNA regulate pathways related to carbohydrate metabolism, while MC-specific miRNA regulate pathways related to cell cycle and apoptosis signaling. Both predictions are consistent with a switch in the CL from a growing phase to a maintenance phase. One of the MC specific miRNA, miR-34a, was selected for further analysis. Increased concentrations of miR-34a in MC luteal cells resulted in decreased luteal cell proliferation, increased progesterone production, and inhibition of Notch1 and YY1 translation, but had no effect on luteal cell apoptosis. In conclusion, these data support a role for miRNA in general, and miR-34a in particular, in luteal formation and function.
Collapse
Affiliation(s)
- Samar W Maalouf
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania
| | - Courtney L Smith
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
329
|
Mamoori A, Gopalan V, Smith RA, Lam AKY. Modulatory roles of microRNAs in the regulation of different signalling pathways in large bowel cancer stem cells. Biol Cell 2016; 108:51-64. [DOI: 10.1111/boc.201500062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Afraa Mamoori
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Queensland Australia
- Department of Pathology and Forensic Medicine, College of Medicine; University of Babylon; Iraq
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Queensland Australia
| | - Robert Anthony Smith
- Genomics Research Centre, Institute for Health and Biomedical Innovation; Queensland University of Technology; Queensland Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Queensland Australia
| |
Collapse
|
330
|
Wong JJL, Au AYM, Gao D, Pinello N, Kwok CT, Thoeng A, Lau KA, Gordon JEA, Schmitz U, Feng Y, Nguyen TV, Middleton R, Bailey CG, Holst J, Rasko JEJ, Ritchie W. RBM3 regulates temperature sensitive miR-142-5p and miR-143 (thermomiRs), which target immune genes and control fever. Nucleic Acids Res 2016; 44:2888-97. [PMID: 26825461 PMCID: PMC4824108 DOI: 10.1093/nar/gkw041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40°C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142–5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40°C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142–5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142–5p and miR-143.
Collapse
Affiliation(s)
- Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Amy Y M Au
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Dadi Gao
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Chau-To Kwok
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Annora Thoeng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Katherine A Lau
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jane E A Gordon
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Yue Feng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Trung V Nguyen
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Robert Middleton
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, NSW 2006, Australia Origins of Cancer Program, Centenary Institute, Camperdown 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - William Ritchie
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown 2050, Australia Sydney Medical School, University of Sydney, NSW 2006, Australia Bioinformatics Laboratory, Centenary Institute, Camperdown 2050, Australia CNRS, UMR 5203, Montpellier 34094, France
| |
Collapse
|
331
|
Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, Javed Z, Jabeen S, Yaylim I, Gasparri ML, Panici PB. Is miR-34a a Well-equipped Swordsman to Conquer Temple of Molecular Oncology? Chem Biol Drug Des 2016; 87:321-34. [PMID: 26259537 DOI: 10.1111/cbdd.12634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Overwhelmingly increasing advancements in miRNA biology have opened new avenues for pharmaceutical companies to initiate studies on designing effective, safe, and therapeutically active candidates using miRNA mimetics and miRNA inhibitors. In accordance with this approach, development of miravirsen and SPC3649, an LNA-based (locked nucleic acid) antisense molecule against miR-122, to treat hepatitis C has sparked interest in identifying most efficient microRNAs for journey from bench-top toward pharmaceutical industry and breakthroughs in delivery technology will pave the way to 'final frontier'. MRX34, a liposome-formulated mimic of miR-34 for treatment of metastatic cancer with liver involvement and unresectable primary liver cancer, has also entered in clinical trial. There is a successive increase in the research work related to miR-34 biology and miRNA regulation of modulators of intracellular signaling cascades. We partition this review into how miR-34a is regulated by different proteins and how Wnt- and TGF-induced intracellular signaling cascades are modulated by miR-34a. In this review, we bring to limelight how miR-34a regulates its target genes to induce apoptosis and inhibit cell proliferation as evidenced by in vitro and in vivo analysis. We also discuss miR-34 regulation of PDGFR and c-MET and recent advancements in nanotechnologically delivered miR-34a. Spotlight is also set on modulation of chemotherapeutic sensitivity by miR-34a in cancer cells using reconstruction studies. Clinical trial of miR-34 is indicative of its tremendous potential, and continuous cutting research will prove to be effective in efficiently translating laboratory findings into clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Iryna Shatynska-Mytsyk
- Diagnostic Imaging and Radiation Therapy Department, Lviv National Medical University, Lviv, Ukraine
| | | | - Saima Jabeen
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ilhan Yaylim
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maria Luisa Gasparri
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
332
|
Browne G, Dragon JA, Hong D, Messier TL, Gordon JAR, Farina NH, Boyd JR, VanOudenhove JJ, Perez AW, Zaidi SK, Stein JL, Stein GS, Lian JB. MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumour Biol 2016; 37:8825-39. [PMID: 26749280 DOI: 10.1007/s13277-015-4710-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
The Runx1 transcription factor, known for its essential role in normal hematopoiesis, was reported in limited studies to be mutated or associated with human breast tumor tissues. Runx1 increases concomitantly with disease progression in the MMTV-PyMT transgenic mouse model of breast cancer. Compelling questions relate to mechanisms that regulate Runx1 expression in breast cancer. Here, we tested the hypothesis that dysregulation of Runx1-targeting microRNAs (miRNAs) allows for pathologic increase of Runx1 during breast cancer progression. Microarray profiling of the MMTV-PyMT model revealed significant downregulation of numerous miRNAs predicted to target Runx1. One of these, miR-378, was inversely correlated with Runx1 expression during breast cancer progression in mice and in human breast cancer cell lines MCF7 and triple-negative MDA-MB-231 that represent early- and late-stage diseases, respectively. MiR-378 is nearly absent in MDA-MB-231 cells. Luciferase reporter assays revealed that miR-378 binds the Runx1 3' untranslated region (3'UTR) and inhibits Runx1 expression. Functionally, we demonstrated that ectopic expression of miR-378 in MDA-MB-231 cells inhibited Runx1 and suppressed migration and invasion, while inhibition of miR-378 in MCF7 cells increased Runx1 levels and cell migration. Depletion of Runx1 in late-stage breast cancer cells resulted in increased expression of both the miR-378 host gene PPARGC1B and pre-miR-378, suggesting a feedback loop. Taken together, our study identifies a novel and clinically relevant mechanism for regulation of Runx1 in breast cancer that is mediated by a PPARGC1B-miR-378-Runx1 regulatory pathway. Our results highlight the translational potential of miRNA replacement therapy for inhibiting Runx1 in breast cancer.
Collapse
Affiliation(s)
- Gillian Browne
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Avenue, Burlington, VT, 05405, USA
| | - Deli Hong
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Terri L Messier
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jonathan A R Gordon
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Nicholas H Farina
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Joseph R Boyd
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jennifer J VanOudenhove
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andrew W Perez
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sayyed K Zaidi
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L Stein
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S Stein
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jane B Lian
- Department of Biochemistry & University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
333
|
Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. eLife 2016; 5:e10921. [PMID: 26735365 DOI: 10.7554/elife.10921.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/05/2016] [Indexed: 05/25/2023] Open
Abstract
Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5' and 3' untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5' untranslated regions exert robust translational control between cell lines, while 3' untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels.
Collapse
Affiliation(s)
- Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
334
|
Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. eLife 2016; 5. [PMID: 26735365 PMCID: PMC4764583 DOI: 10.7554/elife.10921] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/05/2016] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5′ and 3′ untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5′ untranslated regions exert robust translational control between cell lines, while 3′ untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels. DOI:http://dx.doi.org/10.7554/eLife.10921.001 To produce a protein, a gene’s DNA is first copied to make molecules of messenger RNA (mRNA). The mRNAs pass through a molecular machine known as the ribosome, which translates the genetic code to make a protein. Not all of an mRNA is translated to make a protein; the “untranslated” regions play crucial roles in regulating how much of the protein is produced. In animals, plants and other eukaryotes, many mRNAs are made up of small pieces that are “spliced” together. During this process, proteins are deposited on the mRNA to mark the splice junctions, which are then cleared when the mRNA is translated. Many different mRNAs can be produced from the same gene by splicing different combinations of RNA pieces. Each of these mRNA “isoforms” can, in principle, contain a unique set of features that control its translation. Hence each mRNA isoform can be translated differently so that different amounts of the corresponding protein product are produced. However, the relationship between the variety of isoforms and the control of translation is complex and not well understood. To address these questions, Floor and Doudna measured the translation of over 60,000 mRNA isoforms made from almost 14,000 human genes. The experiments show that untranslated regions at the end of the mRNA (known as the 3′ end) strongly influence translation, even if the protein coding regions remain the same. Furthermore, the data showed that mRNAs with more splice junctions are translated better, implying an mRNA has some sort of memory of how many junctions it had even after the protein markers have been cleared. Next, Floor and Doudna inserted regulatory sequences from differently translated isoforms into an unrelated “reporter” gene. This dramatically changed the amount of protein produced from the reporter gene, in a manner predicted by the earlier experiments. Untranslated regions at the beginning of the mRNAs (known as the 5′ end) controlled the amount of protein produced from the reporter consistently across different types of cells from the body. On the other hand, the 3′ regions can tune the level of protein production in particular types of cells. Floor and Doudna’s findings demonstrate that differences between mRNA isoforms of a gene can have a big effect on the level of protein production. Changes in the types of mRNA made from a gene are often associated with human diseases, and these findings suggest one reason why. Additionally, the ability to engineer translation of an mRNA using the data is likely to aid the development of mRNA-based therapies. DOI:http://dx.doi.org/10.7554/eLife.10921.002
Collapse
Affiliation(s)
- Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Initiative, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
335
|
Casein kinase II promotes target silencing by miRISC through direct phosphorylation of the DEAD-box RNA helicase CGH-1. Proc Natl Acad Sci U S A 2015; 112:E7213-22. [PMID: 26669440 DOI: 10.1073/pnas.1509499112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway.
Collapse
|
336
|
Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR, Mooney CM, Mooney C, Lugara E, Morgan J, Langa E, Jimenez-Pacheco A, Silva LFA, Mesuret G, Boison D, Miras-Portugal MT, Letavic M, Artalejo AR, Bhattacharya A, Diaz-Hernandez M, Henshall DC, Engel T. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 2015; 5:17486. [PMID: 26631939 PMCID: PMC4668358 DOI: 10.1038/srep17486] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7R-gated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7−/− mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain.
Collapse
Affiliation(s)
- Eva M Jimenez-Mateos
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marina Arribas-Blazquez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Amaya Sanz-Rodriguez
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caoimhin Concannon
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luis A Olivos-Ore
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina R Reschke
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire M Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eleonora Lugara
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James Morgan
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elena Langa
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alba Jimenez-Pacheco
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Guillaume Mesuret
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - M Teresa Miras-Portugal
- Department of Biochemistry, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Michael Letavic
- Janssen Research &Development, LLC, Neuroscience, 3210 Merryfield Row, San Diego, CA 92121, San Diego, USA
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Anindya Bhattacharya
- Janssen Research &Development, LLC, Neuroscience, 3210 Merryfield Row, San Diego, CA 92121, San Diego, USA
| | - Miguel Diaz-Hernandez
- Department of Biochemistry, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - David C Henshall
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
337
|
Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M, Head SR, Macauley MS, Rickert RC, Xiao C. Transfection of microRNA Mimics Should Be Used with Caution. Front Genet 2015; 6:340. [PMID: 26697058 PMCID: PMC4667072 DOI: 10.3389/fgene.2015.00340] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022] Open
Abstract
Transient transfection of chemically synthesized microRNA (miRNA) mimics is being used extensively to study the functions and mechanisms of endogenous miRNAs. However, it remains unclear whether transfected miRNAs behave similarly to endogenous miRNAs. Here we show that transient transfection of miRNA mimics into HeLa cells by a commonly used method led to the accumulation of high molecular weight RNA species and a few hundred fold increase in mature miRNA levels. In contrast, expression of the same miRNAs through lentiviral infection or plasmid transfection of HeLa cells, transgenic expression in primary lymphocytes, and endogenous overexpression in lymphoma and leukemia cell lines did not lead to the appearance of high molecular weight RNA species. The increase of mature miRNA levels in these cells was below 10-fold, which was sufficient to suppress target gene expression and to drive lymphoma development in mice. Moreover, transient transfection of miRNA mimics at high concentrations caused non-specific alterations in gene expression, while at low concentrations achieved expression levels comparable to other methods but failed to efficiently suppress target gene expression. Small RNA deep sequencing analysis revealed that the guide strands of miRNA mimics were frequently mutated, while unnatural passenger strands of some miRNA mimics accumulated to high levels. The high molecular weight RNA species were a heterogeneous mixture of several classes of RNA species generated by concatemerization, 5'- and 3'-end tailing of miRNA mimics. We speculate that the supraphysiological levels of mature miRNAs and these artifactual RNA species led to non-specific changes in gene expression. Our results have important implications for the design and interpretation of experiments primarily employing transient transfection of miRNA mimics.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Kellogg School of Science and Technology, The Scripps Research Institute La Jolla, CA, USA
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| | - Ana V Miletic
- Program on Immunity and Pathogenesis, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Maoyi Lai
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| | - Sarah Knight
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Department of Cell and Molecular Biology, The Scripps Research Institute La Jolla, CA, USA ; Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | - Mohsen Sabouri-Ghomi
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| | - Steven R Head
- Next Generation Sequencing Core, The Scripps Research Institute La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Department of Cell and Molecular Biology, The Scripps Research Institute La Jolla, CA, USA ; Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | - Robert C Rickert
- Program on Immunity and Pathogenesis, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
338
|
Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity. Biochem J 2015; 472:261-73. [DOI: 10.1042/bj20150928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
Abstract
We show for translation initiation factors involved in formation of the closed loop mRNA, their expression is associated with recombinant antibody productivity in Chinese hamster ovary cells and maintaining these is important in determining the cells capacity for antibody productivity.
Collapse
|
339
|
Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death Differ 2015; 23:776-86. [PMID: 26586575 PMCID: PMC4832097 DOI: 10.1038/cdd.2015.138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/14/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022] Open
Abstract
In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain.
Collapse
|
340
|
Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 2015; 5:e682. [PMID: 26575223 PMCID: PMC5068767 DOI: 10.1038/tp.2015.175] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Stress plays a major role in inducing depression, which may arise from interplay between complex cascades of molecular and cellular events that influence gene expression leading to altered connectivity and neural plasticity. In recent years, microRNAs (miRNAs) have carved their own niche owing to their innate ability to induce disease phenotype by regulating expression of a large number of genes in a cohesive and coordinated manner. In this study, we examined whether miRNAs and associated gene networks have a role in chronic corticosterone (CORT; 50 mg kg(-1) × 21 days)-mediated depression in rats. Rats given chronic CORT showed key behavioral features that resembled depression phenotype. Expression analysis revealed differential regulation of 26 miRNAs (19 upregulated, 7 downregulated) in prefrontal cortex of CORT-treated rats. Interaction between altered miRNAs and target genes showed dense interconnected molecular network, in which multiple genes were predicated to be targeted by the same miRNA. A majority of altered miRNAs showed binding sites for glucocorticoid receptor element, suggesting that there may be a common regulatory mechanism of miRNA regulation by CORT. Functional clustering of predicated target genes yielded disorders such as developmental, inflammatory and psychological that could be relevant to depression. Prediction analysis of the two most prominently affected miRNAs miR-124 and miR-218 resulted into target genes that have been shown to be associated with depression and stress-related disorders. Altogether, our study suggests miRNA-mediated novel mechanism by which chronic CORT may be involved in depression pathophysiology.
Collapse
|
341
|
HAN MINGLI, WANG FANG, GU YUANTING, PEI XINHONG, GUO GUANGCHENG, YU CHAO, LI LIN, ZHU MINGZHI, XIONG YOUYI, WANG YIMENG. MicroRNA-21 induces breast cancer cell invasion and migration by suppressing smad7 via EGF and TGF-β pathways. Oncol Rep 2015; 35:73-80. [DOI: 10.3892/or.2015.4360] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
|
342
|
Stepicheva NA, Song JL. microRNA-31 modulates skeletal patterning in the sea urchin embryo. Development 2015; 142:3769-80. [PMID: 26400092 DOI: 10.1242/dev.127969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. microRNA-31 (miR-31) is known to play a role in cancer, bone formation and lymphatic development. However, studies to understand the function of miR-31 in embryogenesis have been limited. We examined the regulatory role of miR-31 in early development using the sea urchin as a model. miR-31 is expressed at all stages of development and its knockdown (KD) disrupts the patterning and function of primary mesenchyme cells (PMCs), which form the embryonic skeleton spicules. We identified that miR-31 directly represses Pmar1, Alx1, Snail and VegfR7 within the PMC gene regulatory network using reporter constructs. Further, blocking the miR-31-mediated repression of Alx1 and/or VegfR7 in the developing embryo resulted in defects in PMC patterning and skeletogenesis. The majority of the mislocalized PMCs in miR-31 KD embryos did not express VegfR10, indicating that miR-31 regulates VegfR gene expression within PMCs. In addition, miR-31 indirectly suppresses Vegf3 expression in the ectoderm. These results indicate that miR-31 coordinately suppresses genes within the PMCs and in the ectoderm to impact PMC patterning and skeletogenesis. This study identifies the novel function and molecular mechanism of miR-31-mediated regulation in the developing embryo.
Collapse
Affiliation(s)
- Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
343
|
Mennigen JA. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:115-125. [PMID: 26384523 DOI: 10.1016/j.cbpb.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.
Collapse
Affiliation(s)
- Jan A Mennigen
- College of Pharmacy, Department of Toxicology and Pharmacology, University of Austin at Texas, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
344
|
Newton FG, Harris RE, Sutcliffe C, Ashe HL. Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development. Development 2015; 142:3362-73. [PMID: 26293305 PMCID: PMC4631754 DOI: 10.1242/dev.123273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Abstract
Precise control of the range of signalling molecule action is crucial for correct cell fate patterning during development. For example, Drosophila ovarian germline stem cells (GSCs) are maintained by exquisitely short-range BMP signalling from the niche. In the absence of BMP signalling, one GSC daughter differentiates into a cystoblast (CB) and this fate is stabilised by Brain tumour (Brat) and Pumilio (Pum)-mediated post-transcriptional repression of mRNAs, including that encoding the Dpp transducer, Mad. However, the identity of other repressed mRNAs and the mechanism of post-transcriptional repression are currently unknown. Here, we identify the Medea and schnurri mRNAs, which encode transcriptional regulators required for activation and/or repression of Dpp target genes, as additional Pum-Brat targets, suggesting that tripartite repression of the transducers is deployed to desensitise the CB to Dpp. In addition, we show that repression by Pum-Brat requires recruitment of the CCR4 and Pop2 deadenylases, with knockdown of deadenylases in vivo giving rise to ectopic GSCs. Consistent with this, Pum-Brat repression leads to poly(A) tail shortening and mRNA degradation in tissue culture cells, and we detect a reduced number of Mad and shn transcripts in the CB relative to the GSC based on single molecule mRNA quantitation. Finally, we show generality of the mechanism by demonstrating that Brat also attenuates pMad and Dpp signalling range in the early embryo. Together our data serve as a platform for understanding how post-transcriptional repression restricts interpretation of BMPs and other cell signals in order to allow robust cell fate patterning during development. Summary: The translational repressors Brat and Pumilio attenuate Dpp signalling range in the Drosophila female germline and early embryo to ensure precise cell fate patterning.
Collapse
Affiliation(s)
- Fay G Newton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Robin E Harris
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Hilary L Ashe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
345
|
Morris BJ, Dampney RAL. Brain-stem microRNAs implicated in hypertension. Physiol Genomics 2015; 47:386-7. [PMID: 26242934 DOI: 10.1152/physiolgenomics.00079.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brian J Morris
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Roger A L Dampney
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
346
|
Laxman N, Rubin CJ, Mallmin H, Nilsson O, Pastinen T, Grundberg E, Kindmark A. Global miRNA expression and correlation with mRNA levels in primary human bone cells. RNA (NEW YORK, N.Y.) 2015; 21:1433-1443. [PMID: 26078267 PMCID: PMC4509933 DOI: 10.1261/rna.049148.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA-mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA-mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression.
Collapse
Affiliation(s)
- Navya Laxman
- Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden Science for Life Laboratory, Department of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Hans Mallmin
- Department of Surgical Sciences, Uppsala University, SE-75185 Uppsala, Sweden
| | - Olle Nilsson
- Department of Surgical Sciences, Uppsala University, SE-75185 Uppsala, Sweden
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1 Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada H3A 0G1
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1 Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada H3A 0G1
| | - Andreas Kindmark
- Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden Science for Life Laboratory, Department of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| |
Collapse
|
347
|
Nolte-'t Hoen ENM, Van Rooij E, Bushell M, Zhang CY, Dashwood RH, James WPT, Harris C, Baltimore D. The role of microRNA in nutritional control. J Intern Med 2015; 278:99-109. [PMID: 25832550 DOI: 10.1111/joim.12372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are one of a growing class of noncoding RNAs that are involved in the regulation of a wide range of metabolic processes including cellular differentiation, cell proliferation and apoptosis. The generation of miRNA is regulated in complex ways, for example by small interfering RNAs (small nucleolar and nuclear RNAs) and various other metabolites. This complexity of control is likely to explain how a relatively small part of the DNA that codes for proteins has enabled the evolution of such complex organisms as mammals. Non-protein-coding DNA is therefore thought to carry the memory of early evolutionary steps that led to progressively complex metabolic controls. Clinically, miRNAs are becoming increasingly important following the recognition that some congenital abnormalities can be traced to defects in miRNA processing. The potential for manipulating metabolism and affecting disease processes by the pharmaceutical or biological targeting of specific miRNA pathways is now being tested. miRNAs are also released into the extracellular milieu after packaging by cells into nano-sized extracellular vesicles. Such vesicles can be taken up by adjacent and possibly more distant cells, thereby allowing coordinated intercellular communication in specific tissues. Extracellular miRNAs found in the blood stream may also serve as novel biomarkers for both diagnosing specific forms of cancer and assessing the likelihood of metastasis, and as powerful prognostic indices for various cancers. Here, we discuss the role of intracellular and extracellular miRNAs in nutritional control of various (patho)physiological processes. In this review, we provide an update of the presentations from the 25th Marabou Symposium (Stockholm, 14-16 June 2013) entitled 'Role of miRNA in health and nutrition', attended by 50 international experts
Collapse
Affiliation(s)
- E N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - E Van Rooij
- Hubrecht Institute, Koninklijke Nederlandse Academie van Wetenschappen (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Bushell
- Medical Research Council (MRC) Toxicology Unit, University of Leicester, Leicester, UK
| | - C-Y Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - R H Dashwood
- Center for Epigenetics and Disease Prevention, Institute of Biosciences & Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - W P T James
- London School of Hygiene and Tropical Medicine, London, UK
| | - C Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - D Baltimore
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
348
|
Yoon C, Kim J, Park G, Kim S, Kim D, Hur DY, Kim B, Kim YS. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt's lymphoma exosomes. Tumour Biol 2015. [PMID: 26211004 DOI: 10.1007/s13277-015-3769-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Exosomes are extracellularly secreted vesicles ranging from 40 to 100 nm in diameter that are thought to play important roles in intercellular communication. Exosomes contain numerous proteins, RNA, and lipids that can affect the status of recipient cells under various pathological conditions. MicroRNAs (miRNAs) are small non-coding RNAs that play a major role in post-transcriptional gene silencing by interacting with the 3'-untranslated regions of target genes. Epstein-Barr virus (EBV) has been reported to induce sustained elevation of cellular miRNAs such as miR-155. We hypothesized that miRNAs delivered by exosomes might affect the angiogenesis of retinal pigment epithelial (RPE) cells. Here, we demonstrated that co-culture of EBV-positive Burkitt's lymphoma (BL) cells (Raji) with retinal pigment epithelial (ARPE-19) cells increased the level of miR-155 in recipient cells whereas no major difference was detected for co-culture with EBV-negative BL cells (Ramos). Isolated Raji exosomes increased transcriptional and translational levels of VEGF-A in ARPE-19 cells, which was reversely correlated with von Hippel-Lindau expression. A human umbilical vein endothelial cell tube formation assay showed that delivery of ectopic miR-155 rendered ARPE-19 cells proangiogenic. Our results demonstrate that sustained accumulation of miR-155 mediated by exosomes might affect remote recipient cells such as retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Changshin Yoon
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Jayoung Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Gabin Park
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Seonghan Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Daejin Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Bomi Kim
- Department of Pathology, Inje University College of Medicine, Busan, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Bokji-ro 75, Busanjin-gu, Busan, 614-735, Republic of Korea.
| |
Collapse
|
349
|
Schouten M, Fratantoni SA, Hubens CJ, Piersma SR, Pham TV, Bielefeld P, Voskuyl RA, Lucassen PJ, Jimenez CR, Fitzsimons CP. MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells. Sci Rep 2015. [PMID: 26207921 PMCID: PMC4513647 DOI: 10.1038/srep12448] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult neurogenesis, changes in gene expression and mitochondrial dysfunction, which may all contribute to epileptogenesis. However, a possible interplay between this factors remains largely unexplored. Here, we investigated gene expression changes in the hippocampal dentate gyrus shortly after prolonged seizures induced by kainic acid, focusing on mitochondrial functions. Using comparative proteomics, we identified networks of proteins differentially expressed shortly after seizure induction, including members of the BCL2 family and other mitochondrial proteins. Within these networks, we report for the first time that the atypical BCL2 protein BCL2L13 controls caspase-3 activity and cytochrome C release in neural stem/progenitor cells. Furthermore, we identify BCL2L13 as a novel target of the cooperative action of microRNA-124 and microRNA-137, both upregulated shortly after seizure induction. This cooperative microRNA-mediated fine-tuning of BCL2L13 expression controls casp3 activity, favoring non-apoptotic caspase-3 functions in NSPC exposed to KA and thereby may contribute to the early neurogenic response to epileptic seizures in the dentate gyrus.
Collapse
Affiliation(s)
- Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands
| | - Silvina A Fratantoni
- Oncoproteomics Laboratory, Cancer Center, Free University Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Chantal J Hubens
- 1] Division of Pharmacology, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands [2] Foundation of Epilepsy Institutes of The Netherlands (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands
| | - Sander R Piersma
- Oncoproteomics Laboratory, Cancer Center, Free University Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Oncoproteomics Laboratory, Cancer Center, Free University Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Pascal Bielefeld
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands
| | - Rob A Voskuyl
- 1] Division of Pharmacology, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands [2] Foundation of Epilepsy Institutes of The Netherlands (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Oncoproteomics Laboratory, Cancer Center, Free University Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Carlos P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands
| |
Collapse
|
350
|
Epstein-Barr Virus Proteins EBNA3A and EBNA3C Together Induce Expression of the Oncogenic MicroRNA Cluster miR-221/miR-222 and Ablate Expression of Its Target p57KIP2. PLoS Pathog 2015; 11:e1005031. [PMID: 26153983 PMCID: PMC4496050 DOI: 10.1371/journal.ppat.1005031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/18/2015] [Indexed: 12/27/2022] Open
Abstract
We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters--widely reported to have cell transformation-associated activity--are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours--including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28 kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs.
Collapse
|