301
|
Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature 2019; 574:63-68. [DOI: 10.1038/s41586-019-1601-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/21/2019] [Indexed: 01/11/2023]
|
302
|
Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting Interleukin-6 Signaling in Clinic. Immunity 2019; 50:1007-1023. [PMID: 30995492 DOI: 10.1016/j.immuni.2019.03.026] [Citation(s) in RCA: 544] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with roles in immunity, tissue regeneration, and metabolism. Rapid production of IL-6 contributes to host defense during infection and tissue injury, but excessive synthesis of IL-6 and dysregulation of IL-6 receptor signaling is involved in disease pathology. Therapeutic agents targeting the IL-6 axis are effective in rheumatoid arthritis, and applications are being extended to other settings of acute and chronic inflammation. Recent studies reveal that selective blockade of different modes of IL-6 receptor signaling has different outcomes on disease pathology, suggesting novel strategies for therapeutic intervention. However, some inflammatory diseases do not seem to respond to IL-6 blockade. Here, we review the current state of IL-6-targeting approaches in the clinic and discuss how to apply the growing understanding of the immunobiology of IL-6 to clinical decisions.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita City, Osaka, Japan
| | - Toshio Tanaka
- Medical Affairs Bureau, Osaka Habikino Medical Center, 3-7-1 Habikino, Habikino City, Osaka, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita City, Osaka, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita City, Osaka, Japan.
| |
Collapse
|
303
|
Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol 2019; 19:734-746. [PMID: 31501536 DOI: 10.1038/s41577-019-0213-9] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Type 1 and type 2 diabetes are characterized by chronic inflammation; both diseases involve pancreatic islet inflammation, while systemic low-grade inflammation is a feature of obesity and type 2 diabetes. Long-term activation of the innate immune system impairs insulin secretion and action, and inflammation also contributes to macrovascular and microvascular complications of diabetes. However, despite strong preclinical evidence and proof-of-principle clinical trials demonstrating that targeting inflammatory pathways can prevent cardiovascular disease and other complications in patients with diabetes, there are still no approved treatments for diabetes that target innate immune mediators. Here, we review recent advances in our understanding of the inflammatory pathogenesis of type 1 and type 2 diabetes from a translational angle and point out the critical gaps in knowledge that need to be addressed to guide drug development.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
304
|
Bareja A, Lee DE, White JP. Maximizing Longevity and Healthspan: Multiple Approaches All Converging on Autophagy. Front Cell Dev Biol 2019; 7:183. [PMID: 31555646 PMCID: PMC6742954 DOI: 10.3389/fcell.2019.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the molecular basis of aging has greatly increased over the past few decades. In this review, we provide an overview of the key signaling pathways associated with aging, and whose modulation has been shown to extend lifespan in a range of model organisms. We also describe how these pathways converge onto autophagy, a catabolic process that functions to recycle dysfunctional cellular material and maintains energy homeostasis. Finally, we consider various approaches of therapeutically modulating these longevity pathways, highlighting exercise as a potent geroprotector.
Collapse
Affiliation(s)
- Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
305
|
Christiansen CB, Lind SJ, Svendsen B, Balk-Møller E, Dahlby T, Kuhre RE, Hartmann B, Mandrup-Poulsen T, Deacon CF, Wewer Albrechtsen NJ, Holst JJ. Acute administration of interleukin-6 does not increase secretion of glucagon-like peptide-1 in mice. Physiol Rep 2019; 6:e13788. [PMID: 29981198 PMCID: PMC6035335 DOI: 10.14814/phy2.13788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Interleukin 6 (IL‐6) is a cytokine secreted from skeletal muscle in response to exercise which, based on animal and cell studies, has been suggested to contribute to glucose metabolism by increasing secretion of the incretin hormone glucagon‐like peptide‐1 (GLP‐1) and affecting secretion of insulin and glucagon from the pancreatic islets. We investigated the effect of IL‐6 on GLP‐1 secretion in GLP‐1 producing cells (GLUTag) and using the perfused mouse small intestine (harboring GLP‐1 producing cells). Furthermore, the direct effect of IL‐6 on insulin and glucagon secretion was studied using isolated perfused mouse pancreas. Incubating GLUTag cells with 1000 ng/mL of IL‐6 for 2 h did not significantly increase secretion of GLP‐1 whereas 10 mmol/L glucose (positive control) did. Similarly, IL‐6 (100 ng/mL) had no effect on GLP‐1 secretion from perfused mouse small intestine whereas bombesin (positive control) increased secretion. Finally, administering IL‐6 (100 ng/mL) to perfused mouse pancreases did not significantly increase insulin or glucagon secretion regardless of perfusate glucose levels (3.5 vs. 12 mmol/L glucose). Acute effects of IL‐6 therefore do not seem to include a stimulatory effect on GLP‐1 secretion in mice.
Collapse
Affiliation(s)
- Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara J Lind
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
306
|
Association of Variants in IL6-Related Genes with Lung Cancer Risk in Moroccan Population. Lung 2019; 197:601-608. [DOI: 10.1007/s00408-019-00261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
|
307
|
Abstract
Studies have linked obesity, metabolic syndrome, type 2 diabetes, cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD) and dementia. Their relationship to the incidence and progression of these disease states suggests an interconnected pathogenesis involving chronic low-grade inflammation and oxidative stress. Metabolic syndrome represents comorbidities of central obesity, insulin resistance, dyslipidemia, hypertension and hyperglycemia associated with increased risk of type 2 diabetes, NAFLD, atherosclerotic CVD and neurodegenerative disease. As the socioeconomic burden for these diseases has grown signficantly with an increasing elderly population, new and alternative pharmacologic solutions for these cardiometabolic diseases are required. Adipose tissue, skeletal muscle and liver are central endocrine organs that regulate inflammation, energy and metabolic homeostasis, and the neuroendocrine axis through synthesis and secretion of adipokines, myokines, and hepatokines, respectively. These organokines affect each other and communicate through various endocrine, paracrine and autocrine pathways. The ultimate goal of this review is to provide a comprehensive understanding of organ crosstalk. This will include the roles of novel organokines in normal physiologic regulation and their pathophysiological effect in obesity, metabolic syndrome, type 2 diabetes, CVD, NAFLD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hye Soo Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Seoul, South Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
308
|
Mizgier ML, Fernández-Verdejo R, Cherfan J, Pinget M, Bouzakri K, Galgani JE. Insights on the Role of Putative Muscle-Derived Factors on Pancreatic Beta Cell Function. Front Physiol 2019; 10:1024. [PMID: 31440170 PMCID: PMC6694406 DOI: 10.3389/fphys.2019.01024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle is a main target of insulin action that plays a pivotal role in postprandial glucose disposal. Importantly, skeletal muscle insulin sensitivity relates inversely with pancreatic insulin secretion, which prompted the hypothesis of the existence of a skeletal muscle-pancreas crosstalk mediated through an endocrine factor. The observation that changes in skeletal muscle glucose metabolism are accompanied by altered insulin secretion supports this hypothesis. Meanwhile, a muscle-derived circulating factor affecting in vivo insulin secretion remains elusive. This factor may correspond to peptides/proteins (so called myokines), exosomes and their cargo, and metabolites. We hereby review the most remarkable evidence encouraging the possibility of such inter-organ communication, with special focus on muscle-derived factors that may potentially mediate such skeletal muscle-pancreas crosstalk.
Collapse
Affiliation(s)
- Maria L Mizgier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Rodrigo Fernández-Verdejo
- Departamento de Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julien Cherfan
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Michel Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Jose E Galgani
- Departamento de Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
309
|
Agarwal P, Brar N, Morriseau TS, Kereliuk SM, Fonseca MA, Cole LK, Jha A, Xiang B, Hunt KL, Seshadri N, Hatch GM, Doucette CA, Dolinsky VW. Gestational Diabetes Adversely Affects Pancreatic Islet Architecture and Function in the Male Rat Offspring. Endocrinology 2019; 160:1907-1925. [PMID: 31237608 PMCID: PMC6656426 DOI: 10.1210/en.2019-00232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) and poor postnatal diet are strong risk factors for type 2 diabetes development later in life, but the mechanisms connecting GDM exposure to offspring metabolic health remains unclear. In this study, we aimed to determine how GDM interacts with the postnatal diet to affect islet function in the offspring as well as characterize the gene expression changes in the islets. GDM was induced in female rats using a high-fat, high-sucrose (HFS) diet, and litters from lean or GDM dams were weaned onto a low-fat (LF) or HFS diet. Compared with the lean control offspring, GDM exposure reduced glucose-stimulated insulin secretion in islets isolated from 15-week-old offspring, which was additively worsened when GDM exposure was combined with postnatal HFS diet consumption. In the HFS diet-fed offspring of lean dams, islet size and number increased, an adaptation that was not observed in the HFS diet-fed offspring of GDM dams. Islet gene expression in the offspring of GDM dams was altered in such categories as inflammation (e.g., Il1b, Ccl2), mitochondrial function/oxidative stress resistance (e.g., Atp5f1, Sod2), and ribosomal proteins (e.g., Rps6, Rps14). These results demonstrate that GDM exposure induced marked changes in gene expression in the male young adult rat offspring that cumulatively interact to worsen islet function, whole-body glucose homeostasis, and adaptations to HFS diets.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Navdeep Brar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taylor S Morriseau
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie M Kereliuk
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mario A Fonseca
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bo Xiang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristin L Hunt
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nivedita Seshadri
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Correspondence: Vernon W. Dolinsky, PhD, Department of Pharmacology and Therapeutics, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, 601 John Buhler Research Centre, 715 McDermot Avenue, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada. E-mail: ; or Christine A. Doucette, PhD, Department of Physiology and Pathophysiology, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, 603 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, Mantitoba R3E 3P4, Canada. E-mail:
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, Manitoba, Canada
- Correspondence: Vernon W. Dolinsky, PhD, Department of Pharmacology and Therapeutics, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, 601 John Buhler Research Centre, 715 McDermot Avenue, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada. E-mail: ; or Christine A. Doucette, PhD, Department of Physiology and Pathophysiology, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children’s Hospital Research Institute of Manitoba, 603 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, Mantitoba R3E 3P4, Canada. E-mail:
| |
Collapse
|
310
|
Donath MY, Meier DT, Böni-Schnetzler M. Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocr Rev 2019; 40:1080-1091. [PMID: 31127805 PMCID: PMC6624792 DOI: 10.1210/er.2019-00002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
The role of chronic inflammation in the pathogenesis of type 2 diabetes mellitus and associated complications is now well established. Therapeutic interventions counteracting metabolic inflammation improve insulin secretion and action and glucose control and may prevent long-term complications. Thus, a number of anti-inflammatory drugs approved for the treatment of other inflammatory conditions are evaluated in patients with metabolic syndrome. Most advanced are clinical studies with IL-1 antagonists showing improved β-cell function and glycemia and prevention of cardiovascular diseases and heart failure. However, alternative anti-inflammatory treatments, alone or in combinations, may turn out to be more effective, depending on genetic predispositions, duration, and manifestation of the disease. Thus, there is a great need for comprehensive and well-designed clinical studies to implement anti-inflammatory drugs in the treatment of patients with metabolic syndrome and its associated conditions.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
311
|
Aparicio-Siegmund S, Garbers Y, Flynn CM, Waetzig GH, Gouni-Berthold I, Krone W, Berthold HK, Laudes M, Rose-John S, Garbers C. The IL-6-neutralizing sIL-6R-sgp130 buffer system is disturbed in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2019; 317:E411-E420. [PMID: 31237452 DOI: 10.1152/ajpendo.00166.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serum levels of interleukin-6 (IL-6) are increased in patients with type 2 diabetes (T2D). IL-6 exerts its pleiotropic effects via the IL-6 α-receptor (IL-6R), which exists in membrane-bound and soluble (sIL-6R) forms and activates cells via the β-receptor glycoprotein 130 (gp130). The nonsynonymous single-nucleotide polymorphism (SNP) rs2228145 (Asp358Ala) within the IL6R locus is associated with T2D. The aim of this study was to determine whether sIL-6R in combination with soluble gp130 (sgp130) is able to form an IL-6-neutralizing buffer in healthy subjects and whether this is disturbed in T2D. We found that sIL-6R-sgp130 indeed forms an IL-6-neutralizing buffer in the serum of healthy humans, whose capacity is controlled by the SNP of the IL-6R. Circulating sIL-6R-sgp130 levels were lower in T2D subjects (P < 0.001), whereas IL-6 was high and inversely correlated with sIL-6R (r = -0.57, P < 0.001), indicating a severe disturbance of the buffer. This phenomenon is also observed in sex- and age-matched patients with both T2D and atherosclerosis but not in patients with atherosclerosis alone. In conclusion, sIL-6R and sgp130 serum levels were significantly lower in T2D patients compared with healthy subjects or atherosclerosis patients, although IL-6 levels were high. These data suggest that disturbance of the protective buffer may be closely associated with T2D pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Ioanna Gouni-Berthold
- Polyclinic for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Wilhelm Krone
- Polyclinic for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Heiner K Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic, Bielefeld, Germany
| | - Matthias Laudes
- Department of Internal Medicine I, Kiel University, Kiel, Germany
| | | | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
312
|
Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1321-1330. [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, intestinal inflammatory disorders with complex and yet unrevealed pathogenesis in which genetic, immunological, and environmental factors play a role. Nowadays, a higher proportion of elderly IBD patients with coexisting conditions, such as cardiovascular disease and/or diabetes is recorded, who require more complex treatment and became a great challenge for gastroenterologists. Furthermore, some patients do not respond to anti-IBD therapy. These facts, together with increasing comorbidities in patients with IBD, imply that urgent, more complex, novel therapeutic strategies in the treatment are needed. Glucagon-like peptides (GLPs) possess numerous functions in the human body such as lowering blood glucose level, controlling body weight, inhibiting gastric emptying, reducing food ingestion, increasing crypt cell proliferation, and improving intestinal growth and nutrient absorption. Thus, GLPs and dipeptidyl peptidase IV (DPP-IV) inhibitors have recently gained attention in IBD research. Several animal models showed that treatment with GLPs may lead to improvement of colitis. This review presents data on the multitude effects of GLPs in the inflammatory intestinal diseases and summarizes the current knowledge on GLPs, which have the potential to become a novel therapeutic option in IBD therapy.
Collapse
|
313
|
Konjar Š, Veldhoen M. Dynamic Metabolic State of Tissue Resident CD8 T Cells. Front Immunol 2019; 10:1683. [PMID: 31379871 PMCID: PMC6650586 DOI: 10.3389/fimmu.2019.01683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the past years, there have been significant advances in the understanding of how environmental conditions alone or in conjunction with pathogen invasion affect the metabolism of T cells, thereby influencing their activation, differentiation, and longevity. Detailed insights of the interlinked processes of activation and metabolism can contribute to major advances in immunotherapies. Naive and memory T cells circulate the body. In a quiescent state with low metabolic demands, they predominantly use oxidative phosphorylation for their energy needs. Recognition of cognate antigen combined with costimulatory signals results in a proliferative burst and effector molecule production, requiring rapid release of energy, achieved via dynamically reprogramming metabolic pathways. After activation, most T cells succumb to activation induced cell death, but few differentiate into memory T cells. Of note, some memory T cells permanently occupy tissues without circulating. These, tissue resident T cells are predominantly CD8 T cells, maintained in a metabolic state distinct from naïve and circulating memory CD8 T cells with elements similar to effector CD8 T cells but without undergoing proliferative burst or secreting immune mediators. They continually interact with tissue cells as part of an immune surveillance network, are well-adapted to the tissues they have made their home and where they may encounter different metabolic environments. In this review, we will discuss recent insights in metabolic characteristics of CD8 T cell biology, with emphasis on tissue resident CD8 T cells at the epithelial barriers.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
314
|
Afrasyabi S, Marandi SM, Kargarfard M. The effects of high intensity interval training on appetite management in individuals with type 2 diabetes: influenced by participants weight. J Diabetes Metab Disord 2019; 18:107-117. [PMID: 31275881 PMCID: PMC6582123 DOI: 10.1007/s40200-019-00396-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Background and purpose The connection between exercise and appetite has ramifications for acute energy balance and weight-management. Research would suggest that exercise training can transiently suppress appetite, particularly in overweight and T2D, healthy-weight individuals. However, the effect of such a transient appetite suppression on subsequent food intake may be restricted. The aim of this thesis was to investigate appetite responses to HIIT in obesity with T2D and to assess the effect of other exercise characteristics, as well as exercise intensity, in mediating these responses especially appetite hormones. Materials and methods Eighty individuals with type 2 diabetes (forty normal and forty obesity weight) performed HIIT trials, all in arandomly divided, in 8 groups (10 in each group) which included, obesity non-diabetic control, obesity diabetic control, normal weight diabetic control, obesity non-diabetic training, obesity diabetic training, normal weight, non-diabetic training, and normal weight diabetic training. Twelve-weeks HIIT sessions (each session of an interval training includes 60 s of high intensity training (85-95% of reserve heart rate)) + running for 60 s at low intensity (55-60% of reserve heart rate) were applied. Blood samples were taken at the beginning and after the fourth, eighth and twelfth week of the training. Data were analyzed using repeated variance analysis and Pearson correlation coefficient. Results The results showed that training reduced ghrelin plasma levels in obese diabetic subjects (P < 0.05). Training has reduced PYY plasma in healthy subjects (non-diabetic) with normal weight (P < 0.05). Training reduced plasma levels of PYY in diabetic patients with normal weight and increased it in obese diabetic and healthy subjects (P < 0.05). Training has increased GLP-1 plasma in obese diabetic and diabetic with normal weight groups (P < 0.05). Training reduced TNF-α in normal (non-diabetic) subjects with normal weight and diabetic and non-diabetic obese subjects. Conclusion Collectively, the studies reported here suggest that appetite hormones differ between lean and obesity participants. The finding also suggested HIIT is more likely to elicit appetite hormones responses in obesity than in lean individuals with type 2 diabetes. Therefore, with caution, it is recommended that the high intensity interval training can be beneficial for these patients.
Collapse
Affiliation(s)
- Saleh Afrasyabi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Syed Mohamad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| |
Collapse
|
315
|
Grannell A, De Vito G, Murphy JC, le Roux CW. The influence of skeletal muscle on appetite regulation. Expert Rev Endocrinol Metab 2019; 14:267-282. [PMID: 31106601 DOI: 10.1080/17446651.2019.1618185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Fat-free mass, of which skeletal muscle is amajor component, correlates positively with energy intake at energy balance. This is due to the effects of metabolically active tissue on energy expenditure which in itself appears to signal to the brain adrive to eat to ensure cellular energy homeostasis. The mechanisms responsible for this drive to eat are unknown but are likely to be related to energy utilization. Here muscle imparts an indirect influence on hunger. The drive to eat is also enhanced after muscle loss secondary to intentional weight loss. The evidence suggests loss of both fat mass and skeletal muscle mass directly influences the trajectory and magnitude of weight regain highlighting their potential role in long-termappetite control. The mechanisms responsible for the potential direct drive to eat stemming from muscle loss are unknown. AREAS COVERED The literature pertaining to muscle and appetite at energy balance and after weight loss was examined. Aliterature search was conducted to identify studies related to appetite, muscle, exercise, and weight loss. EXPERT OPINION Understanding the mechanisms which link energy expenditure and muscle loss to hunger has the potential to positively impact both the prevention and the treatment of obesity.
Collapse
Affiliation(s)
- Andrew Grannell
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Giuseppe De Vito
- c School of Public Health, Physiotherapy and Sports Science , University College Dublin , Dublin , Ireland
| | - John C Murphy
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Carel W le Roux
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
| |
Collapse
|
316
|
Abstract
Neurological and mental illnesses account for a considerable proportion of the global burden of disease. Exercise has many beneficial effects on brain health, contributing to decreased risks of dementia, depression and stress, and it has a role in restoring and maintaining cognitive function and metabolic control. The fact that exercise is sensed by the brain suggests that muscle-induced peripheral factors enable direct crosstalk between muscle and brain function. Muscle secretes myokines that contribute to the regulation of hippocampal function. Evidence is accumulating that the myokine cathepsin B passes through the blood-brain barrier to enhance brain-derived neurotrophic factor production and hence neurogenesis, memory and learning. Exercise increases neuronal gene expression of FNDC5 (which encodes the PGC1α-dependent myokine FNDC5), which can likewise contribute to increased brain-derived neurotrophic factor levels. Serum levels of the prototype myokine, IL-6, increase with exercise and might contribute to the suppression of central mechanisms of feeding. Exercise also increases the PGC1α-dependent muscular expression of kynurenine aminotransferase enzymes, which induces a beneficial shift in the balance between the neurotoxic kynurenine and the neuroprotective kynurenic acid, thereby reducing depression-like symptoms. Myokine signalling, other muscular factors and exercise-induced hepatokines and adipokines are implicated in mediating the exercise-induced beneficial impact on neurogenesis, cognitive function, appetite and metabolism, thus supporting the existence of a muscle-brain endocrine loop.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
317
|
Fujiwara Y, Eguchi S, Murayama H, Takahashi Y, Toda M, Imai K, Tsuda K. Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinol Diabetes Metab 2019; 2:e00068. [PMID: 31294084 PMCID: PMC6613229 DOI: 10.1002/edm2.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The rapid rise in the prevalence of type 2 diabetes mellitus (T2DM) poses a huge healthcare burden across the world. Although there are several antihyperglycaemic agents (AHAs) available including addition of new drug classes to the treatment algorithm, more than 50% of patients with T2DM do not achieve glycaemic targets, suggesting an urgent need for treatment strategies focusing on prevention and progression of T2DM and its long-term complications. Lifestyle changes including implementation of healthy diet and physical activity are cornerstones for the management of T2DM. The positive effects of diet and exercise on incretin hormones such as glucagon-like peptide-1 (GLP-1) have been reported. We hypothesize an IDEP concept (Interaction between Diet/Exercise and Pharmacotherapy) aimed at modifying the diet and lifestyle, along with pharmacotherapy to enhance the GLP-1 levels, would result in good glycaemic control in patients with T2DM. Consuming protein-rich food, avoiding saturated fatty acids and making small changes in eating habits such as eating slowly with longer mastication time can have a positive impact on the GLP-1 secretion and insulin levels. Further the type of physical activity (aerobic/resistance training), intensity of exercise, duration, time and frequency of exercise have shown to improve GLP-1 levels. Apart from AHAs, a few antihypertensive drugs and lipid-lowering drugs have also shown to increase endogenous GLP-1 levels, however, due to quick degradation of GLP-1 by dipeptidyl peptidase-4 (DPP-4) enzyme, treatment with DPP-4 inhibitors would protect GLP-1 from degradation and prolong its activity. Thus, IDEP concept can be a promising treatment strategy, which positively influences the GLP-1 levels and provide additive benefits in terms of improving metabolic parameters in patients with T2DM and slowing the progression of T2DM and its associated complications.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Shunsuke Eguchi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Hiroki Murayama
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Yuri Takahashi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Mitsutoshi Toda
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kota Imai
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kinsuke Tsuda
- Faculty of Human SciencesTezukayama Gakuin UniversityOsakaJapan
| |
Collapse
|
318
|
Seelig E, Trinh B, Hanssen H, Schmid‐Trucksäss A, Ellingsgaard H, Christ‐Crain M, Donath MY. Exercise and the dipeptidyl-peptidase IV inhibitor sitagliptin do not improve beta-cell function and glucose homeostasis in long-lasting type 1 diabetes-A randomised open-label study. Endocrinol Diabetes Metab 2019; 2:e00075. [PMID: 31294088 PMCID: PMC6613228 DOI: 10.1002/edm2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Increasing evidence points to beta-cell regeneration in individuals with type 1 diabetes mellitus (type 1 DM) at all stages of the disease. Exercise and glucagon-like peptide-1 (GLP-1) independently improve beta-cell function and glucose homeostasis in animal studies and in clinical trials in individuals with type 2 diabetes mellitus (type 2 DM). Whether a combination of both, exercise and GLP-1, induces a similar effect in individuals with long-lasting type 1 DM remains to be investigated. METHODS In an open-label study, participants with long-standing type 1 DM were randomly assigned to oral sitagliptin 100 mg daily for 12 weeks in combination with or without an exercise intervention. The primary end-point was change in the area under the concentration-time curve of C-peptide during a mixed meal tolerance test before and after 12 weeks of intervention. RESULTS A total of 24 participants were included in the study and treated with sitagliptin, 12 participants were allocated to a 12-week exercise intervention. After 12 weeks, there was no difference in the change of AUC C-peptide between groups (exercise: 0 [-1424 to 1870], no exercise: 2091 [283-17 434]; P = 0.09). HDL improved in the exercise intervention group compared to the group with sitagliptin only (exercise: 0.11 [-0.09 to 0.27]; no exercise: -0.18 [-0.24 to 0.01]; P = 0.04). AUC glucose was numerically slightly lower in the exercise intervention group but this did not translate into changes in HbA1c. CONCLUSION The combination of exercise and sitagliptin had no effect on beta-cell function in individuals with long-lasting type 1 DM.
Collapse
Affiliation(s)
- Eleonora Seelig
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust‐Medical Research Council Institute of Metabolic ScienceAddenbrooke's HospitalCambridgeUK
| | - Beckey Trinh
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Henner Hanssen
- Department of Sports Medicine, Institute of Exercise and Health SciencesUniversity of BaselBaselSwitzerland
| | - Arno Schmid‐Trucksäss
- Department of Sports Medicine, Institute of Exercise and Health SciencesUniversity of BaselBaselSwitzerland
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Mirjam Christ‐Crain
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
319
|
Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med 2019; 6:69. [PMID: 31214598 PMCID: PMC6557987 DOI: 10.3389/fcvm.2019.00069] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.
Collapse
Affiliation(s)
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
320
|
Anesten F, Dalmau Gasull A, Richard JE, Farkas I, Mishra D, Taing L, Zhang F, Poutanen M, Palsdottir V, Liposits Z, Skibicka KP, Jansson J. Interleukin-6 in the central amygdala is bioactive and co-localised with glucagon-like peptide-1 receptor. J Neuroendocrinol 2019; 31:e12722. [PMID: 31033078 PMCID: PMC6618171 DOI: 10.1111/jne.12722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centres for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin (IL)-6 can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 (GLP-1) receptor (R) stimulation in the brain, although the sites of these effects are largely unknown. In the present study, we used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibres co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha (IL-6Rα) was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and demonstrate increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6Rα present in this nucleus.
Collapse
Affiliation(s)
- Fredrik Anesten
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Adrià Dalmau Gasull
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Jennifer E. Richard
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineGothenburgSweden
| | - Imre Farkas
- Department of NeuroscienceFaculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
- Laboratory of Reproductive NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Devesh Mishra
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineGothenburgSweden
| | - Lilly Taing
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineGothenburgSweden
| | - Fuping Zhang
- Institute of BiomedicineResearch Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
| | - Matti Poutanen
- Institute of BiomedicineResearch Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
| | - Vilborg Palsdottir
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Zsolt Liposits
- Department of NeuroscienceFaculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
- Laboratory of Reproductive NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Karolina P. Skibicka
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineGothenburgSweden
| | - John‐Olov Jansson
- Department of PhysiologyInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
321
|
Li C, Qu L, Farragher C, Vella A, Zhou B. MicroRNA Regulated Macrophage Activation in Obesity. J Transl Int Med 2019; 7:46-52. [PMID: 31380236 PMCID: PMC6661877 DOI: 10.2478/jtim-2019-0011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Cullen Farragher
- College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, USA
| | - Anthony Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
322
|
GI inflammation Increases Sodium-Glucose Cotransporter Sglt1. Int J Mol Sci 2019; 20:ijms20102537. [PMID: 31126070 PMCID: PMC6566487 DOI: 10.3390/ijms20102537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
A correlation between gastrointestinal (GI) inflammation and gut hormones has reported that inflammatory stimuli including bacterial endotoxins, lipopolysaccharides (LPS), TNFα, IL-1β, and IL-6 induces high levels of incretin hormone leading to glucose dysregulation. Although incretin hormones are immediately secreted in response to environmental stimuli, such as nutrients, cytokines, and LPS, but studies of glucose-induced incretin secretion in an inflamed state are limited. We hypothesized that GI inflammatory conditions induce over-stimulated incretin secretion via an increase of glucose-sensing receptors. To confirm our hypothesis, we observed the alteration of glucose-induced incretin secretion and glucose-sensing receptors in a GI inflammatory mouse model, and we treated a conditioned media (Mϕ 30%) containing inflammatory cytokines in intestinal epithelium cells and enteroendocrine L-like NCI-H716 cells. In GI-inflamed mice, we observed that over-stimulated incretin secretion and insulin release in response to glucose and sodium glucose cotransporter (Sglt1) was increased. Incubation with Mϕ 30% increases Sglt1 and induces glucose-induced GLP-1 secretion with increasing intracellular calcium influx. Phloridzin, an sglt1 inhibitor, inhibits glucose-induced GLP-1 secretion, ERK activation, and calcium influx. These findings suggest that the abnormalities of incretin secretion leading to metabolic disturbances in GI inflammatory disease by an increase of Sglt1.
Collapse
|
323
|
The role of interleukin-6 in glucose homeostasis and lipid metabolism. Semin Immunopathol 2019; 41:491-499. [PMID: 31101976 DOI: 10.1007/s00281-019-00747-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Low-grade inflammation is recognized as an important factor in the development and progression of a multitude of diseases including type 2 diabetes mellitus and cardiovascular disease. The potential of using antibody-based therapies that neutralize key players of low-grade inflammation has gained scientific momentum as a novel therapeutic strategy in metabolic diseases. As interleukin-6 (IL-6) is traditionally considered a key pro-inflammatory factor, the potential of expanding the use of anti-IL-6 therapies to metabolic diseases is intriguing. However, IL-6 is a molecule of a very pleiotropic nature that regulates many aspects of not only inflammation but also metabolism. In this review, we give a brief overview of the pro- and anti-inflammatory aspects of IL-6 and provide an update on its role in metabolic regulation, with a specific focus on glucose homeostasis and adipose tissue metabolism. Finally, we shall discuss the metabolic implications and clinical potential of blocking IL-6 signaling, focusing on glucose homeostasis and lipid metabolism.
Collapse
|
324
|
Goto R, Kondo T, Ono K, Kitano S, Miyakawa N, Watanabe T, Sakaguchi M, Sato M, Igata M, Kawashima J, Motoshima H, Matsumura T, Shimoda S, Araki E. Mineralocorticoid Receptor May Regulate Glucose Homeostasis through the Induction of Interleukin-6 and Glucagon-Like peptide-1 in Pancreatic Islets. J Clin Med 2019; 8:jcm8050674. [PMID: 31091693 PMCID: PMC6571682 DOI: 10.3390/jcm8050674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022] Open
Abstract
Because the renin-angiotensin-aldosterone system influences glucose homeostasis, the mineralocorticoid receptor (MR) signal in pancreatic islets may regulate insulin response upon glucose load. Glucagon-like peptide-1 (GLP-1) production is stimulated by interleukin-6 (IL-6) in pancreatic α-cells. To determine how glucose homeostasis is regulated by interactions of MR, IL-6 and GLP-1 in islets, we performed glucose tolerance and histological analysis of islets in primary aldosteronism (PA) model rodents and conducted in vitro experiments using α-cell lines. We measured active GLP-1 concentration in primary aldosteronism (PA) patients before and after the administration of MR antagonist eplerenone. In PA model rodents, aldosterone decreased insulin-secretion and the islet/pancreas area ratio and eplerenone added on aldosterone (E+A) restored those with induction of IL-6 in α-cells. In α-cells treated with E+A, IL-6 and GLP-1 concentrations were increased, and anti-apoptotic signals were enhanced. The E+A-treatment also significantly increased MR and IL-6 mRNA and these upregulations were blunted by MR silencing using small interfering RNA (siRNA). Transcriptional activation of the IL-6 gene promoter by E+A-treatment required an intact MR binding element in the promoter. Active GLP-1 concentration was significantly increased in PA patients after eplerenone treatment. MR signal in α-cells may stimulate IL-6 production and increase GLP-1 secretion, thus protecting pancreatic β-cells and improving glucose homeostasis.
Collapse
Affiliation(s)
- Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kaoru Ono
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Sayaka Kitano
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Takuro Watanabe
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Miki Sato
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Seiya Shimoda
- Food and Health Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan.
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
325
|
Townsend LK, Medak KD, Peppler WT, Meers GM, Rector RS, LeBlanc PJ, Wright DC. High-saturated-fat diet-induced obesity causes hepatic interleukin-6 resistance via endoplasmic reticulum stress. J Lipid Res 2019; 60:1236-1249. [PMID: 31085628 DOI: 10.1194/jlr.m092510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
The relationship between liver interleukin-6 (IL-6) resistance following high-fat diet (HFD)-induced obesity and glucose intolerance is unclear. The purpose of this study was to assess the temporal development of hepatic IL-6 resistance and the role of endoplasmic reticulum (ER) stress in this process. We hypothesized that HFD would rapidly induce hepatic IL-6 resistance through a mechanism involving ER stress. Male C57BL/6N mice consumed chow or a HFD (60%) derived from lard (saturated) or olive oil (monounsaturated) for 4 days or 7 weeks before being injected intraperitoneally with IL-6 (6 ng·kg-1). Glucose, insulin, and pyruvate tolerance tests were used as proxies for systemic glucose metabolism and hepatic glucose production, respectively. Primary mouse hepatocytes were incubated with palmitate (saturated) and oleate (unsaturated) overnight, then treated with 20 ng/ml IL-6. ER stress was induced via tunicamycin or prevented by sodium phenylbutyrate (PBA). Seven weeks of a saturated, but not monounsaturated, HFD reduced hepatic IL-6 signaling in conjunction with hepatic ER stress. Palmitate directly impaired IL-6 signaling in hepatocytes along with inducing ER stress. Pharmacologically induced ER stress caused hepatic IL-6 resistance, whereas PBA reversed HFD-induced IL-6 resistance. Chronic HFD-induced obesity is associated with hepatic IL-6 resistance due to saturated FA-induced ER stress.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Grace M Meers
- Division of Gastroenterology and Hepatology, School of Medicine University of Missouri, Columbia, MO.,Research Service, Harry S Truman Memorial VA Hospital, Columbia, MO
| | - R Scott Rector
- Nutrition and Exercise Physiology University of Guelph, Guelph, ON, Canada.,Division of Gastroenterology and Hepatology, School of Medicine University of Missouri, Columbia, MO.,Research Service, Harry S Truman Memorial VA Hospital, Columbia, MO
| | - Paul J LeBlanc
- Department of Health Sciences Brock University, St. Catharines, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
326
|
Yu H, Dilbaz S, Coßmann J, Hoang AC, Diedrich V, Herwig A, Harauma A, Hoshi Y, Moriguchi T, Landgraf K, Körner A, Lucas C, Brodesser S, Balogh L, Thuróczy J, Karemore G, Kuefner MS, Park EA, Rapp C, Travers JB, Röszer T. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest 2019; 129:2485-2499. [PMID: 31081799 PMCID: PMC6546455 DOI: 10.1172/jci125646] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Prevalence of obesity among infants and children below 5 years of age is rising dramatically, and early childhood obesity is a forerunner of obesity and obesity-associated diseases in adulthood. Childhood obesity is hence one of the most serious public health challenges today. Here, we have identified a mother-to-child lipid signaling that protects from obesity. We have found that breast milk-specific lipid species, so-called alkylglycerol-type (AKG-type) ether lipids, which are absent from infant formula and adult-type diets, maintain beige adipose tissue (BeAT) in the infant and impede the transformation of BeAT into lipid-storing white adipose tissue (WAT). Breast milk AKGs are metabolized by adipose tissue macrophages (ATMs) to platelet-activating factor (PAF), which ultimately activates IL-6/STAT3 signaling in adipocytes and triggers BeAT development in the infant. Accordingly, lack of AKG intake in infancy leads to a premature loss of BeAT and increases fat accumulation. AKG signaling is specific for infants and is inactivated in adulthood. However, in obese adipose tissue, ATMs regain their ability to metabolize AKGs, which reduces obesity. In summary, AKGs are specific lipid signals of breast milk that are essential for healthy adipose tissue development.
Collapse
Affiliation(s)
| | - Sedat Dilbaz
- Institute of Neurobiology, and
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | | | | | | | - Akiko Harauma
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukino Hoshi
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Toru Moriguchi
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kathrin Landgraf
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Christina Lucas
- Lipidomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Lajos Balogh
- Department of Nuclear Medicine, National Public Health Center (NPHC), Budapest, Hungary
| | - Julianna Thuróczy
- Department of Nuclear Medicine, National Public Health Center (NPHC), Budapest, Hungary
| | - Gopal Karemore
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael Scott Kuefner
- Veterans Affairs Medical Center and the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edwards A. Park
- Veterans Affairs Medical Center and the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christine Rapp
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
327
|
Gerst F, Wagner R, Oquendo MB, Siegel-Axel D, Fritsche A, Heni M, Staiger H, Häring HU, Ullrich S. What role do fat cells play in pancreatic tissue? Mol Metab 2019; 25:1-10. [PMID: 31113756 PMCID: PMC6600604 DOI: 10.1016/j.molmet.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background It is now generally accepted that obesity is a major risk factor for type 2 diabetes mellitus (T2DM). Hepatic steatosis in particular, as well as visceral and ectopic fat accumulation within tissues, is associated with the development of the disease. We recently presented the first study on isolated human pancreatic adipocytes and their interaction with islets [Gerst, F., Wagner, R., Kaiser, G., Panse, M., Heni, M., Machann, J., et al., 2017. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60(11):2240–2251.]. The results indicate that the function of adipocytes depends on the overall metabolic status in humans which, in turn, differentially affects islet hormone release. Scope of Review This review summarizes former and recent studies on factors derived from adipocytes and their effects on insulin-secreting β-cells, with particular emphasis on the human pancreas. The adipocyte secretome is discussed with a special focus on its influence on insulin secretion, β-cell survival and apoptotic β-cell death. Major Conclusions Human pancreatic adipocytes store lipids and release adipokines, metabolites, and pro-inflammatory molecules in response to the overall metabolic, humoral, and neuronal status. The differentially regulated adipocyte secretome impacts on endocrine function, i.e., insulin secretion, β-cell survival and death which interferes with glycemic control. This review attempts to explain why the extent of pancreatic steatosis is associated with reduced insulin secretion in some studies but not in others.
Collapse
Affiliation(s)
- Felicia Gerst
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Morgana Barroso Oquendo
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Siegel-Axel
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
328
|
Moresi V, Adamo S, Berghella L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front Physiol 2019; 10:500. [PMID: 31114509 PMCID: PMC6502894 DOI: 10.3389/fphys.2019.00500] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.
Collapse
Affiliation(s)
- Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Libera Berghella
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
329
|
Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. Semin Immunopathol 2019; 41:501-513. [PMID: 30989320 PMCID: PMC6592966 DOI: 10.1007/s00281-019-00745-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic diseases including type 2 diabetes are associated with meta-inflammation. β-Cell failure is a major component of the pathogenesis of type 2 diabetes. It is now well established that increased numbers of innate immune cells, cytokines, and chemokines have detrimental effects on islets in these chronic conditions. Recently, evidence emerged which points to initially adaptive and restorative functions of inflammatory factors and immune cells in metabolism. In the following review, we provide an overview on the features of islet inflammation in diabetes and models of prediabetes. We separately emphasize what is known on islet inflammation in humans and focus on in vivo animal models and how they are used to elucidate mechanistic aspects of islet inflammation. Further, we discuss the recently emerging physiologic signaling role of cytokines during adaptation and normal function of islet cells.
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland. .,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel T Meier
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| |
Collapse
|
330
|
Persistently Elevated Glucagon-Like Peptide-1 Levels among Critically Ill Surgical Patients after Sepsis and Development of Chronic Critical Illness and Dismal Long-Term Outcomes. J Am Coll Surg 2019; 229:58-67.e1. [PMID: 30991107 DOI: 10.1016/j.jamcollsurg.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that stimulates insulin secretion, cellular glucose uptake, and has immune-regulatory functions. Glucagon-like peptide-1 is markedly altered after trauma and sepsis, but the implications remain unclear. STUDY DESIGN We performed an analysis of a prospective, longitudinal cohort study of critically ill surgical patients with sepsis. Patient characteristics and clinical data were collected, as well as peripheral blood sampling for biomarker analysis, out to 28 days after sepsis onset. We prospectively adjudicated sepsis diagnosis, severity, clinical outcomes, and 6-month follow-up. RESULTS The cohort included 157 septic surgical patients with significant physiologic derangement (Maximum Sequential Organ Failure Assessment [SOFA] score 8, interquartile range [IQR] 4 to 11), a high rate of multiple organ failure (50.3%), and septic shock (24.2%). Despite high disease severity, both early death (<14 days; n = 4, 2.9%) and overall inpatient mortality were low (n = 12, 7.6%). However, post-discharge 6-month mortality was nearly 3-fold higher (19.7%). Both GLP-1 and interleukin [IL]-6 levels were significantly elevated for 21 days (p ≤ 0.01) in patients who developed chronic critical illness (CCI) compared with patients with a rapid recovery. Elevated GLP-1 at 24 hours was a significant independent predictor for the development of CCI after controlling for IL-6 and glucose levels (p = 0.027), and at day 14 for death or severe functional disability at 6 months (WHO/Zubrod score 4-5, p = 0.014). CONCLUSIONS Elevated GLP-1 within 24 hours of sepsis is a predictor of early death or persistent organ dysfunction. Among early survivors, persistently elevated GLP-1 levels at day 14 are strongly predictive of death or severe functional disability at 6 months. Persistently elevated GLP-1 levels may be a marker of a nonresolving catabolic state that is associated with muscle wasting and dismal outcomes after sepsis and chronic critical illness.
Collapse
|
331
|
Could glucagon-like peptide-1 be a potential biomarker of early-stage intestinal ischemia? Biochimie 2019; 159:107-111. [DOI: 10.1016/j.biochi.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/12/2018] [Indexed: 01/16/2023]
|
332
|
Dusaulcy R, Handgraaf S, Visentin F, Howald C, Dermitzakis ET, Philippe J, Gosmain Y. High-fat diet impacts more changes in beta-cell compared to alpha-cell transcriptome. PLoS One 2019; 14:e0213299. [PMID: 30849121 PMCID: PMC6407777 DOI: 10.1371/journal.pone.0213299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Characterization of endocrine-cell functions and associated molecular signatures in diabetes is crucial to better understand why and by which mechanisms alpha and beta cells cause and perpetuate metabolic abnormalities. The now recognized role of glucagon in diabetes control is a major incentive to have a better understanding of dysfunctional alpha cells. To characterize molecular alterations of alpha cells in diabetes, we analyzed alpha-cell transcriptome from control and diabetic mice using diet-induced obesity model. To this aim, we quantified the expression levels of total mRNAs from sorted alpha and beta cells of low-fat and high-fat diet-treated mice through RNAseq experiments, using a transgenic mouse strain allowing collections of pancreatic alpha- and beta-cells after 16 weeks of diet. We now report that pancreatic alpha cells from obese hyperglycemic mice displayed minor variations of their transcriptome compared to controls. Depending on analyses, we identified 11 to 39 differentially expressed genes including non-alpha cell markers mainly due to minor cell contamination during purification process. From these analyses, we identified three new target genes altered in diabetic alpha cells and potently involved in cellular stress and exocytosis (Upk3a, Adcy1 and Dpp6). By contrast, analysis of the beta-cell transcriptome from control and diabetic mice revealed major alterations of specific genes coding for proteins involved in proliferation and secretion. We conclude that alpha cell transcriptome is less reactive to HFD diet compared to beta cells and display adaptations to cellular stress and exocytosis.
Collapse
Affiliation(s)
- Rodolphe Dusaulcy
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Sandra Handgraaf
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Florian Visentin
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Cedric Howald
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Yvan Gosmain
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
333
|
Godwin EM, Uglialoro AD, Ali A, Yearwood L, Banerji MA, Kral JG. A pilot study of metabolic fitness effects of weight-supported walking in women with obesity. PLoS One 2019; 14:e0211529. [PMID: 30785891 PMCID: PMC6382100 DOI: 10.1371/journal.pone.0211529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background This is an exploratory pilot study of novel technology enabling people with mobility disability to walk with minimal effort, in the “sedentary range”. The study’s premise is that impairment of the leading physical activity of daily living, walking, is a major contributor to a dysmetabolic state driving many prevalent “civilization diseases” associated with insulin resistance. Methods We explore within-subject changes in standard oral glucose tolerance (OGT) tests including metabotropic molecules after 22 twice-weekly, 30-minute bouts of weight-supported light-moderate physical activity in 16 non-diabetic obese, otherwise healthy, reproductive-age, volunteer women walking on an “anti-gravity” lower-body positive pressure (LBPP) treadmill. Results Subjects had reference base-line fasting plasma glucose and triglycerides (TG) but 2-hr OGT insulin levels of 467 ± 276 pmol • liter-1 (mean± S.D.) indicating nascent insulin resistance, compared to post-study 308 ± 179 (p = 0.002). Fasting TG decreased from 0.80 ± 0.30 mmol • liter-1 to 0.71 ± 0.25 (p = 0.03). Concomitantly plasma total ghrelin decreased from 69.6 ± 41.6 pmol • liter-1 to 56.0 ± 41.3 (p = 0.008). There were no statistically significant changes in body weight or any correlations between weight change and cardiometabolic markers. However, there were robust positive correlations between changes among different classes of peptides including C-reactive protein–Interleukin 6, leptin–adiponectin, β-endorphin–oxytocin and orexin A (r 2 = 0.48–0.88). Conclusion We conclude that brief, low-dose physical activity, walking on an anti-gravity LBPP treadmill may improve cardiometabolic risk, exhibiting favorable changes in neuro-regulatory peptides without weight loss in people with problems walking.
Collapse
Affiliation(s)
- Ellen M. Godwin
- Department of Physical Therapy, Long Island University, Brooklyn, New York, United States of America
- Department of Orthopedics/Rehabilitation, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Anthony D. Uglialoro
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Andaleeb Ali
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Leah Yearwood
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Mary Ann Banerji
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - John G. Kral
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| |
Collapse
|
334
|
Mechanisms of insulin resistance by simvastatin in C2C12 myotubes and in mouse skeletal muscle. Biochem Pharmacol 2019; 164:23-33. [PMID: 30796916 DOI: 10.1016/j.bcp.2019.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Statins inhibit cholesterol biosynthesis and lower serum LDL-cholesterol levels. They are generally well tolerated, but can cause insulin resistance in patients. Therefore, we investigated the mechanisms underlying the statin-induced insulin resistance. We used mice and C2C12 myotubes (murine cell line): mice (n = 10) were treated with oral simvastatin (5 mg/kg/day) or water (control) for 21 days and C2C12 cells were exposed to 10 μM simvastatin for 24 h. After intraperitoneal glucose application (2 g/kg), simvastatin-treated mice had higher glucose but equal insulin plasma concentrations than controls and lower glucose transport into skeletal muscle. Similarly, glucose uptake by C2C12 myotubes exposed to 10 μM simvastatin for 24 h was impaired compared to control cells. In simvastatin-treated C2C12 myotubes, mRNA and protein expression of the insulin receptor (IR) β-chain was increased, but the phosphorylation (Tyr1361) was impaired. Simvastatin decreased numerically Akt/PKB Thr308 phosphorylation (via insulin signaling pathway) and significantly Akt/PKB Ser473 phosphorylation (via mTORC2), which was explained by impaired phosphorylation of mTOR Ser2448. Reduced phosphorylation of Akt/PKB impaired downstream phosphorylation of GSK3β, leading to impaired translocation of GLUT4 into plasma membranes of C2C12 myotubes. In contrast, reduced phosphorylation of AS160 could be excluded as a reason for impaired GLUT4 translocation. In conclusion, simvastatin caused insulin resistance in mice and impaired glucose uptake in C2C12 myotubes. The findings in myotubes can be explained by diminished activation of Akt/PKB by mTORC2 and downstream effects on GSK3β, impairing the translocation of GLUT4 and the uptake of glucose.
Collapse
|
335
|
Kristóf E, Klusóczki Á, Veress R, Shaw A, Combi ZS, Varga K, Győry F, Balajthy Z, Bai P, Bacso Z, Fésüs L. Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 2019; 377:47-55. [PMID: 30794803 DOI: 10.1016/j.yexcr.2019.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Brown and beige adipocytes contribute significantly to the regulation of whole body energy expenditure and systemic metabolic homeostasis not exclusively by thermogenesis through mitochondrial uncoupling. Several studies have provided evidence in rodents that brown and beige adipocytes produce a set of adipokines ("batokines") which regulate local tissue homeostasis and have beneficial effects on physiological functions of the entire body. We observed elevated secretion of Interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1, but not tumor necrosis factor alpha (TNFα) or IL-1β pro-inflammatory cytokines, by ex vivo differentiating human beige adipocytes (induced by either PPARγ agonist or irisin) compared to white. Higher levels of IL-6, IL-8 and MCP-1 were released from human deep neck adipose tissue biopsies (enriched in browning cells) than from subcutaneous ones. IL-6 was produced in a sustained manner and mostly by the adipocytes and not by the undifferentiated progenitors. Continuous blocking of IL-6 receptor by specific antibody during beige differentiation resulted in downregulation of brown marker genes and increased morphological changes that are characteristic of white adipocytes. The data suggest that beige adipocytes adjust their production of IL-6 to reach an optimal level for differentiation in the medium enhancing browning in an autocrine manner.
Collapse
Affiliation(s)
- Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ágnes Klusóczki
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Roland Veress
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Abhirup Shaw
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zsolt Sándor Combi
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Klára Varga
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zoltán Balajthy
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Péter Bai
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Faculties of Medicine and Pharmacy, Debrecen, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; MTA-DE Stem Cells, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary.
| |
Collapse
|
336
|
Abstract
Physical inactivity is one of the leading health problems in the world. Strong epidemiological and clinical evidence demonstrates that exercise decreases the risk of more than 35 different disorders and that exercise should be prescribed as medicine for many chronic diseases. The physiology and molecular biology of exercise suggests that exercise activates multiple signaling pathways of major health importance. An anti-inflammatory environment is produced with each bout of exercise, and long-term anti-inflammatory effects are mediated via an effect on abdominal adiposity. There is, however, a need to close the gap between knowledge and practice and assure that basic research is translated, implemented, and anchored in society, leading to change of praxis and political statements. In order to make more people move, we need a true translational perspective on exercise as medicine, from molecular and physiological events to infrastructure and architecture, with direct implications for clinical practice and public health.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
337
|
Ebbesen MS, Kissow H, Hartmann B, Grell K, Gørløv JS, Kielsen K, Holst JJ, Müller K. Glucagon-Like Peptide-1 Is a Marker of Systemic Inflammation in Patients Treated with High-Dose Chemotherapy and Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1085-1091. [PMID: 30731250 DOI: 10.1016/j.bbmt.2019.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Autologous stem cell transplantation (ASCT) is challenged by side effects that may be propagated by chemotherapy-induced mucositis, resulting in bacterial translocation and systemic inflammation. Because gastrointestinal damage appears as an early event in this cascade of reactions, we hypothesized that markers reflecting damage to the intestinal barrier could serve as early predictive markers of toxicity. Glucagon-like peptide-1 (GLP-1), a well-known regulator of blood glucose, has been found to promote intestinal growth and repair in animal studies. We investigated fasting GLP-1 plasma levels in 66 adults undergoing ASCT for lymphoma and multiple myeloma. GLP-1 increased significantly after chemotherapy, reaching peak levels at day +7 post-transplant (median, 8 pmol/L [interquartile range, 4 to 12] before conditioning versus 10 pmol/L [interquartile range, 6 to 17] at day +7; P = .007). The magnitude of the GLP-1 increase was related to the intensity of conditioning. GLP-1 at the day of transplantation (day 0) was positively associated with peak C-reactive protein (CRP) levels (46 mg/L per GLP-1 doubling, P < .001) and increase in days with fever (32% per GLP-1 doubling, P = .0058). Patients with GLP-1 above the median at day 0 had higher CRP levels from days +3 to +10 post-transplant than patients with lower GLP-1 (P ≤ .041) with peak values of 238 versus 129 mg/L, respectively. This study, which represents the first clinical investigation of fasting GLP-1 in relation to high-dose chemotherapy, provides evidence that GLP-1 plays a role in regulation of mucosal defenses. Fasting GLP-1 levels may serve as an early predictor of systemic inflammation and fever in patients receiving high-dose chemotherapy.
Collapse
Affiliation(s)
- Maria Schou Ebbesen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Hannelouise Kissow
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Grell
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark; Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Katrine Kielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
338
|
Toll-like receptor 4 is necessary for glucose-dependent glucagon-like peptide-1 secretion in male mice. Biochem Biophys Res Commun 2019; 510:104-109. [DOI: 10.1016/j.bbrc.2019.01.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
|
339
|
Peppler WT, Townsend LK, Meers GM, Panasevich MR, MacPherson REK, Rector RS, Wright DC. Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice. Am J Physiol Gastrointest Liver Physiol 2019; 316:G166-G178. [PMID: 30383412 DOI: 10.1152/ajpgi.00097.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity can lead to impairments in hepatic glucose and insulin homeostasis, and although exercise is an effective treatment, the molecular targets remain incompletely understood. As IL-6 is an exercise-inducible cytokine, we aimed to identify whether IL-6 itself influences hepatic glucose and insulin homeostasis and whether this response differs during obesity. In vivo, male mice were fed a low-fat diet (LFD; 10% kcal) or a high-fat diet (HFD; 60% kcal) for 7 wk, which induced obesity and hepatic lipid accumulation. LFD- and HFD-fed mice were injected with IL-6 (400 ng, 75 min) or PBS and then with insulin (1 U/kg; ~15 min) or saline, at which point livers were collected. In both LFD- and HFD-fed mice, IL-6 decreased blood glucose and mRNA expression of gluconeogenic genes alongside increased phosphorylation of AKT in comparison to PBS controls, and this occurred without changes in circulating insulin. To determine whether this effect of IL-6 was directly on the liver, we completed in vitro isolated primary hepatocyte experiments from chow-fed mice and cultured with or without exposure to free fatty acid (250 μm palmitate and 250 μm oleate, 24 h) to induce lipid accumulation. In both control and free fatty acid-treated hepatocytes, IL-6 (20 ng/ml, 75 min) slightly attenuated insulin-stimulated (10 nM; ~15 min) AKT phosphorylation. Together, these data suggest that IL-6 may lead to improvements in indices of hepatic glucose and insulin homeostasis in vivo; however, this is likely due to an indirect effect on the hepatocyte. NEW & NOTEWORTHY In this study, we used lean and obese mice and found that a single injection of IL-6 improved glucose tolerance, decreased hepatic gluconeogenic gene expression, and increased hepatic phosphorylation of AKT. In primary hepatocytes cultured under control and lipid-laden conditions, IL-6 had a mild, but deleterious, effect on phosphorylation of AKT. Our results show that the beneficial effects of IL-6 on glucose and insulin homeostasis, in vivo, are maintained in obesity.
Collapse
Affiliation(s)
- Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Grace M Meers
- Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
| | - Matthew R Panasevich
- Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
| | | | - R Scott Rector
- Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
340
|
Heiston EM, Malin SK. Impact of Exercise on Inflammatory Mediators of Metabolic and Vascular Insulin Resistance in Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:271-294. [PMID: 30919343 DOI: 10.1007/978-3-030-12668-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of obesity is cornerstone in the etiology of metabolic and vascular insulin resistance and consequently exacerbates glycemic control. Exercise is an efficacious first-line therapy for type 2 diabetes that improves insulin action through, in part, reducing hormone mediated inflammation. Together, improving the coordination of skeletal muscle metabolism with vascular delivery of glucose will be required for optimizing type 2 diabetes and cardiovascular disease treatment.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
341
|
Deacon CF. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2019; 10:80. [PMID: 30828317 PMCID: PMC6384237 DOI: 10.3389/fendo.2019.00080] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as the T-cell antigen CD26, is a multi-functional protein which, besides its catalytic activity, also functions as a binding protein and a ligand for a variety of extracellular molecules. It is an integral membrane protein expressed on cells throughout the body, but is also shed from the membrane and circulates as a soluble protein in the plasma. A large number of bioactive molecules can be cleaved by DPP-4 in vitro, but only a few of these have been demonstrated to be physiological substrates. One of these is the incretin hormone, glucagon-like peptide-1 (GLP-1), which plays an important role in the maintenance of normal glucose homeostasis, and DPP-4 has been shown to be the key enzyme regulating its biological activity. This pathway has been targeted pharmacologically through the development of DPP-4 inhibitors, and these are now a successful class of anti-hyperglycaemic agents used to treat type 2 diabetes (T2DM). DPP-4 may additionally influence metabolic control via its proteolytic effect on other regulatory peptides, but it has also been reported to affect insulin sensitivity, potentially mediated through its non-enzymatic interactions with other membrane proteins. Given that altered expression and activity of DPP-4 are associated with increasing body mass index and hyperglycaemia, DPP-4 has been proposed to play a role in linking obesity and the pathogenesis of T2DM by functioning as a local mediator of inflammation and insulin resistance in adipose and hepatic tissue. As well as these broader systemic effects, it has also been suggested that DPP-4 may be able to modulate β-cell function as part of a paracrine system involving GLP-1 produced locally within the pancreatic islets. However, while it is evident that DPP-4 has the potential to influence glycaemic control, its overall significance for the normal physiological regulation of glucose homeostasis in humans and its role in the pathogenesis of metabolic disease remain to be established.
Collapse
|
342
|
Bioluminescent reporter assay for monitoring ER stress in human beta cells. Sci Rep 2018; 8:17738. [PMID: 30532033 PMCID: PMC6288136 DOI: 10.1038/s41598-018-36142-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
During type 1 diabetes development, cells in the islets of Langerhans engage adaptive mechanisms in response to inflammatory signals to cope with stress, to restore cellular homeostasis, and to preserve cell function. Disruption of these mechanisms may induce the formation of a repertoire of stress-induced neoantigens, which are critical in the loss of tolerance to beta cells and the development of autoimmunity. While multiple lines of evidence argue for a critical role of the endoplasmic reticulum in these processes, the lack of tools to specifically monitor beta cell stress hampers the development of therapeutic interventions focusing on maintaining endoplasmic reticulum homeostasis. Here we designed and evaluated a stress-induced reporter in which induction of stress correlates with increased light emission. This Gaussia luciferase-based reporter system employs the unconventional cytoplasmic splicing of XBP1 to report ER stress in cells exposed to known ER-stress inducers. Linking this reporter to a human beta cell-specific promotor allows tracing ER-stress in isolated human beta cells as well as in the EndoC-βH1 cell line. This reporter system represents a valuable tool to assess ER stress in human beta cells and may aid the identification of novel therapeutics that can prevent beta cell stress in human pancreatic islets.
Collapse
|
343
|
Nimesulide effects on the blood pro-oxidant–antioxidant status in lipopolysaccharide-challenged mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2877-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
344
|
Smith JK. IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 2018; 4:24. [PMID: 30534586 PMCID: PMC6279793 DOI: 10.1038/s41526-018-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
345
|
Diebold S, Moellmann J, Kahles F, Haj-Yehia E, Liehn EA, Nickel A, Lebherz C, Maack C, Marx N, Lehrke M. Myocardial infarction is sufficient to increase GLP-1 secretion, leading to improved left ventricular contractility and mitochondrial respiratory capacity. Diabetes Obes Metab 2018; 20:2911-2918. [PMID: 30033664 DOI: 10.1111/dom.13472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
Myocardial infarction causes rapid impairment of left ventricular function and requires a hypercontractile response of non-infarcted tissue areas to maintain haemodynamic stability. This compensatory adaptation is mediated by humoral, inflammatory and neuronal signals. GLP-1 is an incretin hormone with glucoregulatory and cardioprotective capacities and is secreted in response to nutritional and inflammatory stimuli. Inactivation of GLP-1 is caused by the ubiquitously present enzyme DPP-4. In this study, circulating concentrations of GLP-1 were assessed after myocardial infarction and were evaluated in the light of metabolism, left ventricular contractility and mitochondrial function. Circulating GLP-1 concentrations were markedly increased in patients with acute myocardial infarction. Experimental myocardial infarction by permanent LAD ligation proved sufficient to increase GLP-1 secretion in mice. This took place in a time-dependent manner, which coincided with the capacity of DPP-4 inhibition, by linagliptin, to augment left ventricular contractility in a GLP-1 receptor-dependent manner. Mechanistically, DPP-4 inhibition increased AMPK activity and stimulated the mitochondrial respiratory capacity of non-infarcted tissue areas. We describe a new functional relevance of inflammatory GLP-1 secretion for left ventricular contractility during myocardial infarction.
Collapse
Affiliation(s)
- Sebastian Diebold
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Florian Kahles
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Elias Haj-Yehia
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Elisa A Liehn
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Alexander Nickel
- Department of Translational Science, Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
346
|
Abstract
Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and β-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new β-cells in models of extreme β-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.
Collapse
Affiliation(s)
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
347
|
Raman A, Peiffer JJ, Hoyne GF, Lawler NG, Currie AJ, Fairchild TJ. Effect of exercise on acute postprandial glucose concentrations and interleukin-6 responses in sedentary and overweight males. Appl Physiol Nutr Metab 2018; 43:1298-1306. [PMID: 29856928 DOI: 10.1139/apnm-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
This study examined the effect of 2 forms of exercise on glucose tolerance and the concurrent changes in markers associated with the interleukin (IL)-6 pathways. Fifteen sedentary, overweight males (29.0 ± 3.1 kg/m2) completed 2 separate, 3-day trials in randomised and counterbalanced order. An oral glucose tolerance test (OGTT; 75 g) was performed at the same time on each day of the trial. Day 2 of each trial consisted of a single 30-min workload-matched bout of either high-intensity intermittent exercise (HIIE; alternating 100% and 50% of peak oxygen uptake) or continuous moderate-intensity exercise (CME; 60 % of peak oxygen uptake) completed 1 h prior to the OGTT. Venous blood samples were collected before, immediately after, 1 h after, and 25 h after exercise for measurement of insulin, C-peptide, IL-6, and the soluble IL-6 receptors (sIL-6R; soluble glycoprotein 130 (sgp130)). Glucose area under the curve (AUC) was calculated from capillary blood samples collected throughout the OGTT. Exercise resulted in a modest (4.4%; p = 0.003) decrease in the glucose AUC when compared with the pre-exercise AUC; however, no differences were observed between exercise conditions (p = 0.65). IL-6 was elevated immediately after and 1 h after exercise, whilst sgp130 and sIL-6R concentrations were reduced immediately after exercise. In summary, exercise was effective in reducing glucose AUC, which was attributed to improvements that took place between 60 and 120 min into the OGTT, and was in parallel with an increased ratio of IL-6 to sIL-6R, which accords with an increased activation via the "classical" IL-6 signalling pathway. Our findings suggest that acute HIIE did not improve glycaemic response when compared with CME.
Collapse
Affiliation(s)
- Aaron Raman
- a School of Psychology and Exercise Science, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Jeremiah J Peiffer
- a School of Psychology and Exercise Science, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Gerard F Hoyne
- b School of Health Sciences, Murdoch University, Western Australia, Fremantle 6160, Australia
| | - Nathan G Lawler
- a School of Psychology and Exercise Science, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Andrew J Currie
- c School of Veterinary and Life Sciences, University of Notre Dame Australia, Fremantle Campus, Murdoch 6150, Australia
| | - Timothy J Fairchild
- a School of Psychology and Exercise Science, Murdoch University, Murdoch 6150, Western Australia, Australia
| |
Collapse
|
348
|
Dumas SN, Guo CA, Kim JK, Friedline RH, Ntambi JM. Interleukin-6 derived from cutaneous deficiency of stearoyl-CoA desaturase- 1 may mediate metabolic organ crosstalk among skin, adipose tissue and liver. Biochem Biophys Res Commun 2018; 508:87-91. [PMID: 30470572 DOI: 10.1016/j.bbrc.2018.11.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme that adds a double bond at the delta 9 position of stearate (C18: 0) and palmitate (C16: 0), has been proven to be important in the development of obesity. Mice with skin-specific deficiency of SCD1 (SKO) display increased whole-body energy expenditure, which is protective against adiposity from a high-fat diet because it improves glucose clearance, insulin sensitivity, and hepatic steatosis. Of note, these mice also display elevated levels of the "pro-inflammatory" plasma interleukin-6 (IL-6). In whole skin of SKO mice, IL-6 mRNA levels are increased, and protein expression is evident in hair follicle cells and in keratinocytes. Recently, the well-known role of IL-6 in causing white adipose tissue lipolysis has been linked to indirectly activating the gluconeogenic enzyme pyruvate carboxylase 1 in the liver, thereby increasing hepatic glucose production. In this study, we suggest that skin-derived IL-6 leads to white adipose tissue lipolysis, which contributes to the lean phenotype of SKO mice without the incidence of meta-inflammation that is associated with IL-6 signaling.
Collapse
Affiliation(s)
- Sabrina N Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chang-An Guo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, USA
| | - James M Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
349
|
Liu P, Song J, Liu H, Yan F, He T, Wang L, Shen H, Hou X, Chen L. Insulin regulates glucagon-like peptide-1 secretion by pancreatic alpha cells. Endocrine 2018; 62:394-403. [PMID: 30084102 DOI: 10.1007/s12020-018-1684-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Proglucagon is expressed in both pancreatic alpha cells and intestinal epithelial L cells and is cleaved into glucagon and glucagon-like peptide-1 (GLP-1) by different prohormone convertases (PCs). Recent studies have shown that α-cells can also secrete GLP-1, which may improve islet function. However, little is known about the factors influencing GLP-1 secretion by α cells. In this study, we investigated whether insulin promotes GLP-1 secretion by α cells, as well as the mechanisms underlying this phenomenon. METHODS We cultured the alpha-cell line In-R1-G9 in low- or high-glucose medium in the presence or absence of insulin to determine the influence of glucose concentrations on the actions of insulin. We also treated In-R1-G9 cells with insulin for different times and at different doses. Then GLP-1 and glucagon protein expression levels were estimated. Moreover, ERK and phosphatidylinositol-3-kinase/AKT (PI3K/AKT) pathway activity levels and prohormone convertase expression levels were evaluated to elucidate the mechanism underlying the effects of insulin on GLP-1 secretion by α-cells. RESULTS Insulin promoted GLP-1 secretion in a time- and dose-dependent manner under high-glucose conditions. Inhibiting the PI3K/AKT pathway with LY294002 and the Ras/mitogen-activated protein kinase (RAS/MAPK) pathway with PD98059 reduced GLP-1 secretion, respectively, in inhibitor-treated cells compared with insulin-treated cells. Moreover, insulin increased prohormone convertase 1/3 expression levels in the corresponding group of IN-R1-G9 cells compared with the control group of cells. CONCLUSION Insulin facilitates GLP-1 secretion by pancreatic alpha cells by inducing PC1/3 expression under high-glucose conditions, a phenomenon that may be associated mainly with PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- Pan Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China
| | - He Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China
| | - Tianyi He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China
| | - Huying Shen
- Baylor College of Medicine, Houston, TX, USA
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China.
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China.
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China.
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250000, China.
- Institute of Endocrinology and Metabolism, Shandong University, Jinan, 250000, China.
- Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine & Health, Jinan, 250000, China.
| |
Collapse
|
350
|
Fang X, Dorcely B, Ding XP, Yin S, Son NH, Hu SL, Goldberg IJ. Glycemic reduction alters white blood cell counts and inflammatory gene expression in diabetes. J Diabetes Complications 2018; 32:1027-1034. [PMID: 30197161 PMCID: PMC6174091 DOI: 10.1016/j.jdiacomp.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Systemic inflammation contributes to cardiovascular disease in patients with type 2 diabetes, and elevated white blood cell (WBC) counts are an established risk factor. Our goal is to describe changes in WBCs and inflammatory markers after glycemic reductions in diabetes. RESEARCH DESIGN AND METHODS This study enrolled 63 subjects with poorly controlled diabetes, defined as hemoglobin A1c (HbA1c) ≥8% [64 mmol/mol]. Circulating granulocytes and mononuclear cells were separated by histopaque double-density protocol. Inflammatory markers from these isolated WBCs were assessed at baseline and after 3 months of medical management. RESULTS After 3 months, significant glycemic reduction, defined as a decrease in HbA1c ≥ 1.5%, occurred in 42 subjects. Fasting plasma glucose decreased by 47% (165.6 mg/dL), and HbA1c decreased from 10.2 ± 1.8 to 6.8 ± 0.9. Glycemic reductions were associated with a 9.4% decrease in total WBC counts, 10.96% decrease in neutrophils, and 21.74% decrease in monocytes. The mRNA levels of inflammatory markers from granulocytes and mononuclear cells decreased, including receptor for advanced glycation endproducts; S100 calcium binding proteins A8, A9, A12; krüppel-like factor 5; and IL-1. Also, circulating levels of IL-1β and C-reactive protein decreased. Insulin dose was a mediator between HbA1c and both total WBC and neutrophil counts, but not changes in WBC inflammatory markers. In contrast, the 17 subjects without significant glycemic reductions showed no significant differences in their WBC counts and proteins of inflammatory genes. CONCLUSION Significant glycemic reduction in subjects with poorly controlled diabetes led to reduced circulating WBC counts and inflammatory gene expression.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, No. 17, Lujiang Road, Hefei City 230001, Anhui Province, China; Gerontology Institute of Anhui Province, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Brenda Dorcely
- Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, United States of America
| | - Xi-Ping Ding
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, No. 17, Lujiang Road, Hefei City 230001, Anhui Province, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, No. 17, Lujiang Road, Hefei City 230001, Anhui Province, China
| | - Ni-Huiping Son
- Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, United States of America
| | - Shi-Lian Hu
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, No. 17, Lujiang Road, Hefei City 230001, Anhui Province, China; Gerontology Institute of Anhui Province, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, New York, NY 10016, United States of America.
| |
Collapse
|