301
|
Abstract
Cells of osteoblast and osteoclast lineage are provided with the receptor for sex steroids, but discrepancies concerning mechanism of action still exist. Skeletal estrogen (ER) agonists induce osteoblastic osteoprotegerin (OPG) production through ER receptor-alpha activation in vitro, while immune cells appear to overexpress RANKL in ER deficiency in vivo, not reproduced in in vitro study. It has also been evident that the effects of ER on bone to a large extent are mediated via its action on immune cells. We know now that ER regulates the expression of cytokines that target cell types involved in modulating bone turnover, as IL-1 and IL-6, and the latest findings confirm and expand the concept that T cells are key mediators of bone loss following gonadal failure. Although early work demonstrated that tumor necrosis factor-alpha plays an important role in regulating bone mass, recent studies also implicate the lymphopoietic molecule IL-7: it suppresses the bone-forming osteoblasts, while stimulating formation and function of osteoclasts. More recent in vitro studies, however, indicate a stimulating effect of ER on osteoclastogenesis, which could have a positive effect on maintaining a high level of bone cell activity.
Collapse
Affiliation(s)
- Alberta Zallone
- Department of Human Anatomy and Histology, University of Bari, Bari, Italy.
| |
Collapse
|
302
|
Narayana Murthy PS, Sengupta S, Sharma S, Singh MM. Effect of ormeloxifene on ovariectomy-induced bone resorption, osteoclast differentiation and apoptosis and TGF beta-3 expression. J Steroid Biochem Mol Biol 2006; 100:117-28. [PMID: 16797179 DOI: 10.1016/j.jsbmb.2006.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 03/31/2006] [Indexed: 11/18/2022]
Abstract
Effect of ormeloxifene, a multifunctional selective estrogen receptor modulator, on prevention of ovariectomy-induced bone resorption in retired breeder female rats, osteoclastogenesis using bone marrow cells from adult Balb/c mice cultured in presence of M-CSF and RANKL, osteoclast apoptosis using terminal deoxynucleotidyl transferase fragment end labeling and TGF beta-3 expression were investigated. Raloxifene, a benzothiophene reported to mimic effects of estrogen in bone, and estradiol were used for comparison. Ormeloxifene (10(-6) and 10(-8)M) significantly inhibited osteoclastogenesis (P<0.001 versus vehicle control) as evidenced by lower number of TRAP-positive osteoclasts in bone marrow cultures and caused apoptosis of osteoclasts. The effect was almost equivalent to that observed in presence of estradiol-17 beta, except that significant number of cells undergoing apoptosis was evident even at 10(-9)M concentration of estradiol-17 beta (P<0.001). Raloxifene, though inhibited osteoclastogenesis at much lower concentrations (10(-8) to 10(-12)M; P<0.001), failed to cause apoptosis of osteoclasts at any of the concentrations used. While ormeloxifene, raloxifene and ethynylestradiol significantly prevented ovariectomy-induced bone loss in vivo in retired breeder female rats, prevention of ovariectomy-induced decrease in BMD and trabecular network of proximal tibia, calcium and phosphorus levels in femur and tibia and prevention of ovariectomy-induced down-regulation of TGF beta-3 expression in lumbar vertebrae was of lower order in raloxifene- than ormeloxifene- or ethynylestradiol-supplemented females. Both the SERMs, however, produced considerable estrogenic effects at the uterine level as evidenced by increase in weight, total and endometrial area and luminal epithelial cell height; the effect being generally greater in raloxifene- than ormeloxifene-treated rats. Findings demonstrate that inhibition of estrogen-deficiency osteoporosis by ormeloxifene, as in case of estradiol, was mediated via inhibition of osteoclastogenesis, apoptosis of osteoclasts and up-regulation of TGF beta-3 expression. Raloxifene, though effective in inhibiting osteoclastogenesis in vitro at much lower concentrations, was not only less potent in preventing ovariectomy-induced bone loss in retired breeder female rats in vivo but also appeared to have a different mechanism of action than ormeloxifene and estradiol.
Collapse
Affiliation(s)
- P S Narayana Murthy
- Endocrinology Division, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | |
Collapse
|
303
|
Abstract
The following are guidelines for evaluation and consideration for treatment of patients with inflammatory bone disease (IBD) after bone mineral density (BMD) measurements. The Crohn's & Colitis Foundation of America (CCFA) has indicated that its recommendations are intended to serve as reference points for clinical decision-making, not as rigid standards, limits, or rules. They should not be interpreted as quality standards.
Collapse
Affiliation(s)
- Gary R Lichtenstein
- University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, Gastroenterology Division, Department of Medicine, Philadelphia, PA 19104-4283, USA.
| | | | | |
Collapse
|
304
|
Sørensen MG, Henriksen K, Dziegiel MH, Tankó LB, Karsdal MA. Estrogen Directly Attenuates Human Osteoclastogenesis, But Has No Effect on Resorption by Mature Osteoclasts. DNA Cell Biol 2006; 25:475-83. [PMID: 16907645 DOI: 10.1089/dna.2006.25.475] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Estrogen deficiency arising with the menopause promotes marked acceleration of bone resorption, which can be restored by hormone replacement therapy. The inhibitory effects of estrogen seem to involve indirect cytokine- mediated effects via supporting bone marrow cells, but direct estrogen-receptor mediated effects on the bone-resorbing osteoclasts have also been proposed. Little information is available on whether estrogens modulate human osteoclastogenesis or merely inhibit the functional activity of osteoclasts. To clarify whether estrogens directly modulate osteoclastic activities human CD14+ monocytes were cultured in the presence of M-CSF and RANKL to induce osteoclast differentiation. Addition of 0.1-10 nM 17beta-estradiol to differentiating osteoclasts resulted in a dose-dependent reduction in tartrate resistant acid phosphatase (TRACP) activity reaching 60% at 0.1 nM. In addition, 17beta-estradiol inhibited bone resorption, as measured by the release of the C-terminal crosslinked telopeptide (CTX), by 60% at 0.1 nM, but had no effect on the overall cell viability. In contrast to the results obtained with differentiating osteoclasts, addition of 17beta-estradiol (0.001-10 nM) to mature osteoclasts did not affect bone resorption or TRACP activity. We investigated expression of the estrogen receptors, using immunocytochemistry and Western blotting. We found that ER-alpha is expressed in osteoclast precursors, whereas ER- beta is expressed at all stages, indicating that the inhibitory effect of estrogen on osteoclastogenesis is mediated by ER-alpha for the major part. In conclusion, these results suggest that the in vivo effects of estrogen are mediated by reduction of osteoclastogenesis rather than direct inhibition of the resorptive activity of mature osteoclasts.
Collapse
|
305
|
Vural P, Akgul C, Canbaz M. Effects of hormone replacement therapy on plasma pro-inflammatory and anti-inflammatory cytokines and some bone turnover markers in postmenopausal women. Pharmacol Res 2006; 54:298-302. [PMID: 16879975 DOI: 10.1016/j.phrs.2006.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/09/2006] [Accepted: 06/13/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The present study was undertaken to evaluate plasma TNFalpha, IL-1beta, IL-10; and urinary hydroxyproline (Hyp) and calcium (Ca) as bone resorption markers in postmenopausal women compared with premenopausal ones; and to assess the effects of HRT upon these cytokines and bone turnover markers. PATIENTS AND METHODS The study involved 50 healthy postmenopausal women, and 25 healthy premenopausal women (control group). Postmenopausal women were randomly divided into two subgroups: women receiving cycle HRT schedule (0.625 mg conjugated estrogen from days 1 to 28+5 mg medroxyprogesterone acetate from days 18 to 28) for 2 months (n=25); and second subgroup consisted of women receiving continue HRT schedule (0.625 mg conjugated estrogen+2.5 mg medroxyprogesterone acetate from days 1 to 28) for 2 months (n=25). Plasma TNFalpha, IL-1beta and IL-10 concentrations were measured with ELISA kits. Fasting urinary Hyp was measured by Ehrlich's spectrophotometric reaction. Ca was determined by oxalate precipitation and the redox titration procedure. Statistical significance was analysed by Kruskal-Wallis plus post hoc Mann-Whitney U-tests for multiple comparisons, Wilcoxon signed ranks test for paired data, and Pearson correlation test. RESULTS Compared with premenopausal individuals, postmenopausal women have increased plasma TNFalpha, IL-1beta, IL-10 (p<0.0001, p<0.0001, and p<0.001, respectively); and increased urinary Hyp and Ca concentrations (p<0.05). HRT (both cycle and continue schedules) lead to a significant decrease in TNFalpha, IL-1beta and urinary Hyp concentrations, and has no effect uppon IL-10 levels. HRT reverses increased urinary Hyp and Ca excretion to the premenopausal level. There is a significant positive correlation between pre- and post-HRT IL-1beta levels in both cycle and continue subgroups (r=0.437, p<0.05; and r=0.656, p<0.01, respectively), and between pre-HRT IL-1beta and urinary Ca (r=0.509, p<0.01; and r=0.415, p<0.05). There is a significant negative correlation between post-HRT IL-10 and TNFalpha levels in continue HRT receiving group (r=-0.446, p<0.05). Urinary Hyp in cycle and continue HRT received subgroups are correlated with post-treatment values (r=0.455, p<0.05; and r=0.776, p<0.01). CONCLUSIONS Plasma TNFalpha, IL-1beta, IL-10; and urinary Hyp and Ca increase with menopause. We suggest that the increase of IL-10 is secondary to the elevation of TNFalpha and IL-1beta and that the increase of IL-10 is a compensatory mechanism, by which this anti-inflammatory cytokine counteracts to pro-inflammatory TNFalpha and IL-1beta, and thus balances their osteoclast activating and oxidative stress-related effects. Two months duration HRT (cycle and continue schedule) lead to the significant decrease in plasma TNFalpha, IL-1beta and urinary Hyp concentrations. HRT reverses increased Hyp and Ca excretion to the premenopausal level. So, HRT, decreasing Th1 cytokines (TNFalpha, IL-1beta) probably improve the aberation of Th1/Th2 balance that is implicated in various pathological conditions. However, because of the relatively small number of participants and short duration of the therapy, further studies are necessary to establish a risk/benefit ratio for HRT to view effects on cytokine pattern and bone metabolism.
Collapse
Affiliation(s)
- Pervin Vural
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul, Turkey.
| | | | | |
Collapse
|
306
|
Abstract
Osteoporosis is a serious public health issue. The past 10 years have seen great advances in our understanding of its epidemiology, pathophysiology, and treatment, and further advances are rapidly being made. Clinical assessment will probably evolve from decisions mainly being made on the basis of bone densitometry, to use of algorithms of absolute fracture risk. Biochemical markers of bone turnover are also likely to become more widely used. Bisphosphonates will probably remain the mainstay of therapy, but improved understanding of the optimum amount of remodelling suppression and duration of therapy will be important. At the same time, other diagnostic and therapeutic approaches, including biological agents, are likely to become more widespread.
Collapse
Affiliation(s)
- Philip Sambrook
- Institute of Bone and Joint Research, University of Sydney, Sydney 2065, NSW, Australia.
| | | |
Collapse
|
307
|
Abstract
Estrogen plays a fundamental role in skeletal growth and bone homeostasis in both men and women. Although remarkable progress has been made in our understanding of how estrogen deficiency causes bone loss, the mechanisms involved have proven to be complex and multifaceted. Although estrogen is established to have direct effects on bone cells, recent animal studies have identified additional unexpected regulatory effects of estrogen centered at the level of the adaptive immune response. Furthermore, a potential role for reactive oxygen species has now been identified in both humans and animals. One major challenge is the integration of a multitude of redundant pathways and cytokines, each apparently capable of playing a relevant role, into a comprehensive model of postmenopausal osteoporosis. This Review presents our current understanding of the process of estrogen deficiency-mediated bone destruction and explores some recent findings and hypotheses to explain estrogen action in bone. Due to the inherent difficulties associated with human investigation, many of the lessons learned have been in animal models. Consequently, many of these principles await further validation in humans.
Collapse
Affiliation(s)
- M. Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids and
Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism, and Lipids and
Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
308
|
Saintier D, Khanine V, Uzan B, Ea HK, de Vernejoul MC, Cohen-Solal ME. Estradiol inhibits adhesion and promotes apoptosis in murine osteoclasts in vitro. J Steroid Biochem Mol Biol 2006; 99:165-73. [PMID: 16621521 DOI: 10.1016/j.jsbmb.2006.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 01/20/2006] [Indexed: 11/20/2022]
Abstract
Osteoporosis caused by estrogen deficiency is characterized by enhanced bone resorption mediated by osteoclasts. Adhesion to bone matrix and survival of differentiated osteoclasts is necessary to resorb bone. The aim of our study was to investigate the in vitro effects of estradiol on murine osteoclasts. RAW 264.7 cells treated with 30 ng/ml RANK-L were used as a model for osteoclastogenesis. Estradiol (10(-8)M) for 5 days induced an inhibition of osteoclast differentiation and beta3 expression. Estradiol inhibited significantly the adhesion of mature osteoclasts by 30%. Furthermore estradiol-induced apoptosis shown by with nuclear condensation and Bax/Bcl2 ratio. In addition, estradiol enhanced caspase-3, -8 and -9 activities. This effect completely disappeared using specific caspase-8 inhibitor. However, increased caspase-3 activity by estradiol was observed in the presence of caspase-9 inhibitor, indicating the preferential involvement of caspase-8 pathway. Fas and FasL mRNA expression was not regulated by estradiol. However, estradiol enhanced caspase-3 activity in Fas-induced apoptosis on mature osteoclasts, suggesting that this might interact with the Fas-signaling pathway. These data suggest that estradiol decreases bone resorption by several mechanisms including adhesion and apoptosis of osteoclasts.
Collapse
Affiliation(s)
- D Saintier
- INSERM U606, Centre Viggo Petersen, Hôpital Lariboisière, 2 Rue Ambroise Paré, 75010 Paris, France
| | | | | | | | | | | |
Collapse
|
309
|
Solakidi S, Psarra AMG, Sekeris CE. Differential subcellular distribution of estrogen receptor isoforms: localization of ERalpha in the nucleoli and ERbeta in the mitochondria of human osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:382-92. [PMID: 15993498 DOI: 10.1016/j.bbamcr.2005.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/13/2005] [Accepted: 05/16/2005] [Indexed: 11/28/2022]
Abstract
The localization of estrogen receptors alpha (ERalpha) and beta (ERbeta) in osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cells was studied by immunofluorescence labelling and confocal laser scanning microscopy, as well as by subcellular fractionation and immunoblotting of the proteins of the fractions with respective antibodies. In both cell types, ERalpha was localized mainly in the nucleus, particularly concentrated on nuclear structures, which on the basis of their staining with pyronin and with antibodies against the nucleoli-specific Ki67 antigen and C23-nucleolin, were characterized as nucleoli. A faint, diffuse ERalpha staining was also observed in the cytoplasm. ERbeta was specifically enriched at the site of the mitochondria, visualized by labelling with the vital dye CMX and antibody against the mitochondrial-specific cytochrome oxidase subunit I. Immunoblotting experiments corroborated the immunofluorescence labelling distribution of ERalpha and ERbeta. These findings support the concept of a direct action of steroid/thyroid hormones on mitochondrial functions by way of their cognate receptors and also suggest a direct involvement of ERalpha in nucleolar-related processes.
Collapse
Affiliation(s)
- S Solakidi
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Laboratory of Molecular Endocrinology, 48 Vas Constantinou Avenue, 11635, Athens, Greece
| | | | | |
Collapse
|
310
|
Böttner M, Dubal DB, Rau SW, Suzuki S, Wise PM. Stroke injury in rats causes an increase in activin A gene expression which is unaffected by oestradiol treatment. J Neuroendocrinol 2006; 18:97-103. [PMID: 16420278 DOI: 10.1111/j.1365-2826.2005.01384.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Activins are members of the transforming growth factor-beta superfamily that exert neurotrophic and neuroprotective effects on various neuronal populations. To determine the possible function of activin in stroke injury, we assessed which components of the activin signalling pathway were modulated in response to middle cerebral artery occlusion (MCAO). Furthermore, because oestradiol replacement protects against MCAO-induced cell death, we explored whether oestradiol replacement influences activin gene expression. Female Sprague-Dawley rats underwent permanent MCAO and the expression of activins and their corresponding receptors was determined by semiquantitative reverse transcriptase-polymerase chain reaction at 24 h after onset of ischaemia. We observed up-regulation of activin betaA and activin type I receptor A mRNA in response to injury. Dual-label immunocytochemistry followed by confocal z-stack analysis showed that the activin A expressing cells comprised neurones. Next, we monitored the time course of activin betaA mRNA expression in oestradiol- or vehicle-treated rats at 4, 8, 16 and 24 h after MCAO via in situ hybridisation. Starting at 4 h after injury, activin betaA mRNA was up-regulated in cortical and striatal areas in the ipsilateral hemisphere. Activin betaA mRNA levels in the cortex increased dramatically with time and were highest at 24 h after the insult, and oestradiol replacement did not influence this increase.
Collapse
Affiliation(s)
- M Böttner
- Department of Anatomy, University of Lübeck, D-23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
311
|
Henriksen K, Gram J, Høegh-Andersen P, Jemtland R, Ueland T, Dziegiel MH, Schaller S, Bollerslev J, Karsdal MA. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1341-8. [PMID: 16251418 PMCID: PMC1603785 DOI: 10.1016/s0002-9440(10)61221-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autosomal dominant osteopetrosis type I (ADOI) is presumably caused by gain-of-function mutations in the LRP5 gene. Patients with a T253I mutation in LRP5 have a high bone mass phenotype, characterized by increased mineralizing surface index but abnormally low numbers of small osteoclasts. To investigate the effect of the T253I mutation in LRP5 on osteoclasts, we isolated CD14+ monocytes from ADOI patients and assessed their ability to generate osteoclasts when treated with RANKL and M-CSF compared to that of age- and sex-matched control osteoclasts. We found normal osteoclastogenesis, expression of osteoclast markers, morphology, and localization of proteins involved in bone resorption, such as ClC-7 and cathepsin K. The ability to resorb bone was also normal. In vivo, we compared the bone resorption and bone formation response to T3 in ADOI patients and age- and sex-matched controls. We found attenuated resorptive response to T3 stimulation, despite a normal bone formation response, in alignment with the reduced number of osteoclasts in vivo. These data demonstrate that ADOI osteoclasts are normal with respect to all aspects investigated in vitro. We speculate that the mutations causing ADOI alter the osteoblastic phenotype toward a smaller potential for supporting osteoclastogenesis.
Collapse
Affiliation(s)
- Kim Henriksen
- Pharmos Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Ribe County Hospital, Esbjerg, and the University Hospital of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
The role of the immune system in the development of senile osteoporosis, which arises primarily through the effects of estrogen deficiency and secondary hyperparathyroidism, is slowly being unraveled. This review focuses on our current understanding of how the components of this complex-interlinked system are regulated and how these fit with previous models of senile and postmenopausal osteoporosis. There is certainly substantial evidence that bone remodeling is a tightly regulated, finely balanced process influenced by subtle changes in proinflammatory and inhibitory cytokines as well as hormones and cellular components that act primarily but not exclusively through the receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin system. In addition, an acute or chronic imbalance in the system due to infection or inflammation could contribute to systemic (or local) bone loss and increase the risk of fracture. Although significant progress has been made, there remains much to be done in unraveling this complex interaction between the immune system and bone.
Collapse
Affiliation(s)
- Jackie A Clowes
- Mayo Clinic College of Medicine, Endocrine Research Unit, St Mary's Hospital, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
313
|
Chung YW, Kim TS, Lee SY, Lee SH, Choi Y, Kim N, Min BM, Jeong DW, Kim IY. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol Lett 2006; 160:143-50. [PMID: 16111838 DOI: 10.1016/j.toxlet.2005.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 06/27/2005] [Indexed: 01/26/2023]
Abstract
The possible effects of sodium selenite on mature osteoclasts were investigated. Incubation of osteoclast-like cells differentiated from RAW 264.7 cells with sodium selenite induced apoptosis as revealed by morphological changes, internucleosomal DNA fragmentation, and activation of caspase-3. Selenite also induced generation of the superoxide anion and reduced the number of free thiol groups in the osteoclast-like cells, suggestive of a shift to a more oxidizing intracellular environment. In addition, selenite induced protein aggregation by thiol cross-linking, loss of the mitochondrial membrane potential, and cytochrome c release in mitochondria isolated from the osteoclast-like cells. Finally, selenite-induced DNA fragmentation in osteoclasts was inhibited both by cyclosporin A, a blocker of the mitochondrial permeability transition pore, and by DEVD-CHO, a cell-permeable inhibitor of caspase-3. These results thus suggest that selenite induces apoptosis mediated by the mitochondrial pathway in mature osteoclasts.
Collapse
Affiliation(s)
- Youn Wook Chung
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Lewis JS, Meeke K, Osipo C, Ross EA, Kidawi N, Li T, Bell E, Chandel NS, Jordan VC. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J Natl Cancer Inst 2005; 97:1746-59. [PMID: 16333030 DOI: 10.1093/jnci/dji400] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We previously developed an estrogen receptor (ER)-positive breast cancer cell line (MCF-7:5C) that is resistant to long-term estrogen deprivation and undergoes rapid and complete apoptosis in the presence of physiologic concentrations of 17beta-estradiol. Here, we investigated the role of the mitochondrial apoptotic pathway in this process. METHODS Apoptosis in MCF-7:5C cells treated with estradiol, fulvestrant, or vehicle (control) was investigated by annexin V-propidium iodide double staining and 4',6-diamidino-2-phenylindole (DAPI) staining. Apoptosis was also analyzed in MCF-7:5C cells transiently transfected with small interfering RNAs (siRNAs) to apoptotic pathway components. Expression of apoptotic pathway intermediates was measured by western blot analysis. Mitochondrial transmembrane potential (psim) was determined by rhodamine-123 retention assay. Mitochondrial pathway activity was determined by cytochrome c release and cleavage of poly(ADP-ribose) polymerase (PARP) protein. Tumorigenesis was studied in ovariectomized athymic mice that were injected with MCF-7:5C cells. Differences between the treatment groups and control group were determined by two-sample t test or one-factor analysis of variance. All statistical tests were two-sided. RESULTS MCF-7:5C cells treated with estradiol underwent apoptosis and showed increased expression of proapoptotic proteins, decreased psim, enhanced cytochrome c release, and PARP cleavage compared with cells treated with fulvestrant or vehicle. Blockade of Bax, Bim, and p53 mRNA expression by siRNA reduced estradiol-induced apoptosis relative to control by 76% [95% confidence interval (CI) = 73% to 79%, P < .001], 85% [95% CI = 90% to 80%, P < .001], and 40% [95% CI = 45% to 35%, P < .001], respectively, whereas blockade of FasL by siRNA had no effect. Estradiol caused complete regression of MCF-7:5C tumors in vivo. CONCLUSION The mitochondrial pathway of apoptosis plays a critical role in estradiol-induced apoptosis in long-term estrogen-deprived breast cancer cells. Physiologic concentrations of estradiol could potentially be used to induce apoptosis and tumor regression in tumors that have developed resistance to aromatase inhibitors.
Collapse
Affiliation(s)
- Joan S Lewis
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Michael H, Härkönen PL, Väänänen HK, Hentunen TA. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 2005; 20:2224-32. [PMID: 16294275 DOI: 10.1359/jbmr.050803] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/21/2005] [Accepted: 07/28/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED Using human peripheral blood CD14(+) osteoclast precursors, we show that testosterone directly inhibits osteoclast formation and bone resorption at physiological concentrations. Instead, estrogen has no direct effects, whereas its action seems to be mediated through osteoblasts by producing osteoprotegerin. Both estrogen and testosterone acts through their cognate receptors. INTRODUCTION Estrogen (E2) deficiency is associated with both the development of postmenopausal and senile form of osteoporosis in elderly women. Testosterone (Te) deficiency, on the other hand, may cause osteoporosis in men. In both sexes, osteoporosis is associated with disturbed bone turnover, including increased bone resorption caused by enhanced osteoclast formation and increased osteoclast activity. However, the mechanisms by which E2 or Te act on bone are not fully understood, and one of the central questions is whether these hormones act directly on osteoclast precursors or whether their action is mediated through osteoblastic cells. MATERIALS AND METHODS We cultured human peripheral blood CD14(+) osteoclast precursors in the presence of RANKL, macrophage-colony stimulating factor (M-CSF), TNF-alpha, and dexamethasone to induce them to differentiate into osteoclasts. To study the possible osteoblast-mediated effects, osteoclast precursors were also co-cultured either with human MG-63 or SaOS-2 osteoblast-derived osteosarcoma cells. These cultures were treated with 10(-8)-10(-12) M of E2 or Te for 7 days. RESULTS E2 did not have any direct effect on osteoclast formation, whereas testosterone inhibited osteoclast formation and bone resorption in a dose-dependent manner. In co-cultures, where MG-63 or SaOS-2 cells were present, E2 and Te inhibited osteoclast formation in a dose-dependent manner. At the same time, E2 and Te treatment in MG-63 or SaOS-2 cell-containing cultures stimulated significantly the formation of osteoprotegerin (OPG) compared with untreated cultures measured by ELISA assay from the culture medium. The effects of E2 and Te on osteoclast formation and bone resorption were completely antagonized by an E2 receptor (ER) antagonist, ICI 182,780, and an androgen receptor (AR) antagonist, flutamide, suggesting ER- and AR-mediated mechanisms, respectively, in these cultures. CONCLUSIONS Te is likely to have direct and indirect inhibitory effects on human osteoclast formation and bone resorption, whereas the effect of E2 on osteoclast precursors and osteoclasts seems to be mediated by osteoblastic cells. Inhibitory effect of E2 is associated with the stimulated secretion of OPG by osteoblast-derived osteosarcoma cells. Mechanism of action of E2 and Te is mediated by ER and AR, respectively.
Collapse
Affiliation(s)
- Husheem Michael
- Department of Anatomy, Institute of Biomedicine, University of Turku, Finland
| | | | | | | |
Collapse
|
316
|
Abstract
Osteoporosis is a disorder in which loss of bone strength leads to fragility fractures. This review examines the fundamental pathogenetic mechanisms underlying this disorder, which include: (a) failure to achieve a skeleton of optimal strength during growth and development; (b) excessive bone resorption resulting in loss of bone mass and disruption of architecture; and (c) failure to replace lost bone due to defects in bone formation. Estrogen deficiency is known to play a critical role in the development of osteoporosis, while calcium and vitamin D deficiencies and secondary hyperparathyroidism also contribute. There are multiple mechanisms underlying the regulation of bone remodeling, and these involve not only the osteoblastic and osteoclastic cell lineages but also other marrow cells, in addition to the interaction of systemic hormones, local cytokines, growth factors, and transcription factors. Polymorphisms of a large number of genes have been associated with differences in bone mass and fragility. It is now possible to diagnose osteoporosis, assess fracture risk, and reduce that risk with antiresorptive or other available therapies. However, new and more effective approaches are likely to emerge from a better understanding of the regulators of bone cell function.
Collapse
Affiliation(s)
- Lawrence G Raisz
- University of Connecticut Health Center, Musculoskeletal Institute, Farmington, Connecticut 06032, USA.
| |
Collapse
|
317
|
Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 2005; 34:1015-30, xi. [PMID: 16310636 DOI: 10.1016/j.ecl.2005.07.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
318
|
Fox SW, Lovibond AC. Current insights into the role of transforming growth factor-beta in bone resorption. Mol Cell Endocrinol 2005; 243:19-26. [PMID: 16219413 DOI: 10.1016/j.mce.2005.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2005] [Indexed: 01/25/2023]
Abstract
Transforming growth factor-beta (TGF-beta) elicits a variety of effects on cellular proliferation and differentiation. The major repository for TGF-beta is bone, where it possesses separate facilitative and suppressive actions on osteoclast differentiation and bone resorption. Without a direct enabling stimulus from TGF-beta monocytes cannot form osteoclasts but instead follow macrophage differentiation pathways. This facilitative action depends on an ability to promote a state in which precursors are resistant to anti-osteoclastic inflammatory signals. Following the initiation of resorption TGF-beta is released from bone matrix. This acts on osteoblasts to reduce the availability of the osteoclast differentiation factor, RANKL (receptor activator of NFkappaB ligand) and thereby indirectly limits further osteoclast formation. Thus TGF-beta has a fundamental role in the control of bone resorption having actions that first allow monocytes to develop into osteoclasts then subsequently limiting the extent and duration of resorption after its release from the bone matrix.
Collapse
Affiliation(s)
- Simon W Fox
- Ecotoxicology and Stress Biology Research Group, Room A413 Portland Square, School of Biological Science, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | | |
Collapse
|
319
|
Kwok S, Qin L, Partridge NC, Selvamurugan N. Parathyroid hormone stimulation and PKA signaling of latent transforming growth factor-beta binding protein-1 (LTBP-1) mRNA expression in osteoblastic cells. J Cell Biochem 2005; 95:1002-11. [PMID: 15880704 DOI: 10.1002/jcb.20453] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid hormone (PTH) regulates bone remodeling and calcium homeostasis by acting on osteoblasts. Recently, the gene expression profile changes in the rat PTH (1-34, 10(-8)M)-treated rat osteoblastic osteosarcoma cell line, UMR 106-01, using DNA microarray analysis showed that mRNA for LTBP-1, a latent transforming growth factor (TGF-beta)-binding protein is stimulated by PTH. Latent TGF-beta binding proteins (LTBPs) are required for the proper folding and secretion of TGF-beta, thus modifying the activity of TGF-beta, which is a local factor necessary for bone remodeling. We show here by real time RT-PCR that PTH-stimulated LTBP-1 mRNA expression in rat and mouse preosteoblastic cells. PTH also stimulated LTBP-1 mRNA expression in all stages of rat primary osteoblastic cells but extended expression was found in differentiating osteoblasts. PTH also stimulated TGF-beta1 mRNA expression in rat primary osteoblastic cells, indicating a link between systemic and local factors for intracellular signaling in osteoblasts. An additive effect on LTBP-1 mRNA expression was found when UMR 106-01 cells were treated with PTH and TGF-beta1 together. We further examined the signaling pathways responsible for PTH-stimulated LTBP-1 and TGF-beta1 mRNA expression in UMR 106-01 cells. The PTH stimulation of LTBP-1 and TGF-beta1 mRNA expression was dependent on the PKA and the MAPK (MEK and p38 MAPK) pathways, respectively in these cells, suggesting that PTH mediates its effects on osteoblasts by several intracellular signaling pathways. Overall, we demonstrate here that PTH stimulates LTBP-1 mRNA expression in osteoblastic cells and this is PKA-dependent. This event may be important for PTH action via TGF-beta in bone remodeling.
Collapse
Affiliation(s)
- Sukyee Kwok
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
320
|
Abstract
TGF-beta1 is a ubiquitous growth factor that is implicated in the control of proliferation, migration, differentiation, and survival of many different cell types. It influences such diverse processes as embryogenesis, angiogenesis, inflammation, and wound healing. In skeletal tissue, TGF-beta1 plays a major role in development and maintenance, affecting both cartilage and bone metabolism, the latter being the subject of this review. Because it affects both cells of the osteoblast and osteoclast lineage, TGF-beta1 is one of the most important factors in the bone environment, helping to retain the balance between the dynamic processes of bone resorption and bone formation. Many seemingly contradictory reports have been published on the exact functioning of TGF-beta1 in the bone milieu. This review provides an overall picture of the bone-specific actions of TGF-beta1 and reconciles experimental discrepancies that have been reported for this multifunctional cytokine.
Collapse
Affiliation(s)
- Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Campus Drie Eiken, 2610 Antwerp, Belgium
| | | | | | | |
Collapse
|
321
|
Abstract
Postmenopausal osteoporosis stems from estrogen deficiency. The mechanisms by which estrogen deficiency drives bone destruction are complex and poorly understood. Recent findings from animal models suggest that postmenopausal bone loss may stem in large measure from a pathologic upregulation of the adaptive immune response. While the role of activated T cells in the bone loss driven by inflammatory conditions such as rheumatoid arthritis has been well documented, only recently has the role of T cells in the bone destruction associated with estrogen deficiency begun to be appreciated. In vivo and in vitro models of postmenopausal osteoporosis demonstrate that the activation and expansion of tumor necrosis factor-a producing T cells is a key step in estrogen deficiency driven bone loss and is regulated by multiple interacting cytokines including transforming growth factor-b, interleukin-7, and interferon-g, as well as by the process of antigen presentation. This paper presents recent findings pertaining to this new view of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- M Neale Weitzmann
- Division of Endocrinology & Metabolism & Lipids, Emory University School of Medicine, WMRB 1305, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | |
Collapse
|
322
|
Solakidi S, Psarra AMG, Nikolaropoulos S, Sekeris CE. Estrogen receptors alpha and beta (ERalpha and ERbeta) and androgen receptor (AR) in human sperm: localization of ERbeta and AR in mitochondria of the midpiece. Hum Reprod 2005; 20:3481-7. [PMID: 16123086 DOI: 10.1093/humrep/dei267] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The central role of estrogens and androgens in the male reproductive system has focused attention on the presence and distribution of their cognate receptors [estrogen receptor (ER) alpha, ERbeta and androgen receptor (AR)] in male reproductive tissues and cells. Since the presence of steroid hormone receptors in mitochondria of mammalian cells has been well documented, we investigated the possibility of mitochondrial localization of sex steroid hormone receptors in sperm. METHODS AND RESULTS Applying immunofluorescence labelling and confocal laser scanning microscopy we show that the estrogen receptor beta and the AR of human sperm are specifically enriched in the midpiece, at the site of the mitochondria, which were visualized by labelling with the vital dye CMX. Nuclear and mitochondrial localization of AR was also detected in LnCap human prostate cancer cells. Differentially, most of the ERalpha immunostaining is in the form of a compact zone at a region corresponding to the equatorial segment of the upper post-acrosomal region of the sperm head. Immunoblotting experiments using sperm extracts revealed the presence of a 66 and a 45 kDa protein reacting with the ERalpha antibody, one 64 kDa protein reacting with the ERbeta antibody and a 110 and a 90 kDa protein reacting with the antibody against AR. CONCLUSIONS Our findings suggest that the differential localization of AR and ER isoforms in human sperm reveals distinct roles of these receptors in the physiology of sperm cells and, perhaps, also in the process of fertilization.
Collapse
Affiliation(s)
- S Solakidi
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Laboratory of Molecular Endocrinology, 48 Vas Constantinou Ave, 11635 Athens, Greece
| | | | | | | |
Collapse
|
323
|
Rogers CJ, Mee JM, Kaufmann GF, Dickerson TJ, Janda KD. Toward cocaine esterase therapeutics. J Am Chem Soc 2005; 127:10016-7. [PMID: 16011362 PMCID: PMC1352337 DOI: 10.1021/ja053086a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine is among the most reinforcing of all drugs of abuse, yet no effective pharmacotherapy is available. Herein, we report the development and characterization of phage-displayed cocaine esterases with pharmacologically relevant kinetic parameters (kcat/Km approximately 104 M-1 s-1).
Collapse
Affiliation(s)
- Claude J Rogers
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
324
|
Roux S, Lambert-Comeau P, Saint-Pierre C, Lépine M, Sawan B, Parent JL. Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis. Biochem Biophys Res Commun 2005; 333:42-50. [PMID: 15936719 DOI: 10.1016/j.bbrc.2005.05.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/14/2005] [Indexed: 11/26/2022]
Abstract
Survival and apoptosis are crucial aspects of the osteoclast life cycle. Although osteoclast survival has been extensively studied, little is known about the mechanisms involved in human osteoclast apoptosis. In the present study, cord blood monocytes (CBMs) were used as the source of human osteoclast precursors. When cultured in the presence of M-CSF and RANKL, CBMs formed multinucleated cells that expressed RANK and calcitonin receptor, and were able to resorb bone. These cells expressed TRAIL receptors (R1-R4). Surprisingly, although TRAIL-receptor expression was not detectable in osteoclasts from normal bone, osteoclasts from myeloma specimens did express TRAIL receptors to a variable extent. Significantly, we have shown for the first time that this pathway is indeed functional in human osteoclasts, and that apoptosis occurred and was significantly greater in the presence of TRAIL. In addition, we have shown that a Fas-activating antibody is also able to induce osteoclast apoptosis, as did TGFbeta, whereas the survival factor M-CSF decreased apoptosis. Overall, these findings suggest that death receptors, TRAIL receptors and Fas, could be involved in osteoclast apoptosis in humans.
Collapse
Affiliation(s)
- Sophie Roux
- Department of Medicine, Division of Rheumatology, Sherbrooke University, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
325
|
Kerschan-Schindl K, Hawa G, Kudlacek S, Woloszczuk W, Pietschmann P. Serum levels of cathepsin K decrease with age in both women and men. Exp Gerontol 2005; 40:532-5. [PMID: 15935595 DOI: 10.1016/j.exger.2005.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/01/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Bone turnover increases with age. In a previous study, we reported on bone metabolism in young and elderly women and men. The aim of the present investigation was to evaluate potential age- and gender-related changes in cathepsin K, a cysteine protease that plays an important role in the degradation of the organic matrix of bone. Twenty-five healthy premenopausal women, 24 young healthy men, 26 elderly women, and 25 elderly men participated in the study. Elderly women and men had significantly lower cathepsin K levels than younger ones. In both men and women, serum levels of cathepsin K were negatively correlated with age. In men there was a statistically significant negative correlation between serum levels of cathepsin K and osteoprotegerin, which inhibits osteoclast differentiation and activation. No association was found between serum levels of cathepsin K and bone-specific alkaline phosphatase, osteocalcin, or 25-hydroxy vitamin D. Thus, the age-related increase in OPG, which markedly inhibits the expression of cathepsin K, may also reduce serum levels of cathepsin K. Despite the age-related increase in bone resorption, this study shows lower cathepsin K values in elderly women and men than in younger subjects. It might be speculated that a different enzyme could compensate for the decline in cathepsin K during old age.
Collapse
Affiliation(s)
- K Kerschan-Schindl
- Department of Physical Medicine and Rehabilitation, University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
326
|
Meijler MM, Kaufmann GF, Qi L, Mee JM, Coyle AR, Moss JA, Wirsching P, Matsushita M, Janda KD. Fluorescent cocaine probes: a tool for the selection and engineering of therapeutic antibodies. J Am Chem Soc 2005; 127:2477-84. [PMID: 15725002 DOI: 10.1021/ja043935e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cocaine is a highly addictive drug, and despite intensive efforts, effective therapies for cocaine craving and addiction remain elusive. In recent years, we and others have reported advances in anti-cocaine immunopharmacotherapy based on specific antibodies capable of sequestering the drug before it reaches the brain. In an effort to obtain high affinity therapeutic anti-cocaine antibodies, either whole IgGs or other antibody constructs, fluorescence spectroscopic techniques could provide a means of assisting selection and engineering strategies. We report the synthesis of a series of cocaine-fluorophore conjugates (GNC-F1, GNC-F2, GNC-I) and the functional evaluation of these compounds against single-chain Fv antibodies obtained via crystallographic analysis/engineering and against commercially available anti-cocaine monoclonal antibodies with a wide range of cocaine-binding affinities. From these studies, we determined that the GNC-F2 fluorophore reproduced affinity constants obtained using [(3)H]-labeled cocaine. We anticipate that the readily synthesized and nonradioactive GNC-F2 will find use both as a tool for bioimaging and in the high-throughput selection and engineering of potential therapeutic antibodies against cocaine.
Collapse
Affiliation(s)
- Michael M Meijler
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, BCC-582, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Xing L, Boyce BF. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun 2005; 328:709-20. [PMID: 15694405 DOI: 10.1016/j.bbrc.2004.11.072] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 11/24/2022]
Abstract
In postnatal life, the skeleton undergoes continuous remodeling in which osteoclasts resorb aged or damaged bone, leaving space for osteoblasts to make new bone. The balance of proliferation, differentiation, and apoptosis of bone cells determines the size of osteoclast or osteoblast populations at any given time. Bone cells constantly receive signals from adjacent cells, hormones, and bone matrix that regulate their proliferation, activity, and survival. Thus, the amount of bone and its microarchitecture before and after the menopause or following therapeutic intervention with drugs, such as sex hormones, glucocorticoids, parathyroid hormone, and bisphosphonates, is determined in part by effects of these on survival of osteoclasts, osteoblasts, and osteocytes. Understanding the mechanisms and regulation of bone cell apoptosis will enhance our knowledge of bone cell function and help us to develop better therapeutics for the management of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, NY, USA.
| | | |
Collapse
|
328
|
Miyazaki T, Matsunaga T, Miyazaki S, Hokari S, Komoda T. Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats. J Cell Biochem 2005; 93:503-12. [PMID: 15372622 DOI: 10.1002/jcb.20201] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated time-course changes in the expression of receptor activator of nuclear factor-kappaB (RANK), its ligand (RANKL), osteoprotegerin (OPG), bone-type alkaline phosphatase (BAP), and tartrate-resistant acid phosphatase (TRAP) in ovariectomized (OVX) rats. Samples of sera and coccyges were used for analysis of the enzyme activities and expression levels of proteins and mRNAs, and an immunohistochemical analysis was also performed. Serum BAP activity increased to 158.6% of the pre-operation value at 1 week after OVX, and then decreased to 38.7% at 8 weeks after OVX. On the other hand, the serum TRAP activity increased to 130.9% of the pre-operation level at 1 week after OVX, and was maintained at a high level, compared with the pre-operation level. The patterns of BAP and TRAP activity in the coccyges specimens were similar to those seen in the sera. The expression profiles of TRAP, RANK, and RANKL proteins in the coccyx specimens were similar to the pattern of serum TRAP activity, while the profiles of the BAP and OPG proteins were similar to the pattern of serum BAP activity in OVX rats. The changes in the mRNA expression levels of the osteogenic proteins were similar to those for protein expression. These biochemical changes in OVX rats were confirmed by immunohistochemical studies. Our results suggest that not only osteoclastogenesis accelerated but also osteoblastogenesis transiently increased during the early phase of osteoporosis.
Collapse
Affiliation(s)
- Takashi Miyazaki
- Department of Biochemistry, Saitama Medical School, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | | | | | | | | |
Collapse
|
329
|
Abstract
Hormone replacement therapy prevents bone loss and the increase in bone resorption due to the hormone deficiency in oestrogen in postmenopausal women. The WHI (Women's Health Initiative) randomised, double-blind study against placebo, demonstrated that which all the epidemiological trials had already suggested: replacement therapy can reducing by around 30% the risk of fractures in postmenopausal women. Administration of hormone replacement therapy requires account being taken of (in view of the uncertainties regarding the anti-fracture effect of low dose therapy): the duration (in view of the absence of remnant effect of the product on bone loss and on the risk of fracture) and the benefit/risk ration (in view of the benefits demonstrated on climacteric disorders, but the increase in risk of breast cancer). The menopause is the occasion to assess individual risks, notably vascular and of fractures, taking into account the clinical risk factors and measurement of bone density.
Collapse
Affiliation(s)
- Christian Roux
- Service de rhumatologie, Université René Descartes, Hôpital Cochin, 27, rue du Faubourg, St Jacques, 75014 Paris.
| |
Collapse
|
330
|
Finkelman RD. Re: Effect of estrogen and calcitonin therapies on bone density in a lateral area adjacent to implants placed in the tibiae of ovariectomized rats. Duarte PM, César-Neto JB, Sallum AW, Sallum EA, Nociti FH Jr (2003;74:1618-1624). Re: Guest editorial. Consideration of systemic hormone status when treating patients with osteopenia. Boyan BD, Schwartz Z (2003;74:1692-1693). J Periodontol 2005; 75:1742-3. [PMID: 15732881 DOI: 10.1902/jop.2004.75.12.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
331
|
Abstract
Sex steroids play a major role in the regulation of bone turnover. Thus, gonadectomy in either sex is associated with an increase in bone remodeling, increased bone resorption, and a relative deficit in bone formation, resulting in accelerated bone loss. Recent physiological studies have established an important role for estrogen in regulating bone turnover not only in females, but also in males. Studies in mice with knock out of the estrogen receptor, aromatase, or androgen receptor have provided important insights into the in vivo mechanisms of sex steroid action on bone. The cellular and molecular mediators of sex steroid effects on the bone-forming osteoblasts and bone-resorbing osteoclasts are also being increasingly better defined. Estrogen inhibits bone remodeling by concurrently suppressing osteoblastogenesis and osteoclastogenesis from marrow precursors. Both estrogen and androgens inhibit bone resorption via effects on the receptor activator of NF-kappaB ligand (RANKL)/RANK/osteoprotegerin system, as well as by reducing the production of a number of pro-resorptive cytokines, along with direct effects on osteoclast activity and lifespan. Sex steroid effects on bone formation are also likely mediated by multiple mechanisms, including a prolongation of osteoblast lifespan via non-genotropic mechanisms, as well as effects on osteoblast differentiation and function. These pleiotropic actions of sex steroids on virtually all aspects of bone metabolism belie the importance of the skeleton not only in providing structural support for the body and in locomotion, but also as a dynamic tissue responsive, among other things, to the reproductive needs of the organism for calcium.
Collapse
Affiliation(s)
- Farhan Syed
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
332
|
Manolagas SC, Kousteni S, Chen JR, Schuller M, Plotkin L, Bellido T. Kinase-mediated transcription, activators of nongenotropic estrogen-like signaling (ANGELS), and osteoporosis: a different perspective on the HRT dilemma. Kidney Int 2005:S41-9. [PMID: 15461702 DOI: 10.1111/j.1523-1755.2004.09107.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies in bone, as well as other nonreproductive target tissues of sex steroid, like the cardiovascular and the central nervous system (CNS), have elucidated a previously unappreciated mechanism of sex steroid action involving the rapid activation of mitogen-activated protein kinases and/or phosphatidyl inositol 3 kinase, and consequent potent regulatory affects on the transcription of a set of genes that is distinct from that regulated through classic (genotropic) control of transcription. These actions stem from an unexpected function of the classic nuclear receptors outside the nucleus, most probably from receptor interactions within distinct signal transduction pathways in preassembled scaffolds. Importantly, these nongenotropic actions are mediated by the ligand-binding domain of the receptor and can be functionally dissociated from classic transcriptional activation with synthetic ligands, termed activators of nongenotropic estrogen-like signaling (ANGELS). We highlight this evidence and discuss its pharmacotherapeutic implications vis a vis the dilemmas posed by the recently appreciated shortfalls of postmenopausal hormone replacement therapy.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 587, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
333
|
Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G. Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res 2005; 319:383-93. [PMID: 15688188 DOI: 10.1007/s00441-004-1053-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/15/2004] [Indexed: 11/30/2022]
Abstract
Flavonols, in contrast to soybean isoflavones, are the most abundant phytoestrogens in western diets, being present in onions, beans, fruits, red wine, and tea. They may protect against atherosclerosis, inhibit certain cancer cell types, and reduce bone resorption. The most widely distributed flavonol is quercetin, which occurs mainly as its glycoside, rutin, but data are very scarce regarding the precise mechanism of action of these compounds on bone-resorbing cells at concentrations similar to those detected in human plasma. We have therefore investigated the effects of nanomolar concentrations of quercetin and rutin on the development and activity of osteoclasts in vitro compared with the effects of 17beta-estradiol. Nonadherent porcine bone marrow cells were cultured on dentine slices in the presence of 10 nM 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), with or without 10 nM quercetin, 10 nM rutin or 10 nM 17beta-estradiol for 11 days. Multinuclear TRAP+ cells that resorbed dentine (osteoclasts) developed in the presence of 1,25(OH)2D3, but their number was significantly reduced by quercetin, rutin, and 17beta-estradiol (P < 0.05). Like 17beta-estradiol, both flavonols also significantly reduced resorption (P<0.05) as assessed by the size of pits resorbed on dentine slices. Osteoclasts and osteoclast progenitors contained estrogen receptor alpha (ERalpha), ERbeta, and RANK proteins. Both flavonols increased nuclear ERbeta protein and decreased ERalpha protein of osteoclast progenitors. Moreover, rutin reduced RANK protein, whereas 17beta-oestradiol and quercetin promoted apoptosis by cleavage of caspase-8 and caspase-3. All the effects of flavonols were reversed by 1 microM ICI 182,780, an estrogen antagonist. Thus, the anti-resorbing properties of flavonols are mainly mediated by ER proteins through the inhibition of RANK protein or the activation of caspases.
Collapse
Affiliation(s)
- Claudia M Rassi
- Laboratoire de Nutrition et de Sécurité Alimentaire, Institut National de la Recherche Agronomique, Bâtiment 230, 78350, Jouy en Josas, France
| | | | | | | | | |
Collapse
|
334
|
Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 2005; 20:177-84. [PMID: 15647810 DOI: 10.1359/jbmr.041114] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/13/2004] [Accepted: 09/21/2004] [Indexed: 11/18/2022]
Abstract
There continues to be uncertainty about the classification of available drugs for treating osteoporosis. We find that grouping them into anti-catabolic and anabolic classes based on the mechanisms of their action on bone remodeling and fracture reduction removes ambiguities and provides a relatively straightforward classification. The recent introduction of teriparatide into clinical practice initiated the era of anabolic therapy for osteoporosis, but it is still unclear how to define an anabolic drug. All drugs that increase bone mass do so by affecting bone remodeling. When their mechanisms of action on bone remodeling and on fracture reduction are considered, we find that anti-osteoporotic drugs fall naturally into either anti-catabolic or anabolic classes. Anti-catabolic drugs increase bone strength and reduce fractures mainly by decreasing the number of bone multicellular units (BMUs). This reduces perforative resorption and preserves skeletal microarchitecture (by preventing further structural damage to trabecular bone and increased porosity in cortical bone induced by high bone remodeling). Reduction in bone remodeling by anti-catabolic drugs may increase bone mass moderately during the interval in which previously initiated BMUs are completing mineralization. Some anti-catabolic drugs may also enhance the formation phase of the remodeling cycle, but their major action is to reduce overall bone turnover (i.e., the number of BMUs in bone). In contrast, anabolic drugs increase bone strength and reduce fractures by substantially increasing bone mass as a result of an overall increase in the number of BMUs combined with a positive BMU balance (the magnitude of the formation phase is greater than that of the resorption phase). Some anabolic drugs also induce renewed modeling, increase periosteal apposition and repair of trabecular microstructure. We hope that this classification will serve as a starting point for continued discussion on the important issue of nomenclature.
Collapse
Affiliation(s)
- B Lawrence Riggs
- Endocrine Research Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
335
|
Sakai N, Iseki K, Suzuki S, Mori T, Hagino S, Zhang Y, Yokoya S, Kawasaki Y, Suzuki J, Isome M, Wada I, Homma Y, Suzuki H. Uninephrectomy induces progressive glomerulosclerosis and apoptosis in anti-Thy1 glomerulonephritis. Pathol Int 2005; 55:19-26. [PMID: 15660699 DOI: 10.1111/j.1440-1827.2005.01781.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Administration of the anti-Thy1 antibody in rats induces reversible glomerulonephritis resembling human mesangiolytic and mesangioproliferative diseases. The purpose of the present study was to design a model of irreversible glomerulosclerosis, using the anti-Thy1 antibody injection after uninephrectomy, and examine it, focusing on apoptosis in the process of progressive sclerotic changes. Wistar rats were divided into three groups: one-kidney groups (group I and III) and a two-kidney group (group II). All groups were injected with the anti-Thy1 antibody (OX-7) at day 0, and group I and III were uninephrectomized at day -6. Only group III rats were given a half dose of OX-7 as compared with group I and II. Rats were killed for histological examinations at days 7, 14 and 30. In group I, progressive glomerular lesions, such as glomerular adhesion to Bowman's capsule, crescent formation, and collapse of capillary tufts were observed at days 14 and 30. No significant differences were observed in the pathological findings between group I and III. There was a significantly higher number of glomerular terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling-positive cells in group I as compared to group II at days 7 and 14. Moreover, the glomerular expression of transforming growth factor-beta, heparan sulfate proteoglycan and chondroitin sulfate proteoglycan significantly increased in group I as compared to group II at days 7 and 14. Progressive glomerulosclerosis can be induced in the rat by a single injection of the anti-Thy1 antibody after unilateral nephrectomy. It is suggested that apoptosis and extracellular matrix accumulation play an important role in the development of glomerulosclerosis.
Collapse
Affiliation(s)
- Nobuko Sakai
- Department of Pediatrics, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Abstract
NF-kappaB and c-Fos are transcription factors that are activated in immune cells and in most other cell types following stimulation by a variety of factors, including cytokines, growth factors, and hormones. They regulate the expression of a large number of genes, and both are activated in osteoclast precursors after RANKL, IL-1, or TNF bind to their respective receptors. However, of these cytokines, only RANKL is required for the induction of osteoclast formation in vivo. Nevertheless, it is likely that IL-1, TNF, and other cytokines participate in the upregulation of osteoclast formation seen in a variety of conditions that affect the skeleton in which cytokine production is increased, including estrogen deficiency and inflammatory bone diseases. In this review, the RANKL/ OPG/RANK system and roles for NF-kappaB and c-Fos in osteoclasts are reviewed along with our current understanding of how this system may be disrupted in common bone diseases, such as postmenopausal osteoporosis, inflammatory arthritis, and Paget's disease.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
337
|
Abstract
Osteoporosis is one major health condition that contributes to excess morbidity and mortality in women after menopause. In the past, hormone therapy (HT) was prescribed commonly for symptoms of menopause, and there was also evidence that HT protected against osteoporosis. Recently, however, the overall health risks have been reported to exceed benefits, with the beneficial effects seen only in the decreased incidence of hip fractures and colon cancer. The role of HT in menopausal women is unclear at this time, although many women may require it to reduce menopausal symptoms. Osteoporosis may be an area where the benefit of using HT may outweigh the risks in a select group of women. Further, because lower than usual doses of estrogen have been shown to reduce menopausal symptoms and to protect bone, additional research will likely expand physicians' current knowledge of the use of HT in menopausal women. This article reviews the use of low-dose estrogen to promote bone health in postmenopausal women.
Collapse
Affiliation(s)
- Faryal S Mirza
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
338
|
Chen JR, Plotkin LI, Aguirre JI, Han L, Jilka RL, Kousteni S, Bellido T, Manolagas SC. Transient versus sustained phosphorylation and nuclear accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. J Biol Chem 2004; 280:4632-8. [PMID: 15557324 DOI: 10.1074/jbc.m411530200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sex steroids exert anti-apoptotic effects on osteoblasts/osteocytes but exert pro-apoptotic effects on osteoclasts, in both cases requiring activation of the extracellular signal-regulated kinases (ERKs). To explain the mechanistic basis of this divergence, we searched for differences in the kinetics of phosphorylation and/or in the subcellular localization of ERKs in response to 17beta-estradiol in the two cell types. In contrast to its transient effect on ERK phosphorylation in osteocytic cells (return to base line by 30 min), 17beta-estradiol-induced ERK phosphorylation in osteoclasts was sustained for at least 24 h following exposure to the hormone. Conversion of sustained ERK phosphorylation to transient, by means of cholera toxin-induced activation of the adenylate cyclase/cAMP/protein kinase A pathway, abrogated the pro-apoptotic effect of 17beta-estradiol on osteoclasts. Conversely, prolongation of ERK activation in osteocytes, by means of leptomycin B-induced inhibition of ERK export from the nucleus or overexpression of a green fluorescent protein-ERK2 mutant that resides permanently in the nucleus, converted the anti-apoptotic effect of 17beta-estradiol to a pro-apoptotic one. These findings indicate that the kinetics of ERK phosphorylation and the length of time that phospho-ERKs are retained in the nucleus are responsible for pro-versus anti-apoptotic effects of estrogen on different cell types of bone and perhaps their many other target tissues.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Division of Endocrinology & Metabolism, Center for Osteoporosis & Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Kapur RP, Yao Z, Iida MHK, Clarke CM, Doggett B, Xing L, Boyce BF. Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine Rank. J Bone Miner Res 2004; 19:1689-97. [PMID: 15355564 DOI: 10.1359/jbmr.040713] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 05/10/2004] [Accepted: 05/21/2004] [Indexed: 01/22/2023]
Abstract
UNLABELLED We report the first case of lethal autosomal recessive osteopetrosis in mice caused by a spontaneous 8-bp deletion in exon 2 of the Rank gene. The phenotype, including a block in RANKL-dependent osteoclast differentiation and lymph node agenesis, copies that of Rank(-/-) mice, which have been produced by targeted recombination. INTRODUCTION Commitment of osteoclast progenitors to the osteoclast lineage requires RANKL/RANK-mediated intercellular signals. Gene-targeted defects in this signaling pathway resulted in osteoclast deficiency and severe osteopetrosis in mice, but to date, there have been no reports of spontaneous mutations in Rankl or Rank resulting in osteopetrosis. MATERIALS AND METHODS Mice with malignant osteopetrosis and absent lymph nodes appeared spontaneously in a highly inbred colony. Appropriate crosses were analyzed to establish the pattern of inheritance. Tissues from affected pups and littermates were evaluated grossly, histopathologically, and radiographically. Osteoclast development from splenocytes was tested in vitro under a variety of conditions, including after infection with RANK-encoding retrovirus. Rank mutational analysis was performed by direct sequencing of RT-PCR products and genomic DNA. RESULTS The inheritance pattern was consistent with autosomal recessive inheritance, and the phenotype resembled that of either Rankl or Rank knockout mice with the exception of as yet unexplained death of most mice 2-3 weeks after weaning. Osteoclast precursors from the spleens of affected pups failed to form osteoclasts in vitro when stimulated with macrophage-colony stimulating factor (M-CSF) and RANKL, unless they were forced to express wildtype Rank cDNA. Molecular genetic studies identified an 8-bp deletion in exon 2 of the Rank gene. The resulting allele, termed Rank(del8), encodes only a small portion of the RANK extracellular domain, which is probably nonfunctional. CONCLUSIONS The phenotypic similarities between Rank(del8) and mice previously described with a combined insertion and deletion in Rank confirm the role of this receptor in osteoclastogenesis and lymph node development and suggest that some forms of malignant osteopetrosis in humans could result from a similar defect.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Pathology, Children's Hospital and Regional Medical Center, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
340
|
Martin MJ, Buckland-Wright JC. Sensitivity analysis of a novel mathematical model identifies factors determining bone resorption rates. Bone 2004; 35:918-28. [PMID: 15454099 DOI: 10.1016/j.bone.2004.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 05/18/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022]
Abstract
The development of pharmaceutical treatments for bone disease can be enhanced by computational models that predict their effects on resorption and rates of remodeling. Therefore, a simple mathematical model was formulated to simulate erosion depth and duration of resorption, using Michaelis-Menten (M-M) equations to describe changing rates of cellular activity during the two phases of bone resorption. The model was based on histomorphometric data and cellular interactions that occur in the bone microenvironment cited from the literature. Availability of bone substrate for osteoclastic activity during Phase I was assumed to be limited by the ratio of RANKL (ligand for receptor activator for nuclear factor kappaB) to osteoprotegerin (OPG) ('effective RANKL'). The required presence of marrow stromal cell produced macrophage-colony stimulating factor (M-CSF) for osteoclast action was represented as a factor equal to 1 for healthy bone. Growth factors released from the matrix during Phase I were assumed to cause two negative feedback effects: (1) the inhibitory effect of transforming growth factor-beta1 (TGFbeta1)-induced production of OPG by marrow osteoblast stromal cells, reducing effective RANKL; (2) the apoptosis of osteoclast nuclei assumed to occur at high concentrations of TGFbeta. This signaled the end of Phase I. During Phase II, cellular activity to remove the collagen fibrils left behind by osteoclasts was also simulated by Michaelis-Menten kinetic equations. Results of sensitivity analysis revealed variation in resorption depth and duration to fluctuate within 6% and 7% of the baseline value for changes in most input parameters. However, resorption depth was reduced and the duration of resorption lengthened by both a decrease in matrix TGFbeta and an increase the apoptotic threshold. Furthermore, the duration of resorption, but not erosion depth, was sensitive to changes in the maximum rate of cellular activity during removal of collagen fibrils. This mathematical model, which simulates the changing rates of cellular activity, has identified factors that reduce the duration and depth of resorption. It also suggests new targets for modeling therapeutic intervention to slow the rate of bone remodeling.
Collapse
Affiliation(s)
- M J Martin
- Applied Clinical Anatomy Research Centre, School of Biomedical Sciences, King's College London, UK.
| | | |
Collapse
|
341
|
Abstract
During growth, estrogen deficiency in females may produce increased bone size as a result of removal of inhibition of periosteal apposition, while failed endosteal apposition produces thin cortices and trabeculae in the smaller bone. In males, androgen deficiency produces reduced periosteal and endosteal apposition, reduced bone size, and cortical and trabecular thickness. At completion of longitudinal growth, advancing age is associated with emergence of a negative bone balance in each basic multicellular unit (BMU) because of reduced bone formation. Bone loss occurs, but slowly because the remodeling rate is slow. In midlife, in females, estrogen deficiency increases remodeling rate, increases the volume of bone resorbed, and decreases the volume of bone formed in each of the numerous BMUs remodeling bone on its endosteal (endocortical, trabecular, intracortical) surfaces so bone loss accelerates. In males, remodeling rate remains slow and is driven largely by reduced bone formation in the BMU. Hypogonadism in 20% to 30% of elderly men contributes to bone loss. In both sexes, calcium malabsorption and secondary hyperparathyroidism may partly be sex-hormone dependent and contributes to cortical bone loss. Concurrent periosteal apposition partly offsets endosteal bone loss, but less so in women than in men. More women than men fracture because their smaller skeleton incurs greater architectural damage and adapts less by periosteal apposition. Sex hormone deficiency during growth and aging is pivotal in the pathogenesis of bone fragility.
Collapse
Affiliation(s)
- Ego Seeman
- Department of Endocrinology, Austin Hospital, Heidelberg 3084, Melbourne, Australia.
| |
Collapse
|
342
|
Forsblad d'Elia H, Christgau S, Mattsson LÅ, Saxne T, Ohlsson C, Nordborg E, Carlsten H. Hormone replacement therapy, calcium and vitamin D3 versus calcium and vitamin D3 alone decreases markers of cartilage and bone metabolism in rheumatoid arthritis: a randomized controlled trial [ISRCTN46523456]. Arthritis Res Ther 2004; 6:R457-68. [PMID: 15380045 PMCID: PMC546286 DOI: 10.1186/ar1215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/06/2004] [Accepted: 06/21/2004] [Indexed: 12/26/2022] Open
Abstract
This study aimed to evaluate the effects of hormone replacement therapy (HRT), known to prevent osteoporosis and fractures, on markers of bone and cartilage metabolism. Furthermore, we assessed whether changes in these markers corresponded to alterations in bone mineral density and radiographic joint destructions in postmenopausal women with rheumatoid arthritis. Eighty-eight women were randomized to receive HRT, calcium, and vitamin D3, or calcium and vitamin D3 alone, for 2 years. Bone turnover was studied by analyzing serum levels of C-terminal telopeptide fragments of type I collagen (CTX-I), C-terminal telopeptide of type I collagen (ICTP), bone sialoprotein, and C-terminal propeptide of type I procollagen (PICP) and cartilage turnover by urinary levels of collagen type II C-telopeptide degradation fragments (CTX-II) and cartilage oligomeric matrix protein (COMP) in serum. Treatment with HRT resulted in decrease in CTX-I (P < 0.001), ICTP (P < 0.001), PICP (P < 0.05), COMP (P < 0.01), and CTX-II (P < 0.05) at 2 years. Reductions in CTX-I, ICTP, and PICP were associated with improved bone mineral density. Of the markers tested, CTX-I reflected bone turnover most sensitively; it was reduced by 53 +/- 6% in the patients receiving HRT. Baseline ICTP (P < 0.001), CTX-II (P < 0.01), and COMP (P < 0.05) correlated with the Larsen score. We suggest that biochemical markers of bone and cartilage turnover may provide a useful tool for assessing novel treatment modalities in arthritis, concerning both joint protection and prevention of osteoporosis.
Collapse
Affiliation(s)
- Helena Forsblad d'Elia
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | - Lars-Åke Mattsson
- Department of Obstetrics and Gynecology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Tore Saxne
- Department of Rheumatology, Lund University Hospital, Lund, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Elisabeth Nordborg
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| |
Collapse
|
343
|
Lindsay R. Hormones and bone health in postmenopausal women. Endocrine 2004; 24:223-30. [PMID: 15542889 DOI: 10.1385/endo:24:3:223] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 08/05/2004] [Accepted: 08/10/2004] [Indexed: 12/26/2022]
Abstract
Although it has been known for some time that estrogen deficiency is a major pathogenetic factor for osteoporosis related fractures among postmenopausal women, the capability of estrogen (with or without a progestin) to prevent fractures has often been questioned. The publication of the data from the two hormone clinical trials of the Women's Health Initiative lays that discussion to rest. In both studies what have been considered a standard dose of conjugated estrogen with or without medroxyprogesterone acetate significantly reduced the risk of all fractures, including clinical vertebral fractures and hip fracture, in a population of postmenopausal women, average age 63 yr, not selected for osteoporosis by BMD. These results are particularly impressive given the difficulty of finding a fracture benefit in lower risk populations with other anti-resorptive agents. Surrogate data on lower doses of hormone therapy suggest a fracture benefit would be seen if studies were to be done. The other outcomes in WHI make it important to define appropriate clinical guidelines for use of hormone therapy for prevention of fractures in postmenopausal women.
Collapse
|
344
|
Abstract
Bone is the major sink and store for calcium and it fulfils essential roles in the maintenance of extracellular free ionised calcium concentration ([Ca2+]e) within its homeostatic range (1.1-1.3 mM). In response to acute hypercalcaemia or hypocalcaemia, Ca2+ is rapidly transported into or out of bone. Bone turnover (and therefore bone Ca2+ turnover) achieves the long-term correction of the [Ca2+]e by the metabolic actions of osteoblasts and osteoclasts, as they respectively incorporate or release Ca2+ from bone. These processes are regulated by the actions of hormones, such as parathyroid hormone (PTH), the release of which is a function of the [Ca2+]e, and is regulated by the action of the Ca2+-sensing receptor (CaR) in the parathyroid gland. Tissue culture studies indicate that bone cells also directly respond to increasing and decreasing [Ca2+]e in their vicinity, independently of the systemic factors. Nevertheless, further studies are necessary to identify how the acute and long-term local changes in [Ca2+]e affect bone cells and the physiological processes they are involved in. Also, the molecular mechanisms which enable the bone cells to sense and respond to [Ca2+]e are not clear. Like the parathyroid cells, bone cells also express the CaR, and accumulating evidence indicates the involvement of this receptor in their responses to the changing extracellular ionic environment.
Collapse
Affiliation(s)
- Melita M Dvorak
- School of Biological Sciences, G38 Stopford Building, Oxford Road, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
345
|
Duque G, El Abdaimi K, Henderson JE, Lomri A, Kremer R. Vitamin D inhibits Fas ligand-induced apoptosis in human osteoblasts by regulating components of both the mitochondrial and Fas-related pathways. Bone 2004; 35:57-64. [PMID: 15207741 DOI: 10.1016/j.bone.2004.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2003] [Revised: 02/26/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
Apoptosis plays an important role in the regulation of bone turnover. Previously, we showed that 1,25(OH)2D3, the active form of vitamin D, may increase osteoblast survival by inhibiting apoptosis induced by serum deprivation. Human osteoblasts express the Fas receptor on their surface and its interaction with Fas ligand has been closely associated with human osteoblast apoptosis. To investigate the mechanism of 1,25(OH)2D3 inhibition of apoptosis in osteoblasts isolated from human calvaria, cells were exposed to Fas antibody. Visualization of apoptotic cells using annexin V revealed a significant decrease in apoptosis at 48 h in the presence of 1,25(OH)2D3 (14 +/- 4%, P < 0.04) compared with non-treated cells (52 +/- 4%). Furthermore, flow cytometric analysis of TUNEL-labeled osteoblasts showed a significant decrease in apoptotic cells in 1,25(OH)2D3-treated cultures (12 +/- 2%) at 48 h compared with non-treated cultures (44 +/- 3%, P < 0.04). Additionally, cells treated with 1,25(OH)2D3 survived longer as found by MTS analysis. To further explore the mechanism of 1,25(OH)2D3-mediated inhibition of apoptosis, we examined the changes in activation of death domain proteins, cleavage of caspases and mitochondrial regulators of apoptosis by Western blot analysis. A significant inhibition of caspase-8 cleavage and activity in 1,25(OH)2D3-treated cells was observed in conjunction with a decrease in the expression of the proapoptotic protein Bax with a significant increase in the expression of antiapoptotic protein Bcl-2. Furthermore, the levels of p21Cip1/WAF1, which inhibits the cleavage of caspase-8, was found to be highly induced in 1,25(OH)2D3-treated cells. In summary, these results demonstrate that the anti-apoptotic effect of 1,25(OH)2D3 in human osteoblasts after the activation of Fas-ligand is mediated by the regulation of components of both the mitochondrial and Fas-related pathways.
Collapse
Affiliation(s)
- Gustavo Duque
- Calcium Research Laboratory, McGill University, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | |
Collapse
|
346
|
Fernando RI, Wimalasena J. Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell 2004; 15:3266-84. [PMID: 15121878 PMCID: PMC452582 DOI: 10.1091/mbc.e03-11-0823] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/16/2004] [Accepted: 04/18/2004] [Indexed: 11/11/2022] Open
Abstract
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.
Collapse
Affiliation(s)
- Romaine Ingrid Fernando
- Department of Obstetrics and Gynecology, and the Comparative and Experimental Medicine Program, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee 37920, USA
| | | |
Collapse
|
347
|
Abstract
Patients with fragility fractures may have abnormalities in bone structural and material properties such as larger or smaller bone size, fewer and thinner trabeculae, thinned and porous cortices, and tissue mineral content that is either too high or too low. Bone models and remodels throughout life; however, with advancing age, less bone is replaced than was resorbed within each remodeling site. Estrogen deficiency at menopause increases remodeling intensity: a greater proportion of bone is remodeled on its endosteal (inner) surface, and within each of the many sites even more bone is lost as more bone is resorbed while less is replaced, accelerating architectural decay. In men, there is no midlife increase in remodeling. Bone loss within each remodeling site proceeds by reduced bone formation, producing trabecular and cortical thinning. Hypogonadism in 20-30% of elderly men contributes to bone loss. In both sexes, calcium malabsorption and secondary hyperparathyroidism increase remodeling: more bone is removed from an ever-diminishing bone mass. As bone is removed from the endosteal envelope, concurrent bone formation on the periosteal (outer) bone surface during aging partly offsets bone loss and increases bone's cross-sectional area. Periosteal apposition is less in women than in men; therefore, women have more net bone loss because they gain less on the periosteal surface, not because they resorb more on the endosteal surface. More women than men experience fractures because their smaller skeleton incurs greater architectural damage and adapts less by periosteal apposition.
Collapse
Affiliation(s)
- Ego Seeman
- Dept. of Endocrinology, Austin and Repatriation Medical Centre, University of Melbourne, Heidelberg, Melbourne 3084, Australia
| |
Collapse
|
348
|
Abstract
Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and expansion of cortical bone. Such androgen action on bone is mediated by the AR and ERalpha.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
349
|
Yoneda T, Ishimaru N, Arakaki R, Kobayashi M, Izawa T, Moriyama K, Hayashi Y. Estrogen deficiency accelerates murine autoimmune arthritis associated with receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis. Endocrinology 2004; 145:2384-91. [PMID: 14726437 DOI: 10.1210/en.2003-1536] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aims of this study were to evaluate the in vivo effects of estrogen deficiency in MRL/lpr mice as a model for rheumatoid arthritis and to analyze the possible relationship between immune dysregulation and receptor activator of nuclear factor-kappaB ligand (RANKL)-mediated osteoclastogenesis. Experimental studies were performed in ovariectomized (Ovx)-MRL/lpr, Ovx-MRL+/+, sham-operated-MRL/lpr, and sham-operated-MRL+/+ mice. Severe autoimmune arthritis developed in younger Ovx-MRL/lpr mice until 24 wk of age, whereas these lesions were entirely recovered by pharmacological levels of estrogen administration. A significant elevation in serum rheumatoid factor, anti-double-stranded DNA, and anti-type II collagen was found in Ovx-MRL/lpr mice and recovered in mice that underwent estrogen administration. A high proportion of CD4(+) T cells bearing RANKL was found, and an enhanced expression of RANKL mRNA and an impaired osteoprotegerin mRNA was detected in the synovium. An increase in both osteoclast formation and bone resorption pits was found. These results indicate that estrogen deficiency may play a crucial role in acceleration of autoimmune arthritis associated with RANKL-mediated osteoclastogenesis in a murine model for rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomoko Yoneda
- Department of Pathology, Tokushima University School of Dentistry, Tokushima 770-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
350
|
Ham KD, Carlson CS. Effects of estrogen replacement therapy on bone turnover in subchondral bone and epiphyseal metaphyseal cancellous bone of ovariectomized cynomolgus monkeys. J Bone Miner Res 2004; 19:823-9. [PMID: 15068506 DOI: 10.1359/jbmr.040309] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/13/2004] [Accepted: 01/14/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED ERT decreases the severity of OA in OVX cynomolgus monkeys. We show that bone formation is greater in subchondral bone compared with epiphyseal/metaphyseal cancellous bone of the proximal tibia in these animals and that ERT decreases bone formation in both sites. ERT may decrease the risk of OA by decreasing bone formation in the SC bone. INTRODUCTION Estrogen replacement therapy (ERT) decreases the risk of osteoporosis and osteoarthritis (OA) in postmenopausal women and has been shown to have direct effects on cells of the bone and cartilage. The effects of ERT have been studied extensively in cancellous bone, but subchondral (SC) bone directly beneath the articular cartilage has not been specifically evaluated. MATERIALS AND METHODS Adult feral female cynomolgus monkeys were bilaterally ovariectomized (OVX) to simulate menopause; treated with ERT, soy phytoestrogens (SPE), or no hormones (OVX control group) for 3 years; and labeled with calcein before necropsy. At necropsy, the proximal tibias of 20 randomly selected animals from each treatment group were embedded in bioplastic and sectioned. Areas and labels were measured in a carefully defined region of the SC bone and epiphyseal/metaphyseal cancellous (EMC) bone, and derived dynamic and static indices were compared between the SC and EMC bone and among the three treatment groups. Student's t-tests and ANOVA were used to compare the data. RESULTS AND CONCLUSIONS In both the SC and EMC bone, most of the values for the dynamic indices were highest in the OVX control group, intermediate in the SPE group, and lowest in the ERT group. The mineralizing surface, double-labeled surface, and bone formation rate (surface referent) were significantly higher in the SC bone compared with the EMC bone in the OVX control group. The trabecular bone volume was higher in the SPE-treated group compared with the OVX control group. In conclusion, the bone turnover indices were higher in the SC bone compared with the EMC bone, and ERT decreased these indices in both sites. In addition, SPE was protective against loss of bone volume.
Collapse
Affiliation(s)
- Kimberley D Ham
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | | |
Collapse
|