301
|
Ewart L, Dehne EM, Fabre K, Gibbs S, Hickman J, Hornberg E, Ingelman-Sundberg M, Jang KJ, Jones DR, Lauschke VM, Marx U, Mettetal JT, Pointon A, Williams D, Zimmermann WH, Newham P. Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery. Annu Rev Pharmacol Toxicol 2017; 58:65-82. [PMID: 29029591 DOI: 10.1146/annurev-pharmtox-010617-052722] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.
Collapse
Affiliation(s)
- Lorna Ewart
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | | | - Kristin Fabre
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451, USA
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Ellinor Hornberg
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, 431 83 Mölndal, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - David R Jones
- Medicines & Healthcare Products Regulatory Agency, London SW1W 9SZ, United Kingdom
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Jerome T Mettetal
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451, USA
| | - Amy Pointon
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | - Dominic Williams
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK), Goettingen 37075, Germany
| | - Peter Newham
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| |
Collapse
|
302
|
Agrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. LAB ON A CHIP 2017; 17:3447-3461. [PMID: 28871305 PMCID: PMC6296378 DOI: 10.1039/c7lc00512a] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Engineered skeletal muscle tissues can be used for in vitro studies that require physiologically relevant models of native tissues. Herein, we describe the development of a three-dimensional (3D) skeletal muscle tissue that recapitulates the architectural and structural complexities of muscle within a microfluidic device. Using a 3D photo-patterning approach, we spatially confined a cell-laden gelatin network around two bio-inert hydrogel pillars, which induce uniaxial alignment of the cells and serve as anchoring sites for the encapsulated cells and muscle tissues as they form and mature. We have characterized the tissue morphology and strain profile during differentiation of the cells and skeletal muscle tissue formation by using a combination of fluorescence microscopy and computational tools. The time-dependent strain profile suggests the existence of individual cells within the gelatin matrix, which differentiated to form a multinucleated skeletal muscle tissue bundle as a function of culture time. We have also developed a method to calculate the passive tension generated by the engineered muscle tissue bundles suspended between two pillars. Finally, as a proof-of-concept we have examined the applicability of the skeletal muscle-on-chip system as a screening platform and in vitro muscle injury model. We studied the dose-dependent effect of cardiotoxin on the engineered muscle tissue architecture and its subsequent effect on the passive tension. This simple yet effective tool can be appealing for studies that necessitate the analysis of skeletal muscle structure and function, including preclinical drug discovery and development.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.
| | | | | |
Collapse
|
303
|
Parsa H, Wang BZ, Vunjak-Novakovic G. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. LAB ON A CHIP 2017; 17:3264-3271. [PMID: 28832065 DOI: 10.1039/c7lc00415j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current in vitro models fall short in deciphering the mechanisms of cardiac hypertrophy induced by volume overload. We developed a pneumatic microfluidic platform for high-throughput studies of cardiac hypertrophy that enables repetitive (hundreds of thousands of times) and robust (over several weeks) manipulation of cardiac μtissues. The platform is reusable for stable and reproducible mechanical stimulation of cardiac μtissues (each containing only 5000 cells). Heterotypic and homotypic μtissues produced in the device were pneumatically loaded in a range of regimes, with real-time on-chip analysis of tissue phenotypes. Concentrated loading of the three-dimensional cardiac tissue faithfully recapitulated the pathology of volume overload seen in native heart tissue. Sustained volume overload of μtissues was sufficient to induce pathological cardiac remodeling associated with upregulation of the fetal gene program, in a dose-dependent manner.
Collapse
Affiliation(s)
- Hesam Parsa
- Department of Biomedical Engineering, Columbia University, 622 west 168th St., New York, NY 10032, USA.
| | | | | |
Collapse
|
304
|
Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. LAB ON A CHIP 2017; 17:3026-3036. [PMID: 28795174 PMCID: PMC5621042 DOI: 10.1039/c7lc00462a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.
Collapse
Affiliation(s)
- L A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD 20892, USA.
| | | |
Collapse
|
305
|
Ong LJY, Islam A, DasGupta R, Iyer NG, Leo HL, Toh YC. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication 2017; 9:045005. [DOI: 10.1088/1758-5090/aa8858] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
306
|
Czirok A, Isai DG, Kosa E, Rajasingh S, Kinsey W, Neufeld Z, Rajasingh J. Optical-flow based non-invasive analysis of cardiomyocyte contractility. Sci Rep 2017; 7:10404. [PMID: 28871207 PMCID: PMC5583397 DOI: 10.1038/s41598-017-10094-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/02/2017] [Indexed: 01/21/2023] Open
Abstract
Characterization of cardiomyocyte beat patterns is needed for quality control of cells intended for surgical injection as well as to establish phenotypes in disease modeling or toxicity studies. Optical-flow based analysis of videomicroscopic recordings offer a manipulation-free and efficient characterization of contractile cycles, an important characteristics of cardiomyocyte phenotype. We demonstrate that by appropriate computational analysis of optical flow data one can identify distinct contractile centers and distinguish active cell contractility from passive elastic tissue deformations. Our proposed convergence measure correlates with myosin IIa immuno-localization and is capable to resolve contractile waves and their synchronization within maturing, unlabeled induced pluripotent stem cell-derived cardiomyocyte cultures.
Collapse
Affiliation(s)
- Andras Czirok
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Biological Physics, Eotvos University, Budapest, Hungary.
| | - Dona Greta Isai
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edina Kosa
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sheeja Rajasingh
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - William Kinsey
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zoltan Neufeld
- Department of Mathematics, University of Queensland, Brisbane, Australia
| | - Johnson Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
307
|
Mandrycky C, Phong K, Zheng Y. Tissue engineering toward organ-specific regeneration and disease modeling. MRS COMMUNICATIONS 2017; 7:332-347. [PMID: 29750131 PMCID: PMC5939579 DOI: 10.1557/mrc.2017.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/17/2017] [Indexed: 05/17/2023]
Abstract
Tissue engineering has been recognized as a translational approach to replace damaged tissue or whole organs. Engineering tissue, however, faces an outstanding knowledge gap in the challenge to fully recapitulate complex organ-specific features. Major components, such as cells, matrix, and architecture, must each be carefully controlled to engineer tissue-specific structure and function that mimics what is found in vivo. Here we review different methods to engineer tissue, and discuss critical challenges in recapitulating the unique features and functional units in four major organs-the kidney, liver, heart, and lung, which are also the top four candidates for organ transplantation in the USA. We highlight advances in tissue engineering approaches to enable the regeneration of complex tissue and organ substitutes, and provide tissue-specific models for drug testing and disease modeling. We discuss the current challenges and future perspectives toward engineering human tissue models.
Collapse
Affiliation(s)
- Christian Mandrycky
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kiet Phong
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
308
|
Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC. Organs-on-a-chip. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317726351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last few years, considerable attention has been given to in vitro models in an attempt to reduce the use of animals and to decrease the rate of preclinical failure associated with the development of new drugs. Simple two-dimensional cultures grown in a dish are now frequently replaced by organotypic cultures with three-dimensional (3-D) architecture, which enables interactions between cells, promoting their differentiation and increasing their in vivo likeness. Microengineering now enables the incorporation of small devices into 3-D culture models to reproduce the complex microenvironment of the modeled organ, often referred to as organs-on-a-chip (OoCs). This review describes various OoCs developed to mimic liver, brain, kidney, and lung tissues. Current challenges encountered in attempts to recreate the in vivo environment are described, as well as some examples of OoCs. Finally, attention is given to the ongoing evolution of OoCs with the aim of solving one of the major limitations in that they can only represent a single organ. Multi-organ-on-a-chip (MOC) systems mimic organ interactions observed in the human body and aim to provide the features of compound uptake, metabolism, and excretion, while simultaneously allowing for insights into biological effects. MOCs might therefore represent a new paradigm in drug development, providing a better understanding of dose responses and mechanisms of toxicity, enabling the detection of drug resistance and supporting the evaluation of pharmacokinetic–pharmacodynamics parameters.
Collapse
Affiliation(s)
- David Bovard
- Philip Morris Products SA, Neuchatel, Switzerland
| | | | | | - Julia Hoeng
- Philip Morris Products SA, Neuchatel, Switzerland
| | | |
Collapse
|
309
|
Zhou R, Xu A, Gingold J, Strong LC, Zhao R, Lee DF. Li-Fraumeni Syndrome Disease Model: A Platform to Develop Precision Cancer Therapy Targeting Oncogenic p53. Trends Pharmacol Sci 2017; 38:908-927. [PMID: 28818333 DOI: 10.1016/j.tips.2017.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Li-Fraumeni syndrome (LFS) is a rare hereditary autosomal dominant cancer disorder. Germline mutations in TP53, the gene encoding p53, are responsible for most cases of LFS. TP53 is also the most commonly mutated gene in human cancers. Because inhibition of mutant p53 is considered to be a promising therapeutic strategy to treat these diseases, LFS provides a perfect genetic model to study p53 mutation-associated malignancies as well as to screen potential compounds targeting oncogenic p53. In this review we briefly summarize the biology of LFS and current understanding of the oncogenic functions of mutant p53 in cancer development. We discuss the strengths and limitations of current LFS disease models, and touch on existing compounds targeting oncogenic p53 and in vitro clinical trials to develop new ones. Finally, we discuss how recently developed methodologies can be integrated into the LFS induced pluripotent stem cell (iPSC) platform to develop precision cancer therapy.
Collapse
Affiliation(s)
- Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Louise C Strong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
310
|
Kolanowski TJ, Antos CL, Guan K. Making human cardiomyocytes up to date: Derivation, maturation state and perspectives. Int J Cardiol 2017; 241:379-386. [DOI: 10.1016/j.ijcard.2017.03.099] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022]
|
311
|
Choi JS, Park JS, Kim B, Lee BT, Yim JH. In vitro biocompatibility of vapour phase polymerised conductive scaffolds for cell lines. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
312
|
Chen WLK, Edington C, Suter E, Yu J, Velazquez JJ, Velazquez JG, Shockley M, Large EM, Venkataramanan R, Hughes DJ, Stokes CL, Trumper DL, Carrier RL, Cirit M, Griffith LG, Lauffenburger DA. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol Bioeng 2017; 114:2648-2659. [PMID: 28667746 PMCID: PMC5614865 DOI: 10.1002/bit.26370] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
Abstract
A capability for analyzing complex cellular communication among tissues is important in drug discovery and development, and in vitro technologies for doing so are required for human applications. A prominent instance is communication between the gut and the liver, whereby perturbations of one tissue can influence behavior of the other. Here, we present a study on human gut‐liver tissue interactions under normal and inflammatory contexts, via an integrative multi‐organ platform comprising human liver (hepatocytes and Kupffer cells), and intestinal (enterocytes, goblet cells, and dendritic cells) models. Our results demonstrated long‐term (>2 weeks) maintenance of intestinal (e.g., barrier integrity) and hepatic (e.g., albumin) functions in baseline interaction. Gene expression data comparing liver in interaction with gut, versus isolation, revealed modulation of bile acid metabolism. Intestinal FGF19 secretion and associated inhibition of hepatic CYP7A1 expression provided evidence of physiologically relevant gut‐liver crosstalk. Moreover, significant non‐linear modulation of cytokine responses was observed under inflammatory gut‐liver interaction; for example, production of CXCR3 ligands (CXCL9,10,11) was synergistically enhanced. RNA‐seq analysis revealed significant upregulation of IFNα/β/γ signaling during inflammatory gut‐liver crosstalk, with these pathways implicated in the synergistic CXCR3 chemokine production. Exacerbated inflammatory response in gut‐liver interaction also negatively affected tissue‐specific functions (e.g., liver metabolism). These findings illustrate how an integrated multi‐tissue platform can generate insights useful for understanding complex pathophysiological processes such as inflammatory organ crosstalk. Biotechnol. Bioeng. 2017;114: 2648–2659. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen L K Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Jason G Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Emma M Large
- CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J Hughes
- CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK
| | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
313
|
Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 2017; 142:112-123. [PMID: 28732246 DOI: 10.1016/j.biomaterials.2017.07.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023]
Abstract
Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair.
Collapse
|
314
|
Abstract
To curb the high cost of drug development, there is an urgent need to develop more predictive tissue models using human cells to determine drug efficacy and safety in advance of clinical testing. Recent insights gained through fundamental biological studies have validated the importance of dynamic cell environments and cellular communication to the expression of high fidelity organ function. Building on this knowledge, emerging organ-on-a-chip technology is poised to fill the gaps in drug screening by offering predictive human tissue models with methods of sophisticated tissue assembly. Organ-on-a-chip start-ups have begun to spawn from academic research to fill this commercial space and are attracting investment to transform the drug discovery industry. This review traces the history, examines the scientific foundation and envisages the prospect of these renowned organ-on-a-chip technologies. It serves as a guide for new members of this dynamic field to navigate the existing scientific and market space.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
315
|
Sayed N, Liu C, Wu JC. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. J Am Coll Cardiol 2017; 67:2161-2176. [PMID: 27151349 DOI: 10.1016/j.jacc.2016.01.083] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prospect of changing the plasticity of terminally differentiated cells toward pluripotency has completely altered the outlook for biomedical research. Human-induced pluripotent stem cells (iPSCs) provide a new source of therapeutic cells free from the ethical issues or immune barriers of human embryonic stem cells. iPSCs also confer considerable advantages over conventional methods of studying human diseases. Since its advent, iPSC technology has expanded with 3 major applications: disease modeling, regenerative therapy, and drug discovery. Here we discuss, in a comprehensive manner, the recent advances in iPSC technology in relation to basic, clinical, and population health.
Collapse
Affiliation(s)
- Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
316
|
Gouveia PJ, Rosa S, Ricotti L, Abecasis B, Almeida HV, Monteiro L, Nunes J, Carvalho FS, Serra M, Luchkin S, Kholkin AL, Alves PM, Oliveira PJ, Carvalho R, Menciassi A, das Neves RP, Ferreira LS. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials 2017. [PMID: 28622605 DOI: 10.1016/j.biomaterials.2017.05.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of engineered cardiac tissue for high-throughput drug screening/toxicology assessment remains largely unexplored. Here we propose a scaffold that mimics aspects of cardiac extracellular matrix while preserving the contractility of cardiomyocytes. The scaffold is based on a poly(caprolactone) (PCL) nanofilm with magnetic properties (MNF, standing for magnetic nanofilm) coated with a layer of piezoelectric (PIEZO) microfibers of poly(vinylidene fluoride-trifluoroethylene) (MNF+PIEZO). The nanofilm creates a flexible support for cell contraction and the aligned PIEZO microfibers deposited on top of the nanofilm creates conditions for cell alignment and electrical stimulation of the seeded cells. Our results indicate that MNF+PIEZO scaffold promotes rat and human cardiac cell attachment and alignment, maintains the ratio of cell populations overtime, promotes cell-cell communication and metabolic maturation, and preserves cardiomyocyte (CM) contractility for at least 12 days. The engineered cardiac construct showed high toxicity against doxorubicin, a cardiotoxic molecule, and responded to compounds that modulate CM contraction such as epinephrine, propranolol and heptanol.
Collapse
Affiliation(s)
- P José Gouveia
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - S Rosa
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - B Abecasis
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - H V Almeida
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - L Monteiro
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - J Nunes
- Center for Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
| | - F Sofia Carvalho
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - M Serra
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - S Luchkin
- CICECO - Materials Institute of Aveiro & Physics Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A Leonidovitch Kholkin
- CICECO - Materials Institute of Aveiro & Physics Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - P Marques Alves
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - P Jorge Oliveira
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - R Carvalho
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - A Menciassi
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - R Pires das Neves
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - L Silva Ferreira
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
317
|
Hughes DJ, Kostrzewski T, Sceats EL. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems. Exp Biol Med (Maywood) 2017; 242:1593-1604. [PMID: 28504617 DOI: 10.1177/1535370217708976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Liver disease represents a growing global health burden. The development of in vitro liver models which allow the study of disease and the prediction of metabolism and drug-induced liver injury in humans remains a challenge. The maintenance of functional primary hepatocytes cultures, the parenchymal cell of the liver, has historically been difficult with dedifferentiation and the consequent loss of hepatic function limiting utility. The desire for longer term functional liver cultures sparked the development of numerous systems, including collagen sandwiches, spheroids, micropatterned co-cultures and liver microphysiological systems. This review will focus on liver microphysiological systems, often referred to as liver-on-a-chip, and broaden to include platforms with interconnected microphysiological systems or multi-organ-chips. The interconnection of microphysiological systems presents the opportunity to explore system level effects, investigate organ cross talk, and address questions which were previously the preserve of animal experimentation. As a field, microphysiological systems have reached a level of maturity suitable for commercialization and consequent evaluation by a wider community of users, in academia and the pharmaceutical industry. Here scientific, operational, and organizational considerations relevant to the wider adoption of microphysiological systems will be discussed. Applications in which microphysiological systems might offer unique scientific insights or enable studies currently feasible only with animal models are described, and challenges which might be addressed to enable wider adoption of the technologies are highlighted. A path forward which envisions the development of microphysiological systems in partnerships between academia, vendors and industry, is proposed. Impact statement Microphysiological systems are in vitro models of human tissues and organs. These systems have advanced rapidly in recent years and are now being commercialized. To achieve wide adoption in the biological and pharmaceutical research communities, microphysiological systems must provide unique insights which translate to humans. This will be achieved by identifying key applications and making microphysiological systems intuitive to use.
Collapse
Affiliation(s)
- David J Hughes
- CN Bio Innovations Limited, Welwyn Garden City AL73AX, UK
| | | | - Emma L Sceats
- CN Bio Innovations Limited, Welwyn Garden City AL73AX, UK
| |
Collapse
|
318
|
Tailoring cardiac environment in microphysiological systems: an outlook on current and perspective heart-on-chip platforms. Future Sci OA 2017; 3:FSO191. [PMID: 28670478 PMCID: PMC5481859 DOI: 10.4155/fsoa-2017-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
|
319
|
Loskill P, Sezhian T, Tharp K, Lee-Montiel FT, Jeeawoody S, Reese WM, Zushin PJH, Stahl A, Healy KE. WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. LAB ON A CHIP 2017; 17:1645-1654. [PMID: 28418430 PMCID: PMC5688242 DOI: 10.1039/c6lc01590e] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration. We report a WAT-on-a-chip system with a footprint of less than 1 mm2 consisting of a separate media channel and WAT chamber connected via small micropores. Analogous to the in vivo blood circulation, convective transport is thereby confined to the vasculature-like structures and the tissues protected from shear stresses. Numerical and analytical modeling revealed that the flow rates in the WAT chambers are less than 1/100 of the input flow rate. Using optimized injection parameters, we were able to inject pre-adipocytes, which subsequently formed adipose tissue featuring fully functional lipid metabolism. The physiologically relevant microfluidic environment of the WAT-chip supported long term culture of the functional adipose tissue for more than two weeks. Due to its physiological, highly controlled, and computationally predictable character, the system has the potential to be a powerful tool for the study of adipose tissue associated diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Peter Loskill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Thiagarajan Sezhian
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kevin Tharp
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Felipe T. Lee-Montiel
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Shaheen Jeeawoody
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Willie Mae Reese
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Pete-James H. Zushin
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kevin E. Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
320
|
Abstract
The National Institutes of Health Microphysiological Systems (MPS) program, led by the National Center for Advancing Translational Sciences, is part of a joint effort on MPS development with the Defense Advanced Research Projects Agency and with regulatory guidance from FDA, is now in its final year of funding. The program has produced many tangible outcomes in tissue chip development in terms of stem cell differentiation, microfluidic engineering, platform development, and single and multi-organ systems-and continues to help facilitate the acceptance and use of tissue chips by the wider community. As the first iteration of the program draws to a close, this Commentary will highlight some of the goals met, and lay out some of the challenges uncovered that will remain to be addressed as the field progresses. The future of the program will also be outlined. Impact statement This work is important to the field as it outlines the progress and challenges faced by the NIH Microphysiological Systems program to date, and the future of the program. This is useful information for the field to be aware of, both for current program stakeholders and future awardees and partners.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
321
|
Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop CE, Dokmeci MR, Atala A, Khademhosseini A. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 2017; 114:E2293-E2302. [PMID: 28265064 PMCID: PMC5373350 DOI: 10.1073/pnas.1612906114] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139;
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Tugba Kilic
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Duckjin Kim
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Seyed Ali Mousavi Shaegh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Orthopaedic Research Center, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran
| | - Solange Massa
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Graduate School Program in Biomedicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Reza Riahi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Sukyoung Chae
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Ning Hu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Huseyin Avci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Metallurgical and Materials Engineering Department, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir 26030, Turkey
| | - Weijia Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Antonia Silvestri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin 10129, Italy
| | - Amir Sanati Nezhad
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- BioMEMS and Bioinspired Microfluidics Laboratory, Center for Bioengineering Research and Education, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ahmad Manbohi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Marine Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran
| | - Fabio De Ferrari
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin 10129, Italy
| | - Alessandro Polini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Giovanni Calzone
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Noor Shaikh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada M5S 1A4
| | - Parissa Alerasool
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Erica Budina
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Jian Kang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Nupura Bhise
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - João Ribas
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Adel Pourmand
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electrical Engineering, Sahand University of Technology, Tabriz 5331711111, Iran
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139;
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Center for Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
322
|
Integration concepts for multi-organ chips: how to maintain flexibility?! Future Sci OA 2017; 3:FSO180. [PMID: 28670472 PMCID: PMC5481865 DOI: 10.4155/fsoa-2016-0092] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/28/2022] Open
Abstract
Multi-organ platforms have an enormous potential to lead to a paradigm shift in a multitude of research domains including drug development, toxicological screening, personalized medicine as well as disease modeling. Integrating multiple organ–tissues into one microfluidic circulation merges the advantages of cell lines (human genetic background) and animal models (complex physiology) and enables the creation of more in vivo-like in vitro models. In recent years, a variety of design concepts for multi-organ platforms have been introduced, categorizable into static, semistatic and flexible systems. The most promising approach seems to be flexible interconnection of single-organ platforms to application-specific multi-organ systems. This perspective elucidates the concept of ‘mix-and-match’ toolboxes and discusses the numerous advantages compared with static/semistatic platforms as well as remaining challenges. ‘Organs-on-a-chip’ are platforms accommodating organ-specific human tissues in microscale 3D chambers with physiologically relevant structure. Broken down to the basic building blocks but simultaneously mimicking essential organ functions, these sophisticated biochips can help reduce the need for animal models in drug development, toxicity screening and basic research. However, to simulate a drug's journey through the human body, it is necessary to consider how a combination of organs responds to a given drug. In this perspective, concepts of realizing such ‘multi-organ platforms’ and the need for ‘mix-and-match’ toolboxes, which contain a range of single-organ units interconnected in individual, application-specific configurations, are discussed.
Collapse
|
323
|
Ellis BW, Acun A, Can UI, Zorlutuna P. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine. BIOMICROFLUIDICS 2017; 11:024105. [PMID: 28396709 PMCID: PMC5367145 DOI: 10.1063/1.4978468] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 05/04/2023]
Abstract
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Aylin Acun
- Bioengineering Graduate Program, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - U Isik Can
- Aerospace and Mechanical Engineering Department, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
324
|
Fine B, Vunjak-Novakovic G. Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomater Sci Eng 2017; 3:1884-1897. [PMID: 33440547 DOI: 10.1021/acsbiomaterials.6b00662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide here an historical context of how studies utilizing engineered human cardiac muscle can complement and in some cases substitute animal and cell models for studies of disease and drug testing. We give an overview of the development of animal models and discuss the ability of novel human tissue models to overcome limited predictive power of cell culture and animal models in studies of drug efficacy and safety. The in vitro generation of cardiac tissue is discussed in the context of state of the art in the field. Finally we describe the assembly of multitissue platforms for more accurate representation of integrated human cardiac physiology and consider the advantages of in silico drug trials to augment our ability to predict drug-drug and organ-organ interactions in humans.
Collapse
Affiliation(s)
- Barry Fine
- Department of Biomedical Engineering and ‡Department of Medicine, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, New York 10027, United States
| |
Collapse
|
325
|
Organs-on-chips: research and commercial perspectives. Drug Discov Today 2017; 22:397-403. [DOI: 10.1016/j.drudis.2016.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
326
|
Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, Chen JC, Lee LYN, George SC, Lee AP, Hughes CCW. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. LAB ON A CHIP 2017; 17:511-520. [PMID: 28092382 PMCID: PMC6995340 DOI: 10.1039/c6lc01422d] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is a growing awareness that complex 3-dimensional (3D) organs are not well represented by monolayers of a single cell type - the standard format for many drug screens. To address this deficiency, and with the goal of improving screens so that drugs with good efficacy and low toxicity can be identified, microphysiological systems (MPS) are being developed that better capture the complexity of in vivo physiology. We have previously described an organ-on-a-chip platform that incorporates perfused microvessels, such that survival of the surrounding tissue is entirely dependent on delivery of nutrients through the vessels. Here we describe an arrayed version of the platform that incorporates multiple vascularized micro-organs (VMOs) on a 96-well plate. Each VMO is independently-addressable and flow through the micro-organ is driven by hydrostatic pressure. The platform is easy to use, requires no external pumps or valves, and is highly reproducible. As a proof-of-concept we have created arrayed vascularized micro tumors (VMTs) and used these in a blinded screen to assay a small library of compounds, including FDA-approved anti-cancer drugs, and successfully identified both anti-angiogenic and anti-tumor drugs. This 3D platform is suitable for efficacy/toxicity screening against multiple tissues in a more physiological environment than previously possible.
Collapse
Affiliation(s)
- Duc T T Phan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Brianna M Craver
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.
| | - Agua Sobrino
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.
| | - Da Zhao
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Jerry C Chen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.
| | - Lilian Y N Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA. and Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA. and Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA. and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, CA 92697, USA
| |
Collapse
|
327
|
Sidorov VY, Samson PC, Sidorova TN, Davidson JM, Lim CC, Wikswo JP. I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater 2017; 48:68-78. [PMID: 27818308 DOI: 10.1016/j.actbio.2016.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Engineered 3D cardiac tissue constructs (ECTCs) can replicate complex cardiac physiology under normal and pathological conditions. Currently, most measurements of ECTC contractility are either made isometrically, with fixed length and without control of the applied force, or auxotonically against a variable force, with the length changing during the contraction. The "I-Wire" platform addresses the unmet need to control the force applied to ECTCs while interrogating their passive and active mechanical and electrical characteristics. A six-well plate with inserted PDMS casting molds containing neonatal rat cardiomyocytes cultured with fibrin for 13-15days is mounted on the motorized mechanical stage of an inverted microscope equipped with a fast sCMOS camera. A calibrated flexible probe provides strain load of the ECTC via lateral displacement, and the microscope detects the deflections of both the probe and the ECTC. The ECTCs exhibited longitudinally aligned cardiomyocytes with well-developed sarcomeric structure, recapitulated the Frank-Starling force-tension relationship, and demonstrated expected transmembrane action potentials, electrical and mechanical restitutions, and responses to both β-adrenergic stimulation and blebbistatin. The I-Wire platform enables creation and mechanical and electrical characterization of ECTCs, and hence can be valuable in the study of cardiac diseases, drug screening, drug development, and the qualification of cells for tissue-engineered regenerative medicine. STATEMENT OF SIGNIFICANCE There is a growing interest in creating engineered heart tissue constructs for basic cardiac research, applied research in cardiac pharmacology, and repair of damaged hearts. We address an unmet need to characterize fully the performance of these tissues with our simple "I-Wire" assay that allows application of controlled forces to three-dimensional cardiac fiber constructs and measurement of both the electrical and mechanical properties of the construct. The advantage of I-Wire over other approaches is that the constructs being measured are truly three-dimensional, rather than a single layer of cells grown within a microfluidic device. We anticipate that the I-Wire will be extremely useful for the evaluation of myocardial constructs created using cardiomyocytes derived from human induced pluripotent stem cells.
Collapse
|
328
|
Ghiaseddin A, Pouri H, Soleimani M, Vasheghani-Farahani E, Ahmadi Tafti H, Hashemi-Najafabadi S. Cell laden hydrogel construct on-a-chip for mimicry of cardiac tissue in-vitro study. Biochem Biophys Res Commun 2017; 484:225-230. [PMID: 28082203 DOI: 10.1016/j.bbrc.2017.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/07/2017] [Indexed: 01/06/2023]
Abstract
Since the leading cause of death are cardiac diseases, engineered heart tissue (EHT) is one of the most appealing topics defined in tissue engineering and regenerative medicine fields. The importance of EHT is not only for heart regeneration but also for in vitro developing of cardiology. Cardiomyocytes could grow and commit more naturally in their microenvironment rather than traditional cultivation. Thus, this research tried to develop a set up on-a-chip to produce EHT based on chitosan hydrogel. Micro-bioreactor was hydrodynamically designed and simulated by COMSOL and produced via soft lithography process. Chitosan hydrogel was also prepared, adjusted, and assessed by XRD, FTIR and also its degradation rate and swelling ratio were determined. Finally, hydrogels in which mice cardiac progenitor cells (CPC) were loaded were injected into the micro-device chambers and cultured. Each EHT in every chamber was evaluated separately. Prepared EHTs showed promising results that expanded in them CPCs and work as an integrated syncytium. High cell density culture was the main accomplishment of this study.
Collapse
Affiliation(s)
- Ali Ghiaseddin
- Biomedical Engineering Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Pouri
- Biomedical Engineering Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Hematology Group, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
329
|
Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1031:405-415. [DOI: 10.1007/978-3-319-67144-4_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
330
|
Occhetta P, Visone R, Rasponi M. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells. Methods Mol Biol 2017. [PMID: 28634953 DOI: 10.1007/978-1-4939-7021-6_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design of innovative tools for generating physiologically relevant three-dimensional (3D) in vitro models has been recently recognized as a fundamental step to study cell responses and long-term tissue functionalities thanks to its ability to recapitulate the complexity and the dimensional scale of the cellular microenvironment, while directly integrating high-throughput and automatic screening capabilities.This chapter addresses the development of a poly(dimethylsiloxane)-based microfluidic platform to (1) generate and culture 3D cellular microaggregates under continuous flow perfusion while (2) conditioning them with different combinations/concentrations of soluble factors (i.e., growth factors, morphogens or drug molecules), in a high-throughput fashion. The proposed microfluidic system thus represents a promising tool for establishing innovative high-throughput models for drug screening, investigation of tissues morphogenesis, and optimization of tissue engineering protocols.
Collapse
Affiliation(s)
- Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.,Department of Biomedicine, University Hospital Basel, University Basel, Hebelstrasse 20, 4056, Basel, Switzerland
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
331
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
332
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
333
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|
334
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
335
|
Abstract
Pluripotent stem cells (PSCs) can differentiate into virtually any cell type in the body, making them attractive for both regenerative medicine and drug discovery. Over the past 10 years, technological advances and innovative platforms have yielded first-in-man PSC-based clinical trials and opened up new approaches for disease modeling and drug development. Induced PSCs have become the foremost alternative to embryonic stem cells and accelerated the development of disease-in-a-dish models. Over the years and with each new discovery, PSCs have proven to be extremely versatile. This review article highlights key advancements in PSC research, from 2006 to 2016, and how they will guide the direction of the field over the next decade.
Collapse
Affiliation(s)
- Erin A Kimbrel
- Astellas Institute for Regenerative Medicine, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Robert Lanza
- Astellas Institute for Regenerative Medicine, 33 Locke Drive, Marlborough, MA 01752, USA
| |
Collapse
|
336
|
Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110:45-59. [PMID: 27710832 PMCID: PMC5198581 DOI: 10.1016/j.biomaterials.2016.09.003] [Citation(s) in RCA: 591] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 02/06/2023]
Abstract
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA.
| | - Andrea Arneri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Simone Bersini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy
| | - Su-Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Kai Zhu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zahra Goli-Malekabadi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 64540, Iran
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cristina Colosi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Sapienza Università di Roma, Rome 00185, Italy
| | - Fabio Busignani
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
| | - Valeria Dell'Erba
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy; Swiss Institute for Regnerative Medicine, Lugano 6900, Switzerland; Cardiocentro Ticino, Lugano 6900, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
337
|
Persson M, Hornberg JJ. Advances in Predictive Toxicology for Discovery Safety through High Content Screening. Chem Res Toxicol 2016; 29:1998-2007. [DOI: 10.1021/acs.chemrestox.6b00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mikael Persson
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Jorrit J. Hornberg
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
338
|
Jackman CP, Carlson AL, Bursac N. Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 2016; 111:66-79. [PMID: 27723557 DOI: 10.1016/j.biomaterials.2016.09.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 01/02/2023]
Abstract
Engineered cardiac tissues hold promise for cell therapy and drug development, but exhibit inadequate function and maturity. In this study, we sought to significantly improve the function and maturation of rat and human engineered cardiac tissues. We developed dynamic, free-floating culture conditions for engineering "cardiobundles", 3-dimensional cylindrical tissues made from neonatal rat cardiomyocytes or human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in fibrin-based hydrogel. Compared to static culture, 2-week dynamic culture of neonatal rat cardiobundles significantly increased expression of sarcomeric proteins, cardiomyocyte size (∼2.1-fold), contractile force (∼3.5-fold), and conduction velocity of action potentials (∼1.4-fold). The average contractile force per cross-sectional area (59.7 mN/mm2) and conduction velocity (52.5 cm/s) matched or approached those of adult rat myocardium, respectively. The inferior function of statically cultured cardiobundles was rescued by transfer to dynamic conditions, which was accompanied by an increase in mTORC1 activity and decline in AMPK phosphorylation and was blocked by rapamycin. Furthermore, dynamic culture effects did not stimulate ERK1/2 pathway and were insensitive to blockers of mechanosensitive channels, suggesting increased nutrient availability rather than mechanical stimulation as the upstream activator of mTORC1. Direct comparison with phenylephrine treatment confirmed that dynamic culture promoted physiological cardiomyocyte growth rather than pathological hypertrophy. Optimized dynamic culture conditions also augmented function of human cardiobundles made reproducibly from cardiomyocytes derived from multiple hPSC lines, resulting in significantly increased contraction force (∼2.5-fold) and conduction velocity (∼1.4-fold). The average specific force of 23.2 mN/mm2 and conduction velocity of 25.8 cm/s approached the functional metrics of adult human myocardium. In conclusion, we have developed a versatile methodology for engineering cardiac tissues with a near-adult functional output without the need for exogenous electrical or mechanical stimulation, and have identified mTOR signaling as an important mechanism for advancing tissue maturation and function in vitro.
Collapse
Affiliation(s)
| | - Aaron L Carlson
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|
339
|
Bielawski KS, Leonard A, Bhandari S, Murry CE, Sniadecki NJ. Real-Time Force and Frequency Analysis of Engineered Human Heart Tissue Derived from Induced Pluripotent Stem Cells Using Magnetic Sensing. Tissue Eng Part C Methods 2016; 22:932-940. [PMID: 27600722 DOI: 10.1089/ten.tec.2016.0257] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Engineered heart tissues made from human pluripotent stem cell-derived cardiomyocytes have been used for modeling cardiac pathologies, screening new therapeutics, and providing replacement cardiac tissue. Current methods measure the functional performance of engineered heart tissue by their twitch force and beating frequency, typically obtained by optical measurements. In this article, we describe a novel method for assessing twitch force and beating frequency of engineered heart tissue using magnetic field sensing, which enables multiple tissues to be measured simultaneously. The tissues are formed as thin structures suspended between two silicone posts, where one post is rigid and another is flexible and contains an embedded magnet. When the tissue contracts it causes the flexible post to bend in proportion to its twitch force. We measured the bending of the post using giant magnetoresistive (GMR) sensors located underneath a 24-well plate containing the tissues. We validated the accuracy of the readings from the GMR sensors against optical measurements. We demonstrated the utility and sensitivity of our approach by testing the effects of three concentrations of isoproterenol and verapamil on twitch force and beating frequency in real-time, parallel experiments. This system should be scalable beyond the 24-well format, enabling greater automation in assessing the contractile function of cardiomyocytes in a tissue-engineered environment.
Collapse
Affiliation(s)
- Kevin S Bielawski
- 1 Department of Mechanical Engineering, University of Washington , Seattle, Washington.,2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| | - Andrea Leonard
- 1 Department of Mechanical Engineering, University of Washington , Seattle, Washington.,2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| | - Shiv Bhandari
- 2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington.,4 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Chuck E Murry
- 2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington.,4 Department of Bioengineering, University of Washington , Seattle, Washington.,5 Department of Pathology, University of Washington , Seattle, Washington.,6 Department of Medicine/Cardiology, University of Washington , Seattle, Washington
| | - Nathan J Sniadecki
- 1 Department of Mechanical Engineering, University of Washington , Seattle, Washington.,2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington.,4 Department of Bioengineering, University of Washington , Seattle, Washington
| |
Collapse
|
340
|
Montoya M, Dorval T, Bickle M. SLAS Europe High-Content Screening Conference in Dresden: A Glimpse of the Future? ACTA ACUST UNITED AC 2016; 21:883-6. [PMID: 27650790 DOI: 10.1177/1087057116662825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Maria Montoya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thierry Dorval
- Biotechnology Chemical-Biology, Insitut de Recherches Servier, Croissy-sur-Seine, France
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
341
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
342
|
Judd J, Lovas J, Huang GN. Isolation, Culture and Transduction of Adult Mouse Cardiomyocytes. J Vis Exp 2016. [PMID: 27685811 DOI: 10.3791/54012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cultured cardiomyocytes can be used to study cardiomyocyte biology using techniques that are complementary to in vivo systems. For example, the purity and accessibility of in vitro culture enables fine control over biochemical analyses, live imaging, and electrophysiology. Long-term culture of cardiomyocytes offers access to additional experimental approaches that cannot be completed in short term cultures. For example, the in vitro investigation of dedifferentiation, cell cycle re-entry, and cell division has thus far largely been restricted to rat cardiomyocytes, which appear to be more robust in long-term culture. However, the availability of a rich toolset of transgenic mouse lines and well-developed disease models make mouse systems attractive for cardiac research. Although several reports exist of adult mouse cardiomyocyte isolation, few studies demonstrate their long-term culture. Presented here, is a step-by-step method for the isolation and long-term culture of adult mouse cardiomyocytes. First, retrograde Langendorff perfusion is used to efficiently digest the heart with proteases, followed by gravity sedimentation purification. After a period of dedifferentiation following isolation, the cells gradually attach to the culture and can be cultured for weeks. Adenovirus cell lysate is used to efficiently transduce the isolated cardiomyocytes. These methods provide a simple, yet powerful model system to study cardiac biology.
Collapse
Affiliation(s)
- Justin Judd
- Cardiovascular Research Institute, University of California, San Francisco
| | - Jonathan Lovas
- Cardiovascular Research Institute, University of California, San Francisco
| | - Guo N Huang
- Cardiovascular Research Institute, University of California, San Francisco;
| |
Collapse
|
343
|
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules 2016; 21:E1128. [PMID: 27571058 PMCID: PMC6274098 DOI: 10.3390/molecules21091128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa.
Collapse
Affiliation(s)
- Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Mara Gilardi
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Department of Biotechnology and Biosciences, PhD School in Life Sciences, University of Milano-Bicocca, Milano 20126, Italy.
| | - Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Basel 4065, Switzerland.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland.
- Swiss Institute for Regenerative Medicine, Lugano 6900, Switzerland.
- Cardiocentro Ticino, Lugano 6900, Switzerland.
| |
Collapse
|
344
|
Kirby RJ, Qi F, Phatak S, Smith LH, Malany S. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility. Toxicol Appl Pharmacol 2016; 305:250-258. [DOI: 10.1016/j.taap.2016.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
|
345
|
iPS Cells-The Triumphs and Tribulations. Dent J (Basel) 2016; 4:dj4020019. [PMID: 29563461 PMCID: PMC5851259 DOI: 10.3390/dj4020019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
The year 2006 will be remembered monumentally in science, particularly in the stem cell biology field, for the first instance of generation of induced pluripotent stem cells (iPSCs) from mouse embryonic/adult fibroblasts being reported by Takahashi and Yamanaka. A year later, human iPSCs (hiPSCs) were generated from adult human skin fibroblasts by using quartet of genes, Oct4, Sox2, Klf4, and c-Myc. This revolutionary technology won Yamanaka Nobel Prize in Physiology and Medicine in 2012. Like human embryonic stem cells (hESCs), iPSCs are pluripotent and have the capability for self-renewal. Moreover, complications of immune rejection for therapeutic applications would be greatly eliminated by generating iPSCs from individual patients. This has enabled their use for drug screening/discovery and disease modelling in vitro; and for immunotherapy and regenerative cellular therapies in vivo, paving paths for new therapeutics. Although this breakthrough technology has a huge potential, generation of these unusual cells is still slow, ineffectual, fraught with pitfalls, and unsafe for human use. In this review, I describe how iPSCs are being triumphantly used to lay foundation for a fully functional discipline of regenerative dentistry and medicine, alongside discussing the challenges of translating therapies into clinics. I also discuss their future implications in regenerative dentistry field.
Collapse
|
346
|
Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, Ferreira L, Khademhosseini A. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development. APPLIED IN VITRO TOXICOLOGY 2016; 2:82-96. [PMID: 28971113 PMCID: PMC5044977 DOI: 10.1089/aivt.2016.0002] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system-in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development.
Collapse
Affiliation(s)
- João Ribas
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Doctoral Program in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Hossein Sadeghi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amir Manbachi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
347
|
Abstract
Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel
in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biochemical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
348
|
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2253-82. [PMID: 26901595 DOI: 10.1002/smll.201503208] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Indexed: 05/20/2023]
Abstract
"Organ-on-a-chip" systems integrate microengineering, microfluidic technologies, and biomimetic principles to create key aspects of living organs faithfully, including critical microarchitecture, spatiotemporal cell-cell interactions, and extracellular microenvironments. This creative platform and its multiorgan integration recapitulating organ-level structures and functions can bring unprecedented benefits to a diversity of applications, such as developing human in vitro models for healthy or diseased organs, enabling the investigation of fundamental mechanisms in disease etiology and organogenesis, benefiting drug development in toxicity screening and target discovery, and potentially serving as replacements for animal testing. Recent advances in novel designs and examples for developing organ-on-a-chip platforms are reviewed. The potential for using this emerging technology in understanding human physiology including mechanical, chemical, and electrical signals with precise spatiotemporal controls are discussed. The current challenges and future directions that need to be pursued for these proof-of-concept studies are also be highlighted.
Collapse
Affiliation(s)
- Fuyin Zheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
349
|
Fernando RN, Chaudhari U, Escher SE, Hengstler JG, Hescheler J, Jennings P, Keun HC, Kleinjans JCS, Kolde R, Kollipara L, Kopp-Schneider A, Limonciel A, Nemade H, Nguemo F, Peterson H, Prieto P, Rodrigues RM, Sachinidis A, Schäfer C, Sickmann A, Spitkovsky D, Stöber R, van Breda SGJ, van de Water B, Vivier M, Zahedi RP, Vinken M, Rogiers V. "Watching the Detectives" report of the general assembly of the EU project DETECTIVE Brussels, 24-25 November 2015. Arch Toxicol 2016; 90:1529-1539. [PMID: 27129694 DOI: 10.1007/s00204-016-1719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
Abstract
SEURAT-1 is a joint research initiative between the European Commission and Cosmetics Europe aiming to develop in vitro- and in silico-based methods to replace the in vivo repeated dose systemic toxicity test used for the assessment of human safety. As one of the building blocks of SEURAT-1, the DETECTIVE project focused on a key element on which in vitro toxicity testing relies: the development of robust and reliable, sensitive and specific in vitro biomarkers and surrogate endpoints that can be used for safety assessments of chronically acting toxicants, relevant for humans. The work conducted by the DETECTIVE consortium partners has established a screening pipeline of functional and "-omics" technologies, including high-content and high-throughput screening platforms, to develop and investigate human biomarkers for repeated dose toxicity in cellular in vitro models. Identification and statistical selection of highly predictive biomarkers in a pathway- and evidence-based approach constitute a major step in an integrated approach towards the replacement of animal testing in human safety assessment. To discuss the final outcomes and achievements of the consortium, a meeting was organized in Brussels. This meeting brought together data-producing and supporting consortium partners. The presentations focused on the current state of ongoing and concluding projects and the strategies employed to identify new relevant biomarkers of toxicity. The outcomes and deliverables, including the dissemination of results in data-rich "-omics" databases, were discussed as were the future perspectives of the work completed under the DETECTIVE project. Although some projects were still in progress and required continued data analysis, this report summarizes the presentations, discussions and the outcomes of the project.
Collapse
Affiliation(s)
- Ruani N Fernando
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Umesh Chaudhari
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Jürgen Hescheler
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Paul Jennings
- The Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Hector C Keun
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Raivo Kolde
- QURE Ltd. Ülikooli 6a, 51003, Tartu, Estonia
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Annette Kopp-Schneider
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Alice Limonciel
- The Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Harshal Nemade
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Filomain Nguemo
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | | | - Pilar Prieto
- EURL ECVAM (The European Union Reference Laboratory for Alternatives to Animal Testing), Systems Toxicology Unit, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, Italy
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Agapios Sachinidis
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Christoph Schäfer
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dimitry Spitkovsky
- Centre of Physiology and Pathophysiology, Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Simone G J van Breda
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Manon Vivier
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
350
|
Huebsch N, Loskill P, Deveshwar N, Spencer CI, Judge LM, Mandegar MA, Fox CB, Mohamed TMA, Ma Z, Mathur A, Sheehan AM, Truong A, Saxton M, Yoo J, Srivastava D, Desai TA, So PL, Healy KE, Conklin BR. Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses. Sci Rep 2016; 6:24726. [PMID: 27095412 PMCID: PMC4837370 DOI: 10.1038/srep24726] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form μHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro.
Collapse
Affiliation(s)
- Nathaniel Huebsch
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Peter Loskill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Nikhil Deveshwar
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Luke M Judge
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Department of Pediatrics, University of California, San Francisco, CA 94143
| | | | - Cade B Fox
- University of California, San Francisco, Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA 94158
| | - Tamer M A Mohamed
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Institute of Cardiovascular Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Faculty of Pharmacy, Zagazig University, EL-Sharkiak, Egypt
| | - Zhen Ma
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Anurag Mathur
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Alice M Sheehan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Annie Truong
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Mike Saxton
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Jennie Yoo
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Tejal A Desai
- University of California, San Francisco, Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA 94158
| | - Po-Lin So
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Departments of Medicine, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|