301
|
Sontag EM, Lotz GP, Agrawal N, Tran A, Aron R, Yang G, Necula M, Lau A, Finkbeiner S, Glabe C, Marsh JL, Muchowski PJ, Thompson LM. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington's disease models. J Neurosci 2012; 32:11109-19. [PMID: 22875942 PMCID: PMC3546821 DOI: 10.1523/jneurosci.0895-12.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/08/2012] [Accepted: 06/22/2012] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder with no disease-modifying treatments available. The disease is caused by expansion of a CAG trinucleotide repeat and manifests with progressive motor abnormalities, psychiatric symptoms, and cognitive decline. Expression of an expanded polyglutamine repeat within the Huntingtin (Htt) protein impacts numerous cellular processes, including protein folding and clearance. A hallmark of the disease is the progressive formation of inclusions that represent the culmination of a complex aggregation process. Methylene blue (MB), has been shown to modulate aggregation of amyloidogenic disease proteins. We investigated whether MB could impact mutant Htt-mediated aggregation and neurotoxicity. MB inhibited recombinant protein aggregation in vitro, even when added to preformed oligomers and fibrils. MB also decreased oligomer number and size and decreased accumulation of insoluble mutant Htt in cells. In functional assays, MB increased survival of primary cortical neurons transduced with mutant Htt, reduced neurodegeneration and aggregation in a Drosophila melanogaster model of HD, and reduced disease phenotypes in R6/2 HD modeled mice. Furthermore, MB treatment also promoted an increase in levels of BDNF RNA and protein in vivo. Thus, MB, which is well tolerated and used in humans, has therapeutic potential for HD.
Collapse
Affiliation(s)
- Emily Mitchell Sontag
- Departments of Biological Chemistry
- Psychiatry and Human Behavior
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Gregor P. Lotz
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
- Departments of Neurology and
| | | | - Andrew Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Rebecca Aron
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
- Departments of Neurology and
| | - Guocheng Yang
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
- Departments of Neurology and
| | | | | | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
- Departments of Neurology and
- Taube-Koret Center for Huntington's Disease Research, University of California, San Francisco, California 94158
- Medical Scientist Training Program and
- Neuroscience Program, University of California, San Francisco, California 94141, and
- Department of Physiology, University of California, San Francisco, California 94143
| | - Charles Glabe
- Molecular Biology and Biochemistry, and
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | | | - Paul J. Muchowski
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
- Departments of Neurology and
- Biochemistry and Biophysics and
- Taube-Koret Center for Huntington's Disease Research, University of California, San Francisco, California 94158
| | - Leslie M. Thompson
- Departments of Biological Chemistry
- Psychiatry and Human Behavior
- Neurobiology and Behavior and
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| |
Collapse
|
302
|
Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, Drapeau P, Kabashi E, Parker JA. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 2012; 7:e42117. [PMID: 22848727 PMCID: PMC3407135 DOI: 10.1371/journal.pone.0042117] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022] Open
Abstract
The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Université de Montréal Hospital Research Centre, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Shunmoogum A. Patten
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Sorana Ciura
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Claudia Maios
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
| | - Martine Therrien
- Université de Montréal Hospital Research Centre, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Pierre Drapeau
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
| | - Edor Kabashi
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- * E-mail: (EK); (JAP)
| | - J. Alex Parker
- Université de Montréal Hospital Research Centre, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Canada
- Centre of Excellence in Neuromics, Université de Montréal, Montréal, Canada
- * E-mail: (EK); (JAP)
| |
Collapse
|
303
|
Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Tau as a therapeutic target for Alzheimer's disease. Curr Alzheimer Res 2012; 8:666-77. [PMID: 21679154 DOI: 10.2174/156720511796717195] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 01/02/2023]
Abstract
Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of Alzheimer's disease (AD) and are primarily composed of aggregates of hyperphosphorylated forms of the microtubule associated protein tau. It is likely that an imbalance of kinase and phosphatase activities leads to the abnormal phosphorylation of tau and subsequent aggregation. The wide ranging therapeutic approaches that are being developed include to inhibit tau kinases, to enhance phosphatase activity, to promote microtubule stability, and to reduce tau aggregate formation and/or enhance their clearance with small molecule drugs or by immunotherapeutic means. Most of these promising approaches are still in preclinical development whilst some have progressed to Phase II clinical trials. By pursuing these lines of study, a viable therapy for AD and related tauopathies may be obtained.
Collapse
Affiliation(s)
- A Boutajangout
- Departments of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
304
|
Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI. Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 2012; 136:8-22. [PMID: 22790092 DOI: 10.1016/j.pharmthera.2012.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 01/16/2023]
Abstract
Tau is a microtubule-associated protein thought to help modulate the stability of neuronal microtubules. In tauopathies, including Alzheimer's disease and several frontotemporal dementias, tau is abnormally modified and misfolded resulting in its disassociation from microtubules and the generation of pathological lesions characteristic for each disease. A recent surge in the population of people with neurodegenerative tauopathies has highlighted the immense need for disease-modifying therapies for these conditions, and new attention has focused on tau as a potential target for intervention. In the current work we summarize evidence linking tau to disease pathogenesis and review recent therapeutic approaches aimed at ameliorating tau dysfunction. The primary therapeutic tactics considered include kinase inhibitors and phosphatase activators, immunotherapies, small molecule inhibitors of protein aggregation, and microtubule-stabilizing agents. Although the evidence for tau-based treatments is encouraging, additional work is undoubtedly needed to optimize each treatment strategy for the successful development of safe and effective therapeutics.
Collapse
Affiliation(s)
- Diana S Himmelstein
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Tarry 8-754, 300 E. Superior St., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
305
|
Villemagne VL, Furumoto S, Fodero-Tavoletti M, Harada R, Mulligan RS, Kudo Y, Masters CL, Yanai K, Rowe CC, Okamura N. The challenges of tau imaging. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.34] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vivo imaging of tau pathology will provide new insights into tau deposition in the human brain, thus facilitating research into causes, diagnosis and treatment of major dementias, such as Alzheimer’s disease, or some variants of frontotemporal lobar degeneration, in which tau plays a role. Tau imaging poses several challenges, some related to the singularities of tau aggregation, and others related to radiotracer design. Several groups around the world are working on the development of imaging agents that will allow the in vivo assessment of tau deposition in aging and in neurodegeneration. Development of a tau imaging tracer will enable researchers to noninvasively examine the degree and extent of tau pathology in the brain, quantify changes in tau deposition over time, evaluate its relation to cognition and assess the efficacy of anti-tau therapy.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Nuclear Medicine & Centre for PET, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Melbourne, Australia
| | - Shozo Furumoto
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | | | - Ryuichi Harada
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Rachel S Mulligan
- Department of Nuclear Medicine & Centre for PET, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Melbourne, Australia
| | - Yukitsuka Kudo
- Innovation of New Biomedical Engineering Center, Tohoku University, Sendai, Japan
| | | | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Chistopher C Rowe
- Department of Nuclear Medicine & Centre for PET, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Melbourne, Australia
| | - Nobuyuki Okamura
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
306
|
Abstract
Neurofibrillary pathology in Alzheimer's disease consists of paired helical filaments comprising tau protein. This pathology is correlated with dementia, but can appear in the first two decades of life. Extracellular amyloid β-protein arises through proteolytic processing of a transmembrane precursor, which involves the action of several enzymes. Mutations in the genes for the precursor and presenilin proteins accelerate the deposition of Aβ. Tau mutations cause other tauopathies in the absence of amyloid deposition, indicating that amyloid deposition is not a prerequisite for dementia. An improved understanding of Alzheimer's disease awaits to be obtained by molecular imaging of these pathologies.
Collapse
Affiliation(s)
- Charles R Harrington
- Division of Applied Health Sciences, School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Liberty Building, Foresterhill Road, Aberdeen AB25 2ZP, Scotland, UK.
| |
Collapse
|
307
|
Aminothienopyridazine inhibitors of tau aggregation: evaluation of structure-activity relationship leads to selection of candidates with desirable in vivo properties. Bioorg Med Chem 2012; 20:4451-61. [PMID: 22717239 DOI: 10.1016/j.bmc.2012.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/08/2012] [Accepted: 05/12/2012] [Indexed: 01/03/2023]
Abstract
Previous studies demonstrated that members of the aminothienopyridazine (ATPZ) class of tau aggregation inhibitors exhibit a promising combination of in vitro activity as well as favorable pharmacokinetic properties (i.e., brain-penetration and oral bioavailability). Here we report the synthesis and evaluation of several new analogues. These studies indicate that the thienopyridazine core is essential for inhibition of tau fibrillization in vitro, while the choice of the appropriate scaffold decoration is critical to impart desirable ADME-PK properties. Among the active, brain-penetrant ATPZ inhibitors evaluated, 5-amino-N-cyclopropyl-3-(4-fluorophenyl)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxamide (43) was selected to undergo maximum tolerated dose and one-month tolerability testing in mice. The latter studies revealed that this compound is well-tolerated with no notable side-effects at an oral dose of 50mg/kg/day.
Collapse
|
308
|
Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 2012; 21:3587-603. [PMID: 22611162 DOI: 10.1093/hmg/dds190] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents β-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.
Collapse
Affiliation(s)
- Chronis Fatouros
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
309
|
Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K, Muller WE. Mitochondrial Dysfunction—A Pharmacological Target in Alzheimer's Disease. Mol Neurobiol 2012; 46:136-50. [DOI: 10.1007/s12035-012-8271-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/16/2012] [Indexed: 12/12/2022]
|
310
|
Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 2012; 8:609-22. [PMID: 22361619 DOI: 10.4161/auto.19048] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.
Collapse
Affiliation(s)
- Erin E Congdon
- Taub Institute/Department of Pathology, Columbia University and Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Tayeb HO, Yang HD, Price BH, Tarazi FI. Pharmacotherapies for Alzheimer's disease: Beyond cholinesterase inhibitors. Pharmacol Ther 2012; 134:8-25. [DOI: 10.1016/j.pharmthera.2011.12.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 12/31/2022]
|
312
|
Reitz C. Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012; 2012:369808. [PMID: 22506132 PMCID: PMC3313573 DOI: 10.1155/2012/369808] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/03/2012] [Indexed: 12/16/2022] Open
Abstract
Since 1992, the amyloid cascade hypothesis has played the prominent role in explaining the etiology and pathogenesis of Alzheimer's disease (AD). It proposes that the deposition of β-amyloid (Aβ) is the initial pathological event in AD leading to the formation of senile plaques (SPs) and then to neurofibrillary tangles (NFTs), neuronal cell death, and ultimately dementia. While there is substantial evidence supporting the hypothesis, there are also limitations: (1) SP and NFT may develop independently, and (2) SPs and NFTs may be the products rather than the causes of neurodegeneration in AD. In addition, randomized clinical trials that tested drugs or antibodies targeting components of the amyloid pathway have been inconclusive. This paper provides a critical overview of the evidence for and against the amyloid cascade hypothesis in AD and provides suggestions for future directions.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
313
|
Liu T, Bitan G. Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms. ChemMedChem 2012; 7:359-74. [PMID: 22323134 DOI: 10.1002/cmdc.201100585] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Indexed: 01/19/2023]
Abstract
Abnormal protein assembly causes multiple devastating disorders in the central nervous system (CNS), such as Alzheimer's, Parkinson's, Huntington's, and prion diseases. Due to the now extended human lifespan, these diseases have been increasing in prevalence, resulting in major public health problems and the associated financial difficulties worldwide. The wayward proteins that lead to disease self-associate into neurotoxic oligomers and go on to form fibrillar polymers through multiple pathways. Thus, a range of possible targets for pharmacotherapeutic intervention exists along these pathways. Many compounds have shown different levels of effectiveness in inhibiting aberrant self-assembly, dissociating existing aggregates, protecting cells against neurotoxic insults, and in some cases ameliorating disease symptoms in vivo, yet achieving efficient, disease-modifying therapy in humans remains a major unattained goal. To a large degree, this is because the mechanisms of action for these drugs are essentially unknown. For successful design of new effective drugs, it is crucial to elucidate the mechanistic details of their action, including the actual target(s) along the protein aggregation pathways, how the compounds modulate these pathways, and their effect at the cellular, tissue, organ, and organism level. Here, the current knowledge of major mechanisms by which some of the more extensively explored drug candidates work are discussed. In particular, we focus on three prominent strategies: 1) stabilizing the native fold of amyloidogenic proteins, 2) accelerating the aggregation pathways towards the fibrillar endpoint thereby reducing accumulation of toxic oligomers, and 3) modulating the assembly process towards nontoxic oligomers/aggregates. The merit of each strategy is assessed, and the key points to consider when analyzing the efficacy of possible drug candidates and their mechanism of action are discussed.
Collapse
Affiliation(s)
- Tingyu Liu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E. Young Drive South/NRB 455, Los Angeles, CA 90095, USA
| | | |
Collapse
|
314
|
Härd T, Lendel C. Inhibition of amyloid formation. J Mol Biol 2012; 421:441-65. [PMID: 22244855 DOI: 10.1016/j.jmb.2011.12.062] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 12/26/2022]
Abstract
Amyloid is aggregated protein in the form of insoluble fibrils. Amyloid deposition in human tissue-amyloidosis-is associated with a number of diseases including all common dementias and type II diabetes. Considerable progress has been made to understand the mechanisms leading to amyloid formation. It is, however, not yet clear by which mechanisms amyloid and protein aggregates formed on the path to amyloid are cytotoxic. Strategies to prevent protein aggregation and amyloid formation are nevertheless, in many cases, promising and even successful. This review covers research on intervention of amyloidosis and highlights several examples of how inhibition of protein aggregation and amyloid formation has been achieved in practice. For instance, rational design can provide drugs that stabilize a native folded state of a protein, protein engineering can provide new binding proteins that sequester monomeric peptides from aggregation, small molecules and peptides can be designed to block aggregation or direct it into non-cytotoxic paths, and monoclonal antibodies have been developed for therapies towards neurodegenerative diseases based on inhibition of amyloid formation and clearance.
Collapse
Affiliation(s)
- Torleif Härd
- Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|
315
|
Audet JN, Soucy G, Julien JP. Methylene blue administration fails to confer neuroprotection in two amyotrophic lateral sclerosis mouse models. Neuroscience 2012; 209:136-43. [PMID: 22230045 DOI: 10.1016/j.neuroscience.2011.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/16/2011] [Accepted: 12/26/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20% cases of familial amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Recent studies have shown that methylene blue (MB) was efficient in conferring protection in several neurological disorders. MB was found to improve mitochondrial function, to reduce reactive oxygen species, to clear aggregates of toxic proteins, and to act as a nitric oxide synthase inhibitor. These pleiotropic effects of relevance to ALS pathogenesis led us to test MB in two models of ALS, SOD1(G93A) mice and TDP-43(G348C) transgenic mice. Intraperitoneal administration of MB at two different doses was initiated at the beginning of disease onset, at 90 days of age in SOD1(G93A) and at 6 months of age in TDP-43(G348C) mice. Despite its established neuroprotective properties, MB failed to confer protection in both mouse models of ALS. The lifespan of SOD1(G93A) mice was not affected by MB treatment. The declines in motor function, reflex score, and body weight of SOD1(G93A) mice remained unchanged. MB treatment had no effect on motor neuron loss and aggregation or misfolding of SOD1. A combination of MB with lithium also failed to provide benefits in SOD1(G93A) mice. In TDP-43(G348C) mice, MB failed to improve motor function. Cytosolic translocation of TDP-43, ubiquitination and inflammation remained also unchanged after MB treatment of TDP-43(G348C) mice.
Collapse
Affiliation(s)
- J-N Audet
- Research Centre of CHUQ and Department of Psychiatry and Neurosciences, Laval University, 2705 Laurier Boulevard, QC, Canada G1V 4G2
| | | | | |
Collapse
|
316
|
Lane RF, Shineman DW, Steele JW, Lee LBH, Fillit HM. Beyond amyloid: the future of therapeutics for Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:213-71. [PMID: 22840749 DOI: 10.1016/b978-0-12-394816-8.00007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the field is awaiting the results of several pivotal Phase III clinical Alzheimer's disease (AD) trials that target amyloid-β (Aβ). In light of the recent biomarker studies that indicate Aβ levels are at their most dynamic 5-10 years before the onset of clinical symptoms, it is becoming uncertain whether direct approaches to target Aβ will achieve desired clinical efficacy. AD is a complex neurodegenerative disease caused by dysregulation of numerous neurobiological networks and cellular functions, resulting in synaptic loss, neuronal loss, and ultimately impaired memory. While it is clear that Aβ plays a key role in the pathogenesis of AD, it may be a challenging and inefficient target for mid-to-late stage AD intervention. Throughout the course of AD, multiple pathways become perturbed, presenting a multitude of possible therapeutic avenues for design of AD intervention and prophylactic therapies. In this chapter, we sought to first provide an overview of Aβ-directed strategies that are currently in development, and the pivotal Aβ-targeted trials that are currently underway. Next, we delve into the biology and therapeutic designs associated with other key areas of research in the field including tau, protein trafficking and degradation pathways, ApoE, synaptic function, neurotrophic/neuroprotective strategies, and inflammation and energy utilization. For each area we have provided a comprehensive and balanced overview of the therapeutic strategies currently in preclinical and clinical development, which will shape the future therapeutic landscape of AD.
Collapse
Affiliation(s)
- Rachel F Lane
- Alzheimer's Drug Discovery Foundation, New York, NY, USA
| | | | | | | | | |
Collapse
|
317
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
318
|
Jeon YH, Lee JY, Kim S. Chemical modulators working at pharmacological interface of target proteins. Bioorg Med Chem 2011; 20:1893-901. [PMID: 22227462 DOI: 10.1016/j.bmc.2011.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/30/2011] [Accepted: 12/08/2011] [Indexed: 01/23/2023]
Abstract
For last few decades, the active site cleft and substrate-binding site of enzymes as well as ligand-binding site of the receptors have served as the main pharmacological space for drug discovery. However, rapid accumulation of proteome and protein network analysis data has opened a new therapeutic space that is the interface between the interacting proteins. Due to the complexity of the interaction modes and the numbers of the participating components, it is still challenging to identify the chemicals that can accurately control the protein-protein interactions at desire. Nonetheless, the number of chemical drugs and candidates working at the interface of the interacting proteins are rapidly increasing. This review addresses the current case studies and state-of-the-arts in the development of small chemical modulators controlling the interactions of the proteins that have pathological implications in various human diseases such as cancer, immune disorders, neurodegenerative and infectious diseases.
Collapse
Affiliation(s)
- Young Ho Jeon
- Korea University College of Pharmacy Sejong-ro, Jochiwon, Yeonggi-gun, Chungnam 339-700, Republic of Korea
| | | | | |
Collapse
|
319
|
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer's disease. Ther Adv Neurol Disord 2011; 4:203-16. [PMID: 21765871 DOI: 10.1177/1756285611404470] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first drugs developed for Alzheimer's disease (AD), acetylcholinesterase inhibitors (AChEI), increase acetylcholine levels, previously demonstrated to be reduced in AD. To date, four AChEI are approved for the treatment of mild-to-moderate AD. A further therapeutic option available for moderate-to-severe AD is memantine. These treatments are symptomatic, whereas drugs under development are intended to modify the pathological steps leading to AD, thus acting on the evolution of the disease. For this reason they are have been termed 'disease-modifying' drugs. To block the progression of the disease they have to interfere with the pathogenic steps responsible for the clinical symptoms, including the deposition of extracellular amyloid beta (Aβ) plaques and of intracellular neurofibrillary tangles, inflammation, oxidative damage, iron deregulation and cholesterol metabolism. In this review, new perspectives will be discussed. In particular, several approaches will be described, including interference with Aβ deposition by anti-Aβ aggregation agents, vaccination, γ-secretase inhibitors or selective Aβ-lowering agents; interference with tau deposition by methylthioninium chloride; and reduction of inflammation and oxidative damage.
Collapse
Affiliation(s)
- Daniela Galimberti
- Department of Neurological Sciences, 'Dino Ferrari' Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | | |
Collapse
|
320
|
Santa-Maria I, Diaz-Ruiz C, Ksiezak-Reding H, Chen A, Ho L, Wang J, Pasinetti GM. GSPE interferes with tau aggregation in vivo: implication for treating tauopathy. Neurobiol Aging 2011; 33:2072-81. [PMID: 22054871 DOI: 10.1016/j.neurobiolaging.2011.09.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 12/25/2022]
Abstract
Tauopathies are characterized by progressive neurodegeneration caused by intracellular accumulation of hyperphosphorylated tau protein aggregates in the brain. The present study was designed to test whether a grape seed polyphenolic extract (GSPE) previously shown to inhibit tau protein aggregation in vitro could benefit tau-mediated neuropathology and behavior deficits in JNPL3 transgenic mice expressing a human tau protein containing the P301L mutation. Nine-month-old JNPL3 mice were treated with GSPE delivered through their drinking water for 6 months. We found that GSPE treatment significantly reduced the number of motor neurons immunoreactive for hyperphosphorylated and conformationally-modified tau in the ventral horns of the spinal cord identified using AT100, PHF-1, AT8, and Alz50 tau antibodies. This coincided with a drastically reduced level of hyperphosphorylated and sarcosyl-insoluble tau in spinal cord fractions. Furthermore, the reduction of tau pathology was accompanied by an improvement in the motor function assessed by a wire hang test. Collectively, our results suggest that GSPE can interfere with tau-mediated neurodegenerative mechanisms and ameliorate neurodegenerative phenotype in an animal model of tauopathy. Our studies support further evaluation of GSPE for preventing and/or treating of tauopathies in humans.
Collapse
Affiliation(s)
- Ismael Santa-Maria
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
321
|
Rojas JC, Bruchey AK, Gonzalez-Lima F. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog Neurobiol 2011; 96:32-45. [PMID: 22067440 DOI: 10.1016/j.pneurobio.2011.10.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue's action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment.
Collapse
Affiliation(s)
- Julio C Rojas
- Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, USA
| | | | | |
Collapse
|
322
|
O'Leary JC, Koren J, Dickey CA. Neuronal life span versus health span: principles of natural selection at work in the degenerating brain. J Mol Neurosci 2011; 45:467-72. [PMID: 21559875 PMCID: PMC4235992 DOI: 10.1007/s12031-011-9540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/28/2011] [Indexed: 01/26/2023]
Abstract
Impaired nutrient delivery to the brain due to decreased blood flow contributes to cognitive decline and dementia in Alzheimer's disease (AD). Considering this, many studies have suggested that neuroprotective agents like those used in stroke could prevent AD onset or progression by promoting cell survival. However, research in the past decade suggests that the culprit behind the cognitive loss in AD models is actually the soluble tau accumulating inside of surviving neurons. In fact, tau reductions improve cognition in mouse models of AD, even those that only deposit amyloid plaques. There is emerging evidence that neuroprotection alone in these AD models may be insufficient to restore neuron function and cognition. Only when soluble tau is reduced on a neuroprotective background could memory be rescued. Thus, once a neuron begins to accumulate tau, it may survive in a malfunctioning capacity, leading to impaired electrical signaling and memory formation in the brain. These data imply that multiple drugs may be necessary to ameliorate the different disease components. In fact, strategies to preserve neurons without affecting the soluble protein burden within neurons may accelerate the disease course.
Collapse
Affiliation(s)
- John C O'Leary
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | |
Collapse
|
323
|
Herrmann N, Chau SA, Kircanski I, Lanctôt KL. Current and Emerging Drug Treatment Options for Alzheimerʼs Disease. Drugs 2011; 71:2031-65. [DOI: 10.2165/11595870-000000000-00000] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
324
|
Lee VMY, Brunden KR, Hutton M, Trojanowski JQ. Developing therapeutic approaches to tau, selected kinases, and related neuronal protein targets. Cold Spring Harb Perspect Med 2011; 1:a006437. [PMID: 22229117 PMCID: PMC3234455 DOI: 10.1101/cshperspect.a006437] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A hallmark of the Alzheimer disease (AD) brain is the presence of inclusions within neurons that are comprised of fibrils formed from the microtubule-stabilizing protein tau. The formation of misfolded multimeric tau species is believed to contribute to the progressive neuron loss and cognitive impairments of AD. Moreover, mutations in tau have been shown to cause a form of frontotemporal lobar degeneration in which tau neuronal inclusions observed in the brain are similar to those seen in AD. Here we review the more compelling strategies that are designed to reduce the contribution of misfolded tau to AD neuropathology, including those directed at correcting a possible loss of tau function resulting from sequestration of cellular tau and to minimizing possible gain-of-function toxicities caused by multimeric tau species. Finally, we discuss the challenges and potential benefits of tau-directed drug discovery programs.
Collapse
Affiliation(s)
- Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
325
|
Mancuso C, Siciliano R, Barone E, Butterfield DA, Preziosi P. Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before. Expert Opin Investig Drugs 2011; 20:1243-61. [DOI: 10.1517/13543784.2011.601740] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
326
|
Pritchard SM, Dolan PJ, Vitkus A, Johnson GVW. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics. J Cell Mol Med 2011; 15:1621-35. [PMID: 21348938 PMCID: PMC4373356 DOI: 10.1111/j.1582-4934.2011.01273.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/08/2011] [Indexed: 11/28/2022] Open
Abstract
It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD.
Collapse
Affiliation(s)
- Susanne M Pritchard
- Gail V.W. JOHNSON, Ph.D., Department of Anesthesiology, 601 Elmwood Ave., Box 604, Rm. 4–6314, University of Rochester, Rochester, NY 14642, USA. Tel.: 585-276-3740 Fax: 585-276-2418 E-mail:
| | | | - Alisa Vitkus
- Department of Anesthesiology and the Interdepartmental Graduate Program in Neuroscience, University of RochesterRochester, NY, USA
| | - Gail VW Johnson
- Department of Anesthesiology and the Interdepartmental Graduate Program in Neuroscience, University of RochesterRochester, NY, USA
| |
Collapse
|
327
|
Finding order within disorder: elucidating the structure of proteins associated with neurodegenerative disease. Future Med Chem 2011; 1:467-82. [PMID: 21426127 DOI: 10.4155/fmc.09.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A number of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, involve the formation of protein aggregates. The primary constituent of these aggregates belongs to a unique class of heteropolymers known as intrinsically disordered proteins (IDPs). While many proteins fold to a unique conformation that is determined by their amino acid sequence, IDPs do not adopt a single well-defined conformation in solution. Instead, they populate a heterogeneous set of conformers under physiological conditions. Despite this intrinsic propensity for disorder, a number of these proteins can form ordered aggregates both in vitro and in vivo. As the formation of these aggregates may play an important role in disease pathogenesis, a detailed structural characterization of these proteins and their mechanism of aggregation is of critical importance. However, new methods are needed to understand the diversity of structures that make up the unfolded ensemble of these systems. In this review, we discuss recent advances in the structural analysis and modeling of IDPs involved in neurodegenerative diseases. While there are challenges in both the experimental characterization and the modeling of such proteins, a comprehensive understanding of the structure of IDPs will likely facilitate the development of effective therapies for a number of neurodegenerative diseases.
Collapse
|
328
|
Monti MC, Margarucci L, Tosco A, Riccio R, Casapullo A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra-virgin olive-oil bioactive component. Food Funct 2011; 2:423-8. [PMID: 21894330 DOI: 10.1039/c1fo10064e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oleocanthal (OLC) is a phenolic component of extra-virgin olive oil, recently supposed to be involved in the modulation of some human diseases, such as inflammation and Alzheimer. In particular, OLC has been shown to abrogate fibrillization of tau protein, one of the main causes of Alzheimer neurodegeneration. A recent interpretation of this mechanism has been attempted on the basis of OLC reactivity with the fibrillogenic tau hexapeptide VQIVYK and SDS-PAGE of OLC/tau incubation mixtures, suggesting that covalent modification events modulate tau fibrillization. In this paper we report a detailed mass spectrometric investigation of the OLC reactive profile with both tau protein fibrillogenic fragment K18 and propylamine in biomimetic conditions. We show that K18 is prone to be covalently modified by OLC through Schiff base formation between the ε-amino group of lysine residues and OLC aldehyde carbonyls. Moreover, as expected from its de-structured conformation, K18 shows a non-selective modification profile, reacting with several lysine residues to give cyclic pyridinium-like stable adducts. These data give new insights on the mechanism of inhibition of tau fibrillization mediated by OLC.
Collapse
Affiliation(s)
- Maria Chiara Monti
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Italy
| | | | | | | | | |
Collapse
|
329
|
Galimberti D, Scarpini E. Progress in Alzheimer's disease. J Neurol 2011; 259:201-11. [PMID: 21706152 DOI: 10.1007/s00415-011-6145-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/16/2022]
Abstract
After more than one century from Alois Alzheimer and Gaetano Perusini's first report, progress has been made in understanding the pathogenic steps of Alzheimer's disease (AD), as well as in its early diagnosis. This review discusses recent findings leading to the formulation of novel criteria for diagnosis of the disease even in a preclinical phase, by using biological markers. In addition, treatment options will be discussed, with emphasis on new disease-modifying compounds and future trial design suitable to test these drugs in an early phase of the disease.
Collapse
Affiliation(s)
- Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Center, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, University of Milan, Via F. Sforza 35, 20122, Milan, Italy.
| | | |
Collapse
|
330
|
Ittner A, Ke YD, Eersel JV, Gladbach A, Götz J, Ittner LM. Brief update on different roles of tau in neurodegeneration. IUBMB Life 2011; 63:495-502. [DOI: 10.1002/iub.467] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
331
|
Abstract
While the microtubule-binding capacity of the protein tau has been known for many years, new functions of tau in signaling and cytoskeletal organization have recently emerged. In this review, we highlight these functions and the potential roles of tau in neurodegenerative disease. We also discuss the therapeutic potential of drugs targeting various aspects of tau biology.
Collapse
Affiliation(s)
- Meaghan Morris
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sumihiro Maeda
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
332
|
Abstract
Corticobasal degeneration (CBD) is a rare, progressive neurodegenerative disorder with onset in the 5(th) to 7(th) decade of life. It is associated with heterogeneous motor, sensory, behavioral and cognitive symptoms, which make its diagnosis difficult in a living patient. The etiology of CBD is unknown; however, neuropathological and genetic evidence supports a pathogenetic role for microtubule-associated protein tau. CBD pathology is characterized by circumscribed cortical atrophy with spongiosis and ballooned neurons; the distribution of these changes dictates the patient's clinical presentation. Neuronal and glial tau pathology is extensive in gray and white matter of the cortex, basal ganglia, diencephalon and rostral brainstem. Abnormal tau accumulation within astrocytes forms pathognomonic astrocytic plaques. The classic clinical presentation, termed corticobasal syndrome (CBS), comprises asymmetric progressive rigidity and apraxia with limb dystonia and myoclonus. CBS also occurs in conjunction with other diseases, including Alzheimer disease and progressive supranuclear palsy. Moreover, the pathology of CBD is associated with clinical presentations other than CBS, including Richardson syndrome, behavioral variant frontotemporal dementia, primary progressive aphasia and posterior cortical syndrome. Progress in biomarker development to differentiate CBD from other disorders has been slow, but is essential in improving diagnosis and in development of disease-modifying therapies.
Collapse
|
333
|
Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev 2011; 31:93-117. [PMID: 19760660 DOI: 10.1002/med.20177] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methylene Blue (MB), following its introduction to biology in the 19th century by Ehrlich, has found uses in various areas of medicine and biology. At present, MB is the first line of treatment in methemoglobinemias, is used frequently in the treatment of ifosfamide-induced encephalopathy, and is routinely employed as a diagnostic tool in surgical procedures. Furthermore, recent studies suggest that MB has beneficial effects in Alzheimer's disease and memory improvement. Although the modulation of the cGMP pathway is considered the most significant effect of MB, mediating its pharmacological actions, recent studies indicate that it has multiple cellular and molecular targets. In the majority of cases, biological effects and clinical applications of MB are dictated by its unique physicochemical properties including its planar structure, redox chemistry, ionic charges, and light spectrum characteristics. In this review article, these physicochemical features and the actions of MB on multiple cellular and molecular targets are discussed with regard to their relevance to the nervous system.
Collapse
Affiliation(s)
- Murat Oz
- Integrative Neuroscience Section, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
334
|
Wegmann S, Schöler J, Bippes CA, Mandelkow E, Muller DJ. Competing interactions stabilize pro- and anti-aggregant conformations of human Tau. J Biol Chem 2011; 286:20512-24. [PMID: 21498513 DOI: 10.1074/jbc.m111.237875] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aggregation of Tau into amyloid-like fibrils is a key process in neurodegenerative diseases such as Alzheimer. To understand how natively disordered Tau stabilizes conformations that favor pathological aggregation, we applied single-molecule force spectroscopy. Intramolecular interactions that fold polypeptide stretches of ~19 and ~42 amino acids in the functionally important repeat domain of full-length human Tau (hTau40) support aggregation. In contrast, the unstructured N terminus randomly folds long polypeptide stretches >100 amino acids that prevent aggregation. The pro-aggregant mutant hTau40ΔK280 observed in frontotemporal dementia favored the folding of short polypeptide stretches and suppressed the folding of long ones. This trend was reversed in the anti-aggregant mutant hTau40ΔK280/PP. The aggregation inducer heparin introduced strong interactions in hTau40 and hTau40ΔK280 that stabilized aggregation-prone conformations. We show that the conformation and aggregation of Tau are regulated through a complex balance of different intra- and intermolecular interactions.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
335
|
Antosova A, Chelli B, Bystrenova E, Siposova K, Valle F, Imrich J, Vilkova M, Kristian P, Biscarini F, Gazova Z. Structure-activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim Biophys Acta Gen Subj 2011; 1810:465-74. [DOI: 10.1016/j.bbagen.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/23/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
336
|
Medina DX, Caccamo A, Oddo S. Methylene blue reduces aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol 2011; 21:140-9. [PMID: 20731659 PMCID: PMC2992595 DOI: 10.1111/j.1750-3639.2010.00430.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/19/2010] [Indexed: 01/03/2023] Open
Abstract
Promising results have emerged from a phase II clinical trial testing methylene blue (MB) as a potential therapeutic for Alzheimer disease (AD), where improvements in cognitive functions of AD patients after 6 months of MB administration have been reported. Despite these reports, no preclinical testing of MB in mammals has been published, and thus its mechanism of action in relation to AD pathology remains unknown. In order to elucidate the effects of MB on AD pathology and to determine its mechanism of action, we used a mouse model (3xTg-AD) that develops age-dependent accumulation of Aβ and tau and cognitive decline. Here, we report that chronic dietary MB treatment reduces Aβ levels and improves learning and memory deficits in the 3xTg-AD mice. The mechanisms underlying the effects of MB on Aβ pathology appears to be mediated by an increase in Aβ clearance as we show that MB increases the chymotrypsin- and trypsin-like activities of the proteasome in the brain. To our knowledge, this is the first report showing that MB increases proteasome function and ameliorates AD-like pathology in vivo. Overall, the data presented here support the use of MB for the treatment of AD and offer a possible mechanism of action.
Collapse
Affiliation(s)
- David X. Medina
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Antonella Caccamo
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Salvatore Oddo
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
337
|
Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053961 DOI: 10.3390/ph4020382] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
338
|
Schirmer RH, Adler H, Pickhardt M, Mandelkow E. "Lest we forget you--methylene blue...". Neurobiol Aging 2011; 32:2325.e7-16. [PMID: 21316815 DOI: 10.1016/j.neurobiolaging.2010.12.012] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 01/07/2023]
Abstract
Methylene blue (MB), the first synthetic drug, has a 120-year-long history of diverse applications, both in medical treatments and as a staining reagent. In recent years there was a surge of interest in MB as an antimalarial agent and as a potential treatment of neurodegenerative disorders such as Alzheimer's disease (AD), possibly through its inhibition of the aggregation of tau protein. Here we review the history and medical applications of MB, with emphasis on recent developments.
Collapse
Affiliation(s)
- R Heiner Schirmer
- Center of Biochemistry (BZH), University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
339
|
Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B. In vitro modelling of Alzheimer's disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 2011; 229:226-37. [PMID: 21295028 DOI: 10.1016/j.expneurol.2011.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/15/2022]
Abstract
With increasing life expectancy, Alzheimer's disease (AD) and other dementias pose an increasing and as yet unresolved health problem. A variety of cellular models of AD has helped to decipher some key aspects of amyloid and tau related degeneration. The initial approach of extracellular applications of synthetic peptides has now been replaced by the introduction of amyloid precursor protein (APP) and tau genes. In the present study adenoviral transductions were exploited for gene delivery into primary rat hippocampal and dorsal root ganglion (DRG) cultures to enable comparative and mechanistic studies at the cellular level and subsequent drug testing. Time lapse experiments revealed a different pattern of cell death: apoptotic-like for APP whereas tau positive cells joined and formed clusters. Mutated human APP or tau expression caused accelerated neuronal damage and cell death (cf. EGFP: -50% for APP at 5 days; -40% for tau at 3 days). This reduction in viability was preceded by decreased excitability, monitored via responses to depolarising KCl-challenges in Ca(2+) imaging experiments. Additionally, both transgenes reduced neurite outgrowth in DRG neurones. Treatment studies confirmed that APP induced-damage can be ameliorated by β- and γ-secretase inhibitors (providing protection to 60-100% of control levels), clioquinol (80%) and lithium (100%); while anti-aggregation treatments were beneficial for tau-induced damage (60-90% recovery towards controls). Interestingly, caffeine was the most promising drug candidate for therapeutic intervention with high efficacy in both APP (77%) and tau-induced models (72% recovery). Overall, these cellular models offer advantages for mechanistic studies and target identification in AD and related disorders.
Collapse
Affiliation(s)
- Sandra Stoppelkamp
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD Scotland, UK
| | | | | | | | | | | |
Collapse
|
340
|
Jones JR, Lebar MD, Jinwal UK, Abisambra JF, Koren J, Blair L, O'Leary JC, Davey Z, Trotter J, Johnson AG, Weeber E, Eckman CB, Baker BJ, Dickey CA. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. JOURNAL OF NATURAL PRODUCTS 2011; 74:38-44. [PMID: 21141876 PMCID: PMC3070757 DOI: 10.1021/np100572z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Target-based drug discovery for Alzheimer's disease (AD) centered on modulation of the amyloid β peptide has met with limited success. Therefore, recent efforts have focused on targeting the microtubule-associated protein tau. Tau pathologically accumulates in more than 15 neurodegenerative diseases and is most closely linked with postsymptomatic progression in AD. We endeavored to identify compounds that decrease tau stability rather than prevent its aggregation. An extract from Myrica cerifera (bayberry/southern wax myrtle) potently reduced both endogenous and overexpressed tau protein levels in cells and murine brain slices. The bayberry flavonoids myricetin and myricitrin were confirmed to contribute to this potency, but a diarylheptanoid, myricanol, was the most effective anti-tau component in the extract, with potency approaching the best targeted lead therapies. (+)-aR,11S-Myricanol, isolated from M. cerifera and reported here for the first time as the naturally occurring aglycone, was significantly more potent than commercially available (±)-myricanol. Myricanol may represent a novel scaffold for drug development efforts targeting tau turnover in AD.
Collapse
|
341
|
Evans CG, Jinwal UK, Makley LN, Dickey CA, Gestwicki JE. Identification of dihydropyridines that reduce cellular tau levels. Chem Commun (Camb) 2011; 47:529-31. [PMID: 21082080 PMCID: PMC3251959 DOI: 10.1039/c0cc02253e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of dihydropyridines were identified that have an effect on the accumulation of tau, an important target in Alzheimer's disease. The dihydropyridine collection was expanded using the Hantzsch multicomponent reaction to develop preliminary structure-activity relationships.
Collapse
Affiliation(s)
- Christopher G Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
342
|
Ballatore C, Brunden KR, Trojanowski JQ, Lee VMY, Smith AB, Huryn DM. Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies. Curr Top Med Chem 2011; 11:317-30. [PMID: 21320060 PMCID: PMC3069499 DOI: 10.2174/156802611794072605] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/16/2010] [Indexed: 12/26/2022]
Abstract
The recognition that malfunction of the microtubule (MT) associated protein tau is likely to play a defining role in the onset and/or progression of a number of neurodegenerative diseases, including Alzheimer's disease, has resulted in the initiation of drug discovery programs that target this protein. Tau is an endogenous MT-stabilizing agent that is highly expressed in the axons of neurons. The MT-stabilizing function of tau is essential for the axonal transport of proteins, neurotransmitters and other cellular constituents. Under pathological conditions, tau misfolding and aggregation results in axonal transport deficits that appear to have deleterious consequences for the affected neurons, leading to synapse dysfunction and, ultimately, neuronal loss. This review focuses on both progress and unresolved issues surrounding the development of novel therapeutics for the treatment of neurodegenerative tauopathies, which are based on (A) MT-stabilizing agents to compensate for the loss of normal tau function, and (B) small molecule inhibitors of tau aggregation.
Collapse
Affiliation(s)
- C Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, USA.
| | | | | | | | | | | |
Collapse
|
343
|
Ultrastructural alterations of Alzheimer's disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 2010; 33:1427-39. [PMID: 21196065 DOI: 10.1016/j.neurobiolaging.2010.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/20/2010] [Accepted: 11/02/2010] [Indexed: 11/21/2022]
Abstract
Abnormal folding of the microtubule-associated protein tau leads to aggregation of tau into paired helical filaments (PHFs) and neurofibrillary tangles, the major hallmark of Alzheimer's disease (AD). We have recently shown that grape seed polyphenol extract (GSPE) reduces tau pathology in the TMHT mouse model of tauopathy (Wang et al., 2010). In the present studies we assessed the impact of GSPE exposure on the ultrastructure of PHFs isolated from Alzheimer's disease brain. Transmission electron microscopy revealed that GSPE induced profound dose- and time-dependent alterations in the morphology of PHFs with partial disintegration of filaments. Filaments showed ∼2-fold enlargement in width and displayed numerous protrusions and splayed ends consistent with unfolding of tau and diminished structural stability. In addition, GSPE induced a reduction in immunogold labeling with antibodies against the C-terminal half (12E8, PHF-1) and the middle region of tau (AT8, Tau5, pSer214 tau, and AT180) but not the C-terminal end (Tau46). In comparison, labeling of N-terminus (Alz50) was enhanced. It is unlikely that alterations in immunogold labeling were due to biochemical alterations, e.g., protein phosphatase or proteolytic activities potentially stimulated by GSPE, because western blotting studies have shown the preservation of full length polypeptides of tau and their phospho-epitopes in GSPE-treated samples. The GSPE mechanism may include a noncovalent interaction of polyphenols with proline residues in the proline-rich domain of tau, with Pin1 sites at P213 and P232 most seriously affected as judged by suppression of labeling. Collectively, our results suggest that GSPE has a significant potential for therapeutic development by neutralizing phospho-epitopes and disrupting fibrillary conformation leading to disintegration of PHFs.
Collapse
|
344
|
González-Muñoz GC, Arce MP, López B, Pérez C, Villarroya M, López MG, García AG, Conde S, Rodríguez-Franco MI. Old phenothiazine and dibenzothiadiazepine derivatives for tomorrow’s neuroprotective therapies against neurodegenerative diseases. Eur J Med Chem 2010; 45:6152-8. [DOI: 10.1016/j.ejmech.2010.09.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 11/16/2022]
|
345
|
Stanford SC, Stanford BJ, Gillman PK. Risk of severe serotonin toxicity following co-administration of methylene blue and serotonin reuptake inhibitors: an update on a case report of post-operative delirium. J Psychopharmacol 2010; 24:1433-8. [PMID: 19423610 DOI: 10.1177/0269881109105450] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a previous case report, published in this journal, we described a postoperative delirium in a patient during recovery from parathyroidectomy. We noted that the delirium resembled serotonin toxicity and that the patient had been taking paroxetine until 2 days before surgery. We offered several tentative explanations for this event, including an adverse interaction between paroxetine and other agent(s) used in the course of the anaesthesia. Recent developments in characterisation of serotonin toxicity have prompted us to re-examine the clinical details surrounding this life-threatening event. It is now known to be important that the patient was given methylene blue, pre-operatively, to enable visualisation of the parathyroid glands. Methylene blue has been found to be a potent inhibitor of monoamine oxidase (MAO), and several cases of serotonin toxicity have been reported recently following its administration. All these cases are consistent with the well-known risk of serotonin toxicity when drugs that augment serotonergic transmission are given in combination with an MAO inhibitor. Methylene blue is used in a variety of surgical settings as well as for treatment of various types of hypotensive shock and methemoglobinaemia. It is also being studied for treatment of Alzheimer's disease and malaria. In this paper, we outline the pharmacology of methylene blue and the aetiology of serotonin toxicity to help prevent further unintentional co-administration of drugs that risk precipitating this life-threatening drug interaction.
Collapse
Affiliation(s)
- S C Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | |
Collapse
|
346
|
Zovo K, Helk E, Karafin A, Tõugu V, Palumaa P. Label-Free High-Throughput Screening Assay for Inhibitors of Alzheimer’s Amyloid-β Peptide Aggregation Based on MALDI MS. Anal Chem 2010; 82:8558-65. [DOI: 10.1021/ac101583q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kairit Zovo
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Eneken Helk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Ann Karafin
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Vello Tõugu
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Peep Palumaa
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
347
|
Abstract
Alzheimer's disease (AD) is characterized histopathologically by numerous neurons with neurofibrillary tangles and neuritic (senile) amyloid-beta (Abeta) plaques, and clinically by progressive dementia. Although Abeta is the primary trigger of AD according to the amyloid cascade hypothesis, neurofibrillary degeneration of abnormally hyperphosphorylated tau is apparently required for the clinical expression of this disease. Furthermore, while approximately 30% of normal aged individuals have as much compact plaque burden in the neocortex as is seen in typical cases of AD, in several tauopathies, such as cortical basal degeneration and Pick's disease, neurofibrillary degeneration of abnormally hyperphosphorylated tau in the absence of Abeta plaques is associated with dementia. To date, all AD clinical trials based on Abeta as a therapeutic target have failed. In addition to the clinical pathological correlation of neurofibrillary degeneration with dementia in AD and related tauopathies, increasing evidence from in vitro and in vivo studies in experimental animal models provides a compelling case for this lesion as a promising therapeutic target. A number of rational approaches to inhibiting neurofibrillary degeneration include inhibition of one or more tau protein kinases, such as glycogen synthase kinase-3beta and cyclin-dependent protein kinase 5, activation of the major tau phosphatase protein phosphatase-2A, elevation of beta-N-acetylglucosamine modification of tau through inhibition of beta-N-acetylglucosaminidase or increase in brain glucose uptake, and promotion of the clearance of the abnormally hyperphosphorylated tau by autophagy or the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | |
Collapse
|
348
|
Pasinetti GM, Ksiezak-Reding H, Santa-Maria I, Wang J, Ho L. Development of a grape seed polyphenolic extract with anti-oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies. J Neurochem 2010; 114:1557-68. [PMID: 20569300 PMCID: PMC2945400 DOI: 10.1111/j.1471-4159.2010.06875.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diverse group of neurodegenerative diseases - including progressive supranuclear palsy (PSP), corticobasal degeneration and Alzheimer's disease among others, collectively referred to as tauopathies - are characterized by progressive, age-dependent intracellular formations of misfolded protein aggregates that play key roles in the initiation and progression of neuropathogenesis. Recent studies from our laboratory reveal that grape seed-derived polyphenolic extracts (GSPE) potently prevent tau fibrillization into neurotoxic aggregates and therapeutically promote the dissociation of preformed tau aggregates [J. Alzheimer's Dis. (2009) vol. 16, pp. 433]. Based on our extensive bioavailability, bioactivity and functional preclinical studies, combined with the safety of GSPE in laboratory animals and in humans, we initiated a series of studies exploring the role of GSPE (Meganatural-Az(®) GSPE) as a potential novel botanical drug for the treatment of certain forms of tauopathies including PSP, a neurodegenerative disorder involving the accumulation and deposition of misfolded tau proteins in the brain characterized, in part, by abnormal intracellular tau inclusions in specific anatomical areas involving astrocytes, oligodendrocytes and neurons [J. Neuropathol. Exp. Neurol. (2002) vol. 61, pp. 33]. In this mini-review article, we discuss the biochemical characterization of GSPE in our laboratory and its potential preventative and therapeutic role in model systems of abnormal tau processing pertinent to PSP and related tauopathies.
Collapse
Affiliation(s)
- Giulio Maria Pasinetti
- Center of Excellence for Novel Approaches to Neurodiagnostics and Neurotherapeutics, Brain Institute, Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | | | |
Collapse
|
349
|
Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol 2010; 9:702-16. [PMID: 20610346 DOI: 10.1016/s1474-4422(10)70119-8] [Citation(s) in RCA: 856] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is the most common cause of dementia in elderly people. Research into Alzheimer's disease therapy has been at least partly successful in terms of developing symptomatic treatments, but has also had several failures in terms of developing disease-modifying therapies. These successes and failures have led to debate about the potential deficiencies in our understanding of the pathogenesis of Alzheimer's disease and potential pitfalls in diagnosis, choice of therapeutic targets, development of drug candidates, and design of clinical trials. Many clinical and experimental studies are ongoing, but we need to acknowledge that a single cure for Alzheimer's disease is unlikely to be found and that the approach to drug development for this disorder needs to be reconsidered. Preclinical research is constantly providing us with new information on pieces of the complex Alzheimer's disease puzzle, and an analysis of this information might reveal patterns of pharmacological interactions instead of single potential drug targets. Several promising randomised controlled trials are ongoing, and the increased collaboration between pharmaceutical companies, basic researchers, and clinical researchers has the potential to bring us closer to developing an optimum pharmaceutical approach for the treatment of Alzheimer's disease.
Collapse
|
350
|
van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Götz J, Ittner LM. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc Natl Acad Sci U S A 2010; 107:13888-93. [PMID: 20643941 PMCID: PMC2922247 DOI: 10.1073/pnas.1009038107] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) brains are characterized by amyloid-beta-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles (NFTs); however, in frontotemporal dementia, the tau pathology manifests in the absence of overt amyloid-beta plaques. Therapeutic strategies so far have primarily been targeting amyloid-beta, although those targeting tau are only slowly beginning to emerge. Here, we identify sodium selenate as a compound that reduces tau phosphorylation both in vitro and in vivo. Importantly, chronic oral treatment of two independent tau transgenic mouse strains with NFT pathology, P301L mutant pR5 and K369I mutant K3 mice, reduces tau hyperphosphorylation and completely abrogates NFT formation. Furthermore, treatment improves contextual memory and motor performance, and prevents neurodegeneration. As hyperphosphorylation of tau precedes NFT formation, the effect of selenate on tau phosphorylation was assessed in more detail, a process regulated by both kinases and phosphatases. A major phosphatase implicated in tau dephosphorylation is the serine/threonine-specific protein phosphatase 2A (PP2A) that is reduced in both levels and activity in the AD brain. We found that selenate stabilizes PP2A-tau complexes. Moreover, there was an absence of therapeutic effects in sodium selenate-treated tau transgenic mice that coexpress a dominant-negative mutant form of PP2A, suggesting a mediating role for PP2A. Taken together, sodium selenate mitigates tau pathology in several AD models, making it a promising lead compound for tau-targeted treatments of AD and related dementias.
Collapse
Affiliation(s)
- Janet van Eersel
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia; and
- Department of Pathology, University of Sydney, Camperdown, New South Wales 2016, Australia
| | - Yazi D. Ke
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia; and
| | - Xin Liu
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia; and
| | - Fabien Delerue
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia; and
| | - Jillian J. Kril
- Department of Pathology, University of Sydney, Camperdown, New South Wales 2016, Australia
| | - Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia; and
| | - Lars M. Ittner
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia; and
| |
Collapse
|