301
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
302
|
Sakurai Y, Ngwe Tun MM, Kurosaki Y, Sakura T, Inaoka DK, Fujine K, Kita K, Morita K, Yasuda J. 5-amino levulinic acid inhibits SARS-CoV-2 infection in vitro. Biochem Biophys Res Commun 2021; 545:203-207. [PMID: 33571909 PMCID: PMC7846235 DOI: 10.1016/j.bbrc.2021.01.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
The current COVID-19 pandemic requires urgent development of effective therapeutics. 5-amino levulinic acid (5-ALA) is a naturally synthesized amino acid and has been used for multiple purposes including as an anticancer therapy and as a dietary supplement due to its high bioavailability. In this study, we demonstrated that 5-ALA treatment potently inhibited infection of SARS-CoV-2, a causative agent of COVID-19, in cell culture. The antiviral effects could be detected in both human and non-human cells, without significant cytotoxicity. Therefore, 5-ALA is worth to be further investigated as an antiviral drug candidate for COVID-19.
Collapse
Affiliation(s)
- Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kiyotaka Fujine
- Pharmaceutical Research Department, Global Pharmaceutical R&D Division, Neopharma Japan Co., Ltd, Tokyo, 102-0071, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan; Department of Host - Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan; National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8521, Japan.
| |
Collapse
|
303
|
Multicenter Study of the Seroprevalence of Antibodies against Covid-19 in Patients with Lymphoma: An Analysis of the Oncological Group for the Treatment and Study of Lymphomas (Gotel). ACTA ACUST UNITED AC 2021; 28:1249-1255. [PMID: 33809772 PMCID: PMC8025807 DOI: 10.3390/curroncol28020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
The new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) coronavirus has generated a pandemic, in which there are population groups at higher risk and who are potentially fatal victims of the disease. Cancer patients have been considered a group with special susceptibility, particularly patients with lung tumour involvement and haematological neoplasms. The Spanish Lymphoma Oncology Group (GOTEL) carried out a multicenter study of SARS-CoV-2 seroprevalence in patients with lymphoma. Results: A total of 150 patients were included between 22 May and 11 June 2020. The mean age was 65 years (range 17-89), 70 women (46.5%) and 80 men (53, 5%). At the time of diagnosis of lymphoma, 13 cases were stage I (9%), 27 (18%) stage II, 37 (24.5%) stage III, and 73 (48.5%) stage IV, while 6.6% had a primary extranodal origin. A total of 10 cases with positive serology for SARS-CoV-2 were identified, which is a prevalence of 6% in this population. None of the patients required intensive care unit management and all fully recovered from the infection. Conclusion: IgG antibody seroprevalence in lymphoma patients appears similar to that of the general population and does not show greater aggressiveness.
Collapse
|
304
|
Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, Fang Y, Gentili M, Leary CNO, Elledge SJ, Hung DT, Mootha VK, Gewurz BE. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun 2021; 12:1676. [PMID: 33723254 PMCID: PMC7960988 DOI: 10.1038/s41467-021-21903-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Rui Guo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sharon H Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hardik Shah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shuting Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jin Hua Liang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Colin N O' Leary
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Steven J Elledge
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | | | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Benjamin E Gewurz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
305
|
Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation. J Virol 2021; 95:JVI.02103-20. [PMID: 33361429 PMCID: PMC8092692 DOI: 10.1128/jvi.02103-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus (CoV) nsp15 is an endoribonuclease conserved throughout the CoV family. The enzymatic activity and crystal structure of infectious bronchitis virus (IBV) nsp15 are undefined, and the protein's role in replication remains unclear. We verified the uridylate-specific endoribonuclease (EndoU) activity of IBV and found that the EndoU active sites were located in the C-terminus of nsp15 and included His223, His238, Lys278 and Tyr334. We further constructed an infectious clone of the IBV-rSD strain (rSD-wild-type [WT]) and EndoU-deficient IBVs by changing the codon for the EndoU catalytic residues to alanine. Both the rSD-WT and EndoU-deficient viruses propagated efficiently in embryonated chicken eggs. Conversely, EndoU-deficient viral propagation was severely impaired in chicken embryonic kidney cells, which was reflected in the lower viral mRNA accumulation and protein synthesis. After infecting chickens with the parental rSD-WT strain and EndoU-deficient viruses, the EndoU-deficient-virus-infected chickens presented reduced mortality, tissue injury and viral shedding.IMPORTANCE Coronaviruses can emerge from animal reservoirs into naive host species to cause pandemic respiratory and gastrointestinal diseases with significant mortality in humans and domestic animals. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal and reproductive systems, causing millions of dollars in lost revenue worldwide annually. Mutating the viral endoribonuclease resulted in an attenuated virus and prevented protein kinase R activation. Therefore, EndoU activity is a virulence factor in IBV infections, thus providing an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.
Collapse
|
306
|
Ferrantelli F, Chiozzini C, Manfredi F, Giovannelli A, Leone P, Federico M. Simultaneous CD8 + T-Cell Immune Response against SARS-Cov-2 S, M, and N Induced by Endogenously Engineered Extracellular Vesicles in Both Spleen and Lungs. Vaccines (Basel) 2021; 9:240. [PMID: 33801926 PMCID: PMC7999804 DOI: 10.3390/vaccines9030240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Most advanced vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 are designed to induce antibodies against spike (S) protein. Differently, we developed an original strategy to induce CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This is a new vaccination approach based on intramuscular injection of DNA expression vectors coding for a biologically inactive HIV-1 Nef protein (Nefmut) with an unusually high efficiency of incorporation into EVs, even when foreign polypeptides are fused to its C-terminus. Nanovesicles containing Nefmut-fused antigens released by muscle cells can freely circulate into the body and are internalized by antigen-presenting cells. Therefore, EV-associated antigens can be cross-presented to prime antigen-specific CD8+ T-cells. To apply this technology to a strategy of anti-SARS-CoV-2 vaccine, we designed DNA vectors expressing the products of fusion between Nefmut and different viral antigens, namely N- and C-terminal moieties of S (referred to as S1 and S2), M, and N. We provided evidence that all fusion products are efficiently uploaded in EVs. When the respective DNA vectors were injected in mice, a strong antigen-specific CD8+ T cell immunity became detectable in spleens and, most important, in lung airways. Co-injection of DNA vectors expressing the diverse SARS-CoV-2 antigens resulted in additive immune responses in both spleen and lungs. Hence, DNA vectors expressing Nefmut-based fusion proteins can be proposed for new anti-SARS-CoV-2 vaccine strategies.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Andrea Giovannelli
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| |
Collapse
|
307
|
Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells 2021; 10:cells10030503. [PMID: 33652973 PMCID: PMC7996754 DOI: 10.3390/cells10030503] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that—besides traditional ER-Golgi communication—the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.
Collapse
|
308
|
Huan C, Xu W, Ni B, Guo T, Pan H, Jiang L, Li L, Yao J, Gao S. Epigallocatechin-3-Gallate, the Main Polyphenol in Green Tea, Inhibits Porcine Epidemic Diarrhea Virus In Vitro. Front Pharmacol 2021; 12:628526. [PMID: 33692691 PMCID: PMC7937899 DOI: 10.3389/fphar.2021.628526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
There are currently no licensed drugs against porcine epidemic diarrhea virus (PEDV), but vaccines are available. We identified a natural molecule, epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, which is effective against infection with PEDV. We used a variety of methods to test its effects on PEDV in Vero cells. Our experiments show that EGCG can effectively inhibit PEDV infections (with HLJBY and CV777 strains) at different time points in the infection using western blot analysis. We found that EGCG inhibited PEDV infection in a dose-dependent manner 24 h after the infection commenced using western blotting, plaque formation assays, immunofluorescence assays (IFAs), and quantitative reverse-transcriptase PCR (qRT-PCR). We discovered that EGCG treatment of Vero cells decreased PEDV attachment and entry into them by the same method analysis. Western blotting also showed that PEDV replication was inhibited by EGCG treatment. Whereas EGCG treatment was found to inhibit PEDV assembly, it had no effect on PEDV release. In summary, EGCG acts against PEDV infection by inhibiting PEDV attachment, entry, replication, and assembly.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Weiyin Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Bo Ni
- China Animal Health And Epidemiology Center, Qingdao, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Lin Li
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| |
Collapse
|
309
|
Abstract
The ongoing pandemic of the new severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused more than one million deaths, overwhelmed many public health systems, and led to a worldwide economic recession. This has raised an unprecedented need to develop antiviral drugs and vaccines, which requires profound knowledge of the fundamental pathology of the virus, including its entry, replication, and release from host cells. The genome of coronaviruses comprises around 30 kb of positive single-stranded RNA, representing one of the largest RNA genomes of viruses. The 5′ part of the genome encodes a large polyprotein, PP1ab, which gives rise to 16 non-structural proteins (nsp1– nsp16). Two proteases encoded in nsp3 and nsp5 cleave the polyprotein into individual proteins. Most nsps belong to the viral replicase complex that promotes replication of the viral genome and translation of structural proteins by producing subgenomic mRNAs. The replicase complexes are found on double-membrane vesicles (DMVs) that contain viral double-stranded RNA. Expression of a small subset of viral proteins, including nsp3 and nsp4, is sufficient to induce formation of these DMVs in human cells, suggesting that both proteins deform host membranes into such structures. We will discuss the formation of DMVs and provide an overview of other membrane remodeling processes that are induced by coronaviruses.
Collapse
Affiliation(s)
- Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, UMR3691 CNRS, F-75015, Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, UMR3691 CNRS, F-75015, Paris, France
| |
Collapse
|
310
|
Laing ED, Sterling SL, Richard SA, Epsi NJ, Coggins S, Samuels EC, Phogat S, Yan L, Moreno N, Coles CL, Drew M, Mehalko J, English CE, Merritt S, Mende K, Munster VJ, de Wit E, Chung KK, Millar EV, Tribble DR, Simons MP, Pollett SD, Agan BK, Esposito D, Lanteri C, Clifton GT, Mitre E, Burgess TH, Broder CC. Antigen-based multiplex strategies to discriminate SARS-CoV-2 natural and vaccine induced immunity from seasonal human coronavirus humoral responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.10.21251518. [PMID: 33594376 PMCID: PMC7885935 DOI: 10.1101/2021.02.10.21251518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 sero-surveillance. With the rollout of SARS-CoV-2 vaccines, such assays must be able to distinguish vaccine from natural immunity to SARS-CoV-2 and related human coronaviruses. Here, we developed and implemented multiplex microsphere-based immunoassay strategies for COVD-19 antibody studies that incorporates spike protein trimers of SARS-CoV-2 and the endemic seasonal human coronaviruses (HCoV), enabling high throughout measurement of pre-existing cross-reactive antibodies. We varied SARS-CoV-2 antigen compositions within the multiplex assay, allowing direct comparisons of the effects of spike protein, receptor-binding domain protein (RBD) and nucleocapsid protein (NP) based SARS-CoV-2 antibody detection. Multiplex immunoassay performance characteristics are antigen-dependent, and sensitivities and specificities range 92-99% and 94-100%, respectively, for human subject samples collected as early as 7-10 days from symptom onset. SARS-CoV-2 spike and RBD had a strong correlative relationship for the detection of IgG. Correlation between detectable IgG reactive with spike and NP also had strong relationship, however, several PCR-positive and spike IgG-positive serum samples were NP IgG-negative. This spike and NP multiplex immunoassay has the potential to be useful for differentiation between vaccination and natural infection induced antibody responses. We also assessed the induction of de novo SARS-CoV-2 IgG cross reactions with SARS-CoV and MERS-CoV spike proteins. Furthermore, multiplex immunoassays that incorporate spike proteins of SARS-CoV-2 and HCoVs will permit investigations into the influence of HCoV antibodies on COVID-19 clinical outcomes and SARS-CoV-2 antibody durability.
Collapse
Affiliation(s)
- Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Spencer L. Sterling
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Si’Ana Coggins
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Emily C. Samuels
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Shreshta Phogat
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Nicole Moreno
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christian L. Coles
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew Drew
- Protein Expression Laboratory, National Cancer Institute RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, National Cancer Institute RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caroline E. English
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Scott Merritt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Brooke Army Medical Center, JBSA Fort Sam Houston, TX, USA
| | - Katrin Mende
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Brooke Army Medical Center, JBSA Fort Sam Houston, TX, USA
| | - Vincent J. Munster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kevin K. Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eugene V. Millar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mark P. Simons
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian K. Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dominic Esposito
- Protein Expression Laboratory, National Cancer Institute RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charlotte Lanteri
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | | | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Timothy H. Burgess
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
311
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021; 118:e2017715118. [PMID: 33479166 PMCID: PMC8017934 DOI: 10.1073/pnas.2017715118] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
312
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021. [PMID: 33479166 DOI: 10.1101/2020.08.20.259770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
313
|
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic is a rapidly evolving situation. New discoveries about COVID-19 and its causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continue to deepen the understanding of this novel disease. As there is currently no COVID-19 specific treatment, isolation is the most effective method to prevent transmission. Moreover, development of a safe and effective COVID-19 vaccine will be instrumental in reinstating pre-COVID-19 conditions. As of 31 July 2020, there are at least 139 vaccine candidates from around the globe in preclinical evaluation, with another 26 undergoing clinical evaluation. This paper aims to review the basics of COVID-19, including epidemiology, basic biology of SARS-CoV-2, and transmission. We also review COVID-19 vaccine development, including animal models, platforms under development, and vaccine development in Canada.
Collapse
Affiliation(s)
- Marina Liu
- Department of Mechanical Engineering and Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.,Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering and Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
314
|
Santoro MG, Carafoli E. Remdesivir: From Ebola to COVID-19. Biochem Biophys Res Commun 2021; 538:145-150. [PMID: 33388129 PMCID: PMC7836944 DOI: 10.1016/j.bbrc.2020.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023]
Abstract
Human coronaviruses (HCoV) were discovered in the 1960s and were originally thought to cause only mild upper respiratory tract diseases in immunocompetent hosts. This view changed since the beginning of this century, with the 2002 SARS (severe acute respiratory syndrome) epidemic and the 2012 MERS (Middle East respiratory syndrome) outbreak, two zoonotic infections that resulted in mortality rates of approximately 10% and 35%, respectively. Despite the importance of these pathogens, no approved antiviral drugs for the treatment of human coronavirus infections became available. However, remdesivir, a nucleotide analogue prodrug originally developed for the treatment of Ebola virus, was found to inhibit the replication of a wide range of human and animal coronaviruses in vitro and in preclinical studies. It is therefore not surprising that when the highly pathogenic SARS-CoV-2 coronavirus emerged in late 2019 in China, causing global health concern due to the virus strong human-to-human transmission ability, remdesivir was one of the first clinical candidates that received attention. After in vitro studies had shown its antiviral activity against SARS-CoV-2, and a first patient was successfully treated with the drug in the USA, a number of trials on remdesivir were initiated. Several had encouraging results, particularly the ACTT-1 double blind, randomized, and placebo controlled trial that has shown shortening of the time to recovery in hospitalized patients treated with remdesivir. The results of other trials were instead negative. Here, we provide an overview of remdesivir discovery, molecular mechanism of action, and initial and current clinical studies on its efficacy.
Collapse
Affiliation(s)
- M. Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy,Institute of Translational Pharmacology, CNR, Rome, Italy,Corresponding author. Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Italy,Corresponding author
| |
Collapse
|
315
|
Kotaki T, Xie X, Shi PY, Kameoka M. A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Sci Rep 2021; 11:2229. [PMID: 33500537 PMCID: PMC7838314 DOI: 10.1038/s41598-021-82055-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
The development of specific antiviral compounds to SARS-CoV-2 is an urgent task. One of the obstacles for the antiviral development is the requirement of biocontainment because infectious SARS-CoV-2 must be handled in a biosafety level-3 laboratory. Replicon, a non-infectious self-replicative viral RNA, could be a safe and effective tool for antiviral evaluation. Herein, we generated a PCR-based SARS-CoV-2 replicon. Eight fragments covering the entire SARS-CoV-2 genome except S, E, and M genes were amplified with HiBiT-tag sequence by PCR. The amplicons were ligated and in vitro transcribed to RNA. The cells electroporated with the replicon RNA showed more than 3000 times higher luminescence than MOCK control cells at 24 h post-electroporation, indicating robust translation and RNA replication of the replicon. The replication was drastically inhibited by remdesivir, an RNA polymerase inhibitor for SARS-CoV-2. The IC50 of remdesivir in this study was 0.29 μM, generally consistent to the IC50 obtained using infectious SARS-CoV-2 in a previous study (0.77 μM). Taken together, this system could be applied to the safe and effective antiviral evaluation without using infectious SARS-CoV-2. Because this is a PCR-based and transient replicon system, further improvement including the establishment of stable cell line must be achieved.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
316
|
Holubovska O, Bojkova D, Elli S, Bechtel M, Boltz D, Muzzio M, Peng X, Sala F, Cosentino C, Mironenko A, Milde J, Lebed Y, Stammer H, Goy A, Guerrini M, Mueller L, Cinatl J, Margitich V, te Velthuis AJW. Enisamium is an inhibitor of the SARS-CoV-2 RNA polymerase and shows improvement of recovery in COVID-19 patients in an interim analysis of a clinical trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.05.21249237. [PMID: 33469600 PMCID: PMC7814846 DOI: 10.1101/2021.01.05.21249237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called Coronavirus Disease 2019 (COVID-19). Control of SARS-CoV-2 spread will depend on vaccine-induced or naturally acquired protective herd immunity. Until then, antiviral strategies are needed to manage COVID-19, but approved antiviral treatments, such as remdesivir, can only be delivered intravenously. Enisamium (laboratory code FAV00A, trade name Amizon®) is an orally active inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. Here we show that enisamium can inhibit SARS-CoV-2 infections in NHBE and Caco-2 cells. In vitro, the previously identified enisamium metabolite VR17-04 directly inhibits the activity of the SARS-CoV-2 RNA polymerase. Docking and molecular dynamics simulations suggest that VR17-04 prevents GTP and UTP incorporation. To confirm enisamium's antiviral properties, we conducted a double-blind, randomized, placebo-controlled trial in adult, hospitalized COVID-19 patients, which needed medical care either with or without supplementary oxygen. Patients received either enisamium (500 mg per dose) or placebo for 7 days. A pre-planned interim analysis showed in the subgroup of patients needing supplementary oxygen (n = 77) in the enisamium group a mean recovery time of 11.1 days, compared to 13.9 days for the placebo group (log-rank test; p=0.0259). No significant difference was found for all patients (n = 373) or those only needing medical care (n = 296). These results thus suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis and that enisamium treatment shortens the time to recovery for COVID-19 patients needing oxygen.
Collapse
Affiliation(s)
- Olha Holubovska
- O.O. Bogomolets National Medical University, T. Shevchenko blvd., 13, Kyiv, Ukraine
- These authors contributed equally
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- These authors contributed equally
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy
- These authors contributed equally
| | - Marco Bechtel
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David Boltz
- IIT Research institute, 10 W 35th St, Chicago, IL 60616, United States
| | - Miguel Muzzio
- IIT Research institute, 10 W 35th St, Chicago, IL 60616, United States
| | - Xinjian Peng
- IIT Research institute, 10 W 35th St, Chicago, IL 60616, United States
| | - Frederico Sala
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Alla Mironenko
- L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of the NAMS of Ukraine, Department of respiratory and other viral infections, Amosova str 5a, 03083, Kyiv, Ukraine
| | - Jens Milde
- Pharmalog Institut für klinische Forschung GmbH, Ismaning, Germany
| | - Yuriy Lebed
- Pharmaxi LLC, Filatova Str., 10A, office 3/20, 01042, Kyiv, Ukraine
| | - Holger Stammer
- Pharmalog Institut für klinische Forschung GmbH, Ismaning, Germany
| | - Andrew Goy
- Farmak Joint Stock Company, Kyrylivska Street, 04080, Kyiv, Ukraine
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Lutz Mueller
- Dr. Regenold GmbH, Zöllinplatz 4, D-79410 Badenweiler, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Victor Margitich
- Farmak Joint Stock Company, Kyrylivska Street, 04080, Kyiv, Ukraine
| | - Aartjan J. W. te Velthuis
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, CB2 2QQ, United Kingdom
- These authors contributed equally
| |
Collapse
|
317
|
The role of chemical biology in the fight against SARS-CoV-2. Biochem J 2021; 478:157-177. [PMID: 33439990 DOI: 10.1042/bcj20200514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023]
Abstract
Since late 2019, biomedical labs all over the world have been struggling to cope with the 'new normal' and to find ways in which they can contribute to the fight against COVID-19. In this unique situation where a biomedical issue dominates people's lives and the news cycle, chemical biology has a great deal to contribute. This review will describe the importance of science at the chemistry/biology interface to both understand and combat the SARS-CoV-2 pandemic.
Collapse
|
318
|
Abstract
Since 2002, three zoonotic coronaviruses (CoV), SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged in humans, establishing that emergence of coronaviruses from animal reservoirs represents a significant pandemic threat. SARS-CoV and MERS-CoV led to smaller epidemics with very high case fatality rates while SARS-CoV-2 resulted in a global pandemic. These zoonotic coronaviruses have their likely origins in bat species and they transmit to humans through intermediate hosts. Coronaviruses can occasionally jump between host species due to their high rate of recombination. Pandemic preparedness requires surveillance in animals and occupationally exposed humans and prevention and treatment strategies that have broad activity against coronaviruses.
Collapse
|
319
|
Mallikarjunaiah S, Metikurki B, Gurushankara HP. Genetics of coronaviruses. PANDEMIC OUTBREAKS IN THE 21ST CENTURY 2021:257-272. [DOI: 10.1016/b978-0-323-85662-1.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
320
|
Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, Bi Y, Wang P, Zhang H. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell 2020; 56:427-442.e5. [PMID: 33422265 PMCID: PMC7832235 DOI: 10.1016/j.devcel.2020.12.010] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.
Collapse
Affiliation(s)
- Guangyan Miao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Mingming Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yong Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peihui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
321
|
de Breyne S, Vindry C, Guillin O, Condé L, Mure F, Gruffat H, Chavatte L, Ohlmann T. Translational control of coronaviruses. Nucleic Acids Res 2020; 48:12502-12522. [PMID: 33264393 PMCID: PMC7736815 DOI: 10.1093/nar/gkaa1116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.
Collapse
Affiliation(s)
- Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lionel Condé
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| |
Collapse
|
322
|
Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA (NEW YORK, N.Y.) 2020; 27:rna.078121.120. [PMID: 33268501 PMCID: PMC7901841 DOI: 10.1261/rna.078121.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/29/2020] [Indexed: 05/10/2023]
Abstract
SARS-CoV-2 coronavirus is responsible for Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into non-structural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. In spite of the presence of NSP1 on the ribosome, viral translation proceeds however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1. The evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. NSP1-evasion can be transferred on a reporter transcript by SL1 transplantation. The apical part of SL1 is only required for viral translation. We show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation or fostering SARS-CoV-2 translation depending on the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of sub-genomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine 'Achille heel' of the virus.
Collapse
Affiliation(s)
- Antonin Tidu
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Aurelie Janvier
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Laure Schaeffer
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen F-67084 Strasbourg (France)
| | - Piotr Sosnowski
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Lauriane Kuhn
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Philippe Hammann
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Eric Westhof
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Gilbert Eriani
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Franck Martin
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France);
| |
Collapse
|
323
|
Lu L, Zhang H, Zhan M, Jiang J, Yin H, Dauphars DJ, Li SY, Li Y, He YW. Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development? SCIENCE CHINA. LIFE SCIENCES 2020; 63:1833-1849. [PMID: 33355886 PMCID: PMC7756132 DOI: 10.1007/s11427-020-1859-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people and caused tremendous morbidity and mortality worldwide. Effective treatment for coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 infection is lacking, and different therapeutic strategies are under testing. Host humoral and cellular immunity to SARS-CoV-2 infection is a critical determinant for patients' outcomes. SARS-CoV-2 infection results in seroconversion and production of anti-SARS-CoV-2 antibodies. The antibodies may suppress viral replication through neutralization but might also participate in COVID-19 pathogenesis through a process termed antibody-dependent enhancement. Rapid progress has been made in the research of antibody response and therapy in COVID-19 patients, including characterization of the clinical features of antibody responses in different populations infected by SARS-CoV-2, treatment of COVID-19 patients with convalescent plasma and intravenous immunoglobin products, isolation and characterization of a large panel of monoclonal neutralizing antibodies and early clinical testing, as well as clinical results from several COVID-19 vaccine candidates. In this review, we summarize the recent progress and discuss the implications of these findings in vaccine development.
Collapse
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China.
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Jun Jiang
- tricision Biotherapeutic Inc., Zhuhai, 519041, China
| | - Hua Yin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Danielle J Dauphars
- Department of Immunology, Duke University Medical University Medical Center, Durham, NC, 27710, USA
| | - Shi-You Li
- tricision Biotherapeutic Inc., Zhuhai, 519041, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - You-Wen He
- Department of Immunology, Duke University Medical University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
324
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
325
|
Laing E, Sterling S, Richard S, Epsi N, Phogat S, Samuels E, Yan L, Moreno N, Coles C, Drew M, Mehalko J, English C, Merritt S, Mende K, Chung K, Clifton G, Munster V, de Wit E, Tribble D, Agan B, Esposito D, Lanteri C, Mitre E, Burgess T, Broder C. A betacoronavirus multiplex microsphere immunoassay detects early SARS-CoV-2 seroconversion and antibody cross reactions. RESEARCH SQUARE 2020:rs.3.rs-105768. [PMID: 33269345 PMCID: PMC7709164 DOI: 10.21203/rs.3.rs-105768/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we developed and applied a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies that incorporates spike protein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human betacoronaviruses, HCoV-HKU1 and HCoV-OC43, that enables measurement of off-target pre-existing cross-reactive antibodies. The MMIA performances characteristics are: 98% sensitive and 100% specific for human subject samples collected as early as 10 days from symptom onset. The MMIA permitted the simultaneous identification of SARS-CoV-2 seroconversion and the induction of SARS-CoV-2 IgG antibody cross reactions to SARS-CoV-1 and MERS-CoV. Further, synchronous increases of HCoV-OC43 IgG antibody levels was detected with SARS-CoV-2 seroconversion in a subset of subjects for whom early infection sera were available prior to their SARS-CoV-2 seroconversion, suggestive of an HCoV-OC43 memory response triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Nusrat Epsi
- Uniformed Services University/Henry M. Jackson Foundation
| | | | - Emily Samuels
- Uniformed Services University/Henry M. Jackson Foundation
| | - Lianying Yan
- Uniformed Services University of the Health Sciences
| | - Nicole Moreno
- Uniformed Services University/Henry M. Jackson Foundation
| | | | - Matthew Drew
- Frederick National Laboratory for Cancer Research
| | | | | | - Scott Merritt
- Uniformed Services University/Henry M. Jackson Foundation/Brooke Army Medical Center
| | - Katrin Mende
- Uniformed Services University/Henry M. Jackson Foundation/Brooke Army Medical Center
| | | | | | | | - Emmie de Wit
- National Institute of Allergy and Infectious Diseases
| | | | - Brian Agan
- Uniformed Services University/Henry M. Jackson Foundation
| | | | | | | | | | | |
Collapse
|
326
|
Ghosh S, Malik YS. Drawing Comparisons between SARS-CoV-2 and the Animal Coronaviruses. Microorganisms 2020; 8:E1840. [PMID: 33238451 PMCID: PMC7700164 DOI: 10.3390/microorganisms8111840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic, caused by a novel zoonotic coronavirus (CoV), SARS-CoV-2, has infected 46,182 million people, resulting in 1,197,026 deaths (as of 1 November 2020), with devastating and far-reaching impacts on economies and societies worldwide. The complex origin, extended human-to-human transmission, pathogenesis, host immune responses, and various clinical presentations of SARS-CoV-2 have presented serious challenges in understanding and combating the pandemic situation. Human CoVs gained attention only after the SARS-CoV outbreak of 2002-2003. On the other hand, animal CoVs have been studied extensively for many decades, providing a plethora of important information on their genetic diversity, transmission, tissue tropism and pathology, host immunity, and therapeutic and prophylactic strategies, some of which have striking resemblance to those seen with SARS-CoV-2. Moreover, the evolution of human CoVs, including SARS-CoV-2, is intermingled with those of animal CoVs. In this comprehensive review, attempts have been made to compare the current knowledge on evolution, transmission, pathogenesis, immunopathology, therapeutics, and prophylaxis of SARS-CoV-2 with those of various animal CoVs. Information on animal CoVs might enhance our understanding of SARS-CoV-2, and accordingly, benefit the development of effective control and prevention strategies against COVID-19.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 334, Saint Kitts and Nevis
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, India;
| |
Collapse
|
327
|
Weber S, Ramirez C, Doerfler W. Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world. Virus Res 2020; 289:198170. [PMID: 32979477 PMCID: PMC7513834 DOI: 10.1016/j.virusres.2020.198170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first identified in Wuhan, China late in 2019. Nine months later (Sept. 23, 2020), the virus has infected > 31.6 million people around the world and caused > 971.000 (3.07 %) fatalities in 220 countries and territories. Research on the genetics of the SARS-CoV-2 genome, its mutants and their penetrance can aid future defense strategies. By analyzing sequence data deposited between December 2019 and end of May 2020, we have compared nucleotide sequences of 570 SARS-CoV-2 genomes from China, Europe, the US, and India to the sequence of the Wuhan isolate. During worldwide spreading among human populations, at least 10 distinct hotspot mutations had been selected and found in up to > 80 % of viral genomes. Many of these mutations led to amino acid exchanges in replication-relevant viral proteins. Mutations in the SARS-CoV-2 genome would also impinge upon the secondary structure of the viral RNA molecule and its repertoire of interactions with essential cellular and viral proteins. The increasing frequency of SARS-CoV-2 mutation hotspots might select for dangerous viral pathogens. Alternatively, in a 29.900 nucleotide-genome, there might be a limit to the number of mutable and selectable sites which, when exhausted, could prove disadvantageous to viral survival. The speed, at which novel SARS-CoV-2 mutants are selected and dispersed around the world, could pose problems for the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Stefanie Weber
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Christina Ramirez
- Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA, 90095-1772, USA
| | - Walter Doerfler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany; Institute of Genetics, University of Cologne, 50674, Cologne, Germany.
| |
Collapse
|
328
|
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na +-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020; 8:E460. [PMID: 33142989 PMCID: PMC7693583 DOI: 10.3390/biomedicines8110460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 symptoms, including hypokalemia, hypoalbuminemia, ageusia, neurological dysfunctions, D-dimer production, and multi-organ microthrombosis reach beyond effects attributed to impaired angiotensin-converting enzyme 2 (ACE2) signaling and elevated concentrations of angiotensin II (Ang II). Although both SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and SARS-CoV-2 utilize ACE2 for host entry, distinct COVID-19 pathogenesis coincides with the acquisition of a new sequence, which is homologous to the furin cleavage site of the human epithelial Na+ channel (ENaC). This review provides a comprehensive summary of the role of ACE2 in the assembly of Na+-dependent transporters of glucose, imino and neutral amino acids, as well as the functions of ENaC. Data support an osmotic adaptation mechanism in which osmotic and hemostatic instability induced by Ang II-activated ENaC is counterbalanced by an influx of organic osmolytes and Na+ through the ACE2 complex. We propose a paradigm for the two-site attack of SARS-CoV-2 leading to ENaC hyperactivation and inactivation of the ACE2 complex, which collapses cell osmolality and leads to rupture and/or necrotic death of swollen pulmonary, endothelial, and cardiac cells, thrombosis in infected and non-infected tissues, and aberrant sensory and neurological perception in COVID-19 patients. This dual mechanism employed by SARS-CoV-2 calls for combinatorial treatment strategies to address and prevent severe complications of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (D.M.); (S.R.A.); (S.B.K.)
| |
Collapse
|
329
|
Gonzalez A, Orozco-Aguilar J, Achiardi O, Simon F, Cabello-Verrugio C. SARS-CoV-2/Renin-Angiotensin System: Deciphering the Clues for a Couple with Potentially Harmful Effects on Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21217904. [PMID: 33114359 PMCID: PMC7663203 DOI: 10.3390/ijms21217904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has produced significant health emergencies worldwide, resulting in the declaration by the World Health Organization of the coronavirus disease 2019 (COVID-19) pandemic. Acute respiratory syndrome seems to be the most common manifestation of COVID-19. A high proportion of patients require intensive care unit admission and mechanical ventilation (MV) to survive. It has been well established that angiotensin-converting enzyme type 2 (ACE2) is the primary cellular receptor for SARS-CoV-2. ACE2 belongs to the renin–angiotensin system (RAS), composed of several peptides, such as angiotensin II (Ang II) and angiotensin (1-7) (Ang-(1-7)). Both peptides regulate muscle mass and function. It has been described that SARS-CoV-2 infection, by direct and indirect mechanisms, affects a broad range of organ systems. In the skeletal muscle, through unbalanced RAS activity, SARS-CoV-2 could induce severe consequences such as loss of muscle mass, strength, and physical function, which will delay and interfere with the recovery process of patients with COVID-19. This article discusses the relationship between RAS, SARS-CoV-2, skeletal muscle, and the potentially harmful consequences for skeletal muscle in patients currently infected with and recovering from COVID-19.
Collapse
Affiliation(s)
- Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (A.G.); (J.O.-A.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (A.G.); (J.O.-A.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Oscar Achiardi
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (A.G.); (J.O.-A.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Correspondence: ; Tel./Fax: +56-227-703-665
| |
Collapse
|
330
|
Laing ED, Sterling SL, Richard SA, Phogat S, Samuels EC, Epsi NJ, Yan L, Moreno N, Coles C, Mehalko J, Drew M, English C, Chung KK, Clifton GT, Munster VJ, de Wit E, Tribble D, Agan BK, Esposito D, Lanteri C, Mitre E, Burgess TH, Broder CC. A betacoronavirus multiplex microsphere immunoassay detects early SARS-CoV-2 seroconversion and controls for pre-existing seasonal human coronavirus antibody cross-reactivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.14.20207050. [PMID: 33083807 PMCID: PMC7574255 DOI: 10.1101/2020.10.14.20207050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With growing concern of persistent or multiple waves of SARS-CoV-2 in the United States, sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we describe the development and application of a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies, utilizing serum samples from non-human primate SARS-CoV-2 infection models, an archived human sera bank and subjects enrolled at five U.S. military hospitals. The MMIA incorporates prefusion stabilized spike glycoprotein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human coronaviruses HCoV-HKU1 and HCoV-OC43, into a multiplexing system that enables simultaneous measurement of off-target pre-existing cross-reactive antibodies. We report the sensitivity and specificity performances for this assay strategy at 98% sensitivity and 100% specificity for subject samples collected as early as 10 days after the onset of symptoms. In archival sera collected prior to 2019 and serum samples from subjects PCR negative for SARS-CoV-2, we detected seroprevalence of 72% and 98% for HCoV-HKU1 and HCoV-0C43, respectively. Requiring only 1.25 μL of sera, this approach permitted the simultaneous identification of SARS-CoV-2 seroconversion and polyclonal SARS-CoV-2 IgG antibody responses to SARS-CoV-1 and MERS-CoV, further demonstrating the presence of conserved epitopes in the spike glycoprotein of zoonotic betacoronaviruses. Application of this serology assay in observational studies with serum samples collected from subjects before and after SARS-CoV-2 infection will permit an investigation of the influences of HCoV-induced antibodies on COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Spencer L. Sterling
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Stephanie A. Richard
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Shreshta Phogat
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Emily C. Samuels
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Nusrat J. Epsi
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Nicole Moreno
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Christian Coles
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, National Cancer Institute RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew Drew
- Protein Expression Laboratory, National Cancer Institute RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caroline English
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Kevin K. Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Vincent J. Munster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David Tribble
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian K. Agan
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Dominic Esposito
- Protein Expression Laboratory, National Cancer Institute RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charlotte Lanteri
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Timothy H. Burgess
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
331
|
Laing ED, Sterling SL, Richard SA, Phogat S, Samuels EC, Epsi NJ, Yan L, Moreno N, Coles C, Mehalko J, Drew M, English C, Chung KK, Clifton GT, Munster V, de Wit E, Tribble D, Agan B, Esposito D, Lanteri C, Mitre E, Burgess TH, Broder CC. A betacoronavirus multiplex microsphere immunoassay detects early SARS-CoV-2 seroconversion and controls for pre-existing seasonal human coronavirus antibody cross-reactivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33083807 DOI: 10.1101/2020.05.21.20108985v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
With growing concern of persistent or multiple waves of SARS-CoV-2 in the United States, sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we describe the development and application of a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies, utilizing serum samples from non-human primate SARS-CoV-2 infection models, an archived human sera bank and subjects enrolled at five U.S. military hospitals. The MMIA incorporates prefusion stabilized spike glycoprotein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human coronaviruses HCoV-HKU1 and HCoV-OC43, into a multiplexing system that enables simultaneous measurement of off-target pre-existing cross-reactive antibodies. We report the sensitivity and specificity performances for this assay strategy at 98% sensitivity and 100% specificity for subject samples collected as early as 10 days after the onset of symptoms. In archival sera collected prior to 2019 and serum samples from subjects PCR negative for SARS-CoV-2, we detected seroprevalence of 72% and 98% for HCoV-HKU1 and HCoV-0C43, respectively. Requiring only 1.25 uL of sera, this approach permitted the simultaneous identification of SARS-CoV-2 seroconversion and polyclonal SARS-CoV-2 IgG antibody responses to SARS-CoV-1 and MERS-CoV, further demonstrating the presence of conserved epitopes in the spike glycoprotein of zoonotic betacoronaviruses. Application of this serology assay in observational studies with serum samples collected from subjects before and after SARS-CoV-2 infection will permit an investigation of the influences of HCoV-induced antibodies on COVID-19 clinical outcomes.
Collapse
|
332
|
Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly reached pandemic proportions, and knowledge about this virus and coronavirus disease 2019 (COVID-19) has expanded rapidly. This review focuses primarily on mechanisms that contribute to acute cardiac injury and dysfunction, which are common in patients with severe disease. The etiology of cardiac injury is multifactorial, and the extent is likely enhanced by preexisting cardiovascular disease. Disruption of homeostatic mechanisms secondary to pulmonary pathology ranks high on the list, and there is growing evidence that direct infection of cardiac cells can occur. Angiotensin-converting enzyme 2 (ACE2) plays a central role in COVID-19 and is a necessary receptor for viral entry into human cells. ACE2 normally not only eliminates angiotensin II (Ang II) by converting it to Ang-(1-7) but also elicits a beneficial response profile counteracting that of Ang II. Molecular analyses of single nuclei from human hearts have shown that ACE2 is most highly expressed by pericytes. Given the important roles that pericytes have in the microvasculature, infection of these cells could compromise myocardial supply to meet metabolic demand. Furthermore, ACE2 activity is crucial for opposing adverse effects of locally generated Ang II, so virus-mediated internalization of ACE2 could exacerbate pathology by this mechanism. While the role of cardiac pericytes in acute heart injury by SARS-CoV-2 requires investigation, expression of ACE2 by these cells has broader implications for cardiac pathophysiology.
Collapse
Affiliation(s)
- Fulton A Robinson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ryan P Mihealsick
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Hanna
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Megan D Poston
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
333
|
Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020; 319:H1059-H1068. [PMID: 33036546 PMCID: PMC7789968 DOI: 10.1152/ajpheart.00681.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly reached pandemic proportions, and knowledge about this virus and coronavirus disease 2019 (COVID-19) has expanded rapidly. This review focuses primarily on mechanisms that contribute to acute cardiac injury and dysfunction, which are common in patients with severe disease. The etiology of cardiac injury is multifactorial, and the extent is likely enhanced by preexisting cardiovascular disease. Disruption of homeostatic mechanisms secondary to pulmonary pathology ranks high on the list, and there is growing evidence that direct infection of cardiac cells can occur. Angiotensin-converting enzyme 2 (ACE2) plays a central role in COVID-19 and is a necessary receptor for viral entry into human cells. ACE2 normally not only eliminates angiotensin II (Ang II) by converting it to Ang-(1–7) but also elicits a beneficial response profile counteracting that of Ang II. Molecular analyses of single nuclei from human hearts have shown that ACE2 is most highly expressed by pericytes. Given the important roles that pericytes have in the microvasculature, infection of these cells could compromise myocardial supply to meet metabolic demand. Furthermore, ACE2 activity is crucial for opposing adverse effects of locally generated Ang II, so virus-mediated internalization of ACE2 could exacerbate pathology by this mechanism. While the role of cardiac pericytes in acute heart injury by SARS-CoV-2 requires investigation, expression of ACE2 by these cells has broader implications for cardiac pathophysiology.
Collapse
Affiliation(s)
- Fulton A Robinson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ryan P Mihealsick
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Hanna
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Megan D Poston
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
334
|
Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020; 11:583006. [PMID: 33101215 PMCID: PMC7554589 DOI: 10.3389/fendo.2020.583006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point that differentiates patients who are likely to develop severe COVID-19 outcomes: it marks a significant escalation in respiratory symptoms, loss of viral containment and a progression toward multi-organ dysfunction. These barrier mechanisms are independently compromised by known COVID-19 risk factors, including diabetes, obesity and aging: thus, a synergism between these underlying conditions and SARS-CoV-2 mechanisms may explain why these risk factors correlate with more severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2 and its underlying risk factors utilize to disrupt barrier function. As an outlook, we propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2 infection. GLP-1 signaling activates barrier-promoting processes that directly oppose the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying risk factors.
Collapse
Affiliation(s)
- Julia Hanchard
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | | | | | - Darcy Lidington
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
335
|
de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, Oliveira SC. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect 2020; 22:515-524. [PMID: 32961274 PMCID: PMC7501874 DOI: 10.1016/j.micinf.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Nina Marí G P de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio V Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo A Chagas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq/MCT, BA, Brazil.
| |
Collapse
|
336
|
Shi M, Wang L, Fontana P, Vora S, Zhang Y, Fu TM, Lieberman J, Wu H. SARS-CoV-2 Nsp1 suppresses host but not viral translation through a bipartite mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.18.302901. [PMID: 32995777 PMCID: PMC7523103 DOI: 10.1101/2020.09.18.302901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious virus that underlies the current COVID-19 pandemic. SARS-CoV-2 is thought to disable various features of host immunity and cellular defense. The SARS-CoV-2 nonstructural protein 1 (Nsp1) is known to inhibit host protein translation and could be a target for antiviral therapy against COVID-19. However, how SARS-CoV-2 circumvents this translational blockage for the production of its own proteins is an open question. Here, we report a bipartite mechanism of SARS-CoV-2 Nsp1 which operates by: (1) hijacking the host ribosome via direct interaction of its C-terminal domain (CT) with the 40S ribosomal subunit and (2) specifically lifting this inhibition for SARS-CoV-2 via a direct interaction of its N-terminal domain (NT) with the 5' untranslated region (5' UTR) of SARS-CoV-2 mRNA. We show that while Nsp1-CT is sufficient for binding to 40S and inhibition of host protein translation, the 5' UTR of SARS-CoV-2 mRNA removes this inhibition by binding to Nsp1-NT, suggesting that the Nsp1-NT-UTR interaction is incompatible with the Nsp1-CT-40S interaction. Indeed, lengthening the linker between Nsp1-NT and Nsp1-CT of Nsp1 progressively reduced the ability of SARS-CoV-2 5' UTR to escape the translational inhibition, supporting that the incompatibility is likely steric in nature. The short SL1 region of the 5' UTR is required for viral mRNA translation in the presence of Nsp1. Thus, our data provide a comprehensive view on how Nsp1 switches infected cells from host mRNA translation to SARS-CoV-2 mRNA translation, and that Nsp1 and 5' UTR may be targeted for anti-COVID-19 therapeutics.
Collapse
Affiliation(s)
- Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Co-first authors
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Co-first authors
| | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Co-first authors
| | - Setu Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Co-first authors
| | - Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Lead Contact
| |
Collapse
|
337
|
[SARS-CoV-2 genomics and its application to genome surveillance]. Uirusu 2020; 70:147-154. [PMID: 34544929 DOI: 10.2222/jsv.70.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|