301
|
Wang Y, Wu J, Lin Q, Nauta H, Yue Y, Fang L. Effects of general anesthetics on visceral pain transmission in the spinal cord. Mol Pain 2008; 4:50. [PMID: 18973669 PMCID: PMC2584043 DOI: 10.1186/1744-8069-4-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/30/2008] [Indexed: 12/30/2022] Open
Abstract
Current evidence suggests an analgesic role for the spinal cord action of general anesthetics; however, the cellular population and intracellular mechanisms underlying anti-visceral pain by general anesthetics still remain unclear. It is known that visceral nociceptive signals are transmited via post-synaptic dorsal column (PSDC) and spinothalamic tract (STT) neuronal pathways and that the PSDC pathway plays a major role in visceral nociception. Animal studies report that persistent changes including nociception-associated molecular expression (e.g. neurokinin-1 (NK-1) receptors) and activation of signal transduction cascades (such as the protein kinase A [PKA]-c-AMP-responsive element binding [CREB] cascade)-in spinal PSDC neurons are observed following visceral pain stimulation. The clinical practice of interruption of the spinal PSDC pathway in patients with cancer pain further supports a role of this group of neurons in the development and maintenance of visceral pain. We propose the hypothesis that general anesthetics might affect critical molecular targets such as NK-1 and glutamate receptors, as well as intracellular signaling by CaM kinase II, protein kinase C (PKC), PKA, and MAP kinase cascades in PSDC neurons, which contribute to the neurotransmission of visceral pain signaling. This would help elucidate the mechanism of antivisceral nociception by general anesthetics at the cellular and molecular levels and aid in development of novel therapeutic strategies to improve clinical management of visceral pain.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China.
| | | | | | | | | | | |
Collapse
|
302
|
Chang Y, Yan LH, Zhang FK, Gong KR, Liu MG, Xiao Y, Xie F, Fu H, Chen J. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett 2008; 448:134-8. [PMID: 18805459 DOI: 10.1016/j.neulet.2008.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/11/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
The primary somatosensory cortex (S1 area) is one of the key brain structures for central processing of somatic noxious information to produce pain perception. However, so far, the spatiotemporal characteristics of neuronal activities associated with peripheral persistent nociception have rarely been studied. In the present report, we used c-Fos as a neuronal marker to analyze spatial and temporal patterns of pain-related neuronal activities within the S1 area of rats subjecting to subcutaneous (s.c.) injection of bee venom (BV) solution, a well-established animal model of persistent pain. In naïve and saline-treated rats, c-Fos-labeled neurons were diffusely and sparsely distributed in the hindlimb region of S1 area. Following s.c. BV injection, c-Fos-labeled neurons became densely increased in superficial layers (II-III) and less increased in deep layers (IV-VI). The mean number of c-Fos positive neurons in the layers II-III began to increase at 1h and reached a peak at 2h after BV treatment that was followed by a gradual decrease afterward. The time course of c-Fos expression in the layers IV-VI was in parallel with that of the superficial layers, but with a much lower density and magnitude. The present results demonstrated that BV-induced peripheral persistent nociception could evoke increased neuronal activities in the S1 area with predominant localization in layers II-III.
Collapse
Affiliation(s)
- Ying Chang
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Franken ND, Van Oostrom H, Stienen PJ, Doornenbal A, Hellebrekers LJ. Evaluation of analgesic and sedative effects of continuous infusion of dexmedetomidine by measuring somatosensory- and auditory-evoked potentials in the rat. Vet Anaesth Analg 2008; 35:424-31. [DOI: 10.1111/j.1467-2995.2008.00404.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
304
|
Schnell SA, Wessendorf MW. Coexpression of the mu-opioid receptor splice variant MOR1C and the vesicular glutamate transporter 2 (VGLUT2) in rat central nervous system. J Comp Neurol 2008; 508:542-64. [PMID: 18381590 DOI: 10.1002/cne.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been reported that mu-opioid agonists depress glutamate release in some neurons but the specific receptor subtype mediating this effect is unclear. The purpose of the present study was to examine whether a particular mu-opioid receptor (MOR) splice-variant, MOR(1C), is expressed in rat central nervous system (CNS) by terminals expressing the vesicular glutamate transporter2 (VGLUT2), a marker of glutamatergic neurons. Several MOR splice variants have been identified in mice and MOR(1C) appears mainly to be localized to fibers and terminals, from which most neurotransmitter release would be expected. In addition, VGLUT2 has been found in the CNS and antibodies to it are reliable markers for glutamatergic terminals. Using fluorescence immunohistochemistry and confocal microscopy to examine spatial relationships between MOR(1C) and VGLUT2, we found that MOR(1C) and VGLUT2 puncta were widely distributed throughout the rat CNS; moreover, many regions contained terminals that expressed both. Thus, it appears that coexpression of MOR(1C) and VGLUT2 is common in the rat CNS. We hypothesize that activation of MOR(1C) by mu-opioid agonists at some glutamatergic terminals may be a mechanism by which glutamate release is inhibited.
Collapse
Affiliation(s)
- Stephen A Schnell
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
305
|
Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008; 86:22-47. [PMID: 18602968 DOI: 10.1016/j.pneurobio.2008.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 06/11/2008] [Indexed: 02/01/2023]
Abstract
Since the initial description by Wall [Wall, P.D., 1967. The laminar organization of dorsal horn and effects of descending impulses. J. Neurophysiol. 188, 403-423] of tonic descending inhibitory control of dorsal horn neurons, several studies have aimed to characterize the role of various brain centers in the control of nociceptive input to the spinal cord. The role of brainstem centers in pain inhibition has been well documented over the past four decades. Lesion to peripheral nerves results in hypersensitivity to mild tactile or cold stimuli (allodynia) and exaggerated response to nociceptive stimuli (hyperalgesia), both considered as cardinal signs of neuropathic pain. The increased interest in animal models for peripheral neuropathy has raised several questions concerning the rostral conduction of the neuropathic manifestations and the role of supraspinal centers, especially brainstem, in the inhibitory control or in the abnormal contribution to the maintenance and facilitation of neuropathic-like behavior. This review aims to summarize the data on the ascending and descending modulation of neuropathic manifestations and discusses the recent experimental data on the role of supraspinal centers in the control of neuropathic pain. In particular, the review emphasizes the importance of the reciprocal interconnections between the analgesic areas of the brainstem and the pain-related areas of the forebrain. The latter includes the cerebral limbic areas, the prefrontal cortex, the intralaminar thalamus and the hypothalamus and play a critical role in the control of pain considered as part of an integrated behavior related to emotions and various homeostatic regulations. We finally speculate that neuropathic pain, like extrapyramidal motor syndromes, reflects a disorder in the processing of somatosensory information.
Collapse
|
306
|
Radzievsky AA, Gordiienko OV, Alekseev S, Szabo I, Cowan A, Ziskin MC. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids. Bioelectromagnetics 2008; 29:284-95. [PMID: 18064600 DOI: 10.1002/bem.20389] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.
Collapse
Affiliation(s)
- A A Radzievsky
- Center for Biomedical Physics, Temple University Medical School, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | |
Collapse
|
307
|
Uchida S, Hirai K, Hatanaka J, Hanato J, Umegaki K, Yamada S. Antinociceptive effects of St. John's wort, Harpagophytum procumbens extract and Grape seed proanthocyanidins extract in mice. Biol Pharm Bull 2008; 31:240-5. [PMID: 18239280 DOI: 10.1248/bpb.31.240] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypericum perforatum extract (St. John's wort, SJW), Harpagophytum procumbens extract (HPE) and Grape seed proanthocyanidin extract (GSPE) have a broad spectrum of biological activities including antidepressant, anti-inflammatory or anti-oxidant effects. The aim of this study was to clarify antinociceptive properties of SJW, HPE and GSPE in mice with mechanisms that might potentially underlie these activities. Also, the effects of these herbal extracts on the antinociception and plasma and brain concentrations of morphine were examined. Oral pretreatment with SJW (100-1000 mg/kg) and HPE (30-300 mg/kg) attenuated significantly times of licking/biting both first and second phases of formalin injection in mice in the dose-dependent manner, and GSPE (10-300 mg/kg) suppressed second phase. Naloxone (5 mg/kg, s.c.) significantly attenuated antinociceptive effect of HPE but not SJW and GSPE. Formalin injection resulted in significant increase in the content of nitrites/nitrates (NO(x)) in mouse spinal cord. The rise of spinal NO(x) content by formalin was significantly attenuated by HPE and SJW. The pretreatment with SJW significantly potentiated an antinociceptive effect of morphine (0.3 mg/kg, s.c.), although concentrations of morphine in plasma and brain were not significantly changed by these herbal extracts. In conclusion, the present study has shown that SJW, HPE and GSPE exert significant antinociceptive effects in the formalin test of mice. In addition, opioidergic system seems to be involved in the antinociceptive effect of HPE but not SJW and GSPE. Furthermore, SJW potentiates morphine-induced antinociception possibly by pharmacodynamic interaction.
Collapse
Affiliation(s)
- Shinya Uchida
- Department of Pharmacokinetics and Pharmacodynamics and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
308
|
Ren LY, Lu ZM, Liu MG, Yu YQ, Li Z, Shang GW, Chen J. Distinct roles of the anterior cingulate cortex in spinal and supraspinal bee venom-induced pain behaviors. Neuroscience 2008; 153:268-78. [PMID: 18367341 DOI: 10.1016/j.neuroscience.2008.01.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 12/18/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
A wide variety of human and animal experiments suggest that the anterior cingulate cortex (ACC) is one of the key brain substrates subserving higher order processing of noxious information. However, no sufficient data are now available regarding the mediation by ACC of different levels of pain processing as well as its potential descending modulation of spinal nociception. Using the well-developed rat bee venom (BV) model, the present study evaluated the effect of lesions of bilateral ACC on two levels of spontaneous nociceptive behaviors (spinally-processed persistent paw flinching reflex and supraspinally-processed paw lifting/licking) and heat or mechanical hypersensitivity under the inflammatory pain state. In contrast to the sham lesion group (saline microinjection into the ACC), bilateral complete ACC chemical lesions (kainic acid microinjection into the ACC) significantly decreased the BV-induced paw lifting and licking behavior (less time spent by the animal in paw lifting/licking) but produced no influence upon spinally-processed spontaneous paw flinching reflex (no change in number of paw flinches following subcutaneous BV injection). Moreover, the bilateral ACC lesions relieved the BV-evoked primary thermal or mechanical hypersensitivity compared with the sham control group. However, incomplete lesions of bilateral ACC failed to affect the abovementioned pain-related behaviors. No effects were seen on basal pain sensitivity in either group of rats. Motor coordination, as measured by Rota-Rod treadmill test, was not impaired by bilateral ACC lesions. These results implicate that the ACC area of the brain plays differential roles in the mediation of different levels of spontaneous pain-related behaviors. The present study also provides additional evidence for the ACC-mediated descending facilitation of primary hyperalgesia (pain hypersensitivity) identified in the injured area under inflammatory pain state.
Collapse
Affiliation(s)
- L-Y Ren
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Baqiao District, Xi'an 710038, PR China
| | | | | | | | | | | | | |
Collapse
|
309
|
Diffuse optical tomography of pain and tactile stimulation: activation in cortical sensory and emotional systems. Neuroimage 2008; 41:252-9. [PMID: 18394924 DOI: 10.1016/j.neuroimage.2008.01.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/24/2022] Open
Abstract
Using diffuse optical tomography (DOT), we detected activation in the somatosensory cortex and frontal brain areas following tactile (brush) and noxious heat stimulation. Healthy volunteers received stimulation to the dorsum of the right hand. In the somatosensory cortex area, tactile stimulation produced a robust, contralateral to the stimulus, hemodynamic response with a weaker activation on the ipsilateral side. For the same region, noxious thermal stimuli produced bilateral activation of similar intensity that had a prolonged activation with a double peak similar to results that have been reported with functional MRI. Bilateral activation was observed in the frontal areas, oxyhemoglobin changes were positive for brush stimulation while they were initially negative (contralateral) for heat stimulation. These results suggest that based on the temporal and spatial characteristics of the response in the sensory cortex, it is possible to discern painful from mechanical stimulation using DOT. Such ability might have potential applications in a clinical setting in which pain needs to be assessed objectively (e.g., analgesic efficacy, pain responses during surgery).
Collapse
|
310
|
Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 2008; 28:944-52. [PMID: 18216202 DOI: 10.1523/jneurosci.2934-07.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cingulate cortex (CC) as a part of the "medial" pain subsystem is generally assumed to be involved in the affective and/or cognitive dimensions of pain processing, which are viewed as relatively slow processes compared with the sensory-discriminative pain coding by the lateral second somatosensory area (SII)-insular cortex. The present study aimed at characterizing the location and timing of the CC evoked responses during the 1 s period after a painful laser stimulus, by exploring the whole rostrocaudal extent of this cortical area using intracortical recordings in humans. Only a restricted area in the median CC region responded to painful stimulation, namely the posterior midcingulate cortex (pMCC), the location of which is consistent with the so-called "motor CC" in monkeys. Cingulate pain responses showed two components, of which the earliest peaked at latencies similar to those obtained in SII. These data provide direct evidence that activations underlying the processing of nociceptive information can occur simultaneously in the "medial" and "lateral" subsystems. The existence of short-latency pMCC responses to pain further indicates that the "medial pain system" is not devoted exclusively to the processing of emotional information, but is also involved in fast attentional orienting and motor withdrawal responses to pain inputs. These functions are, not surprisingly, conducted in parallel with pain intensity coding and stimulus localization specifically subserved by the sensory-discriminative "lateral" pain system.
Collapse
|
311
|
Kwon MY, Jun IG, Kim TH, Park JY. The interaction of morphine and selective serotonin reuptake inhibitors on mechanical allodynia in rats with a spinal nerve ligation. Korean J Anesthesiol 2008. [DOI: 10.4097/kjae.2008.55.1.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mi-young Kwon
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - In-gu Jun
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Tae-hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jong-Yeon Park
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| |
Collapse
|
312
|
Craig A(B. Retrograde analyses of spinothalamic projections in the macaque monkey: Input to the ventral lateral nucleus. J Comp Neurol 2008; 508:315-28. [DOI: 10.1002/cne.21672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
313
|
Chen T, Hu Z, Quirion R, Hong Y. Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22. Neuropharmacology 2007; 54:796-803. [PMID: 18249418 DOI: 10.1016/j.neuropharm.2007.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 12/07/2007] [Accepted: 12/07/2007] [Indexed: 11/16/2022]
Abstract
The sensory neuron-specific receptor (SNSR) is exclusively distributed in dorsal root ganglion (DRG) cells. We have demonstrated that intrathecal (i.t.) administration of SNSR agonists inhibits formalin-evoked responses and the development of morphine tolerance [Chen, T., Cai, Q., Hong, Y., 2006. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (tyr(6))-gamma2-msh-6-12 inhibit formalin-evoked nociception and neuronal fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 141, 965-975]. The present study was undertaken to examine the possible impact of the activation of SNSR on NMDA receptors. I.t. administration of NMDA (6.8 nmol) induced nociceptive behaviors, including scratching, biting and lifting, followed by thermal hypoalgesia and hyperalgesia. These responses were associated with the expression of Fos-like immunoreactivity (FLI) throughout the spinal dorsal horn with highest effect seen in laminae I-II. I.t. NMDA also induced an increase in nitric oxide synthase (NOS) activity in superficial layers of the dorsal horn, but not around the central canal, as revealed by NADPH diaphorase histochemistry. Pretreatment with the SNSR agonist bovine adrenal medulla 8-22 (3, 10 and 30 nmol) dose-dependently diminished NMDA-evoked nocifensive behaviors and hyperalgesia. This agonist also reduced NMDA-evoked expression of FLI and NADPH reactivity in the spinal dorsal horn. Taken together, these data suggest that the activation of SNSR induces spinal analgesia by suppressing NMDA receptor-mediated activation of spinal dorsal horn neurons and an increase in NOS activity.
Collapse
Affiliation(s)
- Tingjun Chen
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology Neuroscience, Fujian Normal University Fuzhou, Fujian 350108, People's Republic of China
| | | | | | | |
Collapse
|
314
|
Davis MP. Oral nabilone capsules in the treatment of chemotherapy-induced nausea and vomiting and pain. Expert Opin Investig Drugs 2007; 17:85-95. [DOI: 10.1517/13543784.17.1.85] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
315
|
Abstract
STUDY DESIGN A novel approach combining a rodent disc herniation model with electrophysiologic recordings of thalamic evoked responses. OBJECTIVE To assess short-term effects of nucleus pulposus (NP) application on dorsal root ganglions (DRG) on high threshold afferent fiber evoked activation in the thalamus. SUMMARY OF BACKGROUND DATA Epidural application of NP in combination with mechanical compression induces pain related behavior in rats associated with enhanced activity of pain-processing neurons in the dorsal horn of the spinal cord. However, possible effects on neuronal activity in the pain processing ventral posterior lateral (VPL) thalamic nucleus following NP application on DRG have not been investigated. METHODS Responses in the contralateral VPL evoked by electrical stimulation of the sciatic nerve and of the fourth lumbar (L4) DRG were recorded in adult Sprague-Dawley rats. Records were obtained before and during application (5, 10, and 20 minutes) of NP or of adipose tissue (AT) to the L4 DRG. AT was used as control for mechanical effects of NP application. RESULTS Application of NP resulted in an increase of evoked thalamic responses to 138% +/- 10% of control after 20 minutes (P < 0.01), whereas AT application for 20 minutes resulted in a reduction of evoked responses to 77% +/- 4% (P < 0.05). Recordings in control animals (i.e., with no application) demonstrated stable evoked neuronal thalamic activity for up to 40 minutes. CONCLUSION The study demonstrates that NP application onto DRG increases afferent fiber evoked responses in the thalamus and in view of the opposite effects of AT application suggests that these effects may be specific for NP. The results show that NP affects sensory transmitting pathways within a few minutes, possibly due to rapid and reversible alterations in the neuronal excitability. The study thus introduces a rodent model for studying sensory afferent evoked thalamic activity related to DRG injury which may be used to evaluate analgesics and anti-inflammatory drugs used for pain relief in disc herniation and neuropathic pain patients.
Collapse
|
316
|
Schestatsky P, Valls-Solé J, Costa J, León L, Veciana M, Chaves ML. Skin autonomic reactivity to thermoalgesic stimuli. Clin Auton Res 2007; 17:349-55. [DOI: 10.1007/s10286-007-0446-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 09/10/2007] [Indexed: 08/29/2023]
|
317
|
Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1235-42. [DOI: 10.1007/s00359-007-0283-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 10/17/2007] [Accepted: 10/20/2007] [Indexed: 10/22/2022]
|
318
|
Williams LM, Gordon E. Dynamic organization of the emotional brain: responsivity, stability, and instability. Neuroscientist 2007; 13:349-70. [PMID: 17644766 DOI: 10.1177/10738584070130040801] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Models of emotion processing have commonly been formulated as dichotomies such as approach versus avoidance. These models and associated research on evolutionary adaptation, awareness, motivational arousal, and cortical-subcortical brain systems are reviewed. A continuum model of emotional-significance processing is proposed to integrate current dichotomies and reflect the highly interconnected nature of brain systems. This model highlights a spectrum from "mismatches," signifying potential danger, to "matches," signifying safety and the expectation of reward. Subcortical-cortical interactions and autonomic arousal modulation support mismatch and match processing across a temporal continuum from milliseconds (in which processing is automatic and arguably nonconscious) to tenths of a second (in which responses are facilitated and contextual evaluation commences) to minutes and hours (when memory consolidation and neural plasticity occur). Variations at distinct points along this continuum, with contributions from constitutional and genetic factors, may contribute to individual differences in emotional stability and instability in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M Williams
- Brain Dynamics Center, Acacia House, Westmead Hospital, Westmead, Sydney, NSW, 2145, Australia.
| | | |
Collapse
|
319
|
Hudson JI, Perahia DG, Gilaberte I, Wang F, Watkin JG, Detke MJ. Duloxetine in the treatment of major depressive disorder: an open-label study. BMC Psychiatry 2007; 7:43. [PMID: 17725843 PMCID: PMC2018694 DOI: 10.1186/1471-244x-7-43] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 08/28/2007] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a chronic and highly disabling condition. Existing pharmacotherapies produce full remission in only 30% to 40% of treated patients. Antidepressants exhibiting dual reuptake inhibition of both serotonin (5-HT) and norepinephrine (NE) may achieve higher rates of remission compared with those acting upon a single neurotransmitter. In this study, the safety and efficacy of duloxetine, a potent dual reuptake inhibitor of 5-HT and NE, were examined. METHODS Patients (N = 533) meeting DSM-IV criteria for MDD received open-label duloxetine (60 mg once a day [QD]) for 12 weeks during the initial phase of a relapse prevention trial. Patients were required to have a 17-item Hamilton Rating Scale for Depression (HAMD17) total score >or=18 and a Clinical Global Impression of Severity (CGI-S) score >or=4 at baseline. Efficacy measures included the HAMD17 total score, HAMD17 subscales, the CGI-S, the Patient Global Impression of Improvement (PGI-I) scale, Visual Analog Scales (VAS) for pain, and the Symptom Questionnaire, Somatic Subscale (SQ-SS). Quality of life was assessed using the Sheehan Disability Scale (SDS) and the Quality of Life in Depression Scale (QLDS). Safety was evaluated by recording spontaneously-reported treatment-emergent adverse events, changes in vital signs and laboratory analytes, and the Patient Global Impression of Sexual Function (PGI-SF) scale. RESULTS The rate of discontinuation due to adverse events was 11.3%. Treatment-emergent adverse events reported by >or=10% duloxetine-treated patients were nausea, headache, dry mouth, somnolence, insomnia, and dizziness. Following 12 weeks of open-label duloxetine therapy, significant improvements were observed in all assessed efficacy and quality of life measures. In assessments of depression severity (HAMD17, CGI-S) the magnitude of symptom improvement continued to increase at each study visit, while for painful physical symptoms the onset of improvement was rapid and reached a maximum after 2 to 3 weeks of treatment. CONCLUSION In this open-label phase of a relapse prevention study, duloxetine (60 mg QD) was shown to be safe and effective in the treatment of MDD.
Collapse
Affiliation(s)
- James I Hudson
- McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David G Perahia
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
- The Gordon Hospital, London, UK
| | | | - Fujun Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - John G Watkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael J Detke
- McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
320
|
Alp A, Kanat E, Yurtkuran M. Efficacy of a self-management program for osteoporotic subjects. Am J Phys Med Rehabil 2007; 86:633-40. [PMID: 17667193 DOI: 10.1097/phm.0b013e31806dd428] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study is based on whether the self-management program choices For Better Bone Health is effective to promote behavioral strategies for improving bone health, life quality, pain perception, physical function, and balance in osteoporotic subjects. DESIGN In this single-blind, randomized controlled study, a total of 50 sedentary women with postmenopausal and idiopathic osteoporosis were selected from the outpatients of Atatürk Balneotherapy and Rehabilitation Center according to their physical activity level and T scores of dual-energy x-ray absorptiometry as the inclusion criteria. Fifty sedentary women with BMD T scores of -2.5 or lower were randomized into two groups (self-management group: group 1; and control group: group 2) and enrolled in a 6-mo study. Participants attended self-management class once a week for 5 wks. Evaluations were done at baseline, at the end of the fifth week, and at the sixth month. Pain-intensity evaluation by Visual Analogue Scale (VAS), life-quality assessments by SF-36, balance testing by Sensitized Romberg Test (SRT), and functional assessment by Timed Sit to Stand test (TSS) and a simple questionnaire were the outcome measures. RESULTS When the groups were compared by change scores and percentages of change, improvements observed in pain intensity by VAS (P < 0.001), SF-36 Physical Function (P < 0.001), SF-36 Physical Role Limitations (P < 0.001), SF-36 Social Function (P < 0.001), SF-36 Mental Health (P < 0.001), SF-36 Vitality (P < 0.01), SF-36 Pain (P < 0.001), SF-36 General Health Perceptions (P < 0.05), SF-36 Emotional Role Limitations (P < 0.01), SRT eyes open (P < 0.001), SRT eyes closed (P < 0.001), and TSS (P < 0.001) were determined to be superior in group 1 at the end of the sixth month. Seventy-four percent of patients in group 1 engaged in regular physical activities, and 92% of them declared that they understood the purpose and benefits of medications and dietary calcium intake. Fifty-seven percent of them formed personal plans for preventing traumas, whereas 8% of the subjects in group 2 experienced new falls but no fractures. CONCLUSION It is determined that the self-management class led to improvements in functional, balance, and life-quality outcomes and to reductions in pain perception.
Collapse
Affiliation(s)
- Alev Alp
- Uludag University Atatürk Balneotherapy and Rehabilitation Center, Physical Therapy and Rehabilitation Department, Bursa, Turkey
| | | | | |
Collapse
|
321
|
Brumley MR, Hentall ID, Pinzon A, Kadam BH, Blythe A, Sanchez FJ, Taberner AM, Noga BR. Serotonin concentrations in the lumbosacral spinal cord of the adult rat following microinjection or dorsal surface application. J Neurophysiol 2007; 98:1440-50. [PMID: 17634342 PMCID: PMC2668515 DOI: 10.1152/jn.00309.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of neuroactive substances, including monoamines, is common in studies examining the spinal mechanisms of sensation and behavior. However, affected regions and time courses of transmitter activity are uncertain. We measured the spatial and temporal distribution of serotonin [5-hydroxytryptamine (5-HT)] in the lumbosacral spinal cord of halothane-anesthetized adult rats, following its intraspinal microinjection or surface application. Carbon fiber microelectrodes (CFMEs) were positioned at various locations in the spinal cord and oxidation currents corresponding to extracellular 5-HT were measured by fast cyclic voltammetry. Intraspinal microinjection of 5-HT (100 microM, 1-3 microl) produced responses that were most pronounced at CFMEs positioned <or=800 microm from the drug micropipette: 5-HT concentration was significantly higher (1.43 vs. <0.28% of initial concentration) and response latency was shorter (67.1 vs. 598.2 s) compared with more distantly positioned CFMEs. Treatment with the selective 5-HT reuptake inhibitor clomipramine only slightly affected the spread of microinjected 5-HT. Surface application over several segments led to a transient rise in concentration that was usually apparent within 30 s and was dramatically attenuated with increasing depth: 0.25% of initial concentration (1 mM) within 400 microm of the dorsal surface and <0.001% between 1,170 and 2,000 microm. This initial response to superfusion was sometimes followed by a gradual increase to a new concentration plateau. In sum, compared with bath application, microinjection can deliver about tenfold higher transmitter concentrations, but to much more restricted areas of the spinal cord.
Collapse
Affiliation(s)
- Michele R Brumley
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
322
|
Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 2007; 104:11056-61. [PMID: 17578917 PMCID: PMC1894566 DOI: 10.1073/pnas.0702413104] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placebo-induced expectancies have been shown to decrease pain in a manner reversible by opioid antagonists, but little is known about the central brain mechanisms of opioid release during placebo treatment. This study examined placebo effects in pain by using positron-emission tomography with [(11)C]carfentanil, which measures regional mu-opioid receptor availability in vivo. Noxious thermal stimulation was applied at the same temperature for placebo and control conditions. Placebo treatment affected endogenous opioid activity in a number of predicted mu-opioid receptor-rich regions that play central roles in pain and affect, including periaqueductal gray and nearby dorsal raphe and nucleus cuneiformis, amygdala, orbitofrontal cortex, insula, rostral anterior cingulate, and lateral prefrontal cortex. These regions appeared to be subdivided into two sets, one showing placebo-induced opioid activation specific to noxious heat and the other showing placebo-induced opioid reduction during warm stimulation in anticipation of pain. These findings suggest that a mechanism of placebo analgesia is the potentiation of endogenous opioid responses to noxious stimuli. Opioid activity in many of these regions was correlated with placebo effects in reported pain. Connectivity analyses on individual differences in endogenous opioid system activity revealed that placebo treatment increased functional connectivity between the periaqueductal gray and rostral anterior cingulate, as hypothesized a priori, and also increased connectivity among a number of limbic and prefrontal regions, suggesting increased functional integration of opioid responses. Overall, the results suggest that endogenous opioid release in core affective brain regions is an integral part of the mechanism whereby expectancies regulate affective and nociceptive circuits.
Collapse
Affiliation(s)
- Tor D. Wager
- *Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027; and
- To whom correspondence should be addressed. E-mail:
| | - David J. Scott
- Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720
| | - Jon-Kar Zubieta
- Departments of Radiology and
- Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720
| |
Collapse
|
323
|
Willis WD. The somatosensory system, with emphasis on structures important for pain. ACTA ACUST UNITED AC 2007; 55:297-313. [PMID: 17604109 DOI: 10.1016/j.brainresrev.2007.05.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/10/2007] [Accepted: 05/20/2007] [Indexed: 11/15/2022]
Abstract
Santiago Ramón y Cajal described a number of somatosensory structures, including several associated with pain, in his major work on the Histology of the Nervous System of Man and Vertebrates. Our knowledge of such structures has been considerably expanded since Cajal because of the introduction of a number of experimental approaches that were not available in his time. For example, Cajal made several drawings of peripheral mechanoreceptors, as well as of bare nerve endings, but later work by others described additional somatosensory receptors and investigated the ultrastructure of bare nerve endings. Furthermore, the transducer molecules responsible for responses to nociceptive, thermal or chemical stimuli are now becoming known, including a series of TRP (transient receptor potential) receptor molecules, such as TRPV1 (the capsaicin receptor). Cajal described the development of dorsal root and other sensory ganglion cells and related the disposition of their somata and neurites to his theory of the functional polarity of neurons. He described the entry of both large and small afferent fibers into the spinal cord, including the projections of their collaterals into different parts of the gray matter and into different white matter tracts. He described a number of types of neurons in the gray matter, including ones in the marginal zone, substantia gelatinosa and head and neck of the dorsal horn. He found neurons in the deep dorsal horn whose dendrites extend dorsally into the superficial dorsal horn. Some of these neurons have since been shown by retrograde labeling to be spinothalamic tract cells. Cajal clearly described the dorsal column/medial lemniscus pathway, but the presence and course of the spinothalamic tract was unknown at the time.
Collapse
Affiliation(s)
- William D Willis
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| |
Collapse
|
324
|
Governo RJM, Prior MJW, Morris PG, Marsden CA, Chapman V. Validation of an automated punctate mechanical stimuli delivery system designed for fMRI studies in rodents. J Neurosci Methods 2007; 163:31-7. [PMID: 17368787 DOI: 10.1016/j.jneumeth.2007.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is increasingly being used for animal studies studying the transmission of nociceptive information. Application of noxious mechanical stimuli is widely used for animal and human assessment of pain processing. Any accessory hardware used in animal imaging studies must, however, be sufficiently small to fit in the magnet bore diameter and be non-magnetic. We have developed a system that can apply mechanical stimuli simultaneously with fMRI. This system consists of a standardized instrument to deliver mechanical stimuli (VonFrey monofilament) and a gas-pressured mechanical transducer. These components were integrated with a computer console that controlled the period of stimuli to match acquisition scans. Preliminary experiments demonstrated that the force-stimulus transducer did not influence MRI signal to noise ratio. Mechanical stimulation of the hindpaw significantly increased blood oxygen level dependent (BOLD) signal intensity in several midbrain regions involved in the processing of nociceptive information in the rat (p<0.001, uncorrected for multiple comparisons). This system can be applied to both animal and human imaging studies and has a wide range of applications for studies of nociceptive processing.
Collapse
|
325
|
Marsala J, Lukácová N, Kolesár D, Sulla I, Gálik J, Marsala M. The distribution of primary nitric oxide synthase- and parvalbumin- immunoreactive afferents in the dorsal funiculus of the lumbosacral spinal cord in a dog. Cell Mol Neurobiol 2007; 27:475-504. [PMID: 17387607 PMCID: PMC11517177 DOI: 10.1007/s10571-007-9140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1-S3) and lumbar (L1-L7) segments of the dog.2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments.3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI-CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0-9.2 mum in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe-Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen.4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
326
|
Patkar AA, Masand PS, Krulewicz S, Mannelli P, Peindl K, Beebe KL, Jiang W. A randomized, controlled, trial of controlled release paroxetine in fibromyalgia. Am J Med 2007; 120:448-54. [PMID: 17466657 DOI: 10.1016/j.amjmed.2006.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE We investigated the efficacy and tolerability of paroxetine controlled release, a selective serotonin reuptake inhibitor in fibromyalgia. METHODS After excluding patients with current major depression and anxiety disorders, 116 subjects with fibromyalgia were enrolled in a 12-week, randomized, double-blind, placebo-controlled, trial of paroxetine controlled release (12.5-62.5 mg/day). The primary outcome measure was proportion of responders as defined as a> or =25% reduction in scores on the Fibromyalgia Impact Questionnaire (FIQ) from randomization to end of treatment. Secondary outcome measures included changes in FIQ scores, Clinical Global Impression -Improvement (CGI-I) and Severity (CGI-S) scores, Visual Analogue Scale for pain scores, number of tender points, and scores on the Sheehan Disability Scale (SDS). RESULTS Significantly more patients in paroxetine controlled release group (57%) showed a> or =25% reduction in FIQ compared to placebo (33%) (P=.016). Paroxetine controlled release was significantly superior to placebo in reducing the FIQ total score (P =.015). The CGI-I ratings significantly favored the drug over placebo (P<.005). The improvements on other secondary outcome measures between the 2 groups were not statistically significant. Drowsiness, dry mouth, blurred vision, genital disorders, and anxiety were reported more frequently with paroxetine controlled release. The mean dose of paroxetine controlled release was 39.1 mg/day. CONCLUSIONS Paroxetine controlled release appears to be well-tolerated and improve the overall symptomatology in patients with fibromyalgia without current mood or anxiety disorders. However, its effect on pain measures seems to be less robust.
Collapse
Affiliation(s)
- Ashwin A Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27704, USA.
| | | | | | | | | | | | | |
Collapse
|
327
|
Staud R, Koo E, Robinson ME, Price DD. Spatial summation of mechanically evoked muscle pain and painful aftersensations in normal subjects and fibromyalgia patients. Pain 2007; 130:177-87. [PMID: 17459587 PMCID: PMC2041939 DOI: 10.1016/j.pain.2007.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 02/22/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Impulse frequency and number of recruited central neurons are relevant for pain encoding and temporal as well as spatial summation of pain (SSP). Whereas SSP of heat-induced pain is well characterized, mechanical SSP (MSSP) has been less studied. MSSP may be relevant for chronic pain conditions like fibromyalgia (FM) and play an important role in the pathogenesis of this chronic pain syndrome. Our study was designed to determine MSSP in 12 normal controls (NC) and 11 FM subjects. MSSP testing consisted of 5 s suprathreshold pressure-pain stimulations of forearm muscles by up to three identical probes (separated by 4 or 8 cm). The stimulated areas ranged between 0.79 and 2.37 cm2. The subjects rated the pain intensity of mechanical stimuli as well as pain aftersensations. Although MSSP increased monotonically in NC and FM subjects, pressure pain and pressure pain aftersensations were greater in FM subjects and highly associated with clinical pain intensity (r2=.44-.64), suggesting that spatial and temporal summation factors may contribute to overall clinical pain. However, despite higher experimental pain ratings, the magnitude of MSSP was not statistically different between NC and FM subjects. Furthermore, muscle stimuli elicited more MSSP when separated by 8 cm than 4 cm and this finding was not different between NC and FM subjects. Thus, mechanisms of MSSP were similar for both FM and NC subjects. The important role of MSSP for pain encoding suggests that decreasing pain in some muscle areas by local anesthetics or other means may improve overall clinical pain of FM patients.
Collapse
Affiliation(s)
- Roland Staud
- Department of Medicine, University of Florida, College of Medicine, Gainesville, FL 32610-0221, USA.
| | | | | | | |
Collapse
|
328
|
Veciana M, Valls-Solé J, Schestatsky P, Montero J, Casado V. Abnormal sudomotor skin responses to temperature and pain stimuli in syringomyelia. J Neurol 2007; 254:638-45. [PMID: 17420928 DOI: 10.1007/s00415-006-0422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/04/2006] [Accepted: 09/11/2006] [Indexed: 10/23/2022]
Abstract
Thermoalgesic sensory deficits in patients with syringomyelia may escape objective documentation with conventional electrophysiological techniques. We examined six patients with radiologically proven centrospinal cavities and patchy thermoalgesic sensory deficits by recording the evoked potentials and the sympathetic sudomotor skin responses (SSR) to laser stimuli. While electrical stimuli to the affected areas induced evoked potentials and SSRs of normal latency and amplitude, CO2 laser stimulation induced absent or abnormally reduced evoked potentials. Also, warmth and heat pain stimulation with a Peltier thermode induced absent or abnormal SSRs when applied over the affected areas but well defined SSRs when applied to the corresponding contralateral areas. Our results reveal the utility of recording the SSR to pain and temperature stimuli over specific body sites to demonstrate impairment of pain and temperature pathways in patients with syringomyelia. Comparison of electrical versus laser and temperature induced SSRs is an objective means to evaluate the selective thermoalgesic sensory deficit in these patients.
Collapse
Affiliation(s)
- M Veciana
- Dept. of Neurology, Hospital de St Boi, Barcelona, Spain
| | | | | | | | | |
Collapse
|
329
|
Braak H, Sastre M, Bohl JRE, de Vos RAI, Del Tredici K. Parkinson's disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 2007; 113:421-9. [PMID: 17294202 DOI: 10.1007/s00401-007-0193-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/03/2007] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Clinical signs frequently recognized in early phases of sporadic Parkinson's disease (PD) may include autonomic dysfunctions and the experience of pain. Early disease-related lesions that may account for these symptoms are presently unknown or incompletely known. In this study, immunocytochemistry for alpha-synuclein was used to investigate the first relay stations of the pain system as well as parasympathetic and sympathetic pre- and postganglionic nerve cells in the lower brainstem, spinal cord, and coeliac ganglion in 100 microm polyethylene glycol embedded sections from six autopsy individuals, whose brains were staged for PD-associated synucleinopathy. Immunoreactive inclusions were found for the first time in spinal cord lamina I neurons. Lower portions of the spinal cord downwards of the fourth thoracic segment appeared to be predominantly affected, whereas the spinal trigeminal nucleus was virtually intact. Additional involvement was seen in parasympathetic preganglionic projection neurons of the vagal nerve, in sympathetic preganglionic neurons of the spinal cord, and in postganglionic neurons of the coeliac ganglion. The known interconnectivities between all of these components offer a possible explanation for their particular vulnerability. Lamina I neurons (pain system) directly project upon sympathetic relay centers, and these, in turn, exert influence on the parasympathetic regulation of the enteric nervous system. This constellation indicates that physical contacts between vulnerable regions play a key role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Heiko Braak
- Institute for Clinical Neuroanatomy, J.W. Goethe University Clinic, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
330
|
Pereira EAC, Green AL, Bradley KM, Soper N, Moir L, Stein JF, Aziz TZ. Regional cerebral perfusion differences between periventricular grey, thalamic and dual target deep brain stimulation for chronic neuropathic pain. Stereotact Funct Neurosurg 2007; 85:175-83. [PMID: 17389817 DOI: 10.1159/000101296] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regional cerebral blood flow changes were evaluated in different subcortical brain targets following deep brain stimulation (DBS) for chronic pain. Three patients with intractable neuropathic pain were assessed; one had stimulating electrodes in the ventroposterolateral thalamic nucleus (VPL), one in the periventricular grey (PVG) area, and one had electrodes in both targets. Pain relief was achieved in all patients. Cerebral perfusion was measured by single-photon emission computed tomography to determine the effects of DBS. Comparison was made between individual scans using subtraction analysis. DBS consistently increased perfusion in the posterior subcortical region between VPL and PVG, regardless of the site of stimulation. Furthermore, thalamic and dual target DBS increased thalamic perfusion, yet PVG DBS decreased perfusion in the PVG-containing midbrain region and thalamus. Dual target stimulation decreased anterior cingulate and insular cortex perfusion. The study demonstrates regional differences in cerebral perfusion between three accepted and efficacious targets for analgesic DBS.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery, Department of Neurological Surgery, The West Wing, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
331
|
Francisco AN, Lobão CAF, Sassaki VS, Garbossa MCP, Aguiar LR. [Punctate midline myelotomy for the treatment of oncologic visceral pain: analysis of three cases]. ARQUIVOS DE NEURO-PSIQUIATRIA 2007; 64:446-50. [PMID: 16917617 DOI: 10.1590/s0004-282x2006000300018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 03/03/2006] [Indexed: 11/21/2022]
Abstract
INTRODUCTION A new midline posterior column pathway related to visceral pain has been recently discovered. OBJECTIVE To present its interruption by a punctate midline myelotomy providing significant visceral oncologic pain relief. METHOD Three patients with abdominal cancer refractory pain from opiate analgesics were treated by a punctate midline myelotomy through thoracic laminectomy. RESULTS Complete pain control was achieved in two patients, one had no more narcotics and the other one had significant lowering of opiate intake doses. The third patient was intolerant to narcotics having 80% relieving pain. There were no postoperative neurological deficits. CONCLUSION The present report reaffirms the existence of a dorsal column midline pathway related to visceral pain in humans, and its interruption ameliorates abdominal pain due to cancer.
Collapse
Affiliation(s)
- Alexandre N Francisco
- Serviço de Neurologia, Hospital Universitário Cajuru, Pontíficia Universidade Católica do Paraná, Hospital Universitário Cajuru, Av. São José 300, 80050-350 Curitiba PR, Brazil.
| | | | | | | | | |
Collapse
|
332
|
Abstract
The expression 'painful' can be used to describe both an embarrassing moment and a cut on the finger. An explanation for this dichotomy can be found in the convoluted history of ideas about pain. Whether pain is an independent sensation and the product of dedicated neural mechanisms continues to be a topic of debate. This overview concentrates on the issue of specificity together with other notable information regarding pain that has emerged since 1800.
Collapse
MESH Headings
- Animals
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- History, Medieval
- Humans
- Models, Biological
- Pain/history
- Pain/physiopathology
Collapse
Affiliation(s)
- Edward R Perl
- Department of Cell & Molecular Physiology, 5109D Neuroscience Research Building, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA.
| |
Collapse
|
333
|
Norrefalk JR, Linder J, Ekholm J, Borg K. A 6-year follow-up study of 122 patients attending a multiprofessional rehabilitation programme for persistent musculoskeletal-related pain. Int J Rehabil Res 2007; 30:9-18. [PMID: 17293715 DOI: 10.1097/mrr.0b013e328013dac8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the study was to evaluate the outcome 6 years after completing a multiprofessional 8-week rehabilitation programme regarding the following objectives: (1) return to work, (2) level of activity and (3) pain intensity. Of 149 patients attending a rehabilitation programme, 122 were followed up after 6 years, through a structured telephone interview, and their present work situation, level of activity, sleeping habits, their estimated pain intensity and consumption of analgesics were recorded. The questions presented were the same as they had answered before entering the programme. The return-to-work rate was compared to 79 patients in a control group. At the 6-year follow-up, compared to before entering the programme, 52% had returned to work (P<0.001). In the control group the return-to-work rate was 13%. This difference was statistically significant (P<0.001). There was a statistically significant higher level of activity (P=0.037). A pain reduction was experienced by 58% of the patients (P<0.001) and 47% of the patients had decreased their consumption of analgesics (P<0.001). In conclusion, after completing the structured 8-week rehabilitation programme, the return-to-work rate was higher at a 6-year follow-up than in a control group. Furthermore, they had a higher level of activity and lower level of pain intensity than before entering the programme, indicating that the rehabilitation programme had a long-term positive effect on the return-to-work-rate, activity and pain as well as on the analgesic consumption.
Collapse
Affiliation(s)
- Jan-Rickard Norrefalk
- Department of Public Health Sciences, Division of Rehabilitation Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|
334
|
Napadow V, Liu J, Li M, Kettner N, Ryan A, Kwong KK, Hui KKS, Audette JF. Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Hum Brain Mapp 2007; 28:159-71. [PMID: 16761270 PMCID: PMC6871379 DOI: 10.1002/hbm.20261] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 02/06/2006] [Indexed: 11/08/2022] Open
Abstract
Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first through fourth digits. We hypothesize that aberrant afferent input from CTS will lead to maladaptive cortical plasticity, which may be corrected by appropriate therapy. Functional MRI (fMRI) scanning and clinical testing was performed on CTS patients at baseline and after 5 weeks of acupuncture treatment. As a control, healthy adults were also tested 5 weeks apart. During fMRI, sensory stimulation was performed for median nerve innervated digit 2 (D2) and digit 3 (D3), and ulnar nerve innervated digit 5 (D5). Surface-based and region of interest (ROI)-based analyses demonstrated that while the extent of fMRI activity in contralateral Brodmann Area 1 (BA 1) and BA 4 was increased in CTS compared to healthy adults, after acupuncture there was a significant decrease in contralateral BA 1 (P < 0.005) and BA 4 (P < 0.05) activity during D3 sensory stimulation. Healthy adults demonstrated no significant test-retest differences for any digit tested. While D3/D2 separation was contracted or blurred in CTS patients compared to healthy adults, the D2 SI representation shifted laterally after acupuncture treatment, leading to increased D3/D2 separation. Increasing D3/D2 separation correlated with decreasing paresthesias in CTS patients (P < 0.05). As CTS-induced paresthesias constitute diffuse, synchronized, multidigit symptomatology, our results for maladaptive change and correction are consistent with Hebbian plasticity mechanisms. Acupuncture, a somatosensory conditioning stimulus, shows promise in inducing beneficial cortical plasticity manifested by more focused digital representations.
Collapse
Affiliation(s)
- Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Craig AD'B, Zhang ET. Retrograde analyses of spinothalamic projections in the macaque monkey: input to posterolateral thalamus. J Comp Neurol 2007; 499:953-64. [PMID: 17072831 DOI: 10.1002/cne.21155] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of retrogradely labeled spinothalamic tract (STT) neurons was analyzed in macaque monkeys following variously sized, physiologically guided pressure or iontophoretic injections of cholera toxin subunit B (CTb) in order to determine whether different STT termination sites receive input selectively from different sets of STT cells. This report focuses on posterolateral thalamus, where prior anterograde tracing observations identified the posterior part of the ventromedial nucleus (VMpo) as the major projection target of lamina I STT neurons. Large injections in posterolateral thalamus labeled predominantly STT cells in lamina I throughout the spinal cord. In cases with medium-sized or small injections centered in VMpo, almost all labeled STT cells ( approximately 90%) were lamina I neurons. Small injections revealed a posteroanterior (foot to hand) somatotopographic organization consistent with that observed in prior anterograde tracing work; injections in posterior VMpo labeled primarily lumbosacral lamina I cells, whereas injections placed more anteriorly in VMpo labeled primarily cervical lamina I cells. These findings support the concept that VMpo is a primate lamina I spinothalamocortical relay nucleus important for pain, temperature, itch, muscle ache, sensual touch, and other interoceptive feelings from the body, and they provide strong evidence for the general hypothesis that the STT consists of several functionally and anatomically differentiable components.
Collapse
Affiliation(s)
- A D 'Bud' Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.
| | | |
Collapse
|
336
|
Heilborn U, Rost BR, Arborelius L, Brodin E. Arthritis-induced increase in cholecystokinin release in the rat anterior cingulate cortex is reversed by diclofenac. Brain Res 2007; 1136:51-8. [PMID: 17229410 DOI: 10.1016/j.brainres.2006.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 11/15/2006] [Accepted: 12/05/2006] [Indexed: 11/18/2022]
Abstract
Given a hypothesised role for CCK in the anterior cingulate cortex (ACC) for the sensation of pain, the aim of the present study was to investigate whether the increased CCK release could be affected by two different analgesic drugs, morphine and the non-selective cyclooxygenase inhibitor diclofenac. Since opioids stimulate CCK release in other CNS regions we have also studied the effect of morphine by itself on the CCK-LI release in the ACC of non-arthritic rats. Three to seven hours after intraarticular carrageenan injection, at the time when the animals are known to show pain-related behaviour, in vivo microdialysis in awake rats revealed increased CCK-LI release in the ACC. The CCK-LI release was significantly attenuated by diclofenac (25 mg/kg i.m.), but not by morphine (10 mg/kg s.c.). Neither diclofenac (25 mg/kg i.m.) nor morphine (5 or 10 mg/kg s.c.) affected the CCK-LI release in the ACC in non-arthritic rats. The results obtained with diclofenac indicate that prostaglandins contribute to the increased CCK-LI release in the ACC during monoarthritis. However, the lack of effect of morphine suggests that the CCK release in the ACC is not directly related to the sensation of pain. Further on, the failure of morphine to affect the extracellular level of CCK-LI in the ACC in control animals as well as in animals with carrageenan-induced monoarthritis is in contrast to previous studies on the frontal cortex or the dorsal horn of the spinal cord, in which similar doses of morphine stimulate CCK release. Thus, compared to these regions, CCK release may be differently regulated in the ACC.
Collapse
Affiliation(s)
- Umut Heilborn
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
337
|
Huang HP, Wang SR, Yao W, Zhang C, Zhou Y, Chen XW, Zhang B, Xiong W, Wang LY, Zheng LH, Landry M, Hökfelt T, Xu ZQD, Zhou Z. Long latency of evoked quantal transmitter release from somata of locus coeruleus neurons in rat pontine slices. Proc Natl Acad Sci U S A 2007; 104:1401-6. [PMID: 17227848 PMCID: PMC1783087 DOI: 10.1073/pnas.0608897104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The locus coeruleus (LC) harbors a compact group of noradrenergic cell bodies projecting to virtually all parts of the central nervous system. By using combined measurements of amperometry and patch-clamp, quantal vesicle release of noradrenaline (NA) was detected as amperometric spikes, after depolarization of the LC neurons. After a pulse depolarization, the average latency of amperometric spikes was 1,870 ms, whereas the latency of glutamate-mediated excitatory postsynaptic currents was 1.6 ms. A substantial fraction of the depolarization-induced amperometric spikes originated from the somata. In contrast to glutamate-mediated excitatory postsynaptic currents, NA secretion was strongly modulated by the action potential frequency (0.5-50 Hz). Somatodendritic NA release from LC upon enhanced cell activity produced autoinhibition of firing and of NA release. We conclude that, in contrast to classic synaptic transmission, quantal NA release from LC somata is characterized by a number of distinct properties, including long latency and high sensitivity to action potential frequency.
Collapse
Affiliation(s)
- H.-P. Huang
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - S.-R. Wang
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - W. Yao
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - C. Zhang
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Y. Zhou
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - X.-W. Chen
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - B. Zhang
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - W. Xiong
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - L.-Y. Wang
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - L.-H. Zheng
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - M. Landry
- Institut National de la Santé et de la Recherche Médicale E358, Institut Francois Magendie, Universite Victor Segalen Bordeaux 2, 33077 Bordeaux, France
| | - T. Hökfelt
- Department of Neuroscience, Karolinska Institutet, S-171 71 Stockholm, Sweden; and
- To whom correspondence may be addressed. E-mail:
or
| | - Z.-Q. D. Xu
- Department of Neuroscience, Karolinska Institutet, S-171 71 Stockholm, Sweden; and
| | - Z. Zhou
- *Institute of Neuroscience, Shanghai Institutes for the Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
- State Key Laboratory of Biomembrane Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
338
|
Anatomy of the Pain Processing System. Pain Manag 2007. [DOI: 10.1016/b978-0-7216-0334-6.50006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
339
|
Chao CC, Hsieh ST, Chiu MJ, Tseng MT, Chang YC. Effects of aging on contact heat-evoked potentials: The physiological assessment of thermal perception. Muscle Nerve 2007; 36:30-8. [PMID: 17503497 DOI: 10.1002/mus.20815] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Age significantly influences the detection thresholds to noxious heat; such thresholds depend on responses in the cerebral cortex to thermal stimuli and the psychophysical perception of such responses. To understand the influence of age on cerebral responses, we used contact heat-evoked potentials (CHEPs) to investigate the physiology of cerebral responses to thermal stimuli in 70 healthy subjects (33 men and 37 women, 39.56 +/- 12.12 years of age). With heat stimulation of fixed intensity (51 degrees C) on the distal forearm and distal leg, CHEPs revealed consistent waveforms with an initial negative peak (N1 latency: 398.63 +/- 28.55 and 449.03 +/- 32.21 ms for upper and lower limbs) and a later positive peak (P1 latency: 541.63 +/- 37.92 and 595.41 +/- 39.24 ms for upper and lower limbs) with N1-P1 interpeak amplitude of 42.30 +/- 12.57 microV in the upper limb and 39.67 +/- 12.03 microV in the lower limb. On analyses with models of multiple linear regression, N1-P1 amplitudes were negatively correlated with age and N1 latencies were correlated with gender, with females having shorter latencies. The verbal rating scale (VRS) for pain perception was higher in females than males, and decreased with aging. In addition, VRS paralleled changes in N1-P1 amplitude and N1 latency; the higher the VRS, the shorter the N1 latency and the higher the N1-P1 amplitude. These results provide evidence that CHEPs are influenced significantly by aging, corresponding to aging-related changes in thermal pain perception.
Collapse
Affiliation(s)
- Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | | | | | | | | |
Collapse
|
340
|
van Oostrom H, Stienen PJ, van den Bos R, de Groot HNM, Hellebrekers LJ. Somatosensory-evoked potentials indicate increased unpleasantness of noxious stimuli in response to increasing stimulus intensities in the rat. Brain Res Bull 2007; 71:404-9. [PMID: 17208658 DOI: 10.1016/j.brainresbull.2006.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/12/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Recently, it has been shown in rats that specific characteristics of somatosensory-evoked potentials (SEPs) recorded from different sites on the scalp correlate differently to the amount of unpleasantness experienced by the animal following noxious stimulation. It was shown that the SEP recorded from vertex (Vx-SEP) did correlate with the unpleasantness, whereas the SEP recorded from the primary somatosensory cortex (SI-SEP) did not. In the present study, we further investigated the relationship between the Vx-SEP, SI-SEP and the unpleasantness of noxious stimuli. Therefore, different groups of rats were subjected to a SEP fear-conditioning paradigm in which the unconditioned stimulus (US), represented by noxious stimuli applied to evoke SEPs, was paired to a conditioned stimulus (CS) represented by a tone. Different stimulus intensities of the US were applied in the different groups. After CS-US presentation, CS-induced fear-conditioned behaviour was analysed in relation to the characteristics of the Vx- and SI-SEP during CS-US presentation. Results showed that increasing stimulus intensities led to increased SEP amplitudes, which were paralleled by an increased amount of CS-induced fear-conditioned behaviour. No differences between Vx-SEP and SI-SEP were found. The increase in the SEPs in parallel with the increased amount of fear-induced behaviour further supports the SEP to be a potentially valuable tool for studying acute pain and analgesia in animals.
Collapse
Affiliation(s)
- Hugo van Oostrom
- Department of Clinical Sciences of Companion Animals, Division Anesthesiology and Neurophysiology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.154, Yalelaan 8, NL-3508 TD Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
341
|
Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006; 26:12165-73. [PMID: 17122041 PMCID: PMC4177069 DOI: 10.1523/jneurosci.3576-06.2006] [Citation(s) in RCA: 525] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Living with unrelenting pain (chronic pain) is maladaptive and is thought to be associated with physiological and psychological modifications, yet there is a lack of knowledge regarding brain elements involved in such conditions. Here, we identify brain regions involved in spontaneous pain of chronic back pain (CBP) in two separate groups of patients (n = 13 and n = 11), and contrast brain activity between spontaneous pain and thermal pain (CBP and healthy subjects, n = 11 each). Continuous ratings of fluctuations of spontaneous pain during functional magnetic resonance imaging were separated into two components: high sustained pain and increasing pain. Sustained high pain of CBP resulted in increased activity in the medial prefrontal cortex (mPFC; including rostral anterior cingulate). This mPFC activity was strongly related to intensity of CBP, and the region is known to be involved in negative emotions, response conflict, and detection of unfavorable outcomes, especially in relation to the self. In contrast, the increasing phase of CBP transiently activated brain regions commonly observed for acute pain, best exemplified by the insula, which tightly reflected duration of CBP. When spontaneous pain of CBP was contrasted to thermal stimulation, we observe a double-dissociation between mPFC and insula with the former correlating only to intensity of spontaneous pain and the latter correlating only to pain intensity for thermal stimulation. These findings suggest that subjective spontaneous pain of CBP involves specific spatiotemporal neuronal mechanisms, distinct from those observed for acute experimental pain, implicating a salient role for emotional brain concerning the self.
Collapse
Affiliation(s)
| | | | | | | | - R. Norman Harden
- Rehabilitation Institute of Chicago, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | |
Collapse
|
342
|
Raskin J, Wang F, Pritchett YL, Goldstein DJ. Duloxetine for patients with diabetic peripheral neuropathic pain: a 6-month open-label safety study. PAIN MEDICINE 2006; 7:373-85. [PMID: 17014595 DOI: 10.1111/j.1526-4637.2006.00207.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Duloxetine is a relatively balanced and potent reuptake inhibitor of both serotonin and norepinephrine. Because these neurotransmitters play a role in pain inhibition, duloxetine was considered a possible treatment for diabetic peripheral neuropathic pain (DPNP). This study assessed the 6-month safety and tolerability of duloxetine in patients with DPNP; evaluation of efficacy was a secondary objective. DESIGN In this 28-week, open-label study, in the clinical setting, 449 patients with DPNP were randomized (3:1) to receive duloxetine 60 mg twice daily (BID) (N = 334) or duloxetine 120 mg once daily (QD) (N = 115). Comprehensive safety evaluations including laboratory analyses and electrocardiograms were performed for all patients. Efficacy measures included the Brief Pain Inventory (BPI) and Clinical Global Impression of Severity (CGI-S) scales. RESULTS Protocol completion rates were 63.8% and 62.6% for the 60 mg BID and 120 mg QD groups, respectively (P = 0.823). Discontinuations were primarily due to adverse events, 20.1% for 60 mg BID and 27.0% for 120 mg QD (P = 0.149). Heart rate increased slightly in both treatment groups (P </= 0.02 in both groups). Systolic blood pressure was unaffected, while diastolic blood pressure decreased slightly in the 120 mg QD group (P = 0.04). Sustained elevation in blood pressure was reported for 18 (5.5%) patients in the 60 mg BID group and six (5.4%) in the 120 mg QD group. Duloxetine treatment was not associated with significant QTc prolongation. There was significant improvement at endpoint on all subscales of the BPI and CGI-S (P < 0.001 in both groups). CONCLUSIONS In this study, duloxetine 60 mg BID and 120 mg QD were safely administered and well tolerated in patients with DPNP for up to 28 weeks. There were few differences in safety or tolerability between the two dosages. At both doses, duloxetine provided clinically significant pain relief.
Collapse
Affiliation(s)
- Joel Raskin
- Lilly Research Laboratories, Eli Lilly Canada, Toronto, Canada.
| | | | | | | |
Collapse
|
343
|
Kupers R, Kehlet H. Brain imaging of clinical pain states: a critical review and strategies for future studies. Lancet Neurol 2006; 5:1033-44. [PMID: 17110284 DOI: 10.1016/s1474-4422(06)70624-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research into brain imaging of pain is largely dominated by experimental acute-pain studies. Applied study paradigms have evolved a lot over past years and the ensuing results have furthered enormously our understanding of acute-pain processing. In sharp contrast, published work on brain-imaging in chronic pain remains scant. Furthermore, the results of these studies are highly incongruent, which could be explained by the fact that patient populations studied varied largely in terms of pain history, pain distribution, cause of pain, and psychological set-up. To circumvent these problems, several investigators have used surrogate models of neuropathic pain, but the validity of these models is highly questionable. In this Review we critically discuss the problems and shortcomings of most published reports on chronic pain and we propose some strategies for future studies. We argue that the post-operative pain model is highly appealing since it opens perspectives for prospective longitudinal studies with repeated assessments and it enables control for many confounding factors, which hamper the interpretation of most current studies. We also plead for a multimodal imaging approach in which classic brain-activation studies are supplemented with genetic, neurochemistry, brain morphometry, and transcranial magnetic stimulation studies.
Collapse
Affiliation(s)
- Ron Kupers
- Department of Surgical Pathophysiology, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
344
|
Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, Pendse G, Moulton E, Scrivani S, Keith D, Chizh B, Borsook D. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006; 26:10646-57. [PMID: 17050704 PMCID: PMC6674763 DOI: 10.1523/jneurosci.2305-06.2006] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional magnetic resonance imaging was used to study patients with chronic neuropathic pain involving the maxillary region (V2) of the trigeminal nerve in patients with spontaneous pain and evoked pain to brush (allodynia). Patients underwent two functional scans (2-3 months apart) with mechanical and thermal stimuli applied to the affected region of V2 and to the mirror site in the unaffected contralateral V2 region, as well as bilaterally to the mandibular (V3) division. Patients were stimulated with brush, noxious cold, and noxious heat. Significant changes were observed in regions within and outside the primary trigeminal sensory pathway. Stimulation to the affected (neuropathic) side resulted in predominantly frontal region and basal ganglia activation compared with the control side. The differences were consistent with the allodynia to brush and cold. A region of interest-based analysis of the trigeminal sensory pathway revealed patterns of activation that differentiated between the affected and unaffected sides and that were particular to each stimulus. Activation in the spinal trigeminal nucleus was constant in location for all pain stimuli. Activation in other brainstem nuclei also showed differences in the blood oxygenation level-dependent signal for the affected versus the unaffected side. Thus, sensory processing in patients with trigeminal neuropathic pain is associated with distinct activation patterns consistent with sensitization within and outside of the primary sensory pathway.
Collapse
Affiliation(s)
- Lino Becerra
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Susie Morris
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Shelly Bazes
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Richard Gostic
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Seth Sherman
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Julie Gostic
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Gautam Pendse
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Eric Moulton
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| | - Steven Scrivani
- The Craniofacial Pain Center, Tufts University School of Dental Medicine, Boston, Massachusetts 02111
| | - David Keith
- Oral and Maxillofacial Surgery Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Boris Chizh
- Clinical Pharmacology and Discovery Medicine, GlaxoSmithKline, Cambridge CB2 2GG, United Kingdom
| | - David Borsook
- Pain and Analgesia Imaging and Neuroscience Group, Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478, and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
345
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
346
|
Abstract
Diabetic peripheral neuropathic pain is a common complication of diabetes mellitus that adversely affects the quality of life of these patients. Many antidepressants and anticonvulsants are effective in relieving diabetic peripheral neuropathic pain. Duloxetine, a dual serotonin and norepinephrine reuptake inhibitor, was very effective in reducing diabetic peripheral neuropathic pain and improving quality of life and was the first antidepressant approved by regulatory authorities for the treatment of diabetic peripheral neuropathic pain. Safety was evaluated in 1074 diabetic peripheral neuropathic pain patients representing 472 patient-years exposure. More duloxetine-treated (79/568, 13.9%) than placebo-treated (16/223, 7.2%; p = 0.008) patients discontinued owing to adverse events. Duloxetine should be used with similar cautions to the newer antidepressants. In addition, rare duloxetine-induced hepatic enzyme elevations should result in discontinuation of duloxetine therapy. Duloxetine should prove effective in other painful conditions and might provide additional relief when used with anticonvulsants in neuropathic conditions.
Collapse
Affiliation(s)
- David J Goldstein
- Department of Toxicology & Pharmacology, Indiana University School of Medicine, Indianapolis IN USA; PRN Consulting, 1212 Kirkham Lane, Indianapolis IN 46260, USA
| |
Collapse
|
347
|
Li J, Xiong K, Pang Y, Dong Y, Kaneko T, Mizuno N. Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J Comp Neurol 2006; 498:539-51. [PMID: 16874804 DOI: 10.1002/cne.21068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has often been suggested that the trigemino- and spino-thalamic pathways are highly implicated in sensory-discriminative aspects of pain, whereas the trigemino- and spino-parabrachial pathways are strongly implicated in affective/emotional aspects of pain. On the other hand, the superficial laminae of the spinal dorsal horn, where many nociceptive neurons are distributed, have been reported to contain projection neurons innervating both the parabrachial nucleus (PBN) and thalamus by way of axon collaterals (Hylden et al., 1989). For the medullary dorsal horn (caudal subnucleus of spinal trigeminal nucleus: Vc), however, the existence of such neurons has not been reported. Thus, in the present study, we examined whether the Vc might contain projection neurons sending their axons to both the thalamus and PBN. Dual retrograde labeling with fluorescence dyes was attempted. In each rat, tetramethylrhodamine-dextran amine and Fluoro-gold were stereotaxically injected into the PBN and thalamic regions, respectively. The proportion of the dually labeled Vc cells in the total population of all labeled Vc cells was about 20%. More than 90% of the dually labeled neurons were distributed in lamina I (marginal zone), less than 10% of them were located in lamina II (substantia gelatinosa), and only a few (about 1%) were found in lamina III (magnocellular zone). The results indicate that some Vc neurons in the superficial laminae mediate nociceptive information directly to the PBN and thalamus by way of axon collaterals and that the vast majority of them project to the ipsilateral PBN and contralateral thalamus.
Collapse
Affiliation(s)
- Jinlian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
348
|
McMullan S, Lumb BM. Spinal dorsal horn neuronal responses to myelinated versus unmyelinated heat nociceptors and their modulation by activation of the periaqueductal grey in the rat. J Physiol 2006; 576:547-56. [PMID: 16916903 PMCID: PMC1890363 DOI: 10.1113/jphysiol.2006.117754] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/21/2006] [Accepted: 08/14/2006] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to further understand the central processing of inputs arising from unmyelinated and myelinated nociceptors by (i) determining the response characteristics of Class 2 dorsal horn neurones to preferential activation of C- and A-fibre heat nociceptors, and (ii) investigating the control exerted by the dorsolateral/lateral region of the midbrain periaqueductal grey (DL/L-PAG) on C- and A-fibre-evoked responses of these neurones. The use of different rates of skin heating to preferentially activate unmyelinated (C-fibre; 2.5 degrees C s(-1)) versus myelinated (A-fibre; 7.5 degrees C s(-1)) heat nociceptors revealed that, in response to C-nociceptor activation, Class 2 neurones encode well only over the first 5 degrees C above threshold, and that at higher temperatures responses decline. In contrast, responses to A-nociceptor activation are linear and encode skin temperature over more than 10 degrees C, and almost certainly into the tissue-damaging range. PAG stimulation raised thresholds and decreased significantly the magnitude of responses to A- and C-nociceptor activation. However, differences were revealed in the effects of descending control on the relationships between skin temperature and neuronal firing rate; the linear relationship that occurred over the first 5 degrees C of slow rates of skin heating was no longer evident, whereas that to fast rates of skin heating was maintained over the entire range, albeit shifted to the right. These data indicate that the sensori-discriminative information conveyed in A-fibre nociceptors is maintained and that the information from C-nociceptors is lost in the presence of descending control from the DL/L-PAG. The data are discussed in relation to the role of the DL/L-PAG in mediating active coping strategies.
Collapse
Affiliation(s)
- Simon McMullan
- Hypertension and Stroke Research Laboratory, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
| | | |
Collapse
|
349
|
Ferreira-Gomes J, Neto FL, Castro-Lopes JM. GABA(B2) receptor subunit mRNA decreases in the thalamus of monoarthritic animals. Brain Res Bull 2006; 71:252-8. [PMID: 17113954 DOI: 10.1016/j.brainresbull.2006.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 08/01/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Many studies have implicated GABA(B) receptors in pain transmission mechanisms, especially in the spinal cord. In the thalamus, mRNA expression of the GABA(B(1b)) isoform was shown to be regulated in relay nuclei in response to chronic noxious input arising from experimental monoarthritis. GABA(B(1a)) and GABA(B2) mRNA expression was here determined by in situ hybridisation in the brain of control, 2, 4, 7 and 14 days monoarthritic rats, to evaluate whether this expression was regulated by chronic noxious input in thalamic nuclei. mRNA labelling was analysed quantitatively in the ventrobasal complex, posterior, central medial/central lateral and reticular thalamic nuclei; the thalamic visual relay and dentate gyrus were examined for control. No mRNA expression was detected for GABA(B(1a)) in control and monoarthritic animals. Similarly, GABA(B2) mRNA was not found in the reticular nucleus. However, GABA(B2) mRNA expression was observed in the ventrobasal complex, posterior and central medial/central lateral nuclei of control animals. A significant decrease of 42% at 2 days and 27% at 4 days of monoarthritis was observed in the ventrobasal complex contralaterally, when compared with controls, returning to basal levels at 7 days of monoarthritis. In the ipsilateral posterior nucleus, there was a significant decrease of 38% at 2 days of monoarthritis. No significant changes were observed in central medial/central lateral nuclei. The data suggest that GABA(B2) mRNA expression in the ventrobasal complex and posterior nucleus is regulated by noxious input and that GABA(B) receptors might play a role in the plasticity of these relay nuclei during chronic inflammatory pain.
Collapse
Affiliation(s)
- Joana Ferreira-Gomes
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, 4200-319 Porto, University of Porto, Portugal
| | | | | |
Collapse
|
350
|
Abstract
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.
Collapse
Affiliation(s)
- H Bönisch
- Department of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, 53115 Bonn, Germany.
| | | |
Collapse
|