301
|
Douché T, Clemente HS, Burlat V, Roujol D, Valot B, Zivy M, Pont-Lezica R, Jamet E. Brachypodium distachyon
as a model plant toward improved biofuel crops: Search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics 2013; 13:2438-54. [DOI: 10.1002/pmic.201200507] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/19/2013] [Accepted: 05/27/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Thibaut Douché
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse; UPS, UMR 5546; Castanet-Tolosan France
- CNRS, UMR 5546; Castanet-Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse; UPS, UMR 5546; Castanet-Tolosan France
- CNRS, UMR 5546; Castanet-Tolosan France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse; UPS, UMR 5546; Castanet-Tolosan France
- CNRS, UMR 5546; Castanet-Tolosan France
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse; UPS, UMR 5546; Castanet-Tolosan France
- CNRS, UMR 5546; Castanet-Tolosan France
| | - Benoît Valot
- CNRS, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale; Gif sur Yvette France
- INRA, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale; Gif sur Yvette France
| | - Michel Zivy
- CNRS, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale; Gif sur Yvette France
- INRA, PAPPSO, UMR 0320/UMR 8120 Génétique Végétale; Gif sur Yvette France
| | - Rafael Pont-Lezica
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse; UPS, UMR 5546; Castanet-Tolosan France
- CNRS, UMR 5546; Castanet-Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse; UPS, UMR 5546; Castanet-Tolosan France
- CNRS, UMR 5546; Castanet-Tolosan France
| |
Collapse
|
302
|
Xu WL, Zhang DJ, Wu YF, Qin LX, Huang GQ, Li J, Li L, Li XB. Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. PLANT MOLECULAR BIOLOGY 2013; 82:353-65. [PMID: 23625445 DOI: 10.1007/s11103-013-0066-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/21/2013] [Indexed: 05/14/2023]
Abstract
Proline-rich proteins contribute to cell wall structure of specific cell types and are involved in plant growth and development. In this study, a fiber-specific gene, GhPRP5, encoding a proline-rich protein was functionally characterized in cotton. GhPRP5 promoter directed GUS expression only in trichomes of both transgenic Arabidopsis and tobacco plants. The transgenic Arabidopsis plants with overexpressing GhPRP5 displayed reduced cell growth, resulting in smaller cell size and consequently plant dwarfs, in comparison with wild type plants. In contrast, knock-down of GhPRP5 expression by RNA interference in cotton enhanced fiber development. The fiber length of transgenic cotton plants was longer than that of wild type. In addition, some genes involved in fiber elongation and wall biosynthesis of cotton were up-regulated or down-regulated in the transgenic cotton plants owing to suppression of GhPRP5. Collectively, these data suggested that GhPRP5 protein as a negative regulator participates in modulating fiber development of cotton.
Collapse
Affiliation(s)
- Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Saha P, Ray T, Tang Y, Dutta I, Evangelous NR, Kieliszewski MJ, Chen Y, Cannon MC. Self-rescue of an EXTENSIN mutant reveals alternative gene expression programs and candidate proteins for new cell wall assembly in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:104-116. [PMID: 23578334 DOI: 10.1111/tpj.12204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/21/2013] [Accepted: 04/09/2013] [Indexed: 05/09/2023]
Abstract
Plants encode a poorly understood superfamily of developmentally expressed cell wall hydroxyproline-rich glycoproteins (HRGPs). One, EXTENSIN3 (EXT3) of the 168 putative HRGPs, is critical in the first steps of new wall assembly, demonstrated by broken and misplaced walls in its lethal homozygous mutant. Here we report the findings of phenotypic (not genotypic) revertants of the ext3 mutant and in-depth analysis including microarray and qRT-PCR (polymerase chain reaction). The aim was to identify EXT3 substitute(s), thus gaining a deeper understanding of new wall assembly. The data show differential expression in the ext3 mutant that included 61% (P ≤ 0.05) of the HRGP genes, and ability to self-rescue by reprogramming expression. Independent revertants had reproducible expression networks, largely heritable over the four generations tested, with some genes displaying transgenerational drift towards wild-type expression levels. Genes for nine candidate regulatory proteins as well as eight candidate HRGP building materials and/or facilitators of new wall assembly or maintenance, in the (near) absence of EXT3 expression, were identified. Seven of the HRGP fit the current model of EXT function. In conclusion, the data on phenotype comparisons and on differential expression of the genes-of-focus provide strong evidence that different combinations of HRGPs regulated by alternative gene expression networks, can make functioning cell walls, resulting in (apparently) normal plant growth and development. More broadly, this has implications for interpreting the cause of any mutant phenotype, assigning gene function, and genetically modifying plants for utilitarian purposes.
Collapse
Affiliation(s)
- Prasenjit Saha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Tui Ray
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Indrajit Dutta
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Nicole R Evangelous
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Yuning Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Maura C Cannon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
304
|
Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chávez Montes RA, Colombo L, Marsch-Martínez N, de Folter S. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. PLANT PHYSIOLOGY 2013; 162:779-99. [PMID: 23610218 PMCID: PMC3668070 DOI: 10.1104/pp.113.218214] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 05/18/2023]
Abstract
Synchronized communication between gametophytic and sporophytic tissue is crucial for successful reproduction, and hormones seem to have a prominent role in it. Here, we studied the role of the Arabidopsis (Arabidopsis thaliana) cytochrome P450 CYP78A9 enzyme during reproductive development. First, controlled pollination experiments indicate that CYP78A9 responds to fertilization. Second, while CYP78A9 overexpression can uncouple fruit development from fertilization, the cyp78a8 cyp78a9 loss-of-function mutant has reduced seed set due to outer ovule integument development arrest, leading to female sterility. Moreover, CYP78A9 has a specific expression pattern in inner integuments in early steps of ovule development as well as in the funiculus, embryo, and integuments of developing seeds. CYP78A9 overexpression did not change the response to the known hormones involved in flower development and fruit set, and it did not seem to have much effect on the major known hormonal pathways. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9, and empty siliques (es1-D) mutants. However, it appeared that they do not cause the observed phenotypes. In summary, these results add new insights into the role of CYP78A9 in plant reproduction and present, to our knowledge, the first characterization of metabolite differences between mutants in this gene family.
Collapse
|
305
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|
306
|
Beneventi MA, da Silva OB, de Sá MEL, Firmino AAP, de Amorim RMS, Albuquerque ÉVS, da Silva MCM, da Silva JP, Campos MDA, Lopes MJC, Togawa RC, Pappas GJ, Grossi–de–Sa MF. Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics 2013; 14:322. [PMID: 23663436 PMCID: PMC3701510 DOI: 10.1186/1471-2164-14-322] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Root-knot nematodes (RKN- Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS signaling during soybean-RKN interaction. RESULTS Using 454 technology to explore the common aspects of resistance reaction during both parasitism and resistance phases it was verified that hormone, carbohydrate metabolism and stress related genes were consistently expressed at high levels in infected roots as compared to mock control. Most noteworthy genes include those encoding glycosyltransferases, peroxidases, auxin-responsive proteins and gibberellin-regulated genes. Our data analysis suggests the key role of glycosyltransferases, auxins and components of gibberellin signal transduction, biosynthesis and deactivation pathways in the resistance reaction and their participation in jasmonate signaling and redox homeostasis in mediating aspects of plant growth and responses to biotic stress. CONCLUSIONS Based on this study we suggest a reasonable model regarding to the complex mechanisms of crosstalk between plant hormones, mainly gibberellins and auxins, which can be crucial to modulate the levels of ROS in the resistance reaction to nematode invasion. The model also includes recent findings concerning to the participation of DELLA-like proteins and ROS signaling controlling plant immune or stress responses. Furthermore, this study provides a dataset of potential candidate genes involved in both nematode parasitism and resistance, which can be tested further for their role in this biological process using functional genomics approaches.
Collapse
Affiliation(s)
- Magda Aparecida Beneventi
- Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
| | | | - Maria Eugênia Lisei de Sá
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
- Agricultural Research Company of Minas Gerais State, Uberaba, MG 38001-970, Brazil
| | - Alexandre Augusto Pereira Firmino
- Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
| | | | | | | | | | | | | | | | | | - Maria Fatima Grossi–de–Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
- Catholic University of Brasília, Brasília, DF 70790-160, Brazil
| |
Collapse
|
307
|
Demesa-Arévalo E, Vielle-Calzada JP. The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. THE PLANT CELL 2013; 25:1274-87. [PMID: 23572547 PMCID: PMC3663267 DOI: 10.1105/tpc.112.106237] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/28/2013] [Accepted: 03/21/2013] [Indexed: 05/03/2023]
Abstract
Female gametogenesis in most flowering plants depends on the predetermined selection of a single meiotically derived cell, as the three other megaspores die without further division or differentiation. Although in Arabidopsis thaliana the formation of the functional megaspore (FM) is crucial for the establishment of the gametophytic generation, the mechanisms that determine the specification and fate of haploid cells remain unknown. Here, we show that the classical arabinogalactan protein 18 (AGP18) exerts an active regulation over the selection and survival of megaspores in Arabidopsis. During meiosis, AGP18 is expressed in integumentary cells located in the abaxial region of the ovule. Overexpression of AGP18 results in the abnormal maintenance of surviving megaspores that can acquire a FM identity but is not sufficient to induce FM differentiation before meiosis, indicating that AGP18 positively promotes the selection of viable megaspores. We also show that all four meiotically derived cells in the ovule of Arabidopsis are competent to differentiate into a gametic precursor and that the function of AGP18 is important for their selection and viability. Our results suggest an evolutionary role for arabinogalactan proteins in the acquisition of monospory and the developmental plasticity that is intrinsic to sexual reproduction in flowering plants.
Collapse
Affiliation(s)
- Edgar Demesa-Arévalo
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| |
Collapse
|
308
|
Qin LX, Rao Y, Li L, Huang JF, Xu WL, Li XB. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One 2013; 8:e59115. [PMID: 23527103 PMCID: PMC3601089 DOI: 10.1371/journal.pone.0059115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Arabinogalactan proteins (AGPs), are a group of highly glycosylated proteins that are found throughout the plant kingdom. To date, glycosyltransferases that glycosylate AGP backbone have remained largely unknown. In this study, a gene (GhGalT1) encoding a putative β-1,3-galactosyltransferase (GalT) was identified in cotton. GhGalT1, belonging to CAZy GT31 family, is the type II membrane protein that contains an N-terminal transmembrane domain and a C-terminal galactosyltransferase functional domain. A subcellular localization assay demonstrated that GhGalT1 was localized in the Golgi apparatus. RT-PCR analysis revealed that GhGalT1 was expressed at relatively high levels in hypocotyls, roots, fibers and ovules. Overexpression of GhGalT1 in Arabidopsis promoted plant growth and metabolism. The transgenic seedlings had much longer primary roots, higher chlorophyll content, higher photosynthetic efficiency, the increased biomass, and the enhanced tolerance to exogenous D-arabinose and D-galactose. In addition, gas chromatography (GC) analysis of monosaccharide composition of cell wall fractions showed that pectin was changed in the transgenic plants, compared with that of wild type. Three genes (GAUT8, GAUT9 and xgd1) involved in pectin biosynthesis were dramatically up-regulated in the transgenic lines. These data suggested that GhGalT1 may be involved in regulation of pectin biosynthesis required for plant development.
Collapse
Affiliation(s)
- Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yue Rao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jun-Feng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
309
|
Huang GQ, Gong SY, Xu WL, Li W, Li P, Zhang CJ, Li DD, Zheng Y, Li FG, Li XB. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. PLANT PHYSIOLOGY 2013; 161:1278-90. [PMID: 23349362 PMCID: PMC3585596 DOI: 10.1104/pp.112.203760] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/22/2013] [Indexed: 05/17/2023]
Abstract
Arabinogalactan proteins (AGPs) are involved in many aspects of plant development. In this study, biochemical and genetic approaches demonstrated that AGPs are abundant in developing fibers and may be involved in fiber initiation and elongation. To further investigate the role of AGPs during fiber development, a fasciclin-like arabinogalactan protein gene (GhFLA1) was identified in cotton (Gossypium hirsutum). Overexpression of GhFLA1 in cotton promoted fiber elongation, leading to an increase in fiber length. In contrast, suppression of GhFLA1 expression in cotton slowed down fiber initiation and elongation. As a result, the mature fibers of the transgenic plants were significantly shorter than those of the wild type. In addition, expression levels of GhFLAs and the genes related to primary cell wall biosynthesis were remarkably enhanced in the GhFLA1 overexpression transgenic fibers, whereas the transcripts of these genes were dramatically reduced in the fibers of GhFLA1 RNA interference plants. An immunostaining assay indicated that both AGP composition and primary cell wall composition were changed in the transgenic fibers. The levels of glucose, arabinose, and galactose were also altered in the primary cell wall of the transgenic fibers compared with those of the wild type. Together, our results suggested that GhFLA1 may function in fiber initiation and elongation by affecting AGP composition and the integrity of the primary cell wall matrix.
Collapse
Affiliation(s)
| | | | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Peng Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Chao-Jun Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Fu-Guang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| |
Collapse
|
310
|
Kitazawa K, Tryfona T, Yoshimi Y, Hayashi Y, Kawauchi S, Antonov L, Tanaka H, Takahashi T, Kaneko S, Dupree P, Tsumuraya Y, Kotake T. β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. PLANT PHYSIOLOGY 2013; 161:1117-26. [PMID: 23296690 PMCID: PMC3585584 DOI: 10.1104/pp.112.211722] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
Yariv phenylglycosides [1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene] are a group of chemical compounds that selectively bind to arabinogalactan proteins (AGPs), a type of plant proteoglycan. Yariv phenylglycosides are widely used as cytochemical reagents to perturb the molecular functions of AGPs as well as for the detection, quantification, purification, and staining of AGPs. However, the target structure in AGPs to which Yariv phenylglycosides bind has not been determined. Here, we identify the structural element of AGPs required for the interaction with Yariv phenylglycosides by stepwise trimming of the arabinogalactan moieties using combinations of specific glycoside hydrolases. Whereas the precipitation with Yariv phenylglycosides (Yariv reactivity) of radish (Raphanus sativus) root AGP was not reduced after enzyme treatment to remove α-l-arabinofuranosyl and β-glucuronosyl residues and β-1,6-galactan side chains, it was completely lost after degradation of the β-1,3-galactan main chains. In addition, Yariv reactivity of gum arabic, a commercial product of acacia (Acacia senegal) AGPs, increased rather than decreased during the repeated degradation of β-1,6-galactan side chains by Smith degradation. Among various oligosaccharides corresponding to partial structures of AGPs, β-1,3-galactooligosaccharides longer than β-1,3-galactoheptaose exhibited significant precipitation with Yariv in a radial diffusion assay on agar. A pull-down assay using oligosaccharides cross linked to hydrazine beads detected an interaction of β-1,3-galactooligosaccharides longer than β-1,3-galactopentaose with Yariv phenylglycoside. To the contrary, no interaction with Yariv was detected for β-1,6-galactooligosaccharides of any length. Therefore, we conclude that Yariv phenylglycosides should be considered specific binding reagents for β-1,3-galactan chains longer than five residues, and seven residues are sufficient for cross linking, leading to precipitation of the Yariv phenylglycosides.
Collapse
|
311
|
Basu D, Liang Y, Liu X, Himmeldirk K, Faik A, Kieliszewski M, Held M, Showalter AM. Functional identification of a hydroxyproline-o-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J Biol Chem 2013; 288:10132-10143. [PMID: 23430255 DOI: 10.1074/jbc.m112.432609] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although plants contain substantial amounts of arabinogalactan proteins (AGPs), the enzymes responsible for AGP glycosylation are largely unknown. Bioinformatics indicated that AGP galactosyltransferases (GALTs) are members of the carbohydrate-active enzyme glycosyltransferase (GT) 31 family (CAZy GT31) involved in N- and O-glycosylation. Six Arabidopsis GT31 members were expressed in Pichia pastoris and tested for enzyme activity. The At4g21060 gene (named AtGALT2) was found to encode activity for adding galactose (Gal) to hydroxyproline (Hyp) in AGP protein backbones. AtGALT2 specifically catalyzed incorporation of [(14)C]Gal from UDP-[(14)C]Gal to Hyp of model substrate acceptors having AGP peptide sequences, consisting of non-contiguous Hyp residues, such as (Ala-Hyp) repetitive units exemplified by chemically synthesized (AO)7 and anhydrous hydrogen fluoride-deglycosylated d(AO)51. Microsomal preparations from Pichia cells expressing AtGALT2 incorporated [(14)C]Gal to (AO)7, and the resulting product co-eluted with (AO)7 by reverse-phase HPLC. Acid hydrolysis of the [(14)C]Gal-(AO)7 product released (14)C-radiolabel as Gal only. Base hydrolysis of the [(14)C]Gal-(AO)7 product released a (14)C-radiolabeled fragment that co-eluted with a Hyp-Gal standard after high performance anion-exchange chromatography fractionation. AtGALT2 is specific for AGPs because substrates lacking AGP peptide sequences did not act as acceptors. Moreover, AtGALT2 uses only UDP-Gal as the substrate donor and requires Mg(2+) or Mn(2+) for high activity. Additional support that AtGALT2 encodes an AGP GALT was provided by two allelic AtGALT2 knock-out mutants, which demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared with wild type plants. Confocal microscopic analysis of fluorescently tagged AtGALT2 in tobacco epidermal cells indicated that AtGALT2 is probably localized in the endomembrane system consistent with its function.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Yan Liang
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Xiao Liu
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Klaus Himmeldirk
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Marcia Kieliszewski
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Michael Held
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Allan M Showalter
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979.
| |
Collapse
|
312
|
Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC PLANT BIOLOGY 2013; 13:7. [PMID: 23297674 PMCID: PMC3546934 DOI: 10.1186/1471-2229-13-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/28/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed. RESULTS The lack of two specific AGPs induced a meaningful shift in the gene expression profile. In fact, a high number of genes showed altered expression levels, strengthening the case that AGP6 and AGP11 are involved in complex phenomena. The expression levels of calcium- and signaling-related genes were found to be altered, supporting the known roles of the respective proteins in pollen tube growth. Although the precise nature of the proposed interactions needs further investigation, the putative involvement of AGPs in signaling cascades through calmodulin and protein degradation via ubiquitin was indicated. The expression of stress-, as well as signaling- related, genes was also changed; a correlation that may result from the recognized similarities between signaling pathways in both defense and pollen tube growth.The results of yeast two-hybrid experiments lent further support to these signaling pathways and revealed putative AGP6 and AGP11 interactors implicated in recycling of cell membrane components via endocytosis, through clathrin-mediated endosomes and multivesicular bodies. CONCLUSIONS The data presented suggest the involvement of AGP6 and AGP11 in multiple signaling pathways, in particular those involved in developmental processes such as endocytosis-mediated plasma membrane remodeling during Arabidopsis pollen development. This highlights the importance of endosomal trafficking pathways which are rapidly emerging as fundamental regulators of the wall physiology.
Collapse
Affiliation(s)
- Mário Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Margarida Sofia Nobre
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Simona Masiero
- Dipartimento di Biologia, Università degli Studi di Milano, Milan, 20133, Italy
| | - Maria Isabel Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Luís Gustavo Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| |
Collapse
|
313
|
Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. THE PLANT CELL 2013; 25:270-87. [PMID: 23371948 PMCID: PMC3584541 DOI: 10.1105/tpc.112.107334] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 05/17/2023]
Abstract
Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Stefan Eberhard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Clayton Warder
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Chunhua Yuan
- Campus Chemical Instrument Center, Ohio State University, Columbus, Ohio 43210
| | - Zhangying Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Xiang Zhu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-4712
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Jeffrey S. Miller
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - David Baldwin
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Charles Pham
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Division of Biological Sciences, University of Georgia, Athens, Georgia 30602-4712
| | - Ronald Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Alan Darvill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Marcia J. Kieliszewski
- Department of Chemistry and Biochemistry, Biochemistry Facility, Ohio University, Athens, Ohio 45701
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712
- BioEnergy Science Center, University of Georgia, Athens, Georgia 30602-4712
- Address correspondence to
| |
Collapse
|
314
|
Lamport DTA, Várnai P. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. THE NEW PHYTOLOGIST 2013; 197:58-64. [PMID: 23106282 DOI: 10.1111/nph.12005] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan glycoproteins (AGPs) are implicated in virtually all aspects of plant growth and development, yet their precise role remains unknown. Classical AGPs cover the plasma membrane and are highly glycosylated by numerous acidic arabinogalactan polysaccharides O-linked to hydroxyproline. Their heterogeneity and complexity hindered a structural approach until the recent determination of a highly conserved repetitive consensus structure for a 15-sugar residue arabinogalactan subunit with paired glucuronic carboxyls. Based on NMR data and molecular dynamics simulations, we identify these carboxyls as potential intramolecular Ca(2+)-binding sites. Using rapid ultrafiltration assays and mass spectrometry, we verified that AGPs bind Ca(2+) tightly (K(d) ~ 6.5 μM) and stoichiometrically at pH 5. Ca(2+) binding is reversible in a pH-dependent manner. As typical AGPs contain c. 30 Ca(2+)-binding subunits and are bulk components of the periplasm, they represent a Ca(2+) capacitor discharged at low pH by stretch-activated plasma membrane H(+)-ATPases, hence a substantial source of cytosolic Ca(2+). We propose that these Ca(2+) waves prime the 'calcium oscillator', a signal generator essential to the global Ca(2+) signalling pathway of green plants.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Péter Várnai
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
315
|
Sims IM, Monro JA. Fiber: composition, structures, and functional properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 68:81-99. [PMID: 23394983 DOI: 10.1016/b978-0-12-394294-4.00005-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kiwifruit dietary fiber consists of cell-wall polysaccharides that are typical of the cell walls of many dicotyledonous fruits, being composed of pectic polysaccharides, hemicelluloses, and cellulose. The kiwifruit pectic polysaccharides consist of homo- and rhamnogalacturonans with various neutral, (arabino)-galactan side chains, while the hemicelluloses are mostly xyloglucan and xylan. The proportions of pectic polysaccharide, hemicellulose, and cellulose in both green 'Hayward' and 'Zespri® Gold' are similar and are little affected by in vitro exposure to gastric and small intestinal digestion. The hydration properties of the kiwifruit-swelling and water retention capacity-are also unaffected by foregut digestion, indicating that the functional properties of kiwifruit fiber survive in the foregut. However, in the hindgut, kiwifruit fiber is fermented, but whole kiwifruit consumed in association with slowly fermented fiber leads to distal displacement of fermentation, indicating that hindgut benefits of kiwifruit may result from its interaction with other dietary sources of fiber.
Collapse
Affiliation(s)
- Ian M Sims
- Industrial Research Limited, Lower Hutt, New Zealand
| | | |
Collapse
|
316
|
The putative phytocyanin genes in Chinese cabbage (Brassica rapa L.): genome-wide identification, classification and expression analysis. Mol Genet Genomics 2012; 288:1-20. [DOI: 10.1007/s00438-012-0726-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/07/2012] [Indexed: 02/07/2023]
|
317
|
|
318
|
Poon S, Heath RL, Clarke AE. A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. PLANT PHYSIOLOGY 2012; 160:684-95. [PMID: 22858635 PMCID: PMC3461548 DOI: 10.1104/pp.112.203075] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/30/2012] [Indexed: 05/05/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of extracellular plant proteoglycans implicated in many aspects of plant growth and development, including in vitro somatic embryogenesis (SE). We found that specific AGPs were produced by cotton (Gossypium hirsutum) calli undergoing SE and that when these AGPs were isolated and incorporated into tissue culture medium, cotton SE was promoted. When the AGPs were partly or fully deglycosylated, SE-promoting activity was not diminished. Testing of AGPs separated by reverse-phase high-performance liquid chromatography revealed that the SE-promoting activity resided in a hydrophobic fraction. We cloned a full-length complementary DNA (cotton PHYTOCYANIN-LIKE ARABINOGALACTAN-PROTEIN1 [GhPLA1]) that encoded the protein backbone of an AGP in the active fraction. It has a chimeric structure comprising an amino-terminal signal sequence, a phytocyanin-like domain, an AGP-like domain, and a hydrophobic carboxyl-terminal domain. Recombinant production of GhPLA1 in tobacco (Nicotiana tabacum) cells enabled us to purify and analyze a single glycosylated AGP and to demonstrate that this chimeric AGP promotes cotton SE. Furthermore, the nonglycosylated phytocyanin-like domain from GhPLA1, which was bacterially produced, also promoted SE, indicating that the glycosylated AGP domain was unnecessary for in vitro activity.
Collapse
Affiliation(s)
- Simon Poon
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
319
|
Davies LJ, Lilley CJ, Paul Knox J, Urwin PE. Syncytia formed by adult female Heterodera schachtii in Arabidopsis thaliana roots have a distinct cell wall molecular architecture. THE NEW PHYTOLOGIST 2012; 196:238-246. [PMID: 22803660 DOI: 10.1111/j.1469-8137.2012.04238.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• Plant-parasitic cyst nematodes form a feeding site, termed a syncytium, through which the nematode obtains nutrients from the host plant to support nematode development. The structural features of cell walls of syncytial cells have yet to be elucidated. • Monoclonal antibodies to defined glycans and a cellulose-binding module were used to determine the cell wall architectures of syncytial and surrounding cells in the roots of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii. • Fluorescence imaging revealed that the cell walls of syncytia contain cellulose and the hemicelluloses xyloglucan and heteromannan. Heavily methyl-esterified pectic homogalacturonan and arabinan are abundant in syncytial cell walls; galactan could not be detected. This is suggestive of highly flexible syncytial cell walls. • This work provides important information on the structural architecture of the cell walls of this novel cell type and reveals factors that enable the feeding site to perform its functional requirements to support nematode development.
Collapse
Affiliation(s)
- Laura J Davies
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Catherine J Lilley
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - J Paul Knox
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - P E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
320
|
Jackson O, Taylor O, Adams DG, Knox JP. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1338-49. [PMID: 22670754 DOI: 10.1094/mpmi-04-12-0095-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.
Collapse
|
321
|
Glycan recognition by the Bacteroidetes Sus-like systems. Curr Opin Struct Biol 2012; 22:563-9. [DOI: 10.1016/j.sbi.2012.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/29/2012] [Accepted: 06/27/2012] [Indexed: 12/29/2022]
|
322
|
Neumetzler L, Humphrey T, Lumba S, Snyder S, Yeats TH, Usadel B, Vasilevski A, Patel J, Rose JKC, Persson S, Bonetta D. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS One 2012; 7:e42914. [PMID: 22916179 PMCID: PMC3419242 DOI: 10.1371/journal.pone.0042914] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/15/2012] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.
Collapse
Affiliation(s)
- Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Tania Humphrey
- Vineland Research and Innovation Centre, Vineland Station, Ontario, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Snyder
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Trevor H. Yeats
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Björn Usadel
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | | | - Jignasha Patel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Dario Bonetta
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
323
|
Yu M, Zhao J. The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. BMC PLANT BIOLOGY 2012; 12:126. [PMID: 22853005 PMCID: PMC3487971 DOI: 10.1186/1471-2229-12-126] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/12/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development. Arabinogalactan proteins (AGPs) are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. RESULTS In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY) reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in vivo and the polarity was not affected by beta-GlcY. Furthermore, FM4-64 staining revealed that endosomes were distributed in the cell plates of proembryos, and the localization pattern was also affected by beta-GlcY treatment. These results were further confirmed by subsequent observation with transmission electron microscopy. Moreover, the changes to proembryo cell-organelles induced by beta-GlcY reagent were also observed using fluorescent dye staining technique. CONCLUSIONS These results imply that AGPs may not only relate to cell plate position decision, but also to the location of new cell wall components. Correlated with other factors, AGPs further influence the zygotic division and proembryo pattern establishment in tobacco.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
324
|
Losada JM, Herrero M. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. ANNALS OF BOTANY 2012; 110:573-84. [PMID: 22652420 PMCID: PMC3400445 DOI: 10.1093/aob/mcs116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/12/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs). METHODS Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry. KEY RESULTS Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by. CONCLUSIONS The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity.
Collapse
Affiliation(s)
- Juan M Losada
- Pomology Department, Aula Dei Experimental Station - CSIC, Zaragoza 50080, Spain.
| | | |
Collapse
|
325
|
Cannesan MA, Durand C, Burel C, Gangneux C, Lerouge P, Ishii T, Laval K, Follet-Gueye ML, Driouich A, Vicré-Gibouin M. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. PLANT PHYSIOLOGY 2012; 159:1658-70. [PMID: 22645070 PMCID: PMC3425204 DOI: 10.1104/pp.112.198507] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/16/2012] [Indexed: 05/03/2023]
Abstract
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.
Collapse
Affiliation(s)
- Marc Antoine Cannesan
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Caroline Durand
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Carole Burel
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Christophe Gangneux
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Tadashi Ishii
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Karine Laval
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | - Marie-Laure Follet-Gueye
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Équipe d'Accueil 4358, Université de Rouen, 76821 Mont Saint Aignan, France (M.A.C., C.D., C.B., P.L., M.-L.F.-G., A.D., M.V.-G.)
- Laboratoire BioSol, Esitpa, 76134 Mont-Saint-Aignan, France (C.G., K.L.); and
- Forestry and Forest Products Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305–8687, Japan (T.I.)
| | | | | |
Collapse
|
326
|
Herrmann A, König S, Lechtenberg M, Sehlbach M, Vakhrushev SY, Peter-Katalinic J, Hensel A. Proteoglycans from Boswellia serrata Roxb. and B. carteri Birdw. and identification of a proteolytic plant basic secretory protein. Glycobiology 2012; 22:1424-39. [PMID: 22773449 DOI: 10.1093/glycob/cws107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Water-soluble high molecular weight compounds were isolated in yields of 21-22% from the oleogum of Boswellia serrata and B. carteri. Using anion exchange chromatography and gel permeation chromatography, different proteoglycans were purified and characterized, leading to four principally different groups: (i) Hyp-/Ser-rich extensins with O-glycosidic attached arabinan side chains; (ii) Modified extensins, with arabinogalactosylated side chains containing GlA and 4-O-Me-GlcA; (iii) Glycoproteins with N-glycosidic side chains containing higher amounts of Fuc, Man and GluNH(2,) featuring a 200 kD metalloproteinase that has been de novo sequenced and is described for the first time; (iv) Type II arabinogalactans-proteins. Significant differences between the gums from the two species were observed in the protein content (6% vs 22%), offering the possibility of a quick differentiation of gums from both species for analytical quality control. The data also offer an insight into the plant response towards wound-closing by the formation of extensin and AGP-containing gum.
Collapse
Affiliation(s)
- Andreas Herrmann
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
327
|
Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. ANNALS OF BOTANY 2012; 110:383-404. [PMID: 22786747 PMCID: PMC3394660 DOI: 10.1093/aob/mcs143] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Sílvia Coimbra
- Sexual Plant Reproduction and Development Laboratory, Departamento de Biologia, F.C. Universidade do Porto, Rua do Campo Alegre 4169-007 Porto, Portugal
- Center for Biodiversity, Functional & Integrative Genomics (BioFIG), http://biofig.fc.ul.pt
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
328
|
Gong SY, Huang GQ, Sun X, Li P, Zhao LL, Zhang DJ, Li XB. GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:447-457. [PMID: 22222112 DOI: 10.1111/j.1438-8677.2011.00518.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Arabinogalactan proteins (AGPs), a superfamily of highly glycosylated hydroxyproline-rich glycoproteins, are widely implicated in plant growth and development. A gene (including its cDNA), designated GhAGP31, encoding a non-classical AGP protein was isolated from cotton (Gossypium hirsutum). The deduced GhAGP31 protein contains the conserved features of non-classical AGPs: a putative signal peptide, N-terminal histidine-rich stretch, middle repetitive proline-rich domain and a cysteine-containing 'PAC' domain. GFP fluorescence assay demonstrated that GhAGP31 protein was localised on cell walls. GhAGP31 transcripts were mainly detected in roots, hypocotyls and ovules, but little or almost none were detected in other tissues. In particular, expression of GhAGP31 was developmentally regulated in roots. Further study demonstrated that GhAGP31 expression in cotton roots was remarkably up-regulated by cold stress. Expression of the GUS gene driven by the GhAGP31 promoter was also dramatically enhanced in roots of transgenic Arabidopsis seedlings under cold treatment. Additionally, overexpression of GhAGP31 in yeast and Arabidopsis significantly improved the freezing tolerance of yeast cells and cold tolerance of Arabidopsis seedlings. These data imply that GhAGP31 protein may be involved in the response to cold stress during early root development of cotton.
Collapse
Affiliation(s)
- S-Y Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
329
|
Fragkostefanakis S, Dandachi F, Kalaitzis P. Expression of arabinogalactan proteins during tomato fruit ripening and in response to mechanical wounding, hypoxia and anoxia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 52:112-8. [PMID: 22305074 DOI: 10.1016/j.plaphy.2011.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/02/2011] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) are highly glycosylated members of the superfamily of hydroxyproline-rich glycoproteins (HRGPs). Despite their implication in many aspects of plant growth and development little is known about their role in tomato fruit ripening (Solanum lycopersicum) and their response to abiotic stress in tomato fruits. A search of the currently available tomato genome database resulted in the identification of 34 genes encoding putative AGPs, with at least 20 of them being expressed in fruit. We monitored the abundance of AGPs bound by JIM8 and JIM13 monoclonal antibodies as well as the gene expression profiles of the Lys-rich LeAGP1 and two classical AGPs, SlAGP2 and SlAGP4. The JIM8- and JIM13-bound AGPs showed constitutive expression during fruit ripening and under hypoxic conditions, slight up-regulation to mechanical wounding in excised tomato fruit pericarp discs and up-regulation under anoxia indicating functional roles for these proteins in the developmental program of ripening and in response to abiotic stresses. Moreover, the SlAGP2 mRNA was significantly up-regulated during fruit ripening following the climacteric ethylene production, a pattern of expression similar to that of tomato fruit PG. The SlAGP4 and LeAGP1 mRNAs were up-regulated in response to mechanical wounding while under anoxia only the SlAGP4 transcript was induced. The protein and mRNA levels of these AGPs were induced under mechanical wounding while only JIM8-bound AGPs and SIAGP4 expression were induced under anoxic conditions. Our results indicate that selected tomato AGPs seem to play a role in fruit ripening as well as in response to mechanical wounding and anoxia.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute at Chania, P.O. Box 85, Chania 73100, Greece
| | | | | |
Collapse
|
330
|
Gannabathula S, Skinner MA, Rosendale D, Greenwood JM, Mutukumira AN, Steinhorn G, Stephens J, Krissansen GW, Schlothauer RC. Arabinogalactan proteins contribute to the immunostimulatory properties of New Zealand honeys. Immunopharmacol Immunotoxicol 2012; 34:598-607. [DOI: 10.3109/08923973.2011.641974] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
331
|
Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Bacic A. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. FRONTIERS IN PLANT SCIENCE 2012; 3:140. [PMID: 22754559 PMCID: PMC3384089 DOI: 10.3389/fpls.2012.00140] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/10/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Centre, The University of Georgia,Athens, GA, USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University,Athens, OH, USA
| | - Jack Egelund
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen,Frederiksberg, Denmark
| | - Arianna Hernandez-Sanchez
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
- *Correspondence: Antony Bacic, ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, VIC 3010, Australia. e-mail:
| |
Collapse
|
332
|
Abraham-Shrauner B, Pickard BG. A model for leaf initiation: determination of phyllotaxis by waves in the generative circle. PLANT SIGNALING & BEHAVIOR 2011; 6:1755-68. [PMID: 22212121 PMCID: PMC3329350 DOI: 10.4161/psb.6.11.17506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A biophysical model is proposed for how leaf primordia are positioned on the shoot apical: meristem in both spiral and whorl phyllotaxes. Primordia are initiated by signals that propagate: in the epidermis in both azimuthal directions away from the cotyledons or the most recently: specified primordia. The signals are linear waves as inferred from the spatial periodicity of the: divergence angle and a temporal periodicity. The periods of the waves, which represent actively: transported auxin, are much smaller than the plastochron interval. Where oppositely directed: waves meet at one or more angular positions on the periphery of the generative circle, auxin: concentration builds and as in most models this stimulates local movement of auxin to: underlying cells, where it promotes polarized cell division and expansion. For higher order: spirals the wave model requires asymmetric function of auxin transport; that is, opposite wave: speeds differ. An algorithm for determination of the angular positions of leaves in common leaf: phyllotaxic configurations is proposed. The number of turns in a pattern repeat, number of leaves: per level and per pattern repeat, and divergence angle are related to speed of auxin transport and: radius of the generative circle. The rule for composition of Fibonacci or Lucas numbers: associated with some phyllotaxes is discussed. A subcellular model suggests how the shoot: meristem might specify either symmetric or asymmetric transport of auxin away from the: forming primordia that produce it. Biological tests that could make or break the mathematical: and molecular hypotheses are proposed.
Collapse
Affiliation(s)
- Barbara Abraham-Shrauner
- Department of Electrical and Systems Engineering, and Gladys Levis Allen Laboratory of Plant Sensory Physiology, Washington University, St. Louis, MO, USA.
| | | |
Collapse
|
333
|
Aizat WM, Preuss JM, Johnson AAT, Tester MA, Schultz CJ. Investigation of a His-rich arabinogalactan-protein for micronutrient biofortification of cereal grain. PHYSIOLOGIA PLANTARUM 2011; 143:271-286. [PMID: 21707638 DOI: 10.1111/j.1399-3054.2011.01499.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The micronutrient content of most cereal grains is low and responsible for malnutrition deficiencies in millions of people who rely on grains as their primary food source. Any strategy that can increase the micronutrient content of grain will have significant benefits to world health. We identified a gene from barley encoding a cell wall protein with multiple histidine (His)-rich motifs interspersed with short arabinogalactan-protein (AGP) domains and have called it Hordeum vulgare His-rich AGP (HvHRA1). Sequence analysis shows that His-rich AGPs are rare in plants and that the number of His-rich and AGP domains differ between cereals and dicots. The barley and wheat encoded proteins have more than 13 His-rich domains, whereas the putative rice orthologue has only 5 His-rich regions. His-rich motifs are well-established metal-binding motifs; therefore, we developed transgenic (Tx) rice plants that constitutively overexpress barley HvHRA1. There was no significant effect on plant growth or grain yield in Tx plants. Purification of AGPs from wild-type and Tx plants showed that only Tx plants contained detectable levels of a His-rich AGP. Calcein assay shows that the AGP fraction from Tx plants had increased binding affinity for Cu(2+) . Micronutrient analysis of brown and white rice showed that the grain nutrient yield for Fe, Zn and Cu was higher in two Tx lines compared to their respective nulls, although the differences were not statistically significant. This approach highlights the potential of the plant apoplast (cell wall) for storage of key nutrients through overexpression of genes for metal-binding proteins.
Collapse
Affiliation(s)
- Wan M Aizat
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | | | | | |
Collapse
|
334
|
Steinhorn G, Sims IM, Carnachan SM, Carr AJ, Schlothauer R. Isolation and characterisation of arabinogalactan-proteins from New Zealand kanuka honey. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.03.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
335
|
Johnson KL, Kibble NAJ, Bacic A, Schultz CJ. A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS One 2011; 6:e25154. [PMID: 21966441 PMCID: PMC3178619 DOI: 10.1371/journal.pone.0025154] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The fasciclin-like arabinogalactan-proteins (FLAs) are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs) in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS) domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants. Recent studies have started to elucidate the role of FLAs in Arabidopsis development. FLAs containing a single FAS domain are important for the integrity and elasticity of the plant cell wall matrix (FLA11 and FLA12) and FLA3 is involved in microspore development. FLA4/SOS5 with two FAS domains and two AGP domains has a role in maintaining proper cell expansion under salt stressed conditions. The role of other FLAs remains to be uncovered. METHOD/PRINCIPAL FINDINGS Here we describe the characterisation of a T-DNA insertion mutant in the FLA1 gene (At5g55730). Under standard growth conditions fla1-1 mutants have no obvious phenotype. Based on gene expression studies, a putative role for FLA1 in callus induction was investigated and revealed that fla1-1 has a reduced ability to regenerate shoots in an in vitro shoot-induction assay. Analysis of FLA1p:GUS reporter lines show that FLA1 is expressed in several tissues including stomata, trichomes, the vasculature of leaves, the primary root tip and in lateral roots near the junction of the primary root. CONCLUSION The results of the developmental expression of FLA1 and characterisation of the fla1 mutant support a role for FLA1 in the early events of lateral root development and shoot development in tissue culture, prior to cell-type specification.
Collapse
Affiliation(s)
- Kim L. Johnson
- ARC Centre of Excellence in Plant Cell Walls and Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Melbourne, Australia
| | - Natalie A. J. Kibble
- ARC Centre of Excellence in Plant Cell Walls, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
- School of Agriculture and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls and Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Melbourne, Australia
| | - Carolyn J. Schultz
- School of Agriculture and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| |
Collapse
|
336
|
Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes. PLoS One 2011; 6:e23167. [PMID: 21829715 PMCID: PMC3149072 DOI: 10.1371/journal.pone.0023167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/13/2011] [Indexed: 11/19/2022] Open
Abstract
Cell walls, constructed by precisely choreographed changes in the plant secretome, play critical roles in plant cell physiology and development. Along with structural polysaccharides, secreted proline-rich Tandem Repeat Proteins (TRPs) are important for cell wall function, yet the evolutionary diversity of these structural TRPs remains virtually unexplored. Using a systems-level computational approach to analyze taxonomically diverse plant sequence data, we identified 31 distinct Pro-rich TRP classes targeted for secretion. This analysis expands upon the known phylogenetic diversity of extensins, the most widely studied class of wall structural proteins, and demonstrates that extensins evolved before plant vascularization. Our results also show that most Pro-rich TRP classes have unexpectedly restricted evolutionary distributions, revealing considerable differences in plant secretome signatures that define unexplored diversity.
Collapse
|
337
|
Camacho-Cristóbal JJ, Rexach J, Herrera-Rodríguez MB, Navarro-Gochicoa MT, González-Fontes A. Boron deficiency and transcript level changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:85-9. [PMID: 21683871 DOI: 10.1016/j.plantsci.2011.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 05/02/2023]
Abstract
Boron (B) is an essential element for plant growth whose deficiency causes an alteration in the expression of a wide range of genes involved in several physiological processes. However, our understanding of the signal transduction pathways that trigger the B-deficiency responses in plants is still poor. The aims of this review are (i) to summarize the genes whose transcript levels are affected by B deficiency and (ii) to provide an update on recent findings that could help to understand how the signal(s) triggered by B deficiency is transferred to the nucleus to modulate gene expression. In this contribution we review the effects of B deficiency on the transcript level of genes related to B uptake and translocation, maintenance of cell wall and membrane function, nitrogen assimilation and stress response. In addition, we discuss the possible mediation of calcium, arabinogalactan-proteins and other cis-diol containing compounds in the signaling mechanisms that transfer the signal of B deficiency to nuclei. Finally, we conclude that the advance in the knowledge of the molecular basis of B deficiency response in plants will allow improving the tolerance of crops to B deficiency stress.
Collapse
Affiliation(s)
- Juan J Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
338
|
Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 2011; 12:363. [PMID: 21752295 PMCID: PMC3146458 DOI: 10.1186/1471-2164-12-363] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. RESULTS A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). CONCLUSIONS This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.
Collapse
Affiliation(s)
- John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Hamlet Avilés-Arnaut
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Kena Casarrubias-Castillo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Gabriela Casique-Arroyo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Paula A Castrillón-Arbeláez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Génomica para la Biodiversidad, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Julio Massange-Sánchez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Norma A Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Fannie I Parra-Cota
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Erandi Vargas-Ortiz
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - María G Estrada-Hernández
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
- Department of Entomology, College of Agricultural Sciences. Penn State University, University Park, PA 16802, USA
| |
Collapse
|
339
|
Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:232-46. [PMID: 21443685 DOI: 10.1111/j.1365-313x.2011.04586.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants feature a particularly diverse population of short (s)RNAs, the central component of all RNA silencing pathways. Next generation sequencing techniques enable deeper insights into this complex and highly conserved mechanism and allow identification and quantification of sRNAs. We employed deep sequencing to monitor the sRNAome of developing tomato fruits covering the period between closed flowers and ripened fruits by profiling sRNAs at 10 time-points. It is known that microRNAs (miRNAs) play an important role in development but very little information is available about the majority of sRNAs that are not miRNAs. Here we show distinctive patterns of sRNA expression that often coincide with stages of the developmental process such as flowering, early and late fruit maturation. Moreover, thousands of non-miRNA sRNAs are differentially expressed during fruit development and ripening. Some of these differentially expressed sRNAs derived from transposons but many derive from protein coding genes or regions that show homology to protein coding genes, several of which are known to play a role in flower and fruit development. These findings raise the possibility of a regulative role of these sRNAs during fruit onset and maturation in a crop species. We also identified six new miRNAs and experimentally validated two target mRNAs. These two mRNAs are targeted by the same miRNA but do not belong to the same gene family, which is rare for plant miRNAs. Expression pattern and putative function of these targets indicate a possible role in glutamate accumulation, which contributes to establishing the taste of the fruit.
Collapse
Affiliation(s)
- Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Zhong J, Ren Y, Yu M, Ma T, Zhang X, Zhao J. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis. PROTOPLASMA 2011; 248:551-63. [PMID: 20830495 DOI: 10.1007/s00709-010-0204-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/21/2010] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-D-Glc)(3) Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis.
Collapse
Affiliation(s)
- Jing Zhong
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
341
|
Kobayashi Y, Motose H, Iwamoto K, Fukuda H. Expression and Genome-Wide Analysis of the Xylogen-Type Gene Family. ACTA ACUST UNITED AC 2011; 52:1095-106. [DOI: 10.1093/pcp/pcr060] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
342
|
Jadid N, Mialoundama AS, Heintz D, Ayoub D, Erhardt M, Mutterer J, Meyer D, Alioua A, Van Dorsselaer A, Rahier A, Camara B, Bouvier F. DOLICHOL PHOSPHATE MANNOSE SYNTHASE1 mediates the biogenesis of isoprenyl-linked glycans and influences development, stress response, and ammonium hypersensitivity in Arabidopsis. THE PLANT CELL 2011; 23:1985-2005. [PMID: 21558543 PMCID: PMC3123950 DOI: 10.1105/tpc.111.083634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/19/2011] [Accepted: 05/01/2011] [Indexed: 05/17/2023]
Abstract
The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers' yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference-mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress.
Collapse
Affiliation(s)
- Nurul Jadid
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Department of Biology, Botanical and Plant Tissue Culture Laboratory, Sepuluh Nopember Institut of Technology (Its), Gedung H Kampus Its Sukolilo, Surabaya 60111, East-Java, Indonesia
| | - Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien du Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7178, Université de Strasbourg, 67087 Strasbourg Cedex, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Denise Meyer
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien du Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7178, Université de Strasbourg, 67087 Strasbourg Cedex, France
| | - Alain Rahier
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Bilal Camara
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Address correspondence to
| |
Collapse
|
343
|
Liao YY, Buckhout TJ, Schmidt W. Phosphate deficiency-induced cell wall remodeling: linking gene networks with polysaccharide meshworks. PLANT SIGNALING & BEHAVIOR 2011; 6:700-702. [PMID: 21448004 PMCID: PMC3172841 DOI: 10.4161/psb.6.5.15051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 05/28/2023]
Abstract
The formation of root hairs is a unique developmental process that requires the concerted action of a multitude of proteins. Root hair development is controlled by intrinsic programs, but fine-tuning of these programs occurs in response to environmental signals, dictating the shape and function of epidermal cells. In particular, low availability of soil-immobile mineral nutrients such as phosphate (Pi) affects the density and length of root hairs, resulting in an increased absorptive surface area. We recently reported on a time-course transcriptional profiling study aimed at identifying gene networks that signal Pi deficiency and mediate adaptation to Pi shortage. Using root-specific coexpression analysis of early Pi-responsive genes, we identified a subset of novel loci crucial for the development of root hairs under Pi-deficient conditions. Remodeling of cell wall structures may be associated with the TOR (Target of Rapamycin) pathway, a highly conserved central regulator of growth and development in eukaryotic cells that senses nutrient availability.
Collapse
Affiliation(s)
- Ya-Yun Liao
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
| | | | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
- Graduate Institute of Biotechnology; National Chung Hsing University; Taichung, Taiwan
- Genome and Systems Biology Degree Program; College of Life Science; National Taiwan University; Taipei, Taiwan
| |
Collapse
|
344
|
Yang J, Zhang Y, Liang Y, Showalter AM. Expression analyses of AtAGP17 and AtAGP19, two lysine-rich arabinogalactan proteins, in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:431-8. [PMID: 21489093 DOI: 10.1111/j.1438-8677.2010.00407.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
AtAGP17 and AtAGP19 are members of the lysine-rich arabinogalactan protein (AGP) subfamily in Arabidopsis. Detailed anatomical analysis of promoter activity of the AtAGP19 gene was carried out using transgenic Arabidopsis plants expressing a P(AtAGP19):GUS fusion. AtAGP19 promoter activity was tissue-specific and associated with vascular bundles, particularly differentiating xylem elements. Peptide-specific antibodies were raised against the Lys-rich regions of AtAGP17 and AtAGP19 and used to study the organ-specific expression patterns of these two AGPs. AtAGP17 and AtAGP19 were most abundant in roots and flowers, moderately abundant in stems, seedlings and siliques and virtually absent in leaves. Antibodies specific for AtAGP17 and AtAGP19, as reported here, represent valuable tools for understanding the biology of these two AGPs.
Collapse
Affiliation(s)
- J Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | | | | | | |
Collapse
|
345
|
Lin WD, Liao YY, Yang TJ, Pan CY, Buckhout TJ, Schmidt W. Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. PLANT PHYSIOLOGY 2011; 155:1383-402. [PMID: 21248074 PMCID: PMC3046593 DOI: 10.1104/pp.110.166520] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/18/2011] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) deficiency triggers the differential expression of a large set of genes, which communally adapt the plant to low Pi bioavailability. To infer functional modules in early transcriptional responses to Pi deficiency, we conducted time-course microarray experiments and subsequent coexpression-based clustering of Pi-responsive genes by pairwise comparison of genes against a customized database. Three major clusters, enriched in genes putatively functioning in transcriptional regulation, root hair formation, and developmental adaptations, were predicted from this analysis. Validation of gene expression by quantitative reverse transcription-PCR revealed that transcripts from randomly selected genes were robustly induced within the first hour after transfer to Pi-deplete medium. Pectin-related processes were among the earliest and most robust responses to Pi deficiency, indicating that cell wall alterations are critical in the early transcriptional response to Pi deficiency. Phenotypical analysis of homozygous mutants defective in the expression of genes from the root hair cluster revealed eight novel genes involved in Pi deficiency-induced root hair elongation. The plants responded rapidly to Pi deficiency by the induction of a subset of transcription factors, followed by a repression of genes involved in cell wall alterations. The combined results provide a novel, integrated view at a systems level of the root responses that acclimate Arabidopsis (Arabidopsis thaliana) to suboptimal Pi levels.
Collapse
|
346
|
Keegstra K. Plant cell walls. PLANT PHYSIOLOGY 2010; 154:483-6. [PMID: 20921169 PMCID: PMC2949028 DOI: 10.1104/pp.110.161240] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/06/2010] [Indexed: 05/17/2023]
Affiliation(s)
- Kenneth Keegstra
- Michigan State University, Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824, USA.
| |
Collapse
|
347
|
Liang Y, Faik A, Kieliszewski M, Tan L, Xu WL, Showalter AM. Identification and characterization of in vitro galactosyltransferase activities involved in arabinogalactan-protein glycosylation in tobacco and Arabidopsis. PLANT PHYSIOLOGY 2010; 154:632-42. [PMID: 20671109 PMCID: PMC2949012 DOI: 10.1104/pp.110.160051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/24/2010] [Indexed: 05/03/2023]
Abstract
Arabinogalactan-proteins (AGPs) are highly glycosylated hydroxyproline (Hyp)-rich glycoproteins that are frequently characterized by the presence of [Alanine-Hyp] ([AO]) repetitive units. AGP galactosyltransferase (GalT) activities in tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) microsomal membranes were studied here with an in vitro GalT reaction system, which used acceptor substrates composed of [AO] repetitive units, specifically, a chemically synthesized [AO](7) acceptor and a transgenically produced and deglycosylated d[AO](51) acceptor. Incorporation of [(14)C]Gal from UDP-[(14)C]Gal into the [AO](7) and d[AO](51) acceptors was observed following HPLC fractionation of the reaction products. Hyp-[(14)C]Gal monosaccharide and Hyp-[(14)C]Gal disaccharide were identified in the base hydrolysates of the GalT reaction products, indicating the presence of two distinct GalT activities for the addition of the first and second Gal residues to the [AO] peptide in both tobacco and Arabidopsis. Examination of the Arabidopsis Hyp:GalT activity using various acceptor substrates, including two extensin sequences containing SO(4) modules and a [AP](7) peptide, indicated this activity was specific for peptidyl Hyp in AGP sequences. Mass spectrometry analysis demonstrated that only one Gal was added per peptide molecule to the C-terminal or penultimate Hyp residue of the [AO](7) peptide. In addition, [AO](7):GalT and d[AO](51):GalT activities were localized to the endomembrane system of Arabidopsis suspension-cultured cells following sucrose density gradient centrifugation. The in vitro assay reported here to detect GalT activities using AGP peptide and glycopeptide acceptor substrates provides a useful tool for the identification and verification of AGP-specific GalT proteins/genes and an entry point for elucidation of arabinogalactan biosynthesis for AGPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Allan M. Showalter
- Molecular and Cellular Biology Program (Y.L., A.F., M.K., A.M.S.), Department of Environmental and Plant Biology (Y.L., A.F., W.-L.X., A.M.S.), and Department of Chemistry and Biochemistry (M.K., L.T.), Ohio University, Athens, Ohio 45701–2979
| |
Collapse
|
348
|
Seifert GJ, Blaukopf C. Irritable walls: the plant extracellular matrix and signaling. PLANT PHYSIOLOGY 2010; 153:467-78. [PMID: 20154095 PMCID: PMC2879813 DOI: 10.1104/pp.110.153940] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/10/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Georg J. Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, 1190 Vienna, Austria
| | | |
Collapse
|