301
|
Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. SUSTAINABILITY 2011. [DOI: 10.3390/su3101742] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
302
|
Gu M, Chen A, Dai X, Liu W, Xu G. How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? PLANT SIGNALING & BEHAVIOR 2011; 6:1300-4. [PMID: 22019636 PMCID: PMC3258057 DOI: 10.4161/psb.6.9.16365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 05/20/2023]
Abstract
Most terrestrial plant roots form mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF), a characteristic feature of which is nutrient exchange between the two symbiotic partners. Phosphate (Pi) is the main benefit the host plants acquired from the AMF. It has long been a common realization that high Pi supply could suppress the AMF development. However, the direct molecular regulatory mechanisms underlying this plant directed suppression are lacking. Here, we reviewed the recent work providing the evidences that high Pi supply induces transcriptional alteration, leading to the inhibition of AMF development at different stages of AM symbiosis, and gave our view on potential cross-talk among Pi starvation, AM as well as phytohormone signaling.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
303
|
Cao Z, Geng B, Xu S, Xuan W, Nie L, Shen W, Liang Y, Guan R. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4675-89. [PMID: 21673093 PMCID: PMC3170560 DOI: 10.1093/jxb/err190] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 05/19/2023]
Abstract
In this report, a rapeseed (Brassica napus) haem oxygenase-1 gene BnHO1 was cloned and sequenced. It shared high homology with Arabidopsis HY1 proteins, and encodes a 32.6 kDa protein with a 54-amino-acid transit peptide, predicting the mature protein of 25.1 kDa. The mature BnHO1 expressed in Escherichia coli exhibits haem oxygenase (HO) activity. Furthermore, the application of lower doses of NaCl (10 mM) and polyethylene glycol (PEG) (2%) mimicked the inducible effects of naphthylacetic acid and the HO-1 inducer haemin on the up-regulation of BnHO1 and subsequent lateral root (LR) formation. Contrasting effects were observed when a higher dose of NaCl or PEG was applied. The above inducible and inhibitory responses were blocked significantly when the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) or haemin was applied, both of which were reversed by the application of carbon monoxide or ZnPPIX, respectively. Moreover, the addition of ZnPPIX at different time points during LR formation indicated that BnHO1 might be involved in the early stages of LR formation. The auxin response factor transcripts and the auxin content in seedling roots were clearly induced by lower doses of salinity or osmotic stress. However, treatment with the inhibitor of polar auxin transport N-1-naphthylphthalamic acid prevented the above inducible responses conferred by lower doses of NaCl and PEG, which were further rescued when the treatments were combined with haemin. Taken together, these results suggested a novel role of the rapeseed HO-1 gene in salinity and osmotic stress-induced LR formation, with a possible interaction with auxin signalling.
Collapse
Affiliation(s)
- Zeyu Cao
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd Co., Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Beibei Geng
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd Co., Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Xu
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd Co., Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd Co., Nanjing Agricultural University, Nanjing 210095, China
| | - Li Nie
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd Co., Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd Co., Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- To whom correspondence should be addressed. E-mail:
| | - Yongchao Liang
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
304
|
Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. TRENDS IN PLANT SCIENCE 2011; 16:442-50. [PMID: 21684794 DOI: 10.1016/j.tplants.2011.05.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 05/18/2023]
Abstract
Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse.
Collapse
Affiliation(s)
- Benjamin Péret
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France.
| | | | | | | |
Collapse
|
305
|
Hammond JP, White PJ. Sugar signaling in root responses to low phosphorus availability. PLANT PHYSIOLOGY 2011; 156:1033-40. [PMID: 21487049 PMCID: PMC3135921 DOI: 10.1104/pp.111.175380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/10/2011] [Indexed: 05/18/2023]
Affiliation(s)
- John P Hammond
- Division of Plant and Crop Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | | |
Collapse
|
306
|
Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. PLANT PHYSIOLOGY 2011; 156:1101-15. [PMID: 21317339 PMCID: PMC3135962 DOI: 10.1104/pp.110.170209] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/24/2011] [Indexed: 05/18/2023]
Abstract
Although phosphate (Pi) starvation signaling is well studied in Arabidopsis (Arabidopsis thaliana), it is still largely unknown in rice (Oryza sativa). In this work, a rice leaf tip necrosis1 (ltn1) mutant was identified and characterized. Map-based cloning identified LTN1 as LOC_Os05g48390, the putative ortholog of Arabidopsis PHO2, which plays important roles in Pi starvation signaling. Analysis of transgenic plants harboring a LTN1 promoter::β-glucuronidase construct revealed that LTN1 was preferentially expressed in vascular tissues. The ltn1 mutant exhibited increased Pi uptake and translocation, which led to Pi overaccumulation in shoots. In association with enhanced Pi uptake and transport, some Pi transporters were up-regulated in the ltn1 mutant in the presence of sufficient Pi. Furthermore, the elongation of primary and adventitious roots was enhanced in the ltn1 mutant under Pi starvation, suggesting that LTN1 is involved in Pi-dependent root architecture alteration. Under Pi-sufficient conditions, typical Pi starvation responses such as stimulation of phosphatase and RNase activities, lipid composition alteration, nitrogen assimilation repression, and increased metal uptake were also activated in ltn1. Moreover, analysis of OsmiR399-overexpressing plants showed that LTN1 was down-regulated by OsmiR399. Our results strongly indicate that LTN1 is a crucial Pi starvation signaling component downstream of miR399 involved in the regulation of multiple Pi starvation responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (B.H., C.Z., F.L., J.T., Y.W., A.L., L.L., R.C., C.C.); Graduate School of the Chinese Academy of Sciences, Beijing 100049, China (B.H., A.L., L.L., R.C.)
| |
Collapse
|
307
|
Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development. MOLECULAR PLANT 2011; 4:616-25. [PMID: 21357646 PMCID: PMC3146736 DOI: 10.1093/mp/ssr007] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/07/2011] [Indexed: 05/18/2023]
Abstract
Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developmental processes, such as the formation and maintenance of meristem. Over the past few years, exciting progress has been made to reveal the molecular mechanisms underlying the auxin-cytokinin action and interaction. In this review, we shall briefly discuss the major progress made in auxin and cytokinin biosynthesis, auxin transport, and auxin and cytokinin signaling. The frameworks for the complicated interaction of these two hormones in the control of shoot apical meristem and root apical meristem formation as well as their roles in in vitro organ regeneration are the major focus of this review.
Collapse
Affiliation(s)
| | | | - Xian-Sheng Zhang
- To whom correspondence should be addressed. E-mail , fax +86 538 8226399, tel. +86 538 8249418
| |
Collapse
|
308
|
Li B, Li Q, Su Y, Chen H, Xiong L, Mi G, Kronzucker HJ, Shi W. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:933-946. [PMID: 21342208 DOI: 10.1111/j.1365-3040.2011.02295.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Deposition of ammonium (NH₄+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH₄+ is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root.
Collapse
Affiliation(s)
- Baohai Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Qing Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Hao Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Liming Xiong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Guohua Mi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Herbert J Kronzucker
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, ChinaGraduate School of Chinese Academy of Science, Beijing 100081, ChinaDonald Danforth Plant Science Center, St. Louis, Missouri 63132, USAPlant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi ArabiaCollege of Resources and Environmental Science, China Agricultural University, Beijing 100094, ChinaDepartment of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
309
|
Li Y, Wu B, Yu Y, Yang G, Wu C, Zheng C. Genome-wide analysis of the RING finger gene family in apple. Mol Genet Genomics 2011; 286:81-94. [DOI: 10.1007/s00438-011-0625-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/19/2011] [Indexed: 11/28/2022]
|
310
|
Martín-Rejano EM, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Rexach J, Navarro-Gochicoa MT, González-Fontes A. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. PHYSIOLOGIA PLANTARUM 2011; 142:170-8. [PMID: 21338369 DOI: 10.1111/j.1399-3054.2011.01459.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Changes in root architecture are one of the adaptive strategies used by plants to compensate for nutrient deficiencies in soils. In this work, the temporal responses of Arabidopsis (Arabidopsis thaliana) root system architecture to low boron (B) supply were investigated. Arabidopsis Col-0 seedlings were grown in 10 µM B for 5 days and then transferred to a low B medium (0.4 µM) or control medium (10 µM) for a 4-day period. Low B supply caused an inhibition of primary root (PR) growth without altering either the growth or number of lateral roots (LRs). In addition, low B supply induced root hair formation and elongation in positions close to the PR meristem not observed under control conditions. The possible role of auxin and ethylene in the alteration of root system architecture elicited by low B supply was also studied by using two Arabidopsis reporter lines (DR5:GUS and EBS:GUS) and two Arabidopsis mutants with impaired auxin and ethylene signaling (aux1-22 and ein2-1). Low B supply increased auxin reporter DR5:GUS activity in PR tip, suggesting that low B alters the pattern of auxin distribution in PR tip. Moreover, PR elongation in aux1-22 mutant was less sensitive to low B treatment than in wild-type plants, which suggests that auxin resistant 1 (AUX1) participates in the inhibition of PR elongation under low B supply. From all these results, a hypothetical model to explain the effect of low B treatment on PR growth is proposed. We also show that ethylene, via ethylene-insensitive 2 (EIN2) protein, is involved in the induction of root hair formation and elongation under low B treatment.
Collapse
Affiliation(s)
- Esperanza M Martín-Rejano
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
311
|
Abel S. Phosphate sensing in root development. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:303-9. [PMID: 21571579 DOI: 10.1016/j.pbi.2011.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) and its anhydrides constitute major nodes in metabolism. Thus, plant performance depends directly on Pi nutrition. Inadequate Pi availability in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi usage and acquisition. The sensory mechanisms that monitor environmental Pi and transmit the nutritional signal to adjust root development have increasingly come into focus. Recent transcriptomic analyses and genetic approaches have highlighted complex antagonistic interactions between external Pi and Fe bioavailability and have implicated the stem cell niche as a target of Pi sensing to regulate root meristem activity.
Collapse
Affiliation(s)
- Steffen Abel
- Leibniz-Institute of Plant Biochemistry, Halle (Saale), Germany.
| |
Collapse
|
312
|
Abstract
Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
313
|
Gojon A, Krouk G, Perrine-Walker F, Laugier E. Nitrate transceptor(s) in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2299-308. [PMID: 21239382 DOI: 10.1093/jxb/erq419] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The availability of mineral nutrients in the soil dramatically fluctuates in both time and space. In order to optimize their nutrition, plants need efficient sensing systems that rapidly signal the local external concentrations of the individual nutrients. Until recently, the most upstream actors of the nutrient signalling pathways, i.e. the sensors/receptors that perceive the extracellular nutrients, were unknown. In Arabidopsis, increasing evidence suggests that, for nitrate, the main nitrogen source for most plant species, a major sensor is the NRT1.1 nitrate transporter, also contributing to nitrate uptake by the roots. Membrane proteins that fulfil a dual nutrient transport/signalling function have been described in yeast and animals, and are called 'transceptors'. This review aims to illustrate the nutrient transceptor concept in plants by presenting the current evidence indicating that NRT1.1 is a representative of this class of protein. The various facets, as well as the mechanisms of nitrate sensing by NRT1.1 are considered, and the possible occurrence of other nitrate transceptors is discussed.
Collapse
Affiliation(s)
- Alain Gojon
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/Supagro-M/UM2, Place Viala, F-34060 Montpellier cedex 2, France.
| | | | | | | |
Collapse
|
314
|
Yao Y, Sun H, Xu F, Zhang X, Liu S. Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. PLANTA 2011; 233:523-37. [PMID: 21110039 DOI: 10.1007/s00425-010-1311-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/28/2010] [Indexed: 05/03/2023]
Abstract
In an attempt to determine the adaptation strategy to phosphorous (Pi) deficiency in oilseed rape, comparative proteome analyses were conducted to investigate the differences of metabolic changes in two oilseed rape genotypes with different tolerance to low phosphorus (LP). Generally in either roots or leaves, there existed few low phosphorus (LP)-induced proteins shared in the two lines. The LP-tolerant genotype 102 maintained higher Pi concentrations than LP-sensitive genotype 105 when growing hydroponically under the 5-μM phosphorus condition. In 102 we observed the downregulation of the proteins related to gene transcription, protein translation, carbon metabolism, and energy transfer in leaves and roots, and the downregulation of proteins related to leaf growth and root cellular organization. But the proteins related to the formation of lateral root were upregulated, such as the auxin-responsive family proteins in roots and the sucrose-phosphate synthase-like protein in roots and leaves. On the other hand, the LP-sensitive genotype 105 maintained the low level of Pi concentrations and suffered high oxidative pressure under the LP condition, and stress-shocking proteins were pronouncedly upregulated such as the proteins for signal transduction, gene transcription, secondary metabolism, universal stress family proteins, as well as the proteins involved in lipid oxygenation and the disease resistance in both leaves and roots. Although the leaf proteins for growth in 105 were downregulated, the protein expressions in roots related to glycolysis and tricarboxylic acid (TCA) cycle were enhanced to satisfy the requirement of organic acid secretion.
Collapse
Affiliation(s)
- Yinan Yao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | | | | | | | | |
Collapse
|
315
|
Zhao Y, Wang T, Zhang W, Li X. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. THE NEW PHYTOLOGIST 2011; 189:1122-1134. [PMID: 21087263 DOI: 10.1111/j.1469-8137.2010.03545.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
• The SOS signaling pathway plays an important role in plant salt tolerance. However, little is known about how the SOS pathway modulates organ development in response to salt stress. Here, the involvement of SOS signaling in NaCl-induced lateral root (LR) development in Arabidopsis was assessed. • Wild-type and sos3-1 mutant seedlings on iso-osmotic concentrations of NaCl and mannitol were analyzed. The marker lines for auxin accumulation, auxin transport, cell division activity and stem cells were also examined. • The results showed that ionic effect alleviates the inhibitory effects of osmotic stress on LR development. LR development of the sos3-1 mutant showed increased sensitivity specifically to low salt. Under low-salt conditions, auxin in cotyledons and LR primordia (LRP) of the sos3-1 mutant was markedly reduced. Decreases in auxin polar transport of mutant roots may cause insufficient auxin supply, resulting in defects not only in LR initiation but also in cell division activity in LRP. • Our data uncover a novel role of the SOS3 gene in modulation of LR developmental plasticity and adaptation in response to low salt stress, and reveal a new mechanism for plants to sense and adapt to small changes of salt.
Collapse
Affiliation(s)
- Yankun Zhao
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
- Graduate University, Chinese Academy of Sciences, Beijing 100039, China
| | - Tao Wang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
- Graduate University, Chinese Academy of Sciences, Beijing 100039, China
| | - Wensheng Zhang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Xia Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| |
Collapse
|
316
|
Chacón-López A, Ibarra-Laclette E, Sánchez-Calderón L, Gutiérrez-Alanís D, Herrera-Estrella L. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation. PLANT SIGNALING & BEHAVIOR 2011; 6:382-92. [PMID: 21368582 PMCID: PMC3142420 DOI: 10.4161/psb.6.3.14160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 05/17/2023]
Abstract
Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are still largely unknown. One of the most conspicuous developmental effects of low Pi on the Arabidopsis root system is the inhibition of primary root growth that is accompanied by loss of root meristematic activity. To identify signalling pathways potentially involved in the Arabidpsis root meristem response to Pi-deprivation, here we report the global gene expression analysis of the root tip of wild type and low phosphorus insensitive4 (lpi4) mutant grown under Pi limiting conditions. Differential gene expression analysis and physiological experiments show that changes in the redox status, probably mediated by jasmonic acid and ethylene, play an important role in the primary root meristem exhaustion process triggered by Pi-starvation.
Collapse
Affiliation(s)
- Alejandra Chacón-López
- Departamento de Ingeniería Genética de Plantas; Campus Guanajuato; Irapuato Guanajuato
- Laboratorio Nacional de Genómica para la Biodiversidad; Centro de Investigación y Estudios Avanzados; Campus Guanajuato; Irapuato Guanajuato
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad; Centro de Investigación y Estudios Avanzados; Campus Guanajuato; Irapuato Guanajuato
| | - Lenin Sánchez-Calderón
- Unidad Académica de Biología Experimental; Universidad Autónoma de Zacatecas; Zacatecas, México
| | - Dolores Gutiérrez-Alanís
- Laboratorio Nacional de Genómica para la Biodiversidad; Centro de Investigación y Estudios Avanzados; Campus Guanajuato; Irapuato Guanajuato
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad; Centro de Investigación y Estudios Avanzados; Campus Guanajuato; Irapuato Guanajuato
| |
Collapse
|
317
|
Lei M, Zhu C, Liu Y, Karthikeyan AS, Bressan RA, Raghothama KG, Liu D. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. THE NEW PHYTOLOGIST 2011; 189:1084-1095. [PMID: 21118263 DOI: 10.1111/j.1469-8137.2010.03555.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. • The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. • hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. • These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses.
Collapse
Affiliation(s)
- Mingguang Lei
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuanmei Zhu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Stress Genomics, King Abdullah University for Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Division of Applied Life Sciences, WCU Program, Gyeongsang National University, Jinju, 660-701, Korea
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
318
|
Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? PLANT PHYSIOLOGY 2011; 155:721-34. [PMID: 21119044 PMCID: PMC3032462 DOI: 10.1104/pp.110.166645] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/29/2010] [Indexed: 05/18/2023]
Abstract
In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphate-sufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants' root-to-shoot ratio.
Collapse
|
319
|
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. PLANT PHYSIOLOGY 2011; 155:1000-12. [PMID: 21156857 PMCID: PMC3032448 DOI: 10.1104/pp.110.165191] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/26/2010] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Koltai H, Kapulnik Y. Strigolactones as mediators of plant growth responses to environmental conditions. PLANT SIGNALING & BEHAVIOR 2011; 6:37-41. [PMID: 21248472 PMCID: PMC3122003 DOI: 10.4161/psb.6.1.13245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) have been recently identified as a new group of plant hormones or their derivatives thereof, shown to play a role in plant development. Evolutionary forces have driven the development of mechanisms in plants that allow adaptive adjustments to a variety of different habitats by employing plasticity in shoot and root growth and development. The ability of SLs to regulate both shoot and root development suggests a role in the plant's response to its growth environment. To play this role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward increased adaptive adjustment. Here, the effects of SLs on shoot and root development are presented, and possible feedback loops between SLs and two environmental cues, light and nutrient status, are discussed; these might suggest a role for SLs in plants' adaptive adjustment to growth conditions.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel.
| | | |
Collapse
|
321
|
|
322
|
Sánchez-Calderón L, Chacón-López A, Alatorre-Cobos F, Leyva-González MA, Herrera-Estrella L. Sensing and Signaling of PO 4 3−. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
323
|
Del Bianco M, Kepinski S. Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 2011; 3:a001578. [PMID: 21047914 DOI: 10.1101/cshperspect.a001578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Auxin is a simple molecule with a remarkable ability to control plant growth, differentiation, and morphogenesis. The mechanistic basis for this versatility appears to stem from the highly complex nature of the networks regulating auxin metabolism, transport and response. These heavily feedback-regulated and inter-dependent mechanisms are complicated in structure and complex in operation giving rise to a system with self-organizing properties capable of generating highly context-specific responses to auxin as a single, generic signal.
Collapse
Affiliation(s)
- Marta Del Bianco
- University of Leeds, Faculty of Biological Sciences, Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
324
|
Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:185-206. [PMID: 21370979 DOI: 10.1146/annurev-arplant-042110-103849] [Citation(s) in RCA: 450] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants acquire phosphorus in the form of phosphate (Pi), the concentration of which is often limited for plant uptake. Plants have developed diverse responses to conserve and remobilize internal Pi and to enhance Pi acquisition to secure them against Pi deficiency. These responses are achieved by the coordination of an elaborate signaling network comprising local and systemic machineries. Recent advances have revealed several important components involved in this network. Pi functions as a signal to report its own availability. miR399 and sugars act as systemic signals to regulate responses occurring in roots. Hormones also play crucial roles in modulating gene expression and in altering root system architecture. Transcription factors function as a hub to perceive the signals and to elicit steady outputs. In this review, we outline the current knowledge on this subject and present hypotheses pertaining to other potential signals and to the organization and coordination of signaling.
Collapse
Affiliation(s)
- Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
325
|
Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:740-52. [PMID: 21105922 DOI: 10.1111/j.1365-313x.2010.04365.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.
Collapse
Affiliation(s)
- Maria G Ivanchenko
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
326
|
Benková E, Bielach A. Lateral root organogenesis - from cell to organ. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:677-83. [PMID: 20934368 DOI: 10.1016/j.pbi.2010.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Eva Benková
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.
| | | |
Collapse
|
327
|
Scherer GFE, Ryu SB, Wang X, Matos AR, Heitz T. Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. TRENDS IN PLANT SCIENCE 2010; 15:693-700. [PMID: 20961799 DOI: 10.1016/j.tplants.2010.09.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/24/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
The release of fatty acids from membrane glycerolipids has been implicated in a variety of cellular processes, but the enzymes involved and their regulation are poorly understood in plants. One large group of acyl-hydrolyzing enzymes is structurally related to patatins. Patatins are potato tuber proteins with acyl-hydrolyzing activity, and the patatin catalytic domain is widely spread in bacterial, yeast, plant and animal enzymes. Recent results have indicated that patatin-related enzymes are involved in different cellular functions, including plant responses to auxin, elicitors or pathogens, and abiotic stresses and lipid mobilization during seed germination. In this review, we highlight recent developments regarding these enzymes and propose the nomenclature pPLA for the patatin-related phospholipase A enzyme.
Collapse
Affiliation(s)
- Günther F E Scherer
- Leibniz Universität Hannover, Inst. f. Zierpflanzenbau & Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | | | | | | | |
Collapse
|
328
|
Den Herder G, Van Isterdael G, Beeckman T, De Smet I. The roots of a new green revolution. TRENDS IN PLANT SCIENCE 2010; 15:600-7. [PMID: 20851036 DOI: 10.1016/j.tplants.2010.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 05/18/2023]
Abstract
A significant increase in shoot biomass and seed yield has always been the dream of plant biologists who wish to dedicate their fundamental research to the benefit of mankind; the first green revolution about half a century ago represented a crucial step towards contemporary agriculture and the development of high-yield varieties of cereal grains. Although there has been a steady rise in our food production from then onwards, the currently applied technology and the available crop plants will not be sufficient to feed the rapidly growing world population. In this opinion article, we highlight several below-ground characteristics of plants such as root architecture, nutrient uptake and nitrogen fixation as promising features enabling a very much needed new green revolution.
Collapse
Affiliation(s)
- Griet Den Herder
- Genetics, Faculty of Biology, University of Munich (LMU), D-82152 Martinsried-München, Germany
| | | | | | | |
Collapse
|
329
|
Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. THE PLANT CELL 2010; 22:2171-83. [PMID: 20675575 PMCID: PMC2929095 DOI: 10.1105/tpc.110.074823] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/31/2010] [Accepted: 07/15/2010] [Indexed: 05/18/2023]
Abstract
The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.
Collapse
Affiliation(s)
- Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, CP 3000 Santa Fe, Argentina
| | - Anouck Diet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
- Université Paris Diderot Paris 7, Les Grands Moulins, F-75205 Paris Cedex 13, France
| | - Marion Verdenaud
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, 31326 Castanet-Tolosan, France
| | - Véronique Gruber
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
- Université Paris Diderot Paris 7, Les Grands Moulins, F-75205 Paris Cedex 13, France
| | - Florian Frugier
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
| | - Raquel Chan
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, CP 3000 Santa Fe, Argentina
| | - Martin Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
- Address correspondence to
| |
Collapse
|
330
|
Delker C, Pöschl Y, Raschke A, Ullrich K, Ettingshausen S, Hauptmann V, Grosse I, Quint M. Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. THE PLANT CELL 2010; 22:2184-200. [PMID: 20622145 PMCID: PMC2929100 DOI: 10.1105/tpc.110.073957] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/19/2010] [Accepted: 06/18/2010] [Indexed: 05/19/2023]
Abstract
Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we investigated natural variation in the context of physiological and transcriptional responses to the phytohormone auxin, a key regulator of plant development. A survey of the general extent of natural variation to auxin stimuli revealed significant physiological variation among 20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the global transcriptome level after induction of auxin responses in seven accessions. Although we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed sequence conservation, making selective pressures that favor functionally different protein variants among accessions unlikely. However, coexpression analyses of a priori defined auxin signaling networks identified variations in the transcriptional equilibrium of signaling components. In agreement with this, cluster analyses of genome-wide expression profiles followed by analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We hypothesize that quantitative distortions in the ratios of interacting signaling components contribute to the detected transcriptional variation, resulting in physiological variation of auxin responses among accessions.
Collapse
Affiliation(s)
- Carolin Delker
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Yvonne Pöschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anja Raschke
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Kristian Ullrich
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Stefan Ettingshausen
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Valeska Hauptmann
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
- Address correspondence to
| |
Collapse
|
331
|
Nilsson L, Müller R, Nielsen TH. Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. PHYSIOLOGIA PLANTARUM 2010; 139:129-43. [PMID: 20113436 DOI: 10.1111/j.1399-3054.2010.01356.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for plants, and the low bioavailability of Pi in soils is often a limitation to growth and development. Consequently, plants have evolved a range of regulatory mechanisms to adapt to phosphorus-starvation in order to optimise uptake and assimilation of Pi. Recently, significant progress has been made in elucidating these mechanisms. The coordinated expression of a large number of genes is important for many of these adaptations. Several global expression studies using microarray analysis have been conducted in Arabidopsis thaliana. These studies provide a valuable basis for the identification of new regulatory genes and promoter elements to further the understanding of Pi-dependent gene regulation. With focus on the Arabidopsis transcriptome, we extract common findings that point to new groups of putative regulators, including the NAC, MYB, ethylene response factor/APETALA2, zinc-finger, WRKY and CCAAT-binding families. With a number of new discoveries of regulatory elements, a complex regulatory network is emerging. Some regulatory elements, e.g. the transcription factor PHR1 and the microRNA (miRNA) miR399 and associated factors are well documented, yet not fully understood, whereas other suggested components need further characterisation. Here, we evaluate the contribution of the regulatory elements to the P-responses and present a model comprising factors directly or indirectly involved in transcriptional regulation and the role of miRNAs as regulators and long-distance signals. A striking feature is a series of feedback loops and parallel mechanisms that can modify and attenuate responses. We suggest that these mechanisms are instrumental in providing an accurate response and in keeping P-homeostasis.
Collapse
Affiliation(s)
- Lena Nilsson
- Department of Plant Biology and Biotechnology, VKR Research Centre Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | |
Collapse
|
332
|
Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 2010; 76:4626-32. [PMID: 20511434 DOI: 10.1128/aem.02756-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation.
Collapse
|
333
|
Rietz S, Dermendjiev G, Oppermann E, Tafesse FG, Effendi Y, Holk A, Parker JE, Teige M, Scherer GFE. Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. MOLECULAR PLANT 2010; 3:524-38. [PMID: 20053799 DOI: 10.1093/mp/ssp109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phospholipase A enzymes cleave phospho- and galactolipids to generate free fatty acids and lysolipids that function in animal and plant hormone signaling. Here, we describe three Arabidopsis patatin-related phospholipase A (pPLA) genes AtPLAIVA, AtPLAIVB, and AtPLAIVC and their corresponding proteins. Loss-of-function mutants reveal roles for these pPLAs in roots during normal development and under phosphate deprivation. AtPLAIVA is expressed strongly and exclusively in roots and AtplaIVA-null mutants have reduced lateral root development, characteristic of an impaired auxin response. By contrast, AtPLAIVB is expressed weakly in roots, cotyledons, and leaves but is transcriptionally induced by auxin, although AtplaIVB mutants develop normally. AtPLAIVC is expressed in the floral gynaecium and is induced by abscisic acid (ABA) or phosphate deficiency in roots. While an AtplaIVC-1 loss-of-function mutant displays ABA responsiveness, it exhibits an impaired response to phosphate deficiency during root development. Recombinant AtPLA proteins hydrolyze preferentially galactolipids and, less efficiently, phospholipids, although these enzymes are not localized in chloroplasts. We find that AtPLAIVA and AtPLAIVB are phosphorylated by calcium-dependent protein kinases in vitro and this enhances their activities on phosphatidylcholine but not on phosphatidylglycerol. Taken together, the data reveal novel functions of pPLAs in root development with individual roles at the interface between phosphate deficiency and auxin signaling.
Collapse
Affiliation(s)
- Steffen Rietz
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GFE. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. MOLECULAR PLANT 2010; 3:610-25. [PMID: 20507939 DOI: 10.1093/mp/ssq005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.
Collapse
Affiliation(s)
- Rinukshi Wimalasekera
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Applied Molecular Physiology, Herrenhäuser Strasse 2, D-30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
335
|
Yang XJ, Finnegan PM. Regulation of phosphate starvation responses in higher plants. ANNALS OF BOTANY 2010; 105:513-26. [PMID: 20181569 PMCID: PMC2850799 DOI: 10.1093/aob/mcq015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/12/2009] [Accepted: 01/05/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. SCOPE Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. CONCLUSIONS An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.
Collapse
Affiliation(s)
- Xiao Juan Yang
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Patrick M. Finnegan
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
- For correspondence. E-mail
| |
Collapse
|
336
|
Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. THE PLANT CELL 2010; 22:623-639. [PMID: 20354195 DOI: 10.1105/tpc.109.073239pmcid:150761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response.
Collapse
Affiliation(s)
- Jiqing Gou
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295, USA
| | | | | | | | | | | | | |
Collapse
|
337
|
Rouached H, Arpat AB, Poirier Y. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. MOLECULAR PLANT 2010; 3:288-99. [PMID: 20142416 DOI: 10.1093/mp/ssp120] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) availability is a major factor limiting growth, development, and productivity of plants. In both ecological and agricultural contexts, plants often grow in soils with low soluble phosphate content. Plants respond to this situation by a series of developmental and metabolic adaptations that are aimed at increasing the acquisition of this vital nutrient from the soil, as well as to sustain plant growth and survival. The development of a comprehensive understanding of how plants sense phosphate deficiency and coordinate the responses via signaling pathways has become of major interest, and a number of signaling players and networks have begun to surface for the regulation of the phosphate-deficiency response. In practice, application of such knowledge to improve plant Pi nutrition is hindered by complex cross-talks, which are emerging in the face of new data, such as the coordination of the phosphate-deficiency signaling networks with those involved with hormones, photo-assimilates (sugar), as well as with the homeostasis of other ions, such as iron. In this review, we focus on these cross-talks and on recent progress in discovering new signaling players involved in the Pi-starvation responses, such as proteins having SPX domains.
Collapse
Affiliation(s)
- Hatem Rouached
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
338
|
Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. PLANT MOLECULAR BIOLOGY 2010; 72:533-44. [PMID: 20043234 DOI: 10.1007/s11103-009-9589-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/09/2009] [Indexed: 05/02/2023]
Abstract
In higher plants, phosphate (Pi) deficiency induces the replacement of phospholipids with the nonphosphorous glycolipids digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG). Genes involved in membrane lipid remodeling are coactivated in response to Pi starvation, but the mechanisms that guide this response are largely unknown. Previously, we reported the importance of auxin transport for DGDG accumulation during Pi starvation. To understand the role of auxin signaling in Arabidopsis membrane lipid remodeling, we analyzed slr-1, a gain-of-function mutant of IAA14 (a repressor of auxin signaling), and arf7arf19, a loss-of-function mutant of auxin response factors ARF7 and ARF19. In slr-1 and arf7arf19, Pi stress-induced accumulation of DGDG and SQDG was suppressed. Reduced upregulation of glycolipid synthase and phospholipase genes in these mutants under Pi-deficient conditions indicates that IAA14 and ARF7/19 affect membrane lipid remodeling at the level of transcription. Pi stress-dependent induction of a non-protein-coding gene, IPS1, was also lower in slr-1 and arf7arf19, whereas expression of At4 (another Pi stress-inducible non-protein-coding gene), anthocyanin accumulation, and phosphodiesterase induction were not reduced in the shoot. High free Pi content was observed in slr-1 and arf7arf19 even under Pi-deficient conditions, suggesting that Pi homeostasis during Pi starvation is altered in these mutants. These results demonstrate a requirement of auxin signaling mediated by IAA14 and ARF7/19 for low-Pi adaptation in Arabidopsis.
Collapse
Affiliation(s)
- Takafumi Narise
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
339
|
Wang X, Du G, Wang X, Meng Y, Li Y, Wu P, Yi K. The function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 Ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:380-394. [PMID: 20071375 DOI: 10.1093/pcp/pcq004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Arabidopsis thaliana, there exist many typical responses to low phosphate (LP) stress, such as inhibition of primary root elongation, proliferation of lateral roots and accumulation of anthocyanin in leaves. The physiological, genetic and molecular mechanisms of these developmental responses remain undefined. We have isolated a phosphorus starvation-insensitive (psi) mutant. The mutant shows impaired inhibition of primary root growth, reduction of root hair growth and reduction of anthocyanin accumulation compared with the wild-type (WT) plants under an LP level. CycB1;1::GUS (cyclin B1;1::beta-glucuronidase) staining suggests that the mutant has a higher ability to maintain cell elongation and cell division than the WT. The genetic analysis and gene cloning indicate that psi is a new allele of lpr1 and that an AC-repeat element in the promoter plays important roles in controlling the expression of LPR1. The psi mutant also shows less sensitivity to auxin treatment compared with the WT and the mutant has an enhanced higher ability to maintain the auxin response in the root tip under LP. However, enhancing the auxin response in the quiescent center cannot mimic the mutant phenotype. These observations suggest that LPR1 is involved in the regulation of the auxin response to Pi starvation and auxin is probably not the only factor affected for maintaining the long-root phenotype under LP stress. Our results also indicate that the function of LPR1 is probably independent of SUMO E3 ligase SIZ1 in response to Pi starvation. The insensitive response of the psi mutant to brefeldin A suggests that LPR1 and PDR2 (Pi Deficiency Response 2) function in opposite ways in regulating the root growth response to Pi starvation in the endoplamic reticulum.
Collapse
Affiliation(s)
- Xuemin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, PR China
| | | | | | | | | | | | | |
Collapse
|
340
|
Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. THE PLANT CELL 2010; 22:623-39. [PMID: 20354195 PMCID: PMC2861444 DOI: 10.1105/tpc.109.073239] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/17/2010] [Accepted: 03/11/2010] [Indexed: 05/18/2023]
Abstract
The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response.
Collapse
Affiliation(s)
- Jiqing Gou
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752
| | - Chung Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics, University of Georgia, Athens, Georgia 30602-2152
| | - Kai Fang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yiru Chen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Victor B. Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| |
Collapse
|
341
|
Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2010; 107:4477-82. [PMID: 20142497 DOI: 10.1073/pnas.0909571107] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the most striking examples of plant developmental plasticity to changing environmental conditions is the modulation of root system architecture (RSA) in response to nitrate supply. Despite the fundamental and applied significance of understanding this process, the molecular mechanisms behind nitrate-regulated changes in developmental programs are still largely unknown. Small RNAs (sRNAs) have emerged as master regulators of gene expression in plants and other organisms. To evaluate the role of sRNAs in the nitrate response, we sequenced sRNAs from control and nitrate-treated Arabidopsis seedlings using the 454 sequencing technology. miR393 was induced by nitrate in these experiments. miR393 targets transcripts that code for a basic helix-loop-helix (bHLH) transcription factor and for the auxin receptors TIR1, AFB1, AFB2, and AFB3. However, only AFB3 was regulated by nitrate in roots under our experimental conditions. Analysis of the expression of this miR393/AFB3 module, revealed an incoherent feed-forward mechanism that is induced by nitrate and repressed by N metabolites generated by nitrate reduction and assimilation. To understand the functional role of this N-regulatory module for plant development, we analyzed the RSA response to nitrate in AFB3 insertional mutant plants and in miR393 overexpressors. RSA analysis in these plants revealed that both primary and lateral root growth responses to nitrate were altered. Interestingly, regulation of RSA by nitrate was specifically mediated by AFB3, indicating that miR393/AFB3 is a unique N-responsive module that controls root system architecture in response to external and internal N availability in Arabidopsis.
Collapse
|
342
|
|
343
|
Zolla G, Heimer YM, Barak S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:211-24. [PMID: 19783843 PMCID: PMC2791118 DOI: 10.1093/jxb/erp290] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 05/18/2023]
Abstract
Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.
Collapse
Affiliation(s)
| | | | - Simon Barak
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
344
|
Lokerse AS, Weijers D. Auxin enters the matrix--assembly of response machineries for specific outputs. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:520-6. [PMID: 19695945 DOI: 10.1016/j.pbi.2009.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/26/2009] [Accepted: 07/20/2009] [Indexed: 05/24/2023]
Abstract
The basic mechanism of auxin as a modulator of gene expression is now well understood. Interactions among three components are required for this process. Auxin is first perceived by its receptor, which then promotes degradation of inhibitors of auxin response transcription factors. These in turn are released from inhibition and modify expression of target genes. How this simple signaling pathway is able to regulate a diverse range of auxin responses is not as well understood, however a clue lies in the existence of large gene families for all components. Recent data indicates that diversification of gene expression patterns, protein activity, and protein-protein interactions among components establishes a matrix of response machineries that generates specific outputs from the generic auxin signal.
Collapse
Affiliation(s)
- Annemarie S Lokerse
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
345
|
Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme K, Ljung K, Lee JY, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS One 2009; 4:e6648. [PMID: 19777056 PMCID: PMC2744284 DOI: 10.1371/journal.pone.0006648] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/13/2009] [Indexed: 12/18/2022] Open
Abstract
Background In plants, the phytohormone auxin is a crucial regulator sustaining growth and development. At the cellular level, auxin is interpreted differentially in a tissue- and dose-dependent manner. Mechanisms of auxin signalling are partially unknown and the contribution of the AUXIN BINDING PROTEIN 1 (ABP1) as an auxin receptor is still a matter of debate. Methodology/Principal Findings Here we took advantage of the present knowledge of the root biological system to demonstrate that ABP1 is required for auxin response. The use of conditional ABP1 defective plants reveals that the protein is essential for maintenance of the root meristem and acts at least on the D-type CYCLIN/RETINOBLASTOMA pathway to control entry into the cell cycle. ABP1 affects PLETHORA gradients and confers auxin sensitivity to root cells thus defining the competence of the cells to be maintained within the meristem or to elongate. ABP1 is also implicated in the regulation of gene expression in response to auxin. Conclusions/Significance Our data support that ABP1 is a key regulator for root growth and is required for auxin-mediated responses. Differential effects of ABP1 on various auxin responses support a model in which ABP1 is the major regulator for auxin action on the cell cycle and regulates auxin-mediated gene expression and cell elongation in addition to the already well known TIR1-mediated ubiquitination pathway.
Collapse
Affiliation(s)
- Alexandre Tromas
- Institut des Sciences du Végétal, CNRS UPR2355, Université Paris Sud Orsay, Gif sur Yvette, France
| | - Nils Braun
- Institut des Sciences du Végétal, CNRS UPR2355, Université Paris Sud Orsay, Gif sur Yvette, France
- Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Philippe Muller
- Institut des Sciences du Végétal, CNRS UPR2355, Université Paris Sud Orsay, Gif sur Yvette, France
| | - Tatyana Khodus
- Institut für Biology II – Zellbiologie Universität Freiburg, Freiburg, Germany
| | - Ivan A. Paponov
- Institut für Biology II – Zellbiologie Universität Freiburg, Freiburg, Germany
| | - Klaus Palme
- Institut für Biology II – Zellbiologie Universität Freiburg, Freiburg, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Sveriges Lantbruksuniversitet, Umeå, Sweden
| | - Ji-Young Lee
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Philip Benfey
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - James A. H. Murray
- Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Ben Scheres
- Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
346
|
Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J. The role of microbial signals in plant growth and development. PLANT SIGNALING & BEHAVIOR 2009; 4:701-12. [PMID: 19820333 PMCID: PMC2801380 DOI: 10.4161/psb.4.8.9047] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 05/18/2023]
Abstract
Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.
Collapse
Affiliation(s)
- Randy Ortíz-Castro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, México
| | | | | | | |
Collapse
|
347
|
Dun EA, Brewer PB, Beveridge CA. Strigolactones: discovery of the elusive shoot branching hormone. TRENDS IN PLANT SCIENCE 2009; 14:364-72. [PMID: 19540149 DOI: 10.1016/j.tplants.2009.04.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 05/21/2023]
Abstract
The control of axillary bud outgrowth involves a network of hormonal signals and feedback regulation. A repressor of bud outgrowth that is central to the story has been missing since it was first postulated more than 70 years ago. This hormone moves upward in plant stems and can act as a long-distance messenger for auxin. Strigolactones, previously known as carotenoid-derived signals exuded from roots, fit the role of this elusive hormone. The discovery of branching inhibition by strigolactones will help solve many confusing aspects of branch control, including interactions with other signals, and is a great step forward toward uncovering the links between environment, genetics and plant form.
Collapse
Affiliation(s)
- Elizabeth A Dun
- The University of Queensland, Australian Research Council Centre of Excellence for Integrative Legume Research, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
348
|
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. Arabidopsis lateral root development: an emerging story. TRENDS IN PLANT SCIENCE 2009; 14:399-408. [PMID: 19559642 DOI: 10.1016/j.tplants.2009.05.002] [Citation(s) in RCA: 488] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 05/18/2023]
Abstract
Lateral root formation is a major determinant of root systems architecture. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients and anchorage by plants. Understanding the regulation of lateral root development is therefore of vital agronomic importance. The molecular and cellular basis of lateral root formation has been most extensively studied in the plant model Arabidopsis thaliana (Arabidopsis). Significant progress has recently been made in identifying many new Arabidopsis genes that regulate lateral root initiation, patterning and emergence processes. We review how these studies have revealed that the plant hormone auxin represents a common signal that integrates these distinct yet interconnected developmental processes.
Collapse
Affiliation(s)
- Benjamin Péret
- Plant Sciences Division and Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | | | | | | | | | | | | | | |
Collapse
|
349
|
Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 2009; 10:305-17. [PMID: 19360022 DOI: 10.1038/nrg2558] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant development is subject to hormonal growth control and adapts to environmental cues such as light or stress. Recently, significant progress has been made in elucidating hormone synthesis, signalling and degradation pathways, and in resolving spatial and temporal aspects of hormone responses. Here we review how hormones control maintenance of stem cell systems, influence developmental transitions of stem cell daughters and define developmental compartments in Arabidopsis thaliana. We also discuss how environmental cues change plant growth by modulating hormone levels and response. Future analysis of hormone crosstalk and of hormone action at both single cell and organ levels will substantially improve our understanding of how plant development adapts to changes in intrinsic and environmental conditions.
Collapse
Affiliation(s)
- Hanno Wolters
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | |
Collapse
|
350
|
Gojon A, Nacry P, Davidian JC. Root uptake regulation: a central process for NPS homeostasis in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:328-38. [PMID: 19501015 DOI: 10.1016/j.pbi.2009.04.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 05/18/2023]
Abstract
Homeostasis of nitrogen, phosphorus and sulfur in growing plants requires a sustained intake of these elements into root cells. Under most situations, the adjustment of root N, P or S acquisition to the nutrient demand of the plant is hampered by the limiting and fluctuating availability of these elements in the soil. To cope with this constraint, higher plants modulate their root uptake capacity to compensate for the changes in external concentrations of the N, P or S sources. This adaptive response relies on both physiological and morphological changes in the root system, triggered by nutrient-specific sensing and signalling pathways. The underlying molecular mechanisms now begin to be elucidated. Key root membrane transport proteins have been identified, as well as molecular regulators that control root uptake systems or root system architecture in response to N, P or S availability. Significant but yet poorly understood interactions with carbon or hormone signalling have been unravelled, opening new routes for integrating the mechanisms of nutrient homeostasis into the whole plant.
Collapse
Affiliation(s)
- Alain Gojon
- UMR CNRS/INRA/Montpellier SupAgro/UM2, Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Montpellier, France.
| | | | | |
Collapse
|