301
|
Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, Torto B. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS One 2014; 9:e89818. [PMID: 24587059 PMCID: PMC3933673 DOI: 10.1371/journal.pone.0089818] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. METHODOLOGY AND PRINCIPAL FINDING Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. CONCLUSION AND SIGNIFICANCE The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors.
Collapse
Affiliation(s)
- Vincent O. Nyasembe
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - David P. Tchouassi
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hillary K. Kirwa
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Woodbridge A. Foster
- Department of Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter E. A. Teal
- Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture, Agricultural Research Service, Gainesville, Florida, United States of America
| | - Christian Borgemeister
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Center for Development Research, University of Bonn, Bonn, Germany
| | - Baldwyn Torto
- Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
302
|
Zélé F, Nicot A, Berthomieu A, Weill M, Duron O, Rivero A. Wolbachia increases susceptibility to Plasmodium infection in a natural system. Proc Biol Sci 2014; 281:20132837. [PMID: 24500167 DOI: 10.1098/rspb.2013.2837] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current views about the impact of Wolbachia on Plasmodium infections are almost entirely based on data regarding artificially transfected mosquitoes. This work has shown that Wolbachia reduces the intensity of Plasmodium infections in mosquitoes, raising the exciting possibility of using Wolbachia to control or limit the spread of malaria. Whether natural Wolbachia infections have the same parasite-inhibiting properties is not yet clear. Wolbachia-mosquito combinations with a long evolutionary history are, however, key for understanding what may happen with Wolbachia-transfected mosquitoes after several generations of coevolution. We investigate this issue using an entirely natural mosquito-Wolbachia-Plasmodium combination. In contrast to most previous studies, which have been centred on the quantification of the midgut stages of Plasmodium, we obtain a measurement of parasitaemia that relates directly to transmission by following infections to the salivary gland stages. We show that Wolbachia increases the susceptibility of Culex pipiens mosquitoes to Plasmodium relictum, significantly increasing the prevalence of salivary gland stage infections. This effect is independent of the density of Wolbachia in the mosquito. These results suggest that naturally Wolbachia-infected mosquitoes may, in fact, be better vectors of malaria than Wolbachia-free ones.
Collapse
Affiliation(s)
- F Zélé
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, CNRS (UMR CNRS-UM1-UM2 5290, IRD 224), Centre de Recherche IRD, 911 Avenue Agropolis, Montpellier 34394, France, Institut des Sciences de l'Evolution, CNRS (UMR 5554), Université de Montpellier II, , Montpellier 34095, France, Centre d'Ecologie Fonctionnelle et Evolutive, CNRS (UMR 5175), 1919 Route de Mende, Montpellier 34293, France
| | | | | | | | | | | |
Collapse
|
303
|
Temperature alters Plasmodium blocking by Wolbachia. Sci Rep 2014; 4:3932. [PMID: 24488176 PMCID: PMC3909897 DOI: 10.1038/srep03932] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022] Open
Abstract
Very recently, the Asian malaria vector (Anopheles stephensi) was stably transinfected with the wAlbB strain of Wolbachia, inducing refractoriness to the human malaria parasite Plasmodium falciparum. However, conditions in the field can differ substantially from those in the laboratory. We use the rodent malaria P. yoelii, and somatically transinfected An. stephensi as a model system to investigate whether the transmission blocking potential of wAlbB is likely to be robust across different thermal environments. wAlbB reduced malaria parasite prevalence and oocyst intensity at 28°C. At 24°C there was no effect on prevalence but a marked increase in oocyst intensity. At 20°C, wAlbB had no effect on prevalence or intensity. Additionally, we identified a novel effect of wAlbB that resulted in reduced sporozoite development across temperatures, counterbalancing the oocyst enhancement at 24°C. Our results demonstrate complex effects of temperature on the Wolbachia-malaria interaction, and suggest the impacts of transinfection might vary across diverse environments.
Collapse
|
304
|
Versace E, Nolte V, Pandey RV, Tobler R, Schlötterer C. Experimental evolution reveals habitat-specific fitness dynamics among Wolbachia clades in Drosophila melanogaster. Mol Ecol 2014; 23:802-14. [PMID: 24387805 PMCID: PMC4260678 DOI: 10.1111/mec.12643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/24/2022]
Abstract
The diversity and infection dynamics of the endosymbiont Wolbachia can be influenced by many factors, such as transmission rate, cytoplasmic incompatibility, environment, selection and genetic drift. The interplay of these factors in natural populations can result in heterogeneous infection patterns with substantial differences between populations and strains. The causes of these heterogeneities are not yet understood, partly due to the complexity of natural environments. We present experimental evolution as a new approach to study Wolbachia infection dynamics in replicate populations exposed to a controlled environment. A natural Drosophila melanogaster population infected with strains of Wolbachia belonging to different clades evolved in two laboratory environments (hot and cold) for 1.5 years. In both treatments, the rate of Wolbachia infection increased until fixation. In the hot environment, the relative frequency of different Wolbachia clades remained stable over 37 generations. In the cold environment, however, we observed marked changes in the composition of the Wolbachia population: within 15 generations, one Wolbachia clade increased more than 50% in frequency, whereas the other two clades decreased in frequency, resulting in the loss of one clade. The frequency change was highly reproducible not only among replicates, but also when flies that evolved for 42 generations in the hot environment were transferred to the cold environment. These results document how environmental factors can affect the composition of Wolbachia in D. melanogaster. The high reproducibility of the pattern suggests that experimental evolution studies can efficiently determine the functional basis of habitat-specific fitness among Wolbachia strains.
Collapse
Affiliation(s)
- Elisabetta Versace
- Institut für Populationsgenetik, Vetmeduni ViennaVeterinärplatz 1, Wien, 1210, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni ViennaVeterinärplatz 1, Wien, 1210, Austria
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni ViennaVeterinärplatz 1, Wien, 1210, Austria
| | - Ray Tobler
- Institut für Populationsgenetik, Vetmeduni ViennaVeterinärplatz 1, Wien, 1210, Austria
- Graduate School of Population GeneticsWien, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni ViennaVeterinärplatz 1, Wien, 1210, Austria
| |
Collapse
|
305
|
Wu Y, Zheng X, Wu Z. Dengue Fever in China. TREATMENT OF HUMAN PARASITOSIS IN TRADITIONAL CHINESE MEDICINE 2014. [DOI: 10.1007/978-3-642-39824-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
306
|
Hamilton PT, Leong JS, Koop BF, Perlman SJ. Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 2013; 23:1558-1570. [PMID: 24274471 DOI: 10.1111/mec.12603] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Abstract
Inherited symbionts are ubiquitous in insects and can have important consequences for the fitness of their hosts. Many inherited symbionts defend their hosts against parasites or other natural enemies; however, the means by which most symbionts confer protection is virtually unknown. We examine the mechanisms of defence in a recently discovered case of symbiont-mediated protection, where the bacterial symbiont Spiroplasma defends the fly Drosophila neotestacea from a virulent nematode parasite, Howardula aoronymphium. Using quantitative PCR of Spiroplasma infection intensities and whole transcriptome sequencing, we attempt to distinguish between the following modes of defence: symbiont-parasite competition, host immune priming and the production of toxic factors by Spiroplasma. Our findings do not support a model of exploitative competition between Howardula and Spiroplasma to mediate defence, nor do we find strong support for host immune priming during Spiroplasma infection. Interestingly, we recovered sequence for putative toxins encoded by Spiroplasma, including a novel putative ribosome-inactivating protein, transcripts of which are up-regulated in response to nematode exposure. Protection via the production of toxins may be a widely used and important mechanism in heritable defensive symbioses in insects.
Collapse
Affiliation(s)
- Phineas T Hamilton
- Department of Biology, University of Victoria, PO Box 1800, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | | | | | | |
Collapse
|
307
|
|
308
|
Schneider DI, Riegler M, Arthofer W, Merçot H, Stauffer C, Miller WJ. Uncovering Wolbachia diversity upon artificial host transfer. PLoS One 2013; 8:e82402. [PMID: 24376534 PMCID: PMC3869692 DOI: 10.1371/journal.pone.0082402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/23/2013] [Indexed: 11/27/2022] Open
Abstract
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.
Collapse
Affiliation(s)
- Daniela I. Schneider
- Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Markus Riegler
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia
| | - Wolfgang Arthofer
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Hervé Merçot
- UMR 7138, CNRS-Université Pierre & Marie Curie, Paris, France
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang J. Miller
- Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
309
|
Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol 2013; 95:517-530. [PMID: 24343914 DOI: 10.1099/vir.0.057422-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a considerable threat to human and animal health, yet effective control measures have proven difficult to implement, and novel means of controlling their replication in arthropod vectors, such as mosquitoes, are urgently required. One of the most exciting approaches to emerge from research on arthropods is the use of the endosymbiotic intracellular bacterium Wolbachia to control arbovirus transmission from mosquito to vertebrate. These α-proteobacteria propagate through insects, in part through modulation of host reproduction, thus ensuring spread through species and maintenance in nature. Since it was discovered that Wolbachia endosymbiosis inhibits insect virus replication in Drosophila species, these bacteria have also been shown to inhibit arbovirus replication and spread in mosquitoes. Importantly, it is not clear how these antiviral effects are mediated. This review will summarize recent work and discuss determinants of antiviral effectiveness that may differ between individual Wolbachia/vector/arbovirus interactions. We will also discuss the application of this approach to field settings and the associated risks.
Collapse
Affiliation(s)
- Stephanie M Rainey
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Pranav Shah
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Alain Kohl
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Isabelle Dietrich
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
310
|
Reisen WK. Medical entomology--back to the future? INFECTION GENETICS AND EVOLUTION 2013; 28:573-82. [PMID: 24316291 DOI: 10.1016/j.meegid.2013.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/29/2022]
Abstract
Some of problems and challenges facing Medical/Veterinary Entomology are presented from my perspective, focusing on the current millennium. Topics include anthropogenic environmental changes created by population growth, administrative problems hindering science's response to these changes, and some of the scientific discoveries potentially providing solutions. As the title implies, many recent research discoveries have yet to be translated into major changes in control approaches for the major vectorborne public health problems, thereby providing an interesting mix of modern surveillance technology used to track problems and direct historical intervention solutions.
Collapse
Affiliation(s)
- William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
311
|
A field survey for Wolbchia and phage WO infections of Aedes albopictus in Guangzhou City, China. Parasitol Res 2013; 113:399-404. [PMID: 24221888 DOI: 10.1007/s00436-013-3668-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Wolbachia are maternal endosymbiotic bacterium, which infect a diverse range of arthropods, ranging from 20 to 76% in nature. They are capable of inducing a wide range of reproductive abnormalities to their hosts, such as cytoplasmic incompatibility (CI), which has been proposed to be used as a tool to modify mosquitoes that are resistant to the development of pathogen, as an alternative vector control strategy. Here, we evaluated the prevalence of Wolbachia and phage WO infections in the field population of Aedes albopictus in Guangzhou City via polymerase chain reaction (PCR) assay using the Wolbachia specific Wolbachia surface protein (wsp) and phage WO orf7 gene primers. Based on the results of PCR and phylogeny analysis, we found that A. albopictus in Guangzhou City were infected with two Wolbachia strains, wAlbA and wAlbB. Phage WO, the virus-infected Wolbachia, was also detected in A. albopictus. One hundred and ten female individuals were screened via PCR, with 109 super-infected with Wolbachia and one sample single-infected with wAlbB strain. And 104 of 113 male individuals were both infected with wAlbA and wAlbB, and nine male samples were found to be infected with wAlbA strain only. The infection rates of phage WO in female and male individuals were 82.73 and 46.02%, respectively. These results showed that the natural Wolbachia and phage WO infections in A. albopictus population in Guangzhou were at a higher frequency at present, indicating that Wolbachia appear to be a better candidate nature resource for biological control insect vectors to reduce vector-borne diseases.
Collapse
|
312
|
Abstract
Malaria elimination has recently been reinstated as a global health priority but current therapies seem to be insufficient for the task. Elimination efforts require new drug classes that alleviate symptoms, prevent transmission and provide a radical cure. To develop these next-generation medicines, public-private partnerships are funding innovative approaches to identify compounds that target multiple parasite species at multiple stages of the parasite life cycle. In this Review, we discuss the cell-, chemistry- and target-based approaches used to discover new drug candidates that are currently in clinical trials or undergoing preclinical testing.
Collapse
|
313
|
|
314
|
Pinto SB, Stainton K, Harris S, Kambris Z, Sutton ER, Bonsall MB, Parkhill J, Sinkins SP. Transcriptional regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 2013; 9:e1003647. [PMID: 24204251 PMCID: PMC3814344 DOI: 10.1371/journal.ppat.1003647] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/06/2013] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic incompatibility (CI) induced by the endosymbiont Wolbachia pipientis causes complex patterns of crossing sterility between populations of the Culex pipiens group of mosquitoes. The molecular basis of the phenotype is yet to be defined. In order to investigate what host changes may underlie CI at the molecular level, we examined the transcription of a homolog of the Drosophila melanogaster gene grauzone that encodes a zinc finger protein and acts as a regulator of female meiosis, in which mutations can cause sterility. Upregulation was observed in Wolbachia-infected C. pipiens group individuals relative to Wolbachia-cured lines and the level of upregulation differed between lines that were reproductively incompatible. Knockdown analysis of this gene using RNAi showed an effect on hatch rates in a Wolbachia infected Culex molestus line. Furthermore, in later stages of development an effect on developmental progression in CI embryos occurs in bidirectionally incompatible crosses. The genome of a wPip Wolbachia strain variant from Culex molestus was sequenced and compared with the genome of a wPip variant with which it was incompatible. Three genes in inserted or deleted regions were newly identified in the C. molestus wPip genome, one of which is a transcriptional regulator labelled wtrM. When this gene was transfected into adult Culex mosquitoes, upregulation of the grauzone homolog was observed. These data suggest that Wolbachia-mediated regulation of host gene expression is a component of the mechanism of cytoplasmic incompatibility. Wolbachia are maternally inherited bacteria that manipulate invertebrate reproduction. Cytoplasmic incompatibility is embryo death that occurs when males carrying Wolbachia mate with females that do not, or that carry a different Wolbachia variant; its mechanism is poorly understood. In Culex mosquitoes, in the presence of Wolbachia a gene related to a Drosophila melanogaster gene, grauzone, which has been shown to act as a regulator of the meiotic cell cycle, showed an elevated level of expression. When lower levels of expression were achieved through RNA interference, embryo hatch rates were affected and the stage of development at which embryo death occurs was altered. To find Wolbachia genes that influence cytoplasmic incompatibility, we compared the genomes of two variants of Wolbachia from Culex that produce cytoplasmic incompatibility with one another. Although most segments of these genomes were very similar, one newly identified gene is predicted to be a regulator of gene transcription. We cloned this gene into a plasmid, expressed it in adult mosquitoes and found higher levels of expression of the Culex grauzone homolog. This suggests that the Wolbachia transcriptional regulator may play an important role in manipulating the host in order to induce cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Sofia B. Pinto
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kirsty Stainton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zakaria Kambris
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth R. Sutton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steven P. Sinkins
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
315
|
Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitol Res 2013; 113:197-209. [PMID: 24158647 DOI: 10.1007/s00436-013-3644-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation.
Collapse
|
316
|
Akhouayri IG, Habtewold T, Christophides GK. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae. PLoS One 2013; 8:e77619. [PMID: 24098592 PMCID: PMC3788111 DOI: 10.1371/journal.pone.0077619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/11/2013] [Indexed: 11/27/2022] Open
Abstract
Background The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. Results Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and denovo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival. Conclusion The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.
Collapse
Affiliation(s)
- Idir G. Akhouayri
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Tibebu Habtewold
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Georges K. Christophides
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
317
|
Bull JJ, Turelli M. Wolbachia versus dengue: Evolutionary forecasts. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:197-207. [PMID: 24481199 PMCID: PMC3847891 DOI: 10.1093/emph/eot018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel form of biological control is being applied to the dengue virus. The agent is the maternally transmitted bacterium Wolbachia, naturally absent from the main dengue vector, the mosquito Aedes aegypti. Three Wolbachia-based control strategies have been proposed. One is suppression of mosquito populations by large-scale releases of males incompatible with native females; this intervention requires ongoing releases. The other interventions transform wild mosquito populations with Wolbachia that spread via the frequency-dependent fitness advantage of Wolbachia-infected females; those interventions potentially require just a single, local release for area-wide disease control. One of these latter strategies uses Wolbachia that shortens mosquito life, indirectly preventing viral maturation/transmission. The other strategy uses Wolbachia that block viral transmission. All interventions can be undermined by viral, bacterial or mosquito evolution; viral virulence in humans may also evolve. We examine existing theory, experiments and comparative evidence to motivate predictions about evolutionary outcomes. (i) The life-shortening strategy seems the most likely to be thwarted by evolution. (ii) Mosquito suppression has a reasonable chance of working locally, at least in the short term, but long-term success over large areas is challenging. (iii) Dengue blocking faces strong selection for viral resistance but may well persist indefinitely at some level. Virulence evolution is not mathematically predictable, but comparative data provide no precedent for Wolbachia increasing dengue virulence. On balance, our analysis suggests that the considerable possible benefits of these technologies outweigh the known negatives, but the actual risk is largely unknown.
Collapse
Affiliation(s)
- James J Bull
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; Department of Evolution and Ecology, University of California, Davis, CA 95616, USA; Center for Population Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
318
|
Ye YH, Woolfit M, Rancès E, O'Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis 2013; 7:e2362. [PMID: 23951381 PMCID: PMC3738474 DOI: 10.1371/journal.pntd.0002362] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/30/2013] [Indexed: 12/15/2022] Open
Abstract
Background Wolbachia infections confer protection for their insect hosts against a range of pathogens including bacteria, viruses, nematodes and the malaria parasite. A single mechanism that might explain this broad-based pathogen protection is immune priming, in which the presence of the symbiont upregulates the basal immune response, preparing the insect to defend against subsequent pathogen infection. A study that compared natural Wolbachia infections in Drosophila melanogaster with the mosquito vector Aedes aegypti artificially transinfected with the same strains has suggested that innate immune priming may only occur in recent host-Wolbachia associations. This same study also revealed that while immune priming may play a role in viral protection it cannot explain the entirety of the effect. Methodology/Findings Here we assess whether the level of innate immune priming induced by different Wolbachia strains in A. aegypti is correlated with the degree of protection conferred against bacterial pathogens. We show that Wolbachia strains wMel and wMelPop, currently being tested for field release for dengue biocontrol, differ in their protective abilities. The wMelPop strain provides stronger, more broad-based protection than wMel, and this is likely explained by both the higher induction of immune gene expression and the strain-specific activation of particular genes. We also show that Wolbachia densities themselves decline during pathogen infection, likely as a result of the immune induction. Conclusions/Significance This work shows a correlation between innate immune priming and bacterial protection phenotypes. The ability of the Toll pathway, melanisation and antimicrobial peptides to enhance viral protection or to provide the basis of malaria protection should be further explored in the context of this two-strain comparison. This work raises the questions of whether Wolbachia may improve the ability of wild mosquitoes to survive pathogen infection or alter the natural composition of gut flora, and thus have broader consequences for host fitness. Wolbachia is a commonly occurring bacterium or symbiont that lives inside the cells of insects. Recently, Wolbachia was artificially introduced into the mosquito vector dengue virus that was naturally Wolbachia-free. Wolbachia limits the growth of a range of pathogens transmitted to humans, including viruses, bacteria and parasites inside the mosquito. This “pathogen protection” forms the basis of field trials to determine if releasing Wolbachia into wild mosquito populations could reduce dengue virus incidence in humans. The basis of pathogen protection is not fully understood. Previous work suggests that the symbiont may activate the basal immune response, preparing the insect to defend itself against subsequent pathogen infection. Here we infect mosquitoes harbouring Wolbachia with a range of bacterial pathogens as a means to understand the nature of protection. We show that different Wolbachia strains vary in their ability to limit pathogen growth and that this correlates with the degree to which the Wolbachia activates the host immune response. These findings may assist with Wolbachia strain selection for future open field release and raise the question whether Wolbachia might provide a fitness advantage to mosquitoes in the wild by limiting their death due to bacterial infection.
Collapse
Affiliation(s)
- Yixin H. Ye
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Megan Woolfit
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Edwige Rancès
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Scott L. O'Neill
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
319
|
Oluwagbemi OO, Fornadel CM, Adebiyi EF, Norris DE, Rasgon JL. ANOSPEX: a stochastic, spatially explicit model for studying Anopheles metapopulation dynamics. PLoS One 2013; 8:e68040. [PMID: 23861847 PMCID: PMC3704604 DOI: 10.1371/journal.pone.0068040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 05/29/2013] [Indexed: 01/23/2023] Open
Abstract
Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Ano pheles Spatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics.
Collapse
Affiliation(s)
- Olugbenga O. Oluwagbemi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Computer and Information Sciences, College of Science and Technology, School of Natural and Applied Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Christen M. Fornadel
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ezekiel F. Adebiyi
- Department of Computer and Information Sciences, College of Science and Technology, School of Natural and Applied Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Douglas E. Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason L. Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
320
|
Wolbachia: Can we save lives with a great pandemic? Trends Parasitol 2013; 29:385-93. [PMID: 23845310 DOI: 10.1016/j.pt.2013.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 11/21/2022]
Abstract
Wolbachia pipientis is the most common bacterial infection in the animal world and wields a vast influence on invertebrate reproduction, sex determination, speciation, and behavior worldwide. These avenues of research have made seminal gains, including the latest use of Wolbachia to alter mosquito populations and a strengthened focus on using anti-Wolbachia therapies against filarial nematode infections. This work is further bolstered by a more refined knowledge of Wolbachia biology spanning mechanisms to relevance. Here we tally the most up-to-date knowledge in the field and review the immense implications that this global infection has for the basic and applied life sciences.
Collapse
|
321
|
Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc Natl Acad Sci U S A 2013; 110:10788-93. [PMID: 23744038 DOI: 10.1073/pnas.1301524110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insect vectors of devastating infectious diseases. Although Wolbachia are providing novel strategies for the control of several human pathogens, the processes underlying Wolbachia's successful propagation within and across species remain elusive. Wolbachia are mainly vertically transmitted; however, there is also evidence of extensive horizontal transmission. Here, we provide several lines of evidence supporting Wolbachia's targeting of ovarian stem cell niches--referred to as "niche tropism"--as a previously overlooked strategy for Wolbachia thriving in nature. Niche tropism is pervasive in Wolbachia infecting the Drosophila genus, and different patterns of niche tropism are evolutionarily conserved. Phylogenetic analysis, confirmed by hybrid introgression and transinfection experiments, demonstrates that bacterial factors are the major determinants of differential patterns of niche tropism. Furthermore, bacterial load is increased in germ-line cells passing through infected niches, supporting previous suggestions of a contribution of Wolbachia from stem-cell niches toward vertical transmission. These results support the role of stem-cell niches as a key component for the spreading of Wolbachia in the Drosophila genus and provide mechanistic insights into this unique tissue tropism.
Collapse
|
322
|
Sickly mosquitoes stymie malaria’s spread. Nature 2013. [DOI: 10.1038/nature.2013.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|