301
|
Figueiredo VC. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R709-R718. [PMID: 31508978 DOI: 10.1152/ajpregu.00162.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein synthesis is deemed the underpinning mechanism enhancing protein balance required for skeletal muscle hypertrophy in response to resistance exercise. The current model of skeletal muscle hypertrophy induced by resistance training states that the acute increase in the rates of protein synthesis after each bout of resistance exercise is the basis for muscle growth. Within this paradigm, each resistance exercise session would add a specific amount of muscle mass; therefore, muscle hypertrophy could be defined as the result of intermittent and short-lived increases in muscle protein synthesis rates following each resistance exercise session. Although a substantial amount of data has accumulated in the last decades regarding the acute changes in protein synthesis (or translational efficiency) following resistance exercise, considerable gaps on the mechanism of muscle growth still exist. Ribosome biogenesis and translational capacity have emerged as important mediators of skeletal muscle hypertrophy. Recent advances in the field have demonstrated that skeletal muscle hypertrophy is associated with markers of translational capacity and long-term changes in protein synthesis under resting conditions. This review will discuss the caveats of the current model of skeletal muscle hypertrophy induced by resistance training while proposing a working model that takes into consideration the novel data generated by independent laboratories utilizing different methodologies. It is argued, herein, that the role of protein synthesis in the current model of muscle hypertrophy warrants revisiting.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- College of Health Sciences, Department of Rehabilitation Sciences, the Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
302
|
Song T, Sadayappan S. Featured characteristics and pivotal roles of satellite cells in skeletal muscle regeneration. J Muscle Res Cell Motil 2019; 41:341-353. [PMID: 31494813 DOI: 10.1007/s10974-019-09553-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Abstract
Skeletal muscle, the essential organ for locomotion, as well as energy reservoir and expenditure, has robust regenerative capacity in response to mechanical stress and injury. As muscle-specific stem cells, satellite cells are responsible for providing new myoblasts during the process of muscle growth and regeneration. Self-renewal capacity and the fate of satellite cells are highly regulated and influenced by their surrounding factors, such as extracellular matrix and soluble proteins. The strong myogenic potential of satellite cells makes them a potential resource for stem cell therapy to cure genetic muscle disease and repair injured muscle. Here, we both review key features of satellite cells during skeletal muscle development and regeneration and summarize recent outcomes of satellite cell transplantation studies.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
303
|
Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 2019; 10:102-117. [PMID: 29618024 DOI: 10.1093/jmcb/mjy025] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play key roles in regulating cell fate decision and function in various tissues. However, the role of lncRNAs in the regulation of myogenesis remains poorly understood. In this study, we identified a novel muscle-enriched lncRNA called 'Myolinc (AK142388)', which we functionally characterized in the C2C12 myoblast cell line. Myolinc is predominately localized in the nucleus, and its levels increase upon induction of the differentiation. Knockdown of Myolinc impairs the expression of myogenic regulatory factors and formation of multi-nucleated myotubes in cultured myoblasts. Myolinc also regulates the expression of Filip1 in a cis-manner. Similar to Myolinc, knockdown of Filip1 inhibits myogenic differentiation. Furthermore, Myolinc binds to TAR DNA-binding protein 43 (TDP-43), a DNA/RNA-binding protein that regulates the expression of muscle genes (e.g. Acta1 and MyoD). Knockdown of TDP-43 inhibits myogenic differentiation. We also show that Myolinc-TDP-43 interaction is essential for the binding of TDP-43 to the promoter regions of muscle marker genes. Finally, we show that silencing of Myolinc inhibits skeletal muscle regeneration in adult mice. Altogether, our study identifies a novel lncRNA that controls key regulatory networks of myogenesis.
Collapse
Affiliation(s)
- Giuseppe Militello
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Rabiul Hosen
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Yuliya Ponomareva
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Pascal Gellert
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Tyler Weirick
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Sajedah Mahmoud Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
304
|
Affiliation(s)
- Giovanna Marazzi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR970, Paris, France.,Cardiovascular Research Center (PARCC), Paris, France
| | - David Sassoon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR970, Paris, France. .,Cardiovascular Research Center (PARCC), Paris, France.
| |
Collapse
|
305
|
Bronisz-Budzyńska I, Chwalenia K, Mucha O, Podkalicka P, Karolina-Bukowska-Strakova, Józkowicz A, Łoboda A, Kozakowska M, Dulak J. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skelet Muscle 2019; 9:22. [PMID: 31412923 PMCID: PMC6693262 DOI: 10.1186/s13395-019-0207-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease evoked by a mutation in the dystrophin gene. It is associated with progressive muscle degeneration and increased inflammation. Up to this date, mainly anti-inflammatory treatment is available for patients suffering from DMD. miR-146a is known to diminish inflammation and fibrosis in different tissues by downregulating the expression of proinflammatory cytokines. However, its role in DMD has not been studied so far. In our work, we have generated mice globally lacking both dystrophin and miR-146a (miR-146a−/−mdx) and examined them together with wild-type, single miR-146a knockout and dystrophic (mdx—lacking dystrophin) mice in a variety of aspects associated with DMD pathophysiology (muscle degeneration, inflammatory reaction, muscle satellite cells, muscle regeneration, and fibrosis). We have shown that miR-146a level is increased in dystrophic muscles in comparison to wild-type mice. Its deficiency augments the expression of proinflammatory cytokines (IL-1β, CCL2, TNFα). However, muscle degeneration was not significantly worsened in mdx mice lacking miR-146a up to 24 weeks of age, although some aggravation of muscle damage and inflammation was evident in 12-week-old animals, though no effect of miR-146a deficiency was visible on quantity, proliferation, and in vitro differentiation of muscle satellite cells isolated from miR-146a−/−mdx mice vs. mdx. Similarly, muscle regeneration and collagen deposition were not changed by miR-146a deficiency. Nevertheless, the lack of miR-146a is associated with decreased Vegfa and increased Tgfb1. Overall, the lack of miR-146a did not aggravate significantly the dystrophic conditions in mdx mice, but its effect on DMD in more severe conditions warrants further investigation.
Collapse
Affiliation(s)
- Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Chwalenia
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karolina-Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Institute of Paediatrics, Medical College, Jagiellonian University, Wielicka 265, 30-663, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
306
|
Jia Z, Nie Y, Yue F, Kong Y, Gu L, Gavin TP, Liu X, Kuang S. A requirement of Polo-like kinase 1 in murine embryonic myogenesis and adult muscle regeneration. eLife 2019; 8:e47097. [PMID: 31393265 PMCID: PMC6687435 DOI: 10.7554/elife.47097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023] Open
Abstract
Muscle development and regeneration require delicate cell cycle regulation of embryonic myoblasts and adult muscle satellite cells (MuSCs). Through analysis of the Polo-like kinase (Plk) family cell-cycle regulators in mice, we show that Plk1's expression closely mirrors myoblast dynamics during embryonic and postnatal myogenesis. Cell-specific deletion of Plk1 in embryonic myoblasts leads to depletion of myoblasts, developmental failure and prenatal lethality. Postnatal deletion of Plk1 in MuSCs does not perturb their quiescence but depletes activated MuSCs as they enter the cell cycle, leading to regenerative failure. The Plk1-null MuSCs are arrested at the M-phase, accumulate DNA damage, and apoptose. Mechanistically, Plk1 deletion upregulates p53, and inhibition of p53 promotes survival of the Plk1-null myoblasts. Pharmacological inhibition of Plk1 similarly inhibits proliferation but promotes differentiation of myoblasts in vitro, and blocks muscle regeneration in vivo. These results reveal for the first time an indispensable role of Plk1 in developmental and regenerative myogenesis.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Yaohui Nie
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
- Department of Health and KinesiologyPurdue UniversityWest LafayetteUnited States
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Yifan Kong
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Lijie Gu
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Timothy P Gavin
- Department of Health and KinesiologyPurdue UniversityWest LafayetteUnited States
| | - Xiaoqi Liu
- Department of BiochemistryPurdue UniversityWest LafayetteUnited States
- Center for Cancer ResearchPurdue UniversityWest LafayetteUnited States
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
- Center for Cancer ResearchPurdue UniversityWest LafayetteUnited States
| |
Collapse
|
307
|
Sugihara H, Teramoto N, Yamanouchi K, Matsuwaki T, Nishihara M. Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion. Aging (Albany NY) 2019; 10:747-763. [PMID: 29695641 PMCID: PMC5940129 DOI: 10.18632/aging.101425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function. Skeletal muscle comprises diverse progenitor cells, including mesenchymal progenitor cells (MPCs), which normally support myogenic cell function but cause a decline in skeletal muscle function after differentiating into fibrous/adipose tissue. Cellular senescence is a form of persistent cell cycle arrest caused by cellular stress, including oxidative stress, and is accompanied by the acquisition of senescence-associated secretory phenotype (SASP). Here, we found γH2AX+ senescent cells appeared in the interstitium in skeletal muscle, corresponding in position to that of MPCs. H2O2 mediated oxidative stress in 2G11 cells, a rat MPC clone previously established in our laboratory, successfully induced senescence, as shown by the upregulation of p21 and SASP factors, including IL-6. The senescent 2G11 cells lost their fibro/adipogenic potential, but, intriguingly, coculture of myoblasts with senescent 2G11 cells abrogated the myotube formation, which coincided with the downregulation of myomaker, a muscle-specific protein involved in myogenic cell fusion; however, forced expression of myomaker could not rescue this abrogation. These results suggest that senescent MPCs in aged rat skeletal muscle lose their fibro/adipogenic potential, but differ completely from undifferentiated progenitor cells in that senescent MPCs suppress myoblast fusion and thereby potentially accelerate sarcopenia.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
308
|
Luk HY, Levitt DE, Boyett JC, Rojas S, Flader SM, McFarlin BK, Vingren JL. Resistance exercise-induced hormonal response promotes satellite cell proliferation in untrained men but not in women. Am J Physiol Endocrinol Metab 2019; 317:E421-E432. [PMID: 31237450 DOI: 10.1152/ajpendo.00473.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this work was to determine the effect of resistance exercise (RE)-induced hormonal changes on the satellite cell (SC) myogenic state in response to muscle damage. Untrained men (n = 10, 22 ± 3 yr) and women (n = 9, 21 ± 4 yr) completed 2 sessions of 80 unilateral maximal eccentric knee extensions followed by either an upper body RE protocol (EX) or a 20-min rest (CON). Muscle samples were collected and analyzed for protein content of Pax7, MyoD, myogenin, cyclin D1, and p21 before (PRE), 12 h, and 24 h after the session was completed. Serum testosterone, growth hormone, cortisol, and myoglobin concentrations were analyzed at PRE, post-damage, immediately after (IP), and 15, 30, and 60 min after the session was completed. Testosterone was significantly (P < 0.05) higher immediately after the session in EX vs. CON for men. A significant time × sex × condition interaction was found for MyoD with an increase in EX (men) and CON (women) at 12 h. A significant time × condition interaction was found for Pax7, with a decrease in EX and increase in CON at 24 h. A significant time effect was found for myogenin, p21, and cyclin D1. Myogenin and p21 were increased at 12 and 24 h, and cyclin D1 was increased at 12 h. These results suggest that the acute RE-induced hormonal response can be important for men to promote SC proliferation after muscle damage but had no effect in women. Markers of SC differentiation appeared unaffected by the hormonal response but increased in response to muscle damage.
Collapse
|
309
|
Collins BC, Kardon G. Won't You Be My Neighbor? Muscle Stem Cells Recruit Endothelial Cells to Their Niche. Cell Stem Cell 2019; 23:455-456. [PMID: 30290170 DOI: 10.1016/j.stem.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The maintenance of a pool of quiescent satellite cells (muscle stem cells) is necessary for long-term muscle health. In this issue of Cell Stem Cell, Verma et al. (2018) show that satellite cells recruit endothelial cells to create a vascular niche and that cross-talk between endothelial and satellite cells is vital for replenishment and maintenance of quiescent satellite cells.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
310
|
Arab W, Kahin K, Khan Z, Hauser CAE. Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications. Int J Bioprint 2019; 5:198. [PMID: 32596536 PMCID: PMC7294683 DOI: 10.18063/ijb.v5i2.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Injured skeletal muscles which lose more than 20% of their volume, known as volumetric muscle loss, can no longer regenerate cells through self-healing. The traditional solution for recovery is through regenerative therapy. As the technology of three-dimensional (3D) bioprinting continues to advance, a new approach for tissue transplantation is using biocompatible materials arranged in 3D scaffolds for muscle repair. Ultrashort self-assembling peptide hydrogels compete as a potential biomaterial for muscle tissue formation due to their biocompatibility. In this study, two sequences of ultrashort peptides were analyzed with muscle myoblast cells (C2C12) for cell viability, cell proliferation, and differentiation in 3D cell culture. The peptides were then extruded through a custom-designed robotic 3D bioprinter to create cell-laden 3D structures. These constructs were also analyzed for cell viability through live/dead assay. Results showed that 3D bioprinted structures of peptide hydrogels could be used as tissue platforms for myotube formation - a process necessary for muscle repair.
Collapse
Affiliation(s)
- Wafaa Arab
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kowther Kahin
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Electrical and Computer Engineering, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Zainab Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Electrical and Computer Engineering, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
311
|
Tirone M, Giovenzana A, Vallone A, Zordan P, Sormani M, Nicolosi PA, Meneveri R, Gigliotti CR, Spinelli AE, Bocciardi R, Ravazzolo R, Cifola I, Brunelli S. Severe Heterotopic Ossification in the Skeletal Muscle and Endothelial Cells Recruitment to Chondrogenesis Are Enhanced by Monocyte/Macrophage Depletion. Front Immunol 2019; 10:1640. [PMID: 31396210 PMCID: PMC6662553 DOI: 10.3389/fimmu.2019.01640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreERT2:R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification.
Collapse
Affiliation(s)
- Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Vallone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Zordan
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Martina Sormani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Raffaela Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonello E Spinelli
- Centre for Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
312
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
313
|
Zhang L, Uezumi A, Kaji T, Tsujikawa K, Andersen DC, Jensen CH, Fukada SI. Expression and Functional Analyses of Dlk1 in Muscle Stem Cells and Mesenchymal Progenitors during Muscle Regeneration. Int J Mol Sci 2019; 20:ijms20133269. [PMID: 31277245 PMCID: PMC6650828 DOI: 10.3390/ijms20133269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
Delta like non-canonical Notch ligand 1 (Dlk1) is a paternally expressed gene which is also known as preadipocyte factor 1 (Pref-1). The accumulation of adipocytes and expression of Dlk1 in regenerating muscle suggests a correlation between fat accumulation and Dlk1 expression in the muscle. Additionally, mice overexpressing Dlk1 show increased muscle weight, while Dlk1-null mice exhibit decreased body weight and muscle mass, indicating that Dlk1 is a critical factor in regulating skeletal muscle mass during development. The muscle regeneration process shares some features with muscle development. However, the role of Dlk1 in regeneration processes remains controversial. Here, we show that mesenchymal progenitors also known as adipocyte progenitors exclusively express Dlk1 during muscle regeneration. Eliminating developmental effects, we used conditional depletion models to examine the specific roles of Dlk1 in muscle stem cells or mesenchymal progenitors. Unexpectedly, deletion of Dlk1 in neither the muscle stem cells nor the mesenchymal progenitors affected the regenerative ability of skeletal muscle. In addition, fat accumulation was not increased by the loss of Dlk1. Collectively, Dlk1 plays essential roles in muscle development, but does not greatly impact regeneration processes and adipogenic differentiation in adult skeletal muscle regeneration.
Collapse
Affiliation(s)
- Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
- Clinical Institute, University of Southern Denmark, Winsloewparken 21 3rd, 5000 Odense C, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
314
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
315
|
Zhu P, Zhang C, Gao Y, Wu F, Zhou Y, Wu WS. The transcription factor Slug represses p16 Ink4a and regulates murine muscle stem cell aging. Nat Commun 2019; 10:2568. [PMID: 31189923 PMCID: PMC6561969 DOI: 10.1038/s41467-019-10479-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2019] [Indexed: 01/21/2023] Open
Abstract
Activation of the p16Ink4a-associated senescence pathway during aging breaks muscle homeostasis and causes degenerative muscle disease by irreversibly dampening satellite cell (SC) self-renewal capacity. Here, we report that the zinc-finger transcription factor Slug is highly expressed in quiescent SCs of mice and functions as a direct transcriptional repressor of p16Ink4a. Loss of Slug promotes derepression of p16Ink4a in SCs and accelerates the entry of SCs into a fully senescent state upon damage-induced stress. p16Ink4a depletion partially rescues defects in Slug-deficient SCs. Furthermore, reduced Slug expression is accompanied by p16Ink4a accumulation in aged SCs. Slug overexpression ameliorates aged muscle regeneration by enhancing SC self-renewal through active repression of p16Ink4a transcription. Our results identify a cell-autonomous mechanism underlying functional defects of SCs at advanced age. As p16Ink4a dysregulation is the chief cause for regenerative defects of human geriatric SCs, these findings highlight Slug as a potential therapeutic target for aging-associated degenerative muscle disease. Muscle regeneration depends on self-renewal of muscle stem cells but how this is regulated on aging is unclear. Here, the authors identify Slug as regulating p16Ink4a in quiescent muscle stem cells, and when Slug expression reduces in aged stem cells, p16Ink4a accumulates, causing regenerative defects.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunping Zhang
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yongxing Gao
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Furen Wu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yalu Zhou
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Wen-Shu Wu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
316
|
García-Martínez MÁ, Montejo González JC, García-de-Lorenzo Y Mateos A, Teijeira S. Muscle weakness: Understanding the principles of myopathy and neuropathy in the critically ill patient and the management options. Clin Nutr 2019; 39:1331-1344. [PMID: 31255348 DOI: 10.1016/j.clnu.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Myo-neuropathy of the critically ill patient is a difficult nosological entity to understand and manage. It appears soon after injury, and it is estimated that 20-30% of patients admitted to Intensive Care Units will develop it in some degree. Although muscular and nervous involvement are related, the former has a better prognosis. Myo-neuropathy associates to more morbidity, longer stay in Intensive Care Unit and in hospital, and also to higher costs and mortality. It is considered part of the main determinants of the new entities: the Chronic Critical Patient and the Post Intensive Care Syndrome. This update focuses on aetiology, pathophysiology, diagnosis and strategies that can prevent, alleviate and/or improve muscle (or muscle-nerve) weakness.
Collapse
Affiliation(s)
- Miguel Ángel García-Martínez
- Department of Intensive Care Medicine, Hospital Universitario de Torrevieja, Ctra. Torrevieja a San Miguel de Salinas s/n, 03186, Torrevieja, Alicante, Spain.
| | - Juan Carlos Montejo González
- Department of Intensive Care Medicine, Hospital Universitario, 12 de Octubre, Av. Cordoba, s/n, 28041, Madrid, Spain
| | | | - Susana Teijeira
- Rare Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Complejo Hospitalario Universitario de Vigo, Calle de Clara Campoamor, 341, 36312, Vigo, Pontevedra, Spain
| |
Collapse
|
317
|
Sokołowska E, Błachnio-Zabielska AU. A Critical Review of Electroporation as A Plasmid Delivery System in Mouse Skeletal Muscle. Int J Mol Sci 2019; 20:ijms20112776. [PMID: 31174257 PMCID: PMC6600476 DOI: 10.3390/ijms20112776] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
The gene delivery to skeletal muscles is a promising strategy for the treatment of both muscular disorders (by silencing or overexpression of specific gene) and systemic secretion of therapeutic proteins. The use of a physical method like electroporation with plate or needle electrodes facilitates long-lasting gene silencing in situ. It has been reported that electroporation enhances the expression of the naked DNA gene in the skeletal muscle up to 100 times and decreases the changeability of the intramuscular expression. Coelectransfer of reporter genes such as green fluorescent protein (GFP), luciferase or beta-galactosidase allows the observation of correctly performed silencing in the muscles. Appropriate selection of plasmid injection volume and concentration, as well as electrotransfer parameters, such as the voltage, the length and the number of electrical pulses do not cause long-term damage to myocytes. In this review, we summarized the electroporation methodology as well as the procedure of electrotransfer to the gastrocnemius, tibialis, soleus and foot muscles and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | | |
Collapse
|
318
|
Kankala RK, Zhao J, Liu CG, Song XJ, Yang DY, Zhu K, Wang SB, Zhang YS, Chen AZ. Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901397. [PMID: 31066236 PMCID: PMC6750270 DOI: 10.1002/smll.201901397] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/12/2019] [Indexed: 05/19/2023]
Abstract
Microscale cell carriers have recently garnered enormous interest in repairing tissue defects by avoiding substantial open surgeries using implants for tissue regeneration. In this study, the highly open porous microspheres (HOPMs) are fabricated using a microfluidic technique for harboring proliferating skeletal myoblasts and evaluating their feasibility toward cell delivery application in situ. These biocompatible HOPMs with particle sizes of 280-370 µm possess open pores of 10-80 µm and interconnected paths. Such structure of the HOPMs conveniently provide a favorable microenvironment, where the cells are closely arranged in elongated shapes with the deposited extracellular matrix, facilitating cell adhesion and proliferation, as well as augmented myogenic differentiation. Furthermore, in vivo results in mice confirm improved cell retention and vascularization, as well as partial myoblast differentiation. These modular cell-laden microcarriers potentially allow for in situ tissue construction after minimally invasive delivery providing a convenient means for regeneration medicine.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jia Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiao-Jie Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
319
|
Zhao L, Jin Y, Donahue K, Tsui M, Fish M, Logan CY, Wang B, Nusse R. Tissue Repair in the Mouse Liver Following Acute Carbon Tetrachloride Depends on Injury-Induced Wnt/β-Catenin Signaling. Hepatology 2019; 69:2623-2635. [PMID: 30762896 PMCID: PMC7043939 DOI: 10.1002/hep.30563] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
In the liver, Wnt/β-catenin signaling is involved in regulating zonation and hepatocyte proliferation during homeostasis. We examined Wnt gene expression and signaling after injury, and we show by in situ hybridization that Wnts are activated by acute carbon tetrachloride (CCl4 ) toxicity. Following injury, peri-injury hepatocytes become Wnt-responsive, expressing the Wnt target gene axis inhibition protein 2 (Axin2). Lineage tracing of peri-injury Axin2+ hepatocytes shows that during recovery the injured parenchyma becomes repopulated and repaired by Axin2+ descendants. Using single-cell RNA sequencing, we show that endothelial cells are the major source of Wnts following acute CCl4 toxicity. Induced loss of β-catenin in peri-injury hepatocytes results in delayed repair and ultimately injury-induced lethality, while loss of Wnt production from endothelial cells leads to a delay in the proliferative response after injury. Conclusion: Our findings highlight the importance of the Wnt/β-catenin signaling pathway in restoring tissue integrity following acute liver toxicity and establish a role of endothelial cells as an important Wnt-producing regulator of liver tissue repair following localized liver injury.
Collapse
Affiliation(s)
- Ludan Zhao
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305,Medical Scientist Training Program, Stanford School of
Medicine, Stanford, CA 94305
| | - Yinhua Jin
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Katie Donahue
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Margaret Tsui
- Department of Medicine and Liver Center, University of
California San Francisco, San Francisco, CA 94143
| | - Matt Fish
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Catriona Y. Logan
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Bruce Wang
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305,Department of Medicine and Liver Center, University of
California San Francisco, San Francisco, CA 94143
| | - Roel Nusse
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| |
Collapse
|
320
|
Yue L, Talukder MAH, Gurjar A, Lee JI, Noble M, Dirksen RT, Chakkalakal J, Elfar JC. 4-Aminopyridine attenuates muscle atrophy after sciatic nerve crush injury in mice. Muscle Nerve 2019; 60:192-201. [PMID: 31093982 DOI: 10.1002/mus.26516] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We recently demonstrated the beneficial effects of 4-aminopyridine (4-AP), a potassium channel blocker, in enhancing remyelination and recovery of nerve conduction velocity and motor function after sciatic nerve crush injury in mice. Although muscle atrophy occurs very rapidly after nerve injury, the effect of 4-AP on muscle atrophy and intrinsic muscle contractile function is largely unknown. METHODS Mice were assigned to sciatic nerve crush injury and no-injury groups and were followed for 3, 7, and 14 days with/without 4-AP or saline treatment. Morphological, functional, and transcriptional properties of skeletal muscle were assessed. RESULTS In addition to improving in vivo function, 4-AP significantly reduced muscle atrophy with increased muscle fiber diameter and contractile force. Reduced muscle atrophy was associated with attenuated expression of atrophy-related genes and increased expression of proliferating stem cells. DISCUSSION These findings provide new insights into the potential therapeutic benefits of 4-AP against nerve injury-induced muscle atrophy and dysfunction. Muscle Nerve 60: 192-201, 2019.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, Pennsylvania, 17033, USA
| | - Anagha Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, Pennsylvania, 17033, USA
| | - Jung Il Lee
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, South Korea
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center Rochester, New York, USA
| | - Robert T Dirksen
- Department of Pharmacology & Physiology, The University of Rochester Medical Center Rochester, New York, USA
| | - Joe Chakkalakal
- Department of Pharmacology and Physiology and Biomedical Engineering, The University of Rochester Medical Center Rochester, New York, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Mail Code H089, Hershey, Pennsylvania, 17033, USA
| |
Collapse
|
321
|
Kikani CK, Wu X, Fogarty S, Kang SAW, Dephoure N, Gygi SP, Sabatini DM, Rutter J. Activation of PASK by mTORC1 is required for the onset of the terminal differentiation program. Proc Natl Acad Sci U S A 2019; 116:10382-10391. [PMID: 31072927 PMCID: PMC6534978 DOI: 10.1073/pnas.1804013116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During skeletal muscle regeneration, muscle stem cells (MuSCs) respond to multiple signaling inputs that converge onto mammalian target of rapamycin complex 1 (mTORC1) signaling pathways. mTOR function is essential for establishment of the differentiation-committed progenitors (early stage of differentiation, marked by the induction of myogenin expression), myotube fusion, and, ultimately, hypertrophy (later stage of differentiation). While a major mTORC1 substrate, p70S6K, is required for myotube fusion and hypertrophy, an mTORC1 effector for the induction of myogenin expression remains unclear. Here, we identified Per-Arnt-Sim domain kinase (PASK) as a downstream phosphorylation target of mTORC1 in MuSCs during differentiation. We have recently shown that the PASK phosphorylates Wdr5 to stimulate MuSC differentiation by epigenetically activating the myogenin promoter. We show that phosphorylation of PASK by mTORC1 is required for the activation of myogenin transcription, exit from self-renewal, and induction of the myogenesis program. Our studies reveal that mTORC1-PASK signaling is required for the rise of myogenin-positive committed myoblasts (early stage of myogenesis), whereas mTORC1-S6K signaling is required for myoblast fusion (later stage of myogenesis). Thus, our discoveries allow molecular dissection of mTOR functions during different stages of the myogenesis program driven by two different substrates.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132;
| | - Xiaoying Wu
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Sarah Fogarty
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Seong Anthony Woo Kang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132;
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
322
|
Liu C, Li L, Ge M, Gu L, Wang M, Zhang K, Su Y, Zhang Y, Liu C, Lan M, Yu Y, Wang T, Li Q, Zhao Y, Yu Z, Li N, Meng Q. Overexpression of miR-29 Leads to Myopathy that Resemble Pathology of Ullrich Congenital Muscular Dystrophy. Cells 2019; 8:cells8050459. [PMID: 31096686 PMCID: PMC6562860 DOI: 10.3390/cells8050459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD) bring heavy burden to patients’ families and society. Because the incidence of this disease is very low, studies in patients are extremely limited. Animal models of this disease are indispensable. UCMD belongs to extracellular matrix-related diseases. However, the disease models constructed by knocking out some pathogenic genes of human, such as the Col6a1, Col6a2, or Col6a3 gene, of mice could not mimic UCMD. The purpose of this study is to construct a mouse model which can resemble the pathology of UCMD. miR-29 is closely related to extracellular matrix deposition of tissues and organs. To address this issue, we developed a mouse model for overexpression miR-29 using Tet-on system. In the muscle-specific miR-29ab1 cluster transgenic mice model, we found that mice exhibited dyskinesia, dyspnea, and spinal anomaly. The skeletal muscle was damaged and regenerated. At the same time, we clarify the molecular mechanism of the role of miR-29 in this process. Different from human, Col4a1 and Col4a2, target genes of miR-29, are the key pathogenic genes associating with these phenotypes. This mouse model simulates the human clinical and pathological characteristics of UCMD patients and is helpful for the subsequent research and treatment of UCMD.
Collapse
Affiliation(s)
- Chuncheng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Lei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Mengxu Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lijie Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Kuo Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yang Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yuying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Miaomiao Lan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yingying Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Tongtong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qiuyan Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yaofeng Zhao
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Ning Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China.
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
323
|
Bensalah M, Klein P, Riederer I, Chaouch S, Muraine L, Savino W, Butler-Browne GS, Trollet C, Mouly V, Bigot A, Negroni E. Combined methods to evaluate human cells in muscle xenografts. PLoS One 2019; 14:e0211522. [PMID: 31048846 PMCID: PMC6497248 DOI: 10.1371/journal.pone.0211522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/19/2019] [Indexed: 11/18/2022] Open
Abstract
Xenotransplantation of human cells into immunodeficient mouse models is a very powerful tool and an essential step for the pre-clinical evaluation of therapeutic cell- and gene- based strategies. Here we describe an optimized protocol combining immunofluorescence and real-time quantitative PCR to both quantify and visualize the fate and localization of human myogenic cells after injection in regenerating muscles of immunodeficient mice. Whereas real-time quantitative PCR-based method provides an accurate quantification of human cells, it does not document their specific localization. The addition of an immunofluorescence approach using human-specific antibodies recognizing engrafted human cells gives information on the localization of the human cells within the host muscle fibres, in the stem cell niche or in the interstitial space. These two combined approaches offer an accurate evaluation of human engraftment including cell number and localization and should provide a gold standard to compare results obtained either using different types of human stem cells or comparing healthy and pathological muscle stem cells between different research laboratories worldwide.
Collapse
Affiliation(s)
- Mona Bensalah
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Pierre Klein
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Soraya Chaouch
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Laura Muraine
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Capucine Trollet
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Myology Research Center, UM76 and INSERM U974, Institut de Myologie, Paris, France
- * E-mail:
| |
Collapse
|
324
|
|
325
|
Lactate Stimulates a Potential for Hypertrophy and Regeneration of Mouse Skeletal Muscle. Nutrients 2019; 11:nu11040869. [PMID: 30999708 PMCID: PMC6520919 DOI: 10.3390/nu11040869] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/19/2023] Open
Abstract
The effects of lactate on muscle mass and regeneration were investigated using mouse skeletal muscle tissue and cultured C2C12 cells. Male C57BL/6J mice were randomly divided into (1) control, (2) lactate (1 mol/L in distilled water, 8.9 mL/g body weight)-administered, (3) cardio toxin (CTX)-injected (CX), and (4) lactate-administered after CTX-injection (LX) groups. CTX was injected into right tibialis anterior (TA) muscle before the oral administration of sodium lactate (five days/week for two weeks) to the mice. Oral lactate administration increased the muscle weight and fiber cross-sectional area, and the population of Pax7-positive nuclei in mouse TA skeletal muscle. Oral administration of lactate also facilitated the recovery process of CTX-associated injured mouse TA muscle mass accompanied with a transient increase in the population of Pax7-positive nuclei. Mouse myoblast-derived C2C12 cells were differentiated for five days to form myotubes with or without lactate administration. C2C12 myotube formation with an increase in protein content, fiber diameter, length, and myo-nuclei was stimulated by lactate. These observations suggest that lactate may be a potential molecule to stimulate muscle hypertrophy and regeneration of mouse skeletal muscle via the activation of muscle satellite cells.
Collapse
|
326
|
Choi YH, Kim SH, Kim IG, Lee JH, Kwon SK. Injectable basic fibroblast growth factor-loaded alginate/hyaluronic acid hydrogel for rejuvenation of geriatric larynx. Acta Biomater 2019; 89:104-114. [PMID: 30849562 DOI: 10.1016/j.actbio.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023]
Abstract
Increase in the geriatric population has led to an increase in the number of elderly patients with laryngeal atrophy and dysfunction. Symptoms of voice change, dysphagia, and aspiration pneumonia negatively influence patient's health status, quality of life, and life span. Injection laryngoplasty used to treat laryngeal dysfunctions does not recover intrinsic functions of the larynx. Thus, we fabricated an injectable basic fibroblast growth factor (bFGF)-loaded alginate (ALG)/hyaluronic acid (HA) hydrogel for inducing rejuvenation of geriatric laryngeal muscles. Optimal in situ-forming bFGF-loaded ALG/HA hydrogel for injection laryngoplasty was prepared and the release profile of bFGF was analyzed. For in vivo analysis, the bFGF-loaded ALG/HA hydrogel was injected into the laryngeal muscles of 18-month-old Sprague-Dawley rats. The rejuvenation efficacy of bFGF-loaded ALG/HA hydrogel in geriatric laryngeal muscle tissues 4- and 12-weeks post-injection was evaluated by quantitative polymerase chain reaction (qPCR), histology, immune-fluorescence staining and functionality analysis. The bFGF-loaded ALG/HA hydrogel induced an increase in the expression of myogenic regulatory factor-related genes, hypertrophy of muscle fiber, proliferation of muscle satellite cells, and angiogenesis and decreased interstitial fibrosis. Administration of the bFGF-loaded ALG/HA hydrogel caused successful glottal gap closure. Thus, the bFGF-loaded ALG/HA hydrogel could be a promising candidate for laryngoplasty aimed at rejuvenating geriatric larynx. STATEMENT OF SIGNIFICANCE: In this manuscript, optimal in situ-forming bFGF-loaded ALG/HA hydrogel for injection laryngoplasty was prepared and the release profile of bFGF was analyzed. Herein, we introduced the materials and methods of injection laryngoplasty for geriatric rat experiment. In addition, we studied effects of bFGF-loaded ALG/HA hydrogel on the therapeutic rejuvenation of geriatric rat larynx. The bFGF-loaded ALG/HA hydrogel induced an increase in the expression of myogenic regulatory factor-related genes, hypertrophy of muscle fiber, proliferation of muscle satellite cells, and angiogenesis and decreased interstitial fibrosis. Furthermore, our functional analysis through the high-speed camera setup demonstrated that the administration of the bFGF-loaded ALG/HA hydrogel induced successful glottal gap closure. Thus, the bFGF-loaded ALG/HA hydrogel could be a promising candidate for injection laryngoplasty with therapeutic effects.
Collapse
Affiliation(s)
- Young Hwan Choi
- Department of Otorhinolaryngology-Head and Neck, Seoul National University Hospital, Seoul 03080, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sae Hyun Kim
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea.
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
327
|
Banerji CRS, Panamarova M, Pruller J, Figeac N, Hebaishi H, Fidanis E, Saxena A, Contet J, Sacconi S, Severini S, Zammit PS. Dynamic transcriptomic analysis reveals suppression of PGC1α/ERRα drives perturbed myogenesis in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2019; 28:1244-1259. [PMID: 30462217 PMCID: PMC6452176 DOI: 10.1093/hmg/ddy405] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to epigenetic derepression of D4Z4 repeats on chromosome 4q, leading to ectopic DUX4 expression. FSHD patient myoblasts have defective myogenic differentiation, forming smaller myotubes with reduced myosin content. However, molecular mechanisms driving such disrupted myogenesis in FSHD are poorly understood. We performed high-throughput morphological analysis describing FSHD and control myogenesis, revealing altered myogenic differentiation results in hypotrophic myotubes. Employing polynomial models and an empirical Bayes approach, we established eight critical time points during which human healthy and FSHD myogenesis differ. RNA-sequencing at these eight nodal time points in triplicate, provided temporal depth for a multivariate regression analysis, allowing assessment of interaction between progression of differentiation and FSHD disease status. Importantly, the unique size and structure of our data permitted identification of many novel FSHD pathomechanisms undetectable by previous approaches. For further analysis here, we selected pathways that control mitochondria: of interest considering known alterations in mitochondrial structure and function in FSHD muscle, and sensitivity of FSHD cells to oxidative stress. Notably, we identified suppression of mitochondrial biogenesis, in particular via peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), the cofactor and activator of oestrogen-related receptor α (ERRα). PGC1α knock-down caused hypotrophic myotubes to form from control myoblasts. Known ERRα agonists and safe food supplements biochanin A, daidzein or genistein, each rescued the hypotrophic FSHD myotube phenotype. Together our work describes transcriptomic changes in high resolution that occur during myogenesis in FSHD ex vivo, identifying suppression of the PGC1α-ERRα axis leading to perturbed myogenic differentiation, which can effectively be rescued by readily available food supplements.
Collapse
Affiliation(s)
- Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
- Department of Computer Science, University College London, London, UK
- Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Maryna Panamarova
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Johanna Pruller
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Nicolas Figeac
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Husam Hebaishi
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Efthymios Fidanis
- Genomics Research Platform, Biomedical Research Centre at Guy’s and St Thomas’ Trust and Kings College London, Guy’s Hospital, London, UK
| | - Alka Saxena
- Genomics Research Platform, Biomedical Research Centre at Guy’s and St Thomas’ Trust and Kings College London, Guy’s Hospital, London, UK
| | - Julian Contet
- Institute for Research on Cancer and Aging of Nice, Faculty of Medicine, Université Côte d'Azur, Nice, Cedex, France
| | - Sabrina Sacconi
- Institute for Research on Cancer and Aging of Nice, Faculty of Medicine, Université Côte d'Azur, Nice, Cedex, France
- Peripheral Nervous System, Muscle and ALS Department, Université Côte d'Azur, Nice, France
| | - Simone Severini
- Department of Computer Science, University College London, London, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
328
|
Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z, Zhang B, Wang CC, Cheung TH, Wu Z, Wong CCL, Sun H, Wang H. YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO J 2019; 38:embj.201899727. [PMID: 30979776 DOI: 10.15252/embj.201899727] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.
Collapse
Affiliation(s)
- Fengyuan Chen
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yang Cao
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
329
|
Chen B, Shan T. The role of satellite and other functional cell types in muscle repair and regeneration. J Muscle Res Cell Motil 2019; 40:1-8. [PMID: 30968305 DOI: 10.1007/s10974-019-09511-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Skeletal muscles play essential roles in physiological processes, including motor function, energy hemostasis, and respiration. Skeletal muscles also have the capacity to regenerate after injury. Regeneration of skeletal muscle is an extremely complex biological process, which involves multiple cell types. Skeletal muscle stem cells (also known as satellite cells; SCs) are crucial for the development, growth, maintenance and repair of the skeletal muscle. Cell fates and function have been extensively studied in the context of skeletal muscle regeneration. In addition to SCs, other cell types, such as fibro-adipogenic precursors (FAPs), endothelial cells, fibroblasts, pericytes and certain immune cells, play important regulatory roles during skeletal muscle regeneration. In this review, we summarize and discuss the current research progress on the different cell types and their respective functions in skeletal muscle regeneration and repair.
Collapse
Affiliation(s)
- Bide Chen
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
330
|
Su R, Luo Y, Wang B, Hou Y, Zhao L, Su L, Yao D, Qian Y, Jin Y. Effects of physical exercise on meat quality characteristics of Sunit sheep. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
331
|
Forcina L, Miano C, Pelosi L, Musarò A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics 2019; 20:24-37. [PMID: 31015789 PMCID: PMC6446479 DOI: 10.2174/1389202920666190116094736] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal de-velopment and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or re-generative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regu-latory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, con-tributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satel-lite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satel-lite cell biology.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| |
Collapse
|
332
|
Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2019; 42:107353. [PMID: 30794878 DOI: 10.1016/j.biotechadv.2019.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
During an average individual's lifespan, the human heart pumps nearly 200 million liters of blood delivered by approximately 3 billion heartbeats. Therefore, it is not surprising that native myocardium under this incredible demand is extraordinarily complex, both structurally and functionally. As a result, successful engineering of adult-mimetic functional cardiac tissues is likely to require utilization of highly specialized biomaterials representative of the native extracellular microenvironment. There is currently no single biomaterial that fully recapitulates the architecture or the biochemical and biomechanical properties of adult myocardium. However, significant effort has gone toward designing highly functional materials and tissue constructs that may one day provide a ready source of cardiac tissue grafts to address the overwhelming burden of cardiomyopathic disease. In the near term, biomaterial-based scaffolds are helping to generate in vitro systems for querying the mechanisms underlying human heart homeostasis and disease and discovering new, patient-specific therapeutics. When combined with advances in minimally-invasive cardiac delivery, ongoing efforts will likely lead to scalable cell and biomaterial technologies for use in clinical practice. In this review, we describe recent progress in the field of cardiac tissue engineering with particular emphasis on use of biomaterials for therapeutic tissue design and delivery.
Collapse
|
333
|
Lee DE, Bareja A, Bartlett DB, White JP. Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 2019; 8:cells8020183. [PMID: 30791569 PMCID: PMC6406986 DOI: 10.3390/cells8020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.
Collapse
Affiliation(s)
- David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|
334
|
Gerli MFM, Moyle LA, Benedetti S, Ferrari G, Ucuncu E, Ragazzi M, Constantinou C, Louca I, Sakai H, Ala P, De Coppi P, Tajbakhsh S, Cossu G, Tedesco FS. Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells. Stem Cell Reports 2019; 12:461-473. [PMID: 30745033 PMCID: PMC6409426 DOI: 10.1016/j.stemcr.2019.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Satellite cells are responsible for skeletal muscle regeneration. Upon activation, they proliferate as transient amplifying myoblasts, most of which fuse into regenerating myofibers. Despite their remarkable differentiation potential, these cells have limited migration capacity, which curtails clinical use for widespread forms of muscular dystrophy. Conversely, skeletal muscle perivascular cells have less myogenic potential but better migration capacity than satellite cells. Here we show that modulation of Notch and PDGF pathways, involved in developmental specification of pericytes, induces perivascular cell features in adult mouse and human satellite cell-derived myoblasts. DLL4 and PDGF-BB-treated cells express markers of perivascular cells and associate with endothelial networks while also upregulating markers of satellite cell self-renewal. Moreover, treated cells acquire trans-endothelial migration ability while remaining capable of engrafting skeletal muscle upon intramuscular transplantation. These results extend our understanding of muscle stem cell fate plasticity and provide a druggable pathway with clinical relevance for muscle cell therapy.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Sara Benedetti
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, WC1N 1EH London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Ekin Ucuncu
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Chrystalla Constantinou
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Irene Louca
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, M13 9PL Manchester, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, UK; The Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK.
| |
Collapse
|
335
|
Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure. Sci Rep 2019; 9:1457. [PMID: 30728420 PMCID: PMC6365527 DOI: 10.1038/s41598-018-37837-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.
Collapse
|
336
|
Petrosino JM, Leask A, Accornero F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle. FASEB J 2019; 33:2047-2057. [PMID: 30216109 PMCID: PMC6338641 DOI: 10.1096/fj.201800622rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, extracellular matrix (ECM) remodeling can either support the complete regeneration of injured muscle or facilitate pathologic fibrosis and muscle degeneration. Muscular dystrophy (MD) is a group of genetic disorders that results in a progressive decline in muscle function and is characterized by the abundant deposition of fibrotic tissue. Unlike acute injury, where ECM remodeling is acute and transient, in MD, remodeling persists until fibrosis obstructs the regenerative efforts of diseased muscles. Thus, understanding how ECM is deposited and organized is critical in the context of muscle repair. Connective tissue growth factor (CTGF or CCN2) is a matricellular protein expressed by multiple cell types in response to tissue injury. Although used as a general marker of fibrosis, the cell type-dependent role of CTGF in dystrophic muscle has not been elucidated. To address this question, a conditional Ctgf myofiber and fibroblast-knockout mouse lines were generated and crossed to a dystrophic background. Only myofiber-selective inhibition of CTGF protected δ-sarcoglycan-null ( Sgcd-/-) mice from the dystrophic phenotype, and it did so by affecting collagen organization in a way that allowed for improvements in dystrophic muscle regeneration and function. To confirm that muscle-specific CTGF functions to mediate collagen organization, we generated mice with transgenic muscle-specific overexpression of CTGF. Again, genetic modulation of CTGF in muscle was not sufficient to drive fibrosis, but altered collagen content and organization after injury. Our results show that the myofibers are critical mediators of the deleterious effects associated with CTGF in MD and acutely injured skeletal muscle.-Petrosino, J. M., Leask, A., Accornero, F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Leask
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
337
|
Schaller SJ, Scheffenbichler FT, Bose S, Mazwi N, Deng H, Krebs F, Seifert CL, Kasotakis G, Grabitz SD, Latronico N, Houle T, Blobner M, Eikermann M. Influence of the initial level of consciousness on early, goal-directed mobilization: a post hoc analysis. Intensive Care Med 2019; 45:201-210. [PMID: 30666366 DOI: 10.1007/s00134-019-05528-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Early mobilization within 72 h of intensive care unit (ICU) admission improves functional status at hospital discharge. We aimed to assess the effectiveness of early, goal-directed mobilization in critically ill patients across a broad spectrum of initial consciousness levels. METHODS Post hoc analysis of the international, randomized, controlled, outcome-assessor blinded SOMS trial conducted 2011-2015. Randomization was stratified according to the immediate post-injury Glasgow Coma Scale (GCS) (≤ 8 or > 8). Patients received either SOMS-guided mobility treatment with a facilitator or standard care. We used general linear models to test the hypothesis that immediate post-randomization GCS modulates the intervention effects on functional independence at hospital discharge. RESULTS Two hundred patients were included in the intention-to-treat analysis. The significant effect of early, goal-directed mobilization was consistent across levels of GCS without evidence of effect modification, for the primary outcome functional independence at hospital discharge (p = 0.53 for interaction), as well as average achieved mobility level during ICU stay (mean achieved SOMS level) and functional status at hospital discharge measured with the functional independence measure. In patients with low GCS, delay to first mobilization therapy was longer (0.7 ± 0.2 days vs. 0.2 ± 0.1 days, p = 0.008), but early, goal-directed mobilization compared with standard care significantly increased functional independence at hospital discharge in this subgroup of patients with immediate post-randomization GCS ≤ 8 (OR 3.67; 95% CI 1.02-13.14; p = 0.046). CONCLUSION This post hoc analysis of a randomized controlled trial suggests that early, goal-directed mobilization in patients with an impaired initial conscious state (GCS ≤ 8) is not harmful but effective.
Collapse
Affiliation(s)
- Stefan J Schaller
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Flora T Scheffenbichler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Somnath Bose
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Nicole Mazwi
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Deng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franziska Krebs
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian L Seifert
- Department of Neurology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Stephanie D Grabitz
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Latronico
- Department of Anesthesia, Critical Care and Emergency Medicine, Spedali Civili University Hospital, University of Brescia, Brescia, Italy
| | - Timothy Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Manfred Blobner
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA. .,Essen-Duisburg University, Medical Faculty, Essen, Germany.
| |
Collapse
|
338
|
Song JY, Pineault KM, Wellik DM. Development, repair, and regeneration of the limb musculoskeletal system. Curr Top Dev Biol 2019; 132:451-486. [PMID: 30797517 DOI: 10.1016/bs.ctdb.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The limb musculoskeletal system provides a primary means for locomotion, manipulation of objects and protection for most vertebrate organisms. Intricate integration of the bone, tendon and muscle tissues are required for function. These three tissues arise largely independent of one another, but the connections formed during later development are maintained throughout life and are re-established following injury. Each of these tissues also have mesenchymal stem/progenitor cells that function in maintenance and repair. Here in, we will review the major events in the development of limb skeleton, tendon, and muscle tissues, their response to injury, and discuss current knowledge regarding resident progenitor/stem cells within each tissue that participate in development, repair, and regeneration in vivo.
Collapse
Affiliation(s)
- Jane Y Song
- Program in Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Kyriel M Pineault
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - Deneen M Wellik
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
339
|
Tran-Thi TN, Wang S, Adetula AA, Zou C, Omar AI, Han JL, Zhang DX, Zhao SH. Gene expression profiling of porcine skeletal muscle satellite cells after poly(I:C) stimulation. Gene 2019; 695:113-121. [PMID: 30633943 DOI: 10.1016/j.gene.2018.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Porcine satellite cells (PSCs) play a vital role in the construction, development and self-renewal of skeletal muscle. In this study, PSCs were exposed to poly(I:C) stimulation to mimic viral infection during the proliferation and differentiation phases at 0, 12, 24 and 48 hours (h) of the stimulation. The untreated and treated PSCs were analyzed by the RNA-Seq technology. There were 88, 119, 104 and 95 genes being differentially expressed in 0 h vs 12 h treated, 12 h vs 24 h treated, 0 h vs 24 h treated and 24 h vs 48 h untreated comparison libraries, respectively. The GO terms analysis results showed that during the proliferation phase of treated PSCs, the up-regulated genes related to the immune system were highly expressed. In addition, the gene expressions associated with muscle structure development in response to growth factor emerged during the differentiation phase of untreated PSCs. The biological pathways associated with Influenza A, Toll-like receptor and chemokine signaling were revealed in PSCs following poly(I:C) stimulation. The differentially expressed genes were confirmed by quantitative real-time PCR. These findings expanded our understanding of gene expressions and signaling pathways about the infiltrated mechanism of the virus into PSCs.
Collapse
Affiliation(s)
- Thuy-Nhien Tran-Thi
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Adeyinka Abiola Adetula
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Abdullah Ibne Omar
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| | - Ding-Xiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shu-Hong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
340
|
Perdiguero E, Moiseeva V, Muñoz-Cánoves P. Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies. Methods Mol Biol 2019; 2045:13-23. [PMID: 30771188 DOI: 10.1007/7651_2019_210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The maintenance of adult stem cells in their normal quiescent state depends on intrinsic factors and extrinsic signals originating from their microenvironment (also known as the stem cell niche). In skeletal muscle, its stem cells (satellite cells) lose their regenerative potential with aging, and this has been attributed, at least in part, to both age-associated changes in the satellite cells as in the niche cells, which include resident fibro-adipogenic progenitors (FAPs), macrophages, and endothelial cells, among others. To understand the regenerative decline of skeletal muscle with aging, there is a need for methods to specifically isolate stem and niche cells from resting muscle. Here we describe a fluorescence-activated cell sorting (FACS) protocol to simultaneously isolate discrete populations of satellite cells and niche cells from skeletal muscle of aging mice.
Collapse
Affiliation(s)
- Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Victoria Moiseeva
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
341
|
Moyle LA, Tedesco FS, Benedetti S. Pericytes in Muscular Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:319-344. [PMID: 31147885 DOI: 10.1007/978-3-030-16908-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The muscular dystrophies are an heterogeneous group of inherited myopathies characterised by the progressive wasting of skeletal muscle tissue. Pericytes have been shown to make muscle in vitro and to contribute to skeletal muscle regeneration in several animal models, although recent data has shown this to be controversial. In fact, some pericyte subpopulations have been shown to contribute to fibrosis and adipose deposition in muscle. In this chapter, we explore the identity and the multifaceted role of pericytes in dystrophic muscle, potential therapeutic applications and the current need to overcome the hurdles of characterisation (both to identify pericyte subpopulations and track cell fate), to prevent deleterious differentiation towards myogenic-inhibiting subpopulations, and to improve cell proliferation and engraftment efficacy.
Collapse
Affiliation(s)
- Louise Anne Moyle
- Institute of Biomaterials and Biomedical Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Sara Benedetti
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
342
|
Abstract
Skeletal muscle regeneration is a highly orchestrated process and involves the activation of many cellular and molecular pathways. Although satellite cells (SCs) are the major cell type responsible for muscle regeneration, pericytes show remarkable myogenic potential and various advantages as cell therapy in muscular disorders. This chapter first introduces the structure, marker expression, origin, and category of pericytes. Next, we discuss their functions in muscular dystrophy and/or muscle injuries, focusing on their myogenic, adipogenic, fibrogenic, chondrogenic, and osteogenic activities. Understanding this knowledge will promote the development of innovative cell therapies for muscle disorders, including muscular dystrophy.
Collapse
|
343
|
Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019; 286:379-398. [PMID: 29239106 PMCID: PMC6002870 DOI: 10.1111/febs.14358] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly plastic tissue in the human body that undergoes extensive adaptation in response to environmental cues, such as physical activity, metabolic perturbation, and disease conditions. The endoplasmic reticulum (ER) plays a pivotal role in protein folding and calcium homeostasis in many mammalian cell types, including skeletal muscle. However, overload of misfolded or unfolded proteins in the ER lumen cause stress, which results in the activation of a signaling network called the unfolded protein response (UPR). The UPR is initiated by three ER transmembrane sensors: protein kinase R-like endoplasmic reticulum kinase, inositol-requiring protein 1α, and activating transcription factor 6. The UPR restores ER homeostasis through modulating the rate of protein synthesis and augmenting the gene expression of many ER chaperones and regulatory proteins. However, chronic heightened ER stress can also lead to many pathological consequences including cell death. Accumulating evidence suggests that ER stress-induced UPR pathways play pivotal roles in the regulation of skeletal muscle mass and metabolic function in multiple conditions. They have also been found to be activated in skeletal muscle under catabolic states, degenerative muscle disorders, and various types of myopathies. In this article, we have discussed the recent advancements toward understanding the role and mechanisms through which ER stress and individual arms of the UPR regulate skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Dil Afroze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, INDIA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
344
|
Nutmeg Extract Increases Skeletal Muscle Mass in Aging Rats Partly via IGF1-AKT-mTOR Pathway and Inhibition of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2810840. [PMID: 30647761 PMCID: PMC6311876 DOI: 10.1155/2018/2810840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
The sarcopenic phenotype is characterized by a reduction of muscle mass, a shift in fiber-type distribution, and reduced satellite cell regeneration. Sarcopenia is still a major challenge to healthy aging. Traditional Indonesian societies in Sulawesi island have been using nutmeg for maintaining health condition during aging. Interestingly, nutmeg has been known to stimulate peroxisome proliferator activated receptors γ (PPARγ) which may contribute to myogenesis process in cardiac muscle. There is limited information about the role of nutmeg extract into physiological health benefit during aging especially myogenesis process in skeletal muscle. In the present study, we want to explore the potential effect of nutmeg in preserving skeletal muscle mass of aging rats. Aging rats, 80 weeks old, were divided into two groups (control and nutmeg). Nutmeg extract was administered for 12 weeks by gavaging. After treatment, rats were anaesthesized, then soleus and gastrocnemius muscles were collected, weighted, frozen using liquid nitrogen, and stored at -80°C until use. We observed phenomenon that nutmeg increased a little but significant food consumption on week 12, but significant decrease in body weight on weeks 10 and 12 unexpectedly increased significantly in soleus muscle weight (p<0.05). Nutmeg extract increased significantly gene expression of myogenic differentiation (MyoD), paired box 7 (Pax7), myogenin, myosin heavy chain I (MHC I), and insulin-like growth factor I (p<0.01) in soleus muscle. Furthermore, nutmeg increased serine/threonine kinase (AKT) protein levels and activation of mammalian target of rapamycin (mTOR), inhibited autophagy activity, and stimulated or at least preserved muscle mass during aging. Taken together, nutmeg extract may increase muscle mass or prevent decrease of muscle wasting in soleus muscle by partly stimulating myogenesis, regeneration process, and preserving muscle mass via IGF-AKT-mTOR pathway leading to inhibition of autophagy activity during aging. This finding may reveal the potential nutmeg benefits as alternative supplement for preserving skeletal muscle mass and preventing sarcopenia in elderly.
Collapse
|
345
|
Zhou X, Wang C, Qiu S, Mao L, Chen F, Chen S. Non-invasive Assessment of Changes in Muscle Injury by Ultrasound Shear Wave Elastography: An Experimental Study in Contusion Model. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2759-2767. [PMID: 30172571 DOI: 10.1016/j.ultrasmedbio.2018.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the potential of ultrasound shear wave elastography (SWE) in assessment of muscle stiffness in muscle injury. SWE was performed on the injured muscle in 30 New Zealand rabbits that were randomly assigned to three groups: the contusion group, which was not treated with an efficient therapeutic strategy after muscle injury; the treatment group, which was treated with a therapeutic scheme after muscle injury; and the healthy group, which was not injured and served as a control. Both the mean Young's modulus (Emean) and the maximum Young's modulus (Emax) were obtained pre-injury and 0.5, 1, 3, 5, 7, 14 and 28 d post-injury. At these time points, a rabbit in each group was randomly selected for biopsy for histopathological observation as well as comparison with Young's modulus. Eventually, all muscle tissues were collected for histologic analysis of collagen fiber formation. The contusion group had the highest Young's modulus, followed by the treatment group and then the healthy group (p < 0.05). In both the contusion and treatment groups, Emean and Emax gradually increased within 1-3 d after injury, followed by a gradual decrease. Compared with the healthy group, histopathologic analysis of the contusion and treatment groups revealed the myofibril destruction process, inflammatory reaction and myofibril regeneration. The amount of collagen fibers in the contusion group was maximal compared with the treated and healthy groups (p = 0.001 and p < 0.001, respectively). There were more collagen fibers in the treatment group than in the healthy group (p = 0.003). The abundance of collagen fibers was positively correlated with the value of Young's modulus (Emean: r = 0.706, p < 0.001; Emax: r = 0.761, p < 0.001). Thus, SWE can be used to detect pathologic changes in injured muscle and to monitor therapeutic effects.
Collapse
Affiliation(s)
- Xiaohua Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuang Wang
- Department of General Surgery, Zengcheng District People's Hospital (Boji-Affiliated Hospital of Sun Yat-sen University), Guangzhou, Guangdong, China
| | - Shaodong Qiu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Lin Mao
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Chen
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaona Chen
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
346
|
Baumann M, Gumpold C, Mueller-Felber W, Schoser B, Haberler C, Loescher WN, Rostásy K, Fischer MB, Wanschitz JV. Pattern of myogenesis and vascular repair in early and advanced lesions of juvenile dermatomyositis. Neuromuscul Disord 2018; 28:973-985. [DOI: 10.1016/j.nmd.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
347
|
Wang Y, Welc SS, Wehling-Henricks M, Tidball JG. Myeloid cell-derived tumor necrosis factor-alpha promotes sarcopenia and regulates muscle cell fusion with aging muscle fibers. Aging Cell 2018; 17:e12828. [PMID: 30256507 PMCID: PMC6260911 DOI: 10.1111/acel.12828] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Sarcopenia is age‐related muscle wasting that lacks effective therapeutic interventions. We found that systemic ablation of tumor necrosis factor‐α (TNF‐α) prevented sarcopenia and prevented age‐related change in muscle fiber phenotype. Furthermore, TNF‐α ablation reduced the number of satellite cells in aging muscle and promoted muscle cell fusion in vivo and in vitro. Because CD68+ macrophages are important sources of TNF‐α and the number of CD68+ macrophages increases in aging muscle, we tested whether macrophage‐derived TNF‐α affects myogenesis. Media conditioned by TNF‐α‐null macrophages increased muscle cell fusion in vitro, compared to media conditioned by wild‐type macrophages. In addition, transplantation of bone marrow cells from wild‐type mice into TNF‐α‐null recipients increased satellite cell numbers and reduced numbers of centrally nucleated myofibers, indicating that myeloid cell‐secreted TNF‐α reduces muscle cell fusion. Transplanting bone marrow cells from wild‐type mice into TNF‐α‐null recipients also increased sarcopenia, although transplantation did not restore the age‐related change in muscle fiber phenotype. Collectively, we show that myeloid cell‐derived TNF‐α contributes to muscle aging by affecting sarcopenia and muscle cell fusion with aging muscle fibers. Our findings also show that TNF‐α that is intrinsic to muscle and TNF‐α secreted by immune cells work together to influence muscle aging.
Collapse
Affiliation(s)
- Ying Wang
- Molecular, Cellular and Integrative Physiology Program; University of California; Los Angeles California
| | - Steven S. Welc
- Department of Integrative Biology and Physiology; University of California; Los Angeles California
| | | | - James G. Tidball
- Molecular, Cellular and Integrative Physiology Program; University of California; Los Angeles California
- Department of Integrative Biology and Physiology; University of California; Los Angeles California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA; University of California; Los Angeles California
| |
Collapse
|
348
|
Gayraud-Morel B, Le Bouteiller M, Commere PH, Cohen-Tannoudji M, Tajbakhsh S. Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis. Development 2018; 145:145/23/dev162636. [PMID: 30478226 DOI: 10.1242/dev.162636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Cell fate decisions occur through the action of multiple factors, including signalling molecules and transcription factors. Recently, the regulation of translation has emerged as an important step for modulating cellular function and fate, as exemplified by ribosomes that play distinct roles in regulating cell behaviour. Notchless (Nle) is a conserved nuclear protein that is involved in a crucial step in ribosome biogenesis, and is required for the maintenance of adult haematopoietic and intestinal stem/progenitor cells. Here, we show that activated skeletal muscle satellite cells in conditional Nle mutant mice are arrested in proliferation; however, deletion of Nle in myofibres does not impair myogenesis. Furthermore, conditional deletion of Nle in satellite cells during homeostasis did not impact on their fate for up to 3 months. In contrast, loss of Nle function in primary myogenic cells blocked proliferation because of major defects in ribosome formation. Taken together, we show that muscle stem cells undergo a stage-specific regulation of ribosome biogenesis, thereby underscoring the importance of differential modulation of mRNA translation for controlling cell fate decisions.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Marie Le Bouteiller
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Pierre-Henri Commere
- Plateforme de Cytometrie, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.,Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France .,CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
349
|
Hou C, Baba-Amer Y, Bencze M, Relaix F, Jérôme Authier F. [The effect of interferon-gamma on skeletal muscle cell biology]. Med Sci (Paris) 2018; 34 Hors série n°2:35-38. [PMID: 30418144 DOI: 10.1051/medsci/201834s210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dysimmune and inflammatory myopathies (DIMs) affect around 14/100,000 people worldwide. Based on immupour nopathological criteria, DIMs are divided in four groups: (1) polymyositis (PM)/inclusion body myositis (IBM), (2) dermatomyositis (DM), (3) immune-mediated necrotizing myopathies (IMNM) and (iv) overlapping myositis including anti-synthetase syndrome (ASS). ASS and PM/IBM are characterized by the activation of inflammation with lymphocytic infiltrations. Recently, we showed that an expression of the major histocompatibility complex class 2 (MHC2) was present in myofibers from ASS and IBM muscle biopsies. Interestingly, MHC2 expression is known to be stimulated by Interferon-gamma (IFNγ) in myogenic cells. LTCD8 cells, which are well-known producers of IFNγ, are commonly found in close vicinity to MHC2 positive myofibers. This inflammatory cytokine also inhibits myogenic differentiation in vitro by CIITA-myogenin interaction. The mechanisms involved in the lymphocyte-driven muscle toxicity in DIMs are unclear. The objectives of this project are to characterize IFNγ effects on the biology of human myogenic cells by morphological, molecular and cellular approaches. Then, we aim to investigate the role of IFNγ in these myopathies and its impact during muscular regeneration. In vitro preliminary studies have been performed using human and mouse myoblasts treated or not with IFNγ. Our results should lead to a better understanding of the role of IFNγ in the pathophysiology of DIMs, and would hopefully help identify new therapeutic targets.
Collapse
Affiliation(s)
- Cyrielle Hou
- ED402, Paris Est-Créteil University, Créteil, France - Inserm U955 Team 10, Paris Est-Créteil University, Créteil, France
| | | | | | - Frédéric Relaix
- Inserm U955 Team 10, Paris Est-Créteil University, Créteil, France
| | | |
Collapse
|
350
|
Kitajima Y, Suzuki N, Nunomiya A, Osana S, Yoshioka K, Tashiro Y, Takahashi R, Ono Y, Aoki M, Nagatomi R. The Ubiquitin-Proteasome System Is Indispensable for the Maintenance of Muscle Stem Cells. Stem Cell Reports 2018; 11:1523-1538. [PMID: 30416048 PMCID: PMC6294073 DOI: 10.1016/j.stemcr.2018.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Adult muscle stem cells (satellite cells) are required for adult skeletal muscle regeneration. A proper balance between quiescence, proliferation, and differentiation is essential for the maintenance of the satellite cell pool and their regenerative function. Although the ubiquitin-proteasome is required for most protein degradation in mammalian cells, how its dysfunction affects tissue stem cells remains unclear. Here, we investigated the function of the proteasome in satellite cells using mice lacking the crucial proteasomal component, Rpt3. Ablation of Rpt3 in satellite cells decreased proteasome activity. Proteasome dysfunction in Rpt3-deficient satellite cells impaired their ability to proliferate, survive and differentiate, resulting in defective muscle regeneration. We found that inactivation of proteasomal activity induced proliferation defects and apoptosis in satellite cells. Mechanistically, insufficient proteasomal activity upregulated the p53 pathway, which caused cell-cycle arrest. Our findings delineate a critical function of the proteasome system in maintaining satellite cells in adult muscle. Ablation of Rpt3 in satellite cells leads to decreased proteasome activity Proteasome dysfunction in satellite cells results in defective muscle regeneration Proteasome dysfunction induces proliferation defects and apoptosis Inhibition of p53 rescues Rpt3-mediated defects in proliferation
Collapse
Affiliation(s)
- Yasuo Kitajima
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Basic and Translational Research Center for Hard Tissue Disease, 1-7-1 Sakamoto, Sakamoto, Nagasaki 852-8588, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Aki Nunomiya
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Basic and Translational Research Center for Hard Tissue Disease, 1-7-1 Sakamoto, Sakamoto, Nagasaki 852-8588, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Basic and Translational Research Center for Hard Tissue Disease, 1-7-1 Sakamoto, Sakamoto, Nagasaki 852-8588, Japan.
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|