301
|
Nakashima Y, Yanez DA, Touma M, Nakano H, Jaroszewicz A, Jordan MC, Pellegrini M, Roos KP, Nakano A. Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system. Circ Res 2014; 114:1103-13. [PMID: 24563458 DOI: 10.1161/circresaha.114.303219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Tight control of cardiomyocyte proliferation is essential for the formation of four-chambered heart. Although human mutation of NKX2-5 is linked to septal defects and atrioventricular conduction abnormalities, early lethality and hemodynamic alteration in the mutant models have caused controversy as to whether Nkx2-5 regulates cardiomyocyte proliferation. OBJECTIVE In this study, we circumvented these limitations by atrial-restricted deletion of Nkx2-5. METHOD AND RESULTS Atrial-specific Nkx2-5 mutants died shortly after birth with hyperplastic working myocytes and conduction system including two nodes and internodal tracts. Multicolor reporter analysis revealed that Nkx2-5-null cardiomyocytes displayed clonal proliferative activity throughout the atria, indicating the suppressive role of Nkx2-5 in cardiomyocyte proliferation after chamber ballooning stages. Transcriptome analysis revealed that aberrant activation of Notch signaling underlies hyperproliferation of mutant cardiomyocytes, and forced activation of Notch signaling recapitulates hyperproliferation of working myocytes but not the conduction system. CONCLUSIONS Collectively, these data suggest that Nkx2-5 regulates the proliferation of atrial working and conduction myocardium in coordination with Notch pathway.
Collapse
Affiliation(s)
- Yasuhiro Nakashima
- From the Department of Molecular Cell and Developmental Biology (Y.N., D.A.Y., H.N., A.J., M.P., A.N.), Departments of Pediatrics and Molecular Cell and Integrative Physiology, David Geffen School of Medicine (M.T.), Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (H.N., M.P., A.N.), Department of Physiology, David Geffen School of Medicine (M.C.J., K.P.R.), Molecular Biology Institute (M.P.), Institute of Genomics and Proteomics (M.P.), and Jonsson Comprehensive Cancer Center (A.N.), University of California, Los Angeles, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma. PLoS One 2014; 9:e86642. [PMID: 24489757 PMCID: PMC3906081 DOI: 10.1371/journal.pone.0086642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6 ± 0.27 (n = 13, p = 0.0032). The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.
Collapse
|
303
|
Kwon YW, Chung YJ, Kim J, Lee HJ, Park J, Roh TY, Cho HJ, Yoon CH, Koo BK, Kim HS. Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell. PLoS One 2014; 9:e85736. [PMID: 24465672 PMCID: PMC3899054 DOI: 10.1371/journal.pone.0085736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/01/2013] [Indexed: 11/29/2022] Open
Abstract
In patients with Parkinson's disease (PD), stem cells can serve as therapeutic agents to restore or regenerate injured nervous system. Here, we differentiated two types of stem cells; mouse embryonic stem cells (mESCs) and protein-based iPS cells (P-iPSCs) generated by non-viral methods, into midbrain dopaminergic (mDA) neurons, and then compared the efficiency of DA neuron differentiation from these two cell types. In the undifferentiated stage, P-iPSCs expressed pluripotency markers as ES cells did, indicating that protein-based reprogramming was stable and authentic. While both stem cell types were differentiated to the terminally-matured mDA neurons, P-iPSCs showed higher DA neuron-specific markers' expression than ES cells. To investigate the mechanism of the superior induction capacity of DA neurons observed in P-iPSCs compared to ES cells, we analyzed histone modifications by genome-wide ChIP sequencing analysis and their corresponding microarray results between two cell types. We found that Wnt signaling was up-regulated, while SFRP1, a counter-acting molecule of Wnt, was more suppressed in P-iPSCs than in mESCs. In PD rat model, transplantation of neural precursor cells derived from both cell types showed improved function. The present study demonstrates that P-iPSCs could be a suitable cell source to provide patient-specific therapy for PD without ethical problems or rejection issues.
Collapse
Affiliation(s)
- Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Ju Chung
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Ho-Jae Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jihwan Park
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Tae-Young Roh
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Hyun-Jai Cho
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Chang-Hwan Yoon
- Cardiovascular center, Seoul National University Bundang Hospital, Seoul National University, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
304
|
Sfrp1a and Sfrp5 function as positive regulators of Wnt and BMP signaling during early retinal development. Dev Biol 2014; 388:192-204. [PMID: 24457098 DOI: 10.1016/j.ydbio.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
Abstract
Axial patterning of the developing eye is critically important for proper axonal pathfinding as well as for key morphogenetic events, such as closure of the optic fissure. The dorsal retina is initially specified by the actions of Bone Morphogenetic Protein (BMP) signaling, with such identity subsequently maintained by the Wnt-β catenin pathway. Using zebrafish as a model system, we demonstrate that Secreted frizzled-related protein 1a (Sfrp1a) and Sfrp5 work cooperatively to pattern the retina along the dorso-ventral axis. Sfrp1a/5 depleted embryos display a reduction in dorsal marker gene expression that is consistent with defects in BMP- and Wnt-dependent dorsal retina identity. In accord with this finding, we observe a marked reduction in transgenic reporters of BMP and Wnt signaling within the dorsal retina of Sfrp1a/5 depleted embryos. In contrast to studies in which canonical Wnt signaling is blocked, we note an increase in BMP ligand expression in Sfrp1a/5 depleted embryos, a phenotype similar to that seen in embryos with inhibited BMP signaling. Overexpression of a low dose of sfrp5 mRNA causes an increase in dorsal retina marker gene expression. We propose a model in which Sfrp proteins function as facilitators of both BMP and Wnt signaling within the dorsal retina.
Collapse
|
305
|
L'Episcopo F, Tirolo C, Caniglia S, Testa N, Morale MC, Serapide MF, Pluchino S, Marchetti B. Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. J Mol Cell Biol 2014; 6:13-26. [PMID: 24431301 DOI: 10.1093/jmcb/mjt053] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the past three decades, the Wingless-type MMTV integration site (Wnt) signaling cascade has emerged as an essential system regulating multiple processes in developing and adult brain. Accumulating evidence points to a dysregulation of Wnt signaling in major neurodegenerative pathologies including Parkinson's disease (PD), a common neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic (mDA) neurons and deregulated activation of astrocytes and microglia. This review highlights the emerging link between Wnt signaling and key inflammatory pathways during mDA neuron damage/repair in PD progression. In particular, we summarize recent evidence documenting that aging and neurotoxicant exposure strongly antagonize Wnt/β-catenin signaling in mDA neurons and subventricular zone (SVZ) neuroprogenitors via astrocyte-microglial interactions. Dysregulation of the crosstalk between Wnt/β-catenin signaling and anti-oxidant/anti-inflammatory pathways delineate novel mechanisms driving the decline of SVZ plasticity with age and the limited nigrostriatal dopaminergic self-repair in PD. These findings hold a promise in developing therapies that target Wnt/β-catenin signaling to enhance endogenous restoration and neuronal outcome in age-dependent diseases, such as PD.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, Via Conte Ruggero 73, 94018 Troina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Ortiz-Matamoros A, Salcedo-Tello P, Avila-Muñoz E, Zepeda A, Arias C. Role of wnt signaling in the control of adult hippocampal functioning in health and disease: therapeutic implications. Curr Neuropharmacol 2014; 11:465-76. [PMID: 24403870 PMCID: PMC3763754 DOI: 10.2174/1570159x11311050001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/16/2013] [Accepted: 03/16/2013] [Indexed: 12/12/2022] Open
Abstract
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.
Collapse
Affiliation(s)
- Abril Ortiz-Matamoros
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Pamela Salcedo-Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Evangelina Avila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| |
Collapse
|
307
|
Beta-catenin and epithelial tumors: a study based on 374 oropharyngeal cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:948264. [PMID: 24511551 PMCID: PMC3912883 DOI: 10.1155/2014/948264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/26/2013] [Accepted: 11/17/2013] [Indexed: 11/18/2022]
Abstract
Introduction. Although altered regulation of the Wnt pathway via beta-catenin is a frequent event in several human cancers, its potential implications in oral/oropharyngeal squamous cell carcinomas (OSCC/OPSCC) are largely unexplored. Work purpose was to define association between beta-catenin expression and clinical-pathological parameters in 374 OSCCs/OP-SCCs by immunohistochemistry (IHC). Materials and Methods. Association between IHC detected patterns of protein expression and clinical-pathological parameters was assessed by statistical analysis and survival rates by Kaplan-Meier curves. Beta-catenin expression was also investigated in OSCC cell lines by Real-Time PCR. An additional analysis of the DNA content was performed on 22 representative OSCCs/OPSCCs by DNA-image-cytometric analysis. Results and Discussion. All carcinomas exhibited significant alterations of beta-catenin expression (P < 0.05). Beta-catenin protein was mainly detected in the cytoplasm of cancerous cells and only focal nuclear positivity was observed. Higher cytoplasmic expression correlated significantly with poor histological differentiation, advanced stage, and worst patient outcome (P < 0.05). By Real-Time PCR significant increase of beta-catenin mRNA was detected in OSCC cell lines and in 45% of surgical specimens. DNA ploidy study demonstrated high levels of aneuploidy in beta-catenin overexpressing carcinomas. Conclusions. This is the largest study reporting significant association between beta-catenin expression and clinical-pathological factors in patients with OSCCs/OPSCCs.
Collapse
|
308
|
Barthold JS, Wang Y, Robbins A, Pike J, McDowell E, Johnson KJ, McCahan SM. Transcriptome analysis of the dihydrotestosterone-exposed fetal rat gubernaculum identifies common androgen and insulin-like 3 targets. Biol Reprod 2013; 89:143. [PMID: 24174575 DOI: 10.1095/biolreprod.113.112953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Androgens and insulin-like 3 (INSL3) are required for development of the fetal gubernaculum and testicular descent. Previous studies suggested that the INSL3-exposed fetal gubernacular transcriptome is enriched for genes involved in neural pathways. In the present study, we profiled the transcriptome of fetal gubernaculum explants exposed to dihydrotestosterone (DHT) and compared this response to that with INSL3. We exposed fetal (Embryonic Day 17) rat gubernacula to DHT for 24 h (10 and 30 nM) or 6 h (1 and 10 nM) in organ culture and analyzed gene expression relative to that of vehicle-treated controls using Affymetrix arrays. Results were annotated using functional, pathway, and promoter analyses and independently validated for selected transcripts using quantitative RT-PCR (qRT-PCR). Transcripts were differentially expressed after 24 h but not 6 h. Most highly overrepresented functional categories included those related to gene expression, skeletal and muscular development and function, and Wnt signaling. Promoter response elements enriched in the DHT-specific transcriptome included consensus sequences for c-ETS1, ELK1, CREB, CRE-BP1/c-June, NRF2, and USF. We observed that 55% of DHT probe sets were also differentially expressed after INSL3 exposure and that the direction of change was the same in 96%. The qRT-PCR results confirmed that DHT increased expression of the INSL3-responsive genes Crlf1 and Chrdl2 but reduced expression of Wnt4. We also validated reduced Tgfb2 and Cxcl12 and increased Slit3 expression following DHT exposure. These data suggest a robust overlap in the DHT- and INSL3-regulated transcriptome that may be mediated in part by CREB signaling and a common Wnt pathway response for both hormones in the fetal gubernaculum.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | | | | | | |
Collapse
|
309
|
Mastri M, Shah Z, Hsieh K, Wang X, Wooldridge B, Martin S, Suzuki G, Lee T. Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention. Am J Physiol Cell Physiol 2013; 306:C531-9. [PMID: 24336656 DOI: 10.1152/ajpcell.00238.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Progressive fibrosis is a pathological hallmark of many chronic diseases responsible for organ failure. Although there is currently no therapy on the market that specifically targets fibrosis, the dynamic fibrogenic process is known to be regulated by multiple soluble mediators that may be therapeutically intervened. The failing hamster heart exhibits marked fibrosis and increased expression of secreted Frizzled-related protein 2 (sFRP2) amenable to reversal by mesenchymal stem cell (MSC) therapy. Given the previous demonstration that sFRP2-null mice subjected to myocardial infarction exhibited reduced fibrosis and improved function, we tested whether antibody-based sFRP2 blockade might counteract the fibrogenic pathway and repair cardiac injury. Cardiomyopathic hamsters were injected intraperitoneally twice a week each with 20 μg of sFRP2 antibody. Echocardiography, histology, and biochemical analyses were performed after 1 mo. sFRP2 antibody increased left ventricular ejection fraction from 40 ± 1.2 to 49 ± 6.5%, whereas saline and IgG control exhibited a further decline to 37 ± 0.9 and 31 ± 3.2%, respectively. Functional improvement is associated with a ∼ 50% reduction in myocardial fibrosis, ∼ 65% decrease in apoptosis, and ∼ 75% increase in wall thickness. Consistent with attenuated fibrosis, both MSC therapy and sFRP2 antibody administration significantly increased the activity of myocardial matrix metalloproteinase-2. Gene expression analysis of the hamster heart and cultured fibroblasts identified Axin2 as a downstream target, the expression of which was activated by sFRP2 but inhibited by therapeutic intervention. sFRP2 blockade also increased myocardial levels of VEGF and hepatocyte growth factor (HGF) along with increased angiogenesis. These findings highlight the pathogenic effect of dysregulated sFRP2, which may be specifically targeted for antifibrotic therapy.
Collapse
Affiliation(s)
- Michalis Mastri
- Department of Biochemistry and Department of Biomedical Engineering, Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Gauger KJ, Bassa LM, Henchey EM, Wyman J, Bentley B, Brown M, Shimono A, Schneider SS. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration. PLoS One 2013; 8:e78320. [PMID: 24339864 PMCID: PMC3855156 DOI: 10.1371/journal.pone.0078320] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1), is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO). Sfrp1-/- mice fed a high fat diet (HFD) exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT) mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1) and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3) in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1), and glucose transporters are repressed (Slc2a2 and Slc2a4) in Sfrp1-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.
Collapse
Affiliation(s)
- Kelly J. Gauger
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, United States of America
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Lotfi M. Bassa
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Elizabeth M. Henchey
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, United States of America
| | - Josephine Wyman
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, United States of America
| | - Brooke Bentley
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, United States of America
| | - Melissa Brown
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, United States of America
| | | | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, Massachusetts, United States of America
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
311
|
Gorny AK, Kaufmann LT, Swain RK, Steinbeisser H. A secreted splice variant of the Xenopus frizzled-4 receptor is a biphasic modulator of Wnt signalling. Cell Commun Signal 2013; 11:89. [PMID: 24252524 PMCID: PMC4077065 DOI: 10.1186/1478-811x-11-89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 11/11/2013] [Indexed: 11/22/2022] Open
Abstract
Background Activation of the Wnt signalling cascade is primarily based on the interplay between Wnt ligands, their receptors and extracellular modulators. One prominent family of extracellular modulators is represented by the SFRP (secreted Frizzled-related protein) family. These proteins have significant similarity to the extracellular domain of Frizzled receptors, suggesting that they bind Wnt ligands and inhibit signalling. The SFRP-type protein Fz4-v1, a splice variant of the Frizzled-4 receptor found in humans and Xenopus, was shown to augment Wnt/β-catenin signalling, and also interacts with those Wnt ligands that act on β-catenin-independent Wnt pathways. Findings Here we show that Xenopus Fz4-v1 can activate and inhibit the β-catenin-dependent Wnt pathway. Gain-of-function experiments revealed that high Wnt/β-catenin activity is inhibited by low and high concentrations of Fz4-v1. In contrast, signals generated by low amounts of Wnt ligands were enhanced by low concentrations of Fz4-v1 but were repressed by high concentrations. This biphasic activity of Fz4-v1 was not observed in non-canonical Wnt signalling. Fz4-v1 enhanced β-catenin-independent Wnt signalling triggered by either low or high doses of Wnt11. Antisense morpholino-mediated knock-down experiments demonstrated that in early Xenopus embryos Fz4-v1 is required for the migration of cranial neural crest cells and for the development of the dorsal fin. Conclusions For the first time, we show that a splice variant of the Frizzled-4 receptor modulates Wnt signalling in a dose-dependent, biphasic manner. These results also demonstrate that the cystein-rich domain (CRD), which is shared by Fz4-v1 and SFRPs, is sufficient for the biphasic activity of these secreted Wnt modulators.
Collapse
Affiliation(s)
| | | | | | - Herbert Steinbeisser
- Section Developmental Genetics, Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg D-69120, Germany.
| |
Collapse
|
312
|
Kawakubo T, Yasukochi A, Toyama T, Takahashi S, Okamoto K, Tsukuba T, Nakamura S, Ozaki Y, Nishigaki K, Yamashita H, Yamamoto K. Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer. Carcinogenesis 2013; 35:714-26. [PMID: 24242330 DOI: 10.1093/carcin/bgt373] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite advances in detection and treatment for breast cancer (BC), recurrence and death rates remain unacceptably high. Therefore, more convenient diagnostic and prognostic methods still required to optimize treatments among the patients. Here, we report the clinical significance of the serum cathepsin E (CatE) activity as a novel prognostic marker for BC. Correlation analysis between the serum levels of CatE expression and clinicopathological parameters revealed that the activity levels, but not the protein levels, were negatively associated with the stages and progression of BC. Univariate and multivariate analyses demonstrated that the serum CatE activity was significantly correlated with favorable prognostic outcomes of the patients. The functional link of CatE expression to BC progression was further corroborated by in vivo and in vitro studies with mice exhibiting different levels of CatE expression. Multiparous CatE (-) (/) (-) mice spontaneously developed mammary tumors concomitant with morphological transformation and altered growth characteristics of the mammary glands. These alterations were associated in part with the induction of epithelial-mesenchymal transition and the activation of β-catenin-dependent pathway in mammary cells. Loss of CatE strongly induced the translocation and accumulation of Wnt5a in the nuclei, thereby leading to the aberrant trafficking, maturation and secretion of Wnt5a and the impaired signaling. The interaction of CatE and Wnt5a was verified by proximity ligation assay and by knockdown or restoration of CatE expression in the mammary cells. Consequently, our data demonstrate that CatE contributes to normal growth and development of mammary glands through proper trafficking and secretion of Wnt5a.
Collapse
Affiliation(s)
- Tomoyo Kawakubo
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Cavodeassi F. Integration of anterior neural plate patterning and morphogenesis by the Wnt signaling pathway. Dev Neurobiol 2013; 74:759-71. [PMID: 24115566 DOI: 10.1002/dneu.22135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
Wnts are essential for a multitude of processes during embryonic development and adult homeostasis. The molecular structure of the Wnt pathway is extremely complex, and it keeps growing as new molecular components and novel interactions are uncovered. Recent studies have advanced our understanding on how the diverse molecular outcomes of the Wnt pathway are integrated during organ development, an integration that is also essential, although mechanistically poorly understood, during the formation of the anterior part of the nervous system, the forebrain. In this article, the author has summarized these findings and discussed their implications for forebrain development. A special emphasis has been put forth on studies performed in the zebrafish as this model system has been instrumental for our current understanding of forebrain patterning.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
314
|
Rebuffat SA, Oliveira JM, Altirriba J, Palau N, Garcia A, Esteban Y, Nadal B, Gomis R. Downregulation of Sfrp5 promotes beta cell proliferation during obesity in the rat. Diabetologia 2013; 56:2446-55. [PMID: 24006088 DOI: 10.1007/s00125-013-3030-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/25/2013] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS During obesity, the increment in beta cell mass in response to the rising demand for insulin is essential to maintain normal glucose homeostasis. However, the precise cellular and molecular mechanisms involved in beta cell mass plasticity remain poorly understood. The Wnt signalling pathway has been suggested as one possible modulator of beta cell proliferation, which represents the principal process involved in beta cell mass expansion. Here, we sought to determine the mechanisms involved in beta cell mass proliferation using diet-induced obese rats. METHODS Wistar rats aged 8 weeks old were fed a standard or cafeteria diet. Global transcriptomic analysis of pancreatic rat islets was performed using microarray analysis. Genetic loss-of-function approaches were performed in dispersed primary rat islets and the beta cell line INS1E. Gene expression was measured by real-time PCR, protein levels by immunoblot analysis, proliferation rates by ELISA and apoptosis by flow cytometry. RESULTS Sfrp5, coding for secreted frizzled-related protein 5, is downregulated in the pancreatic islets of cafeteria-diet-fed rats as well as in the pancreatic islets of human obese patients. We demonstrate that silencing Sfrp5 increases beta cell proliferation, which correlates with activation of Wnt signalling and enhanced levels of proliferation markers. In addition, we show that expression of Sfrp5 in beta cells is modulated by IGF binding protein 3 (IGFBP3) secreted from visceral adipose tissue. CONCLUSIONS/INTERPRETATION Together, these findings reveal an important role for SFRP5 and Wnt signalling in the regulation of beta cell proliferation in obesity.
Collapse
Affiliation(s)
- Sandra A Rebuffat
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c/Rosselló, 149-153, 08036, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Sugiyama Y, Shelley EJ, Wen L, Stump RJW, Shimono A, Lovicu FJ, McAvoy JW. Sfrp1 and Sfrp2 are not involved in Wnt/β-catenin signal silencing during lens induction but are required for maintenance of Wnt/β-catenin signaling in lens epithelial cells. Dev Biol 2013; 384:181-93. [PMID: 24140542 DOI: 10.1016/j.ydbio.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023]
Abstract
During eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/β-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/β-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/β-catenin signaling in lens epithelial cells.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Save Sight Institute, The University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
316
|
Yan J, Jia H, Ma Z, Ye H, Zhou M, Su L, Liu J, Guo AY. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain. Gene 2013; 533:229-39. [PMID: 24135643 DOI: 10.1016/j.gene.2013.09.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Department of Applied Physics, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Berthon A, Drelon C, Ragazzon B, Boulkroun S, Tissier F, Amar L, Samson-Couterie B, Zennaro MC, Plouin PF, Skah S, Plateroti M, Lefèbvre H, Sahut-Barnola I, Batisse-Lignier M, Assié G, Lefrançois-Martinez AM, Bertherat J, Martinez A, Val P. WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2013; 23:889-905. [PMID: 24087794 DOI: 10.1093/hmg/ddt484] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary aldosteronism (PA) is the main cause of secondary hypertension, resulting from adrenal aldosterone-producing adenomas (APA) or bilateral hyperplasia. Here, we show that constitutive activation of WNT/β-catenin signalling is the most frequent molecular alteration found in 70% of APA. We provide evidence that decreased expression of the WNT inhibitor SFRP2 may be contributing to deregulated WNT signalling and APA development in patients. This is supported by the demonstration that mice with genetic ablation of Sfrp2 have increased aldosterone production and ectopic differentiation of zona glomerulosa cells. We further show that β-catenin plays an essential role in the control of basal and Angiotensin II-induced aldosterone secretion, by activating AT1R, CYP21 and CYP11B2 transcription. This relies on both LEF/TCF-dependent activation of AT1R and CYP21 regulatory regions and indirect activation of CYP21 and CYP11B2 promoters, through increased expression of the nuclear receptors NURR1 and NUR77. Altogether, these data show that aberrant WNT/β-catenin activation is associated with APA development and suggest that WNT pathway may be a good therapeutic target in PA.
Collapse
Affiliation(s)
- Annabel Berthon
- Clermont Université, Université Blaise Pascal, GReD, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
319
|
Xavier CP, Melikova M, Chuman Y, Üren A, Baljinnyam B, Rubin JS. Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/β-catenin signaling. Cell Signal 2013; 26:94-101. [PMID: 24080158 DOI: 10.1016/j.cellsig.2013.09.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 01/22/2023]
Abstract
Wnt signaling regulates a variety of cellular processes during embryonic development and in the adult. Many of these activities are mediated by the Frizzled family of seven-pass transmembrane receptors, which bind Wnts via a conserved cysteine-rich domain (CRD). Secreted Frizzled-related proteins (sFRPs) contain an amino-terminal, Frizzled-like CRD and a carboxyl-terminal, heparin-binding netrin-like domain. Previous studies identified sFRPs as soluble Wnt antagonists that bind directly to Wnts and prevent their interaction with Frizzleds. However, subsequent observations suggested that sFRPs and Frizzleds form homodimers and heterodimers via their respective CRDs, and that sFRPs can stimulate signal transduction. Here, we present evidence that sFRP1 either inhibits or enhances signaling in the Wnt3a/β-catenin pathway, depending on its concentration and the cellular context. Nanomolar concentrations of sFRP1 increased Wnt3a signaling, while higher concentrations blocked it in HEK293 cells expressing a SuperTopFlash reporter. sFRP1 primarily augmented Wnt3a/β-catenin signaling in C57MG cells, but it behaved as an antagonist in L929 fibroblasts. sFRP1 enhanced reporter activity in L cells that were engineered to stably express Frizzled 5, though not Frizzled 2. This implied that the Frizzled expression pattern could determine the response to sFRP1. Similar results were obtained with sFRP2 in HEK293, C57MG and L cell reporter assays. CRDsFRP1 mimicked the potentiating effect of sFRP1 in multiple settings, contradicting initial expectations that this domain would inhibit Wnt signaling. Moreover, CRDsFRP1 showed little avidity for Wnt3a compared to sFRP1, implying that the mechanism for potentiation by CRDsFRP1 probably does not require an interaction with Wnt protein. Together, these findings demonstrate that sFRPs can either promote or suppress Wnt/β-catenin signaling, depending on cellular context, concentration and most likely the expression pattern of Fzd receptors.
Collapse
Affiliation(s)
- Charles P Xavier
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, United States
| | | | | | | | | | | |
Collapse
|
320
|
Millstein J, Volfson D. Computationally efficient permutation-based confidence interval estimation for tail-area FDR. Front Genet 2013; 4:179. [PMID: 24062767 PMCID: PMC3775454 DOI: 10.3389/fgene.2013.00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/26/2013] [Indexed: 12/27/2022] Open
Abstract
Challenges of satisfying parametric assumptions in genomic settings with thousands or millions of tests have led investigators to combine powerful False Discovery Rate (FDR) approaches with computationally expensive but exact permutation testing. We describe a computationally efficient permutation-based approach that includes a tractable estimator of the proportion of true null hypotheses, the variance of the log of tail-area FDR, and a confidence interval (CI) estimator, which accounts for the number of permutations conducted and dependencies between tests. The CI estimator applies a binomial distribution and an overdispersion parameter to counts of positive tests. The approach is general with regards to the distribution of the test statistic, it performs favorably in comparison to other approaches, and reliable FDR estimates are demonstrated with as few as 10 permutations. An application of this approach to relate sleep patterns to gene expression patterns in mouse hypothalamus yielded a set of 11 transcripts associated with 24 h REM sleep [FDR = 0.15 (0.08, 0.26)]. Two of the corresponding genes, Sfrp1 and Sfrp4, are involved in wnt signaling and several others, Irf7, Ifit1, Iigp2, and Ifih1, have links to interferon signaling. These genes would have been overlooked had a typical a priori FDR threshold such as 0.05 or 0.1 been applied. The CI provides the flexibility for choosing a significance threshold based on tolerance for false discoveries and precision of the FDR estimate. That is, it frees the investigator to use a more data-driven approach to define significance, such as the minimum estimated FDR, an option that is especially useful for weak effects, often observed in studies of complex diseases.
Collapse
Affiliation(s)
- Joshua Millstein
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
321
|
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie 2013; 95:2326-35. [PMID: 24036368 DOI: 10.1016/j.biochi.2013.09.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
Liver fibrosis is a common wound-healing response to chronic liver injuries, including alcoholic or drug toxicity, persistent viral infection, and genetic factors. Myofibroblastic transdifferentiation (MTD) is the pivotal event during liver fibrogenesis, and research in the past few years has identified key mediators and molecular mechanisms responsible for MTD of hepatic stellate cells (HSCs). HSCs are undifferentiated cells which play an important role in liver regeneration. Recent evidence demonstrates that HSCs derive from mesoderm and at least in part via septum transversum and mesothelium, and HSCs express markers for different cell types which derive from multipotent mesenchymal progenitors. There is a regulatory commonality between differentiation of adipocytes and that of HSC, and the shift from adipogenic to myogenic or neuronal phenotype characterizes HSC MTD. Central of this shift is a loss of expression of the master adipogenic regulator peroxisome proliferator activated receptor γ (PPARγ). Restored expression of PPARγ and/or other adipogenic transcription genes can reverse myofibroblastic HSCs to differentiated cells. Vertebrate Wnt and Drosophila wingless are homologous genes, and their translated proteins have been shown to participate in the regulation of cell proliferation, cell polarity, cell differentiation, and other biological roles. More recently, Wnt signaling is implicated in human fibrosing diseases, such as pulmonary fibrosis, renal fibrosis, and liver fibrosis. Blocking the canonical Wnt signal pathway with the co-receptor antagonist Dickkopf-1 (DKK1) abrogates these epigenetic repressions and restores the gene PPARγ expression and HSC differentiation. The identified morphogen mediated epigenetic regulation of PPARγ and HSC differentiation also serves as novel therapeutic targets for liver fibrosis and liver regeneration. In conclusion, the Wnt signaling promotes liver fibrosis by enhancing HSC activation and survival, and we herein discuss what we currently know and what we expect will come in this field in the next future.
Collapse
Affiliation(s)
- Cheng-gui Miao
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Mei Shan Road, Hefei 230032, Anhui Province, China; School of Food and Drug, Anhui Science and Technology University, Bengbu 233100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Increased expression of secreted frizzled-related protein-1 and microtubule-associated protein light chain 3 in keratoconus. Cornea 2013; 32:702-7. [PMID: 23449484 DOI: 10.1097/ico.0b013e318282987a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To study the expression of secreted frizzled-related protein-1 (SFRP-1) and microtubule-associated protein light chain 3 (LC3), an autophagy marker, in keratoconus. METHODS Under an institutional review board-approved protocol, de-identified and/or surgically discarded normal donor (n = 10) and keratoconus corneas (n = 10) were obtained. The corneal samples were fixed in formalin and embedded in paraffin. Immunohistochemical staining using SFRP-1 and LC3 antibodies was performed. RESULTS The majority of expression of SFRP-1 was seen in the epithelium; however, in 3 tissues that showed high expression, staining was also present in the stroma and endothelium. Like SFRP-1, the LC3 expression in keratoconus tissues occurred at 3 different levels: low, medium, and high. Collectively these data suggest that there are differences in the expression levels of SFRP-1 and LC3 in keratoconus tissue compared with the normal tissue. Low expressivity of SFRP-1 seemed to correspond to low expressivity of LC3, whereas medium to high expressivity of SFRP-1 corresponded to medium to high expressivity of LC3. CONCLUSIONS Increased expression of SFRP-1 and LC3 was observed in keratoconus corneas. Keratocyte autophagy seen with keratoconus may play a role in the pathogenesis of keratoconus.
Collapse
|
323
|
Park YK, Park B, Lee S, Choi K, Moon Y, Park H. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J Biol Chem 2013; 288:26311-26322. [PMID: 23900840 DOI: 10.1074/jbc.m113.500835] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Young-Kwon Park
- From the Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea
| | - Bongju Park
- From the Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea
| | - Seongyeol Lee
- From the Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea
| | - Kang Choi
- From the Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea
| | - Yunwon Moon
- From the Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea
| | - Hyunsung Park
- From the Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Korea.
| |
Collapse
|
324
|
Yu L, Guan Y, Wu X, Chen Y, Liu Z, Du H, Wang X. Wnt Signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice. Neurochem Res 2013; 38:1904-13. [PMID: 23784673 DOI: 10.1007/s11064-013-1096-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive degeneration of the motor neurons in the cortex, brainstem, and spinal cord. The etiology and mechanisms of selective motor neuron loss in ALS remain unknown. Wnt signaling is involved in neurodegenerative processes but little is known about the kinetic changes in Wnt signaling during ALS progression. In this study we used transcriptional microarray analysis to examine the expression of Wnt signaling components in the spinal cords of ALS transgenic SOD1(G93A) mice at different stages. We found that ALS onset led to the upregulation of Wnt signaling components and target genes involved in growth regulation and proliferation. We also determined the expression of Wnt inhibitory factor-1 (Wif1) and Wnt4 in the spinal cord of ALS transgenic mice at different stages by Western blot and immunofluorescence analysis. The protein levels of Wif1 and Wnt4 in the spinal cords of ALS transgenic mice were upregulated compared to those in wild-type mice. Moreover, the expression of Wif1 and Wnt4 in mature GFAP+ astrocytes was increased at the end stage of ALS. Our findings demonstrate that Wnt signaling is altered by spinal cord neuronal dysfunction in adult ALS transgenic mice, which provides new insight into ALS pathogenesis.
Collapse
Affiliation(s)
- Li Yu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261042, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
325
|
You J, Wen L, Roufas A, Madigan MC, Sutton G. Expression of SFRP Family Proteins in Human Keratoconus Corneas. PLoS One 2013; 8:e66770. [PMID: 23825088 PMCID: PMC3688946 DOI: 10.1371/journal.pone.0066770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/10/2013] [Indexed: 01/08/2023] Open
Abstract
We investigated the expression of the secreted frizzled-related proteins (SFRPs) in keratoconus (KC) and control corneas. KC buttons (∼8 mm diameter) (n = 15) and whole control corneas (n = 7) were fixed in 10% formalin or 2% paraformaldehyde and subsequently paraffin embedded and sectioned. Sections for histopathology were stained with hematoxylin and eosin, or Periodic Acid Schiff's reagent. A series of sections was also immunolabelled with SFRP 1 to 5 antibodies, visualised using immunofluorescence, and examined with a Zeiss LSM700 scanning laser confocal microscope. Semi-quantitative grading was used to compare SFRP immunostaining in KC and control corneas. Overall, KC corneas showed increased immunostaining for SFRP1 to 5, compared to controls. Corneal epithelium in all KC corneas displayed heterogeneous moderate to strong immunoreactivity for SFRP1 to 4, particularly in the basal epithelium adjacent to cone area. SFRP3 and 5 were localised to epithelial cell membranes in KC and control corneas, with increased SFRP3 cytoplasmic expression observed in KC. Strong stromal expression of SFRP5, including extracellular matrix, was seen in both KC and control corneas. In control corneas we observed differential expression of SFRP family proteins in the limbus compared to more central cornea. Taken together, our results support a role for SFRPs in maintaining a healthy cornea and in the pathogenesis of epithelial and anterior stromal disruption observed in KC.
Collapse
Affiliation(s)
- Jingjing You
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Li Wen
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Athena Roufas
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Michele C. Madigan
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
- School of Optometry & Vision Sciences, University of New South Wales, Kensington, New South Wales, Australia
- * E-mail:
| | - Gerard Sutton
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
- Auckland University, Auckland, New Zealand
- Vision Eye Institute, Chatswood, New South Wales, Australia
| |
Collapse
|
326
|
Gosau M, Götz W, Felthaus O, Ettl T, Jäger A, Morsczeck C. Comparison of the differentiation potential of neural crest derived progenitor cells from apical papilla (dNC-PCs) and stem cells from exfoliated deciduous teeth (SHED) into mineralising cells. Arch Oral Biol 2013; 58:699-706. [PMID: 23261253 DOI: 10.1016/j.archoralbio.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Recently, cells from the apical papilla of retained human third molars (dental neural crest-derived progenitor cells, dNC-PCs) have been isolated and characterised as multipotent progenitor cells. Nonetheless, molecular processes during differentiation into mineralising cells are still unknown. This study evaluated the osteogenic/odontogenic differentiation of dNC-PCs under in vitro conditions and compared these cells with already known odontoblast precursor cells (dental stem cells from exfoliated human deciduous teeth, SHED). METHODS The differentiation of dNC-PCs and SHED under in vitro conditions was verified by Alizarin red staining (mineralisation), alkaline phosphatase activity and the expression of osteogenic/odontogenic markers (RT-PCRs). The genome wide expression-profiles were investigated with Affymetrix DNA-microarrays and the cell migration with a gel spot cell migration assay. RESULTS In our study dNC-PCs differentiated like SHED in mineralising cells. The expression of odontoblast markers suggested that dNC-PCs and SHED differentiated into different types of odontoblasts. This supposition was supported by genome wide gene expression profiles of dNC-PCs and SHED after cell differentiation. Typical biological processes of undifferentiated cells, for example "mitosis", were regulated in dNC-PCs. In SHED biological processes like "response to wounding" or "cell migration" were regulated, which are associated with replacement odontoblasts and their precursors. Moreover, a gel-spot assay revealed that SHED migrated faster than dNC-PCs. CONCLUSION Our results suggest that dNC-PCs are precursors for primary odontoblasts, whereas SHED differentiate into replacement odontoblasts. These different odontogenic differentiation potentials of dNC-PCs and SHED have to be considered for cellular therapies and tissue engineering approaches in the future.
Collapse
Affiliation(s)
- Martin Gosau
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
327
|
Abstract
Four cardiac hormones, namely atrial natriuretic peptide, vessel dilator, kaliuretic peptide, and long-acting natriuretic peptide, reduce up to 97% of all cancer cells in vitro. These four cardiac hormones eliminate up to 86% of human small-cell lung carcinomas, two-thirds of human breast cancers, and up to 80% of human pancreatic adenocarcinomas growing in athymic mice. Their anticancer mechanisms of action, after binding to specific receptors on cancer cells, include targeting the rat sarcoma-bound GTP (RAS) (95% inhibition)-mitogen-activated protein kinase kinase 1/2 (MEK 1/2) (98% inhibition)-extracellular signal-related kinase 1/2 (ERK 1/2) (96% inhibition) cascade in cancer cells. They also inhibit MAPK9, i.e. c-Jun N-terminal kinase 2. They are dual inhibitors of vascular endothelial growth factor (VEGF) and its VEGFR2 receptor (up to 89%). One of the downstream targets of VEGF is β-catenin, which they reduce up to 88%. The WNT pathway is inhibited up to 68% and secreted frizzled-related protein 3 decreased up to 84% by the four cardiac hormones. AKT, a serine/threonine protein kinase, is reduced up to 64% by the cardiac hormones. STAT3, a final 'switch' that activates gene expression that leads to malignancy, is decreased by up to 88% by the cardiac hormones. STAT3 is specifically decreased as they do not affect STAT1. There is a cross-talk between the RAS-MEK 1/2-ERK 1/2 kinase cascade, VEGF, β-catenin, WNT, JNK, and STAT pathways and each of these pathways is inhibited by the cardiac hormones.
Collapse
Affiliation(s)
- David L Vesely
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine, Molecular Pharmacology and Physiology, James A. Haley VA Medical Center-151, University of South Florida Cardiac Hormone Center, Tampa, Florida 33612, USA.
| |
Collapse
|
328
|
Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:35-48. [PMID: 23665202 DOI: 10.1016/j.ajpath.2013.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease.
Collapse
|
329
|
Stuckenholz C, Lu L, Thakur PC, Choi TY, Shin D, Bahary N. Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogenesis [corrected] in the zebrafish, Danio rerio. PLoS One 2013; 8:e62470. [PMID: 23638093 PMCID: PMC3639276 DOI: 10.1371/journal.pone.0062470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Sfrp5 belongs to the family of secreted frizzled related proteins (Sfrp), secreted inhibitors of Wingless-MMTV Integration Site (Wnt) signaling, which play an important role in cancer and development. We selected sfrp5 because of its compelling expression profile in the developing endoderm in zebrafish, Danio rerio. In this study, overexpression of sfrp5 in embryos results in defects in both convergent extension (CE) by inhibition of non-canonical Wnt signaling and defects in dorsoventral patterning by inhibition of Tolloid-mediated proteolysis of the BMP inhibitor Chordin. From 25 hours post fertilization (hpf) to 3 days post fertilization (dpf), both overexpression and knockdown of Sfrp5 decrease the size of the endoderm, significantly reducing liver cell number. At 3 dpf, insulin-positive endodermal cells fail to coalesce into a single pancreatic islet. We show that Sfrp5 inhibits both canonical and non-canonical Wnt signaling during embryonic and endodermal development, resulting in endodermal abnormalities.
Collapse
Affiliation(s)
- Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lili Lu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Prakash C. Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tae-Young Choi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
330
|
Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos C, Patterson C, Klauber-DeMore N. A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther 2013; 12:685-95. [PMID: 23604067 DOI: 10.1158/1535-7163.mct-12-1066] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted frizzled-related protein 2 (SFRP2) is overexpressed in human angiosarcoma and breast cancer and stimulates angiogenesis via activation of the calcineurin/NFATc3 pathway. There are conflicting reports in the literature as to whether SFRP2 is an antagonist or agonist of β-catenin. The aims of these studies were to assess the effects of SFRP2 antagonism on tumor growth and Wnt-signaling and to evaluate whether SFRP2 is a viable therapeutic target. The antiangiogenic and antitumor properties of SFRP2 monoclonal antibody (mAb) were assessed using in vitro proliferation, migration, tube formation assays, and in vivo angiosarcoma and triple-negative breast cancer models. Wnt-signaling was assessed in endothelial and tumor cells treated with SFRP2 mAb using Western blotting. Pharmacokinetic and biodistribution data were generated in tumor-bearing and nontumor-bearing mice. SFRP2 mAb was shown to induce antitumor and antiangiogenic effects in vitro and inhibit activation of β-catenin and nuclear factor of activated T-cells c3 (NFATc3) in endothelial and tumor cells. Treatment of SVR angiosarcoma allografts in nude mice with the SFRP2 mAb decreased tumor volume by 58% compared with control (P = 0.004). Treatment of MDA-MB-231 breast carcinoma xenografts with SFRP2 mAb decreased tumor volume by 52% (P = 0.03) compared with control, whereas bevacizumab did not significantly reduce tumor volume. Pharmacokinetic studies show the antibody is long circulating in the blood and preferentially accumulates in SFRP2-positive tumors. In conclusion, antagonizing SFRP2 inhibits activation of β-catenin and NFATc3 in endothelial and tumor cells and is a novel therapeutic approach for inhibiting angiosarcoma and triple-negative breast cancer.
Collapse
Affiliation(s)
- Emily Fontenot
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Zhang Y, Li Q, Chen H. DNA methylation and histone modifications of Wnt genes by genistein during colon cancer development. Carcinogenesis 2013; 34:1756-63. [PMID: 23598468 DOI: 10.1093/carcin/bgt129] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study aims to elucidate the epigenetic mechanisms by which genistein (GEN) maintains a normal level of WNT genes during colon cancer development. We have reported that soy protein isolate (SPI) and GEN repressed WNT signaling, correlating with the reduction of pre-neoplastic lesions in rat colon. We hypothesized that SPI and GEN induced epigenetic modifications on Sfrp2, Sfrp5 and Wnt5a genes, suppressing their gene expression induced by azoxymethane (AOM), a chemical carcinogen, to the similar level as that of pre-AOM period. We identified that in the post-AOM period, histone H3 acetylation (H3Ac) was downregulated by SPI and GEN at the promoter region of Sfrp2, Sfrp5 and Wnt5a, which paralleled with the reduced binding of RNA polymerase II. Nuclear level of histone deacetylase 3 was enhanced by SPI and GEN. The diets suppressed the trimethylation of histone H3 Lysine 9 (H3K9Me3) and the phosphorylation of histone H3 Serine 10 (H3S10P). Methylation of the specific region of Sfrp2, Sfrp5 and Wnt5a genes was increased by SPI and GEN, which was inversely correlated with the reduction of gene expression. Bisulfite sequencing further confirmed that dietary GEN induced DNA methylation at CpG island of the promoter region of Sfrp5. Importantly, this region includes a fragment that had decreased H3Ac. Here, we present a potential epigenetic mechanism by which dietary GEN controls the responses of WNT genes during carcinogen induction, which involves DNA methylation, histone modifications and their interactions at the regulatory region of gene.
Collapse
Affiliation(s)
- Yukun Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
332
|
Abstract
The Wnt signalling cascades have essential roles in development, growth and homeostasis of joints and the skeleton. Progress in basic research, particularly relating to our understanding of intracellular signalling cascades and fine regulation of receptor activation in the extracellular space, has provided novel insights into the roles of Wnt signalling in chronic arthritis. Cartilage and bone homeostasis require finely tuned Wnt signalling; both activation and suppression of the Wnt-β-catenin cascade can lead to osteoarthritis in rodent models. Genetic associations with the Wnt antagonist encoded by FRZB and the transcriptional regulator encoded by Dot1l with osteoarthritis further corroborate the essential part played by Wnts in the joint. In rheumatoid arthritis, inhibition of Wnt signalling has a role in the persistence of bone erosions, whereas Wnts have been associated with the ankylosing phenotype in spondyloarthritis. Together, these observations identify the Wnt pathway as an attractive target for therapeutic intervention; however, the complexity of the Wnt signalling cascades and the potential secondary effects of drug interventions targeting them highlight the need for further research and suggest that our understanding of this exciting pathway is still in its infancy.
Collapse
|
333
|
Chang CF, Serra R. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate. J Orthop Res 2013; 31:350-6. [PMID: 23034798 PMCID: PMC3538091 DOI: 10.1002/jor.22237] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/23/2012] [Indexed: 02/04/2023]
Abstract
Primary cilia are present on most cell types including chondrocytes. Dysfunction of primary cilia results in pleiotropic symptoms including skeletal dysplasia. Previously, we showed that deletion of Ift88 and subsequent depletion of primary cilia from chondrocytes resulted in disorganized columnar structure and early loss of growth plate. To understand underlying mechanisms whereby Ift88 regulates growth plate function, we compared gene expression profiles in normal and Ift88 deleted growth plates. Pathway analysis indicated that Hedgehog (Hh) signaling was the most affected pathway in mutant growth plate. Expression of the Wnt antagonist, Sfrp5, was also down-regulated. In addition, Sfrp5 was up-regulated by Shh in rib chondrocytes and regulation of Sfrp5 by Shh was attenuated in mutant cells. This result suggests Sfrp5 is a downstream target of Hh and that Ift88 regulates its expression. Sfrp5 is an extracellular antagonist of Wnt signaling. We observed an increase in Wnt/β-catenin signaling specifically in flat columnar cells of the growth plate in Ift88 mutant mice as measured by increased expression of Axin2 and Lef1 as well as increased nuclear localization of β-catenin. We propose that Ift88 and primary cilia regulate expression of Sfrp5 and Wnt signaling pathways in growth plate via regulation of Ihh signaling.
Collapse
Affiliation(s)
| | - Rosa Serra
- Corresponding author: Rosa Serra, Ph.D., Department of Cell Biology, University of Alabama at Birmingham, 1918 University Blvd., 660 MCLM, Birmingham, AL 35294-0005, 205-934-0842,
| |
Collapse
|
334
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
335
|
Kong W, Yang Y, Zhang T, Shi DL, Zhang Y. Characterization of sFRP2-like in amphioxus: insights into the evolutionary conservation of Wnt antagonizing function. Evol Dev 2013; 14:168-77. [PMID: 23017025 DOI: 10.1111/j.1525-142x.2012.00533.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wnt signaling plays a key role in embryonic patterning and morphogenetic movements. The secreted Frizzled-related proteins (sFRPs) antagonize Wnt signaling, but their roles in development are poorly understood. To determine whether function of sFRPs is conserved between amphioxus and vertebrates, we characterized sFRP2-like function in the amphioxus, Branchiostoma belcheri tsingtauense (B. belcheri). As in other species of Branchiostome, in B. belcheri, expression of sFRP2-like is restricted to the mesendoderm during gastrulation and to the anterior mesoderm and endoderm during neurulation. Functional analyses in frog (Xenopus laevis) indicate that amphioxus sFRP2-like potently inhibits both canonical and non-canonical Wnts. Thus, sFRP-2 probably functions in amphioxus embryos to inhibit Wnt signaling anteriorly. Moreover, dorsal overexpression of amphioxus sFRP2-like in Xenopus embryos, like inhibition of Wnt11, blocks gastrulation movements. This implies that sFRP2-like may also modulate Wnt signaling during gastrulation movements in amphioxus.
Collapse
Affiliation(s)
- Weihua Kong
- Institute of Developmental Biology, School of Life Sciences, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|
336
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
337
|
Silva RD, Marie SKN, Uno M, Matushita H, Wakamatsu A, Rosemberg S, Oba-Shinjo SM. CTNNB1, AXIN1 and APC expression analysis of different medulloblastoma variants. Clinics (Sao Paulo) 2013; 68:167-72. [PMID: 23525311 PMCID: PMC3584274 DOI: 10.6061/clinics/2013(02)oa08] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/15/2012] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES We investigated four components of the Wnt signaling pathway in medulloblastomas. Medulloblastoma is the most common type of malignant pediatric brain tumor, and the Wnt signaling pathway has been shown to be activated in this type of tumor. METHODS Sixty-one medulloblastoma cases were analyzed for β-catenin gene (CTNNB1) mutations, β-catenin protein expression via immunostaining and Wnt signaling pathway-related gene expression. All data were correlated with histological subtypes and patient clinical information. RESULTS CTNNB1 sequencing analysis revealed that 11 out of 61 medulloblastomas harbored missense mutations in residues 32, 33, 34 and 37, which are located in exon 3. These mutations alter the glycogen synthase kinase-3β phosphorylation sites, which participate in β-catenin degradation. No significant differences were observed between mutation status and histological medulloblastoma type, patient age and overall or progression-free survival times. Nuclear β-catenin accumulation, which was observed in 27.9% of the cases, was not associated with the histological type, CTNNB1 mutation status or tumor cell dissemination. The relative expression levels of genes that code for proteins involved in the Wnt signaling pathway (CTNNB1, APC, AXIN1 and WNT1) were also analyzed, but no significant correlations were found. In addition, large-cell variant medulloblastomas presented lower relative CTNNB1 expression as compared to the other tumor variants. CONCLUSIONS A small subset of medulloblastomas carry CTNNB1 mutations with consequent nuclear accumulation of β-catenin. The Wnt signaling pathway plays a role in classic, desmoplastic and extensive nodularity medulloblastoma variants but not in large-cell medulloblastomas.
Collapse
Affiliation(s)
- Roseli da Silva
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
338
|
Ishizuya-Oka A, Hasebe T. Establishment of intestinal stem cell niche during amphibian metamorphosis. Curr Top Dev Biol 2013; 103:305-27. [PMID: 23347524 DOI: 10.1016/b978-0-12-385979-2.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the amphibian intestine during metamorphosis, most of the larval epithelial cells undergo apoptosis, whereas a small number of them survive. These cells dedifferentiate into stem cells through interactions with the microenvironment referred to as "stem cell niche" and generate the adult epithelium analogous to the mammalian counterpart. Since all processes of the larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) both in vivo and in vitro, the amphibian intestine provides us a valuable opportunity to study how adult stem cells and their niche are formed during postembryonic development. To address this issue, a number of expression and functional analyses of TH response genes have been intensely performed in the Xenopus laevis over the past two decades, by using organ culture and transgenic techniques. We here review recent progress in this field, focusing on key signaling pathways involved in establishment of the stem cell niche and discuss their evolutionarily conserved roles in the vertebrate intestine.
Collapse
|
339
|
Origin and Development of Hair Cell Orientation in the Inner Ear. INSIGHTS FROM COMPARATIVE HEARING RESEARCH 2013. [DOI: 10.1007/2506_2013_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
340
|
Boudin E, Piters E, Fijalkowski I, Stevenheydens G, Steenackers E, Kuismin O, Moilanen JS, Mortier G, Van Hul W. Mutations in sFRP1 or sFRP4 are not a common cause of craniotubular hyperostosis. Bone 2013; 52:292-5. [PMID: 23044044 DOI: 10.1016/j.bone.2012.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/10/2023]
Abstract
Sclerosing bone dysplasias are a heterogeneous group of rare diseases marked by increased BMD caused by either increased bone formation or by decreased bone resorption. In this study we have focused on craniotubular hyperostoses mainly affecting the long bones and the skull. Currently, there are three causative genes identified namely LRP5, SOST and LRP4. All three genes are involved in the canonical Wnt signalling pathway. These findings support the role of this pathway in regulating bone formation. The secreted Frizzled related proteins (sFRPs) can modulate the Wnt signalling pathway by binding to Wnt ligands or Frizzled receptors. Studies using mice showed that two members of this family, sFRP1 and sFRP4, have an important effect on bone formation. Sfrp1-/- mice have increased BMD values especially after peak BMD was reached. On the contrary, sfrp4 overexpression mice exhibit reduced BMD. Therefore, we selected sFRP1 and sFRP4, two members of the secreted Frizzled related protein (sFRP) family, as candidate genes for mutation analysis in patients with craniotubular hyperostosis. Using Sanger sequencing we screened the exons and intron/exon boundaries of sFRP1 and sFRP4 in 53 patients. In all patients mutations in LRP5, SOST and LRP4 were excluded. We identified two unknown heterozygous variants both in sFRP1. The first variant in sFRP1 is an intronic variant which, according to prediction programs, does not affect the splicing of the gene. The second variant (p.Trp131Arg/-) was identified in a young boy whose healthy mother does not carry the variant. In conclusion, our studies indicate that mutations neither in sFRP1 nor in sFRP4 are a common cause of craniotubular hyperostoses. As a consequence, further research will be necessary to identify the disease causing gene(s) in this group of patients.
Collapse
Affiliation(s)
- Eveline Boudin
- Department of Medical Genetics, University and University Hospital of Antwerp, Edegem, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Cain CJ, Manilay JO. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies. Exp Hematol 2013; 41:3-16. [DOI: 10.1016/j.exphem.2012.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/19/2022]
|
342
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
343
|
Targeting the Wnt/frizzled signaling pathway after myocardial infarction: a new tool in the therapeutic toolbox? Trends Cardiovasc Med 2012; 23:121-7. [PMID: 23266229 DOI: 10.1016/j.tcm.2012.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022]
Abstract
Wnt/frizzled signaling in the adult heart is quiescent under normal conditions; however it is reactivated after myocardial infarction (MI). Any intervention at the various levels of this pathway can modulate its signaling. Several studies have targeted Wnt/frizzled signaling after MI with the majority of them indicating that the inhibition of the pathway is beneficial since it improves infarct healing and prevents heart failure. This suggests that blocking the Wnt/frizzled signaling pathway could be a potential novel therapeutic target to prevent the adverse cardiac remodeling after MI.
Collapse
|
344
|
Spatio-temporal expression pattern of frizzled receptors after contusive spinal cord injury in adult rats. PLoS One 2012; 7:e50793. [PMID: 23251385 PMCID: PMC3519492 DOI: 10.1371/journal.pone.0050793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/24/2012] [Indexed: 02/01/2023] Open
Abstract
Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological spinal cord function and in the cellular and molecular events that characterise its neuropathology.
Collapse
|
345
|
Oh H, Chun CH, Chun JS. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. ACTA ACUST UNITED AC 2012; 64:2568-78. [PMID: 22488261 DOI: 10.1002/art.34481] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Dkk is a family of canonical Wnt antagonists with 4 members (Dkk-1, Dkk-2, Dkk-3, and Dkk-4). We undertook this study to explore the roles of Dkk-1 and Dkk-2 in osteoarthritic (OA) cartilage destruction in mice. METHODS Expression of Dkk and other catabolic factors was determined at the messenger RNA and protein levels in human and mouse OA cartilage. Experimental OA in mice was induced by destabilization of the medial meniscus (DMM) or by intraarticular injection of Epas1 adenovirus (AdEPAS-1). The role of Dkk in OA pathogenesis was examined by intraarticular injection of AdDkk-1 or by using chondrocyte-specific Dkk1 (Col2a1-Dkk1)-transgenic mice and Dkk2 (Col2a1-Dkk2)-transgenic mice. Primary culture mouse chondrocytes were also treated with recombinant Dkk proteins. RESULTS We found opposite patterns of Dkk1 and Dkk2 expression in human and mouse experimental OA cartilage: Dkk1 was up-regulated and Dkk2 was down-regulated. Overexpression of Dkk1 by intraarticular injection of AdDkk-1 significantly inhibited DMM-induced experimental OA. DMM-induced OA was also significantly inhibited in Col2a1-Dkk1-transgenic mice compared with their wild-type littermates. However, Col2a1-Dkk2-transgenic mice showed no significant difference in OA pathogenesis. Wnt-3a, which activates the canonical Wnt pathway, induced Mmp13 and Adamts4 expression in primary culture chondrocytes, an effect that was significantly inhibited by Dkk-1 pretreatment or Dkk1 overexpression. CONCLUSION Our findings indicate that expression of Dkk1, but not Dkk2, in chondrocytes inhibits OA cartilage destruction. The protective effect of Dkk-1 appears to be associated with its capacity to inhibit Wnt-mediated expression of catabolic factors, such as Mmp13, providing evidence that Dkk-1 might serve as a therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Hwanhee Oh
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | |
Collapse
|
346
|
Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA, Hannoush RN, Virshup DM. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res 2012. [PMID: 23188502 DOI: 10.1158/0008-5472.can-12-2258] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porcupine (PORCN) is a membrane bound O-acyltransferase that is required for Wnt palmitoylation, secretion, and biologic activity. All evaluable human Wnts require PORCN for their activity, suggesting that inhibition of PORCN could be an effective treatment for cancers dependent on excess Wnt activity. In this study, we evaluated the PORCN inhibitor Wnt-C59 (C59), to determine its activity and toxicity in cultured cells and mice. C59 inhibits PORCN activity in vitro at nanomolar concentrations, as assessed by inhibition of Wnt palmitoylation, Wnt interaction with the carrier protein Wntless/WLS, Wnt secretion, and Wnt activation of β-catenin reporter activity. In mice, C59 displayed good bioavailability, as once daily oral administration was sufficient to maintain blood concentrations well above the IC(50). C59 blocked progression of mammary tumors in MMTV-WNT1 transgenic mice while downregulating Wnt/β-catenin target genes. Surprisingly, mice exhibit no apparent toxicity, such that at a therapeutically effective dose there were no pathologic changes in the gut or other tissues. These results offer preclinical proof-of-concept that inhibiting mammalian Wnts can be achieved by targeting PORCN with small-molecule inhibitors such as C59, and that this is a safe and feasible strategy in vivo.
Collapse
Affiliation(s)
- Kyle David Proffitt
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
347
|
Skelton WP, Skelton M, Vesely DL. Cardiac hormones are potent inhibitors of secreted frizzled-related protein-3 in human cancer cells. Exp Ther Med 2012; 5:475-478. [PMID: 23408665 PMCID: PMC3570200 DOI: 10.3892/etm.2012.806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022] Open
Abstract
Secreted frizzled-related proteins (sFRPs) are secreted glycoproteins involved in neoplastic growth. Four hormones synthesized in the heart, namely vessel dilator, atrial natriuretic peptide (ANP), kaliuretic peptide (KP) and long-acting natriuretic peptide (LANP), have anticancer effects both in vitro and in vivo. These heart hormones were evaluated for their ability to inhibit sFRP-3, which is associated with tumor invasiveness, in human pancreatic cancer, colorectal cancer and renal adenocarcinoma cell lines. Vessel dilator, KP, ANP and LANP maximally reduced the concentration of sFRP-3 by 83%, 83%, 84% and 83%, respectively (each at P<0.0001), in the human colorectal adenocarcinoma cells. In the human pancreatic carcinoma cells, the concentration of sFRP-3 was maximally reduced by 77%, 77%, 77% and 78% (each at P<0.0001) secondary to treatment with vessel dilator, KP, ANP and LANP, respectively. In the human renal adenocarcinoma cells, the sFRP-3 was maximally reduced by vessel dilator, KP, ANP and LANP by 68%, 66%, 68% and 66% (each at P<0.0001), respectively. The results indicate that these four cardiac hormones are significant inhibitors (up to 84%) of sFRP-3 in a variety of human cancer cells. Furthermore, these data suggest that the metabolic targeting of sFRP-3 by the cardiac hormones contributes to their anti-cancer mechanism(s) of action.
Collapse
Affiliation(s)
- William P Skelton
- Departments of Medicine, Molecular Pharmacology and Physiology, James A. Haley Veterans Administration Medical Center and University of South Florida Morsani Health Sciences Center, Tampa, FL 33612, USA
| | | | | |
Collapse
|
348
|
Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, Krus U, Taneera J, Blom AM, Lyssenko V, Esguerra JLS, Hansson O, Eliasson L, Derry J, Zhang E, Wollheim CB, Groop L, Renström E, Rosengren AH. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 2012; 16:625-33. [PMID: 23140642 DOI: 10.1016/j.cmet.2012.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/10/2012] [Accepted: 10/22/2012] [Indexed: 12/12/2022]
Abstract
A plethora of candidate genes have been identified for complex polygenic disorders, but the underlying disease mechanisms remain largely unknown. We explored the pathophysiology of type 2 diabetes (T2D) by analyzing global gene expression in human pancreatic islets. A group of coexpressed genes (module), enriched for interleukin-1-related genes, was associated with T2D and reduced insulin secretion. One of the module genes that was highly overexpressed in islets from T2D patients is SFRP4, which encodes secreted frizzled-related protein 4. SFRP4 expression correlated with inflammatory markers, and its release from islets was stimulated by interleukin-1β. Elevated systemic SFRP4 caused reduced glucose tolerance through decreased islet expression of Ca(2+) channels and suppressed insulin exocytosis. SFRP4 thus provides a link between islet inflammation and impaired insulin secretion. Moreover, the protein was increased in serum from T2D patients several years before the diagnosis, suggesting that SFRP4 could be a potential biomarker for islet dysfunction in T2D.
Collapse
Affiliation(s)
- Taman Mahdi
- Lund University Diabetes Centre, Lund University, 20502 Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Wong EWP, Lee WM, Cheng CY. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. FASEB J 2012; 27:464-77. [PMID: 23073828 DOI: 10.1096/fj.12-212514] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8-19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr(397) and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr(397) and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr(397), leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of sFRP1 in regulating spermiation via its effects on the FAK signaling and retention of nectin-3 adhesion complex at the apical ES.
Collapse
Affiliation(s)
- Elissa W P Wong
- Center for Biomedical Research, Population Council, Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
350
|
Saran U, Arfuso F, Zeps N, Dharmarajan A. Secreted frizzled-related protein 4 expression is positively associated with responsiveness to cisplatin of ovarian cancer cell lines in vitro and with lower tumour grade in mucinous ovarian cancers. BMC Cell Biol 2012; 13:25. [PMID: 23039795 PMCID: PMC3521476 DOI: 10.1186/1471-2121-13-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/01/2012] [Indexed: 12/29/2022] Open
Abstract
Background Ovarian cancer is one of the most lethal malignancies in women, as it is frequently detected at an advanced stage, and cancers often become refractory to chemotherapy. Evidence suggests that dysregulation of pro-apoptotic genes plays a key role in the onset of chemoresistance. The secreted Frizzled-Related Protein (sFRP) family is pro-apoptotic and also a negative modulator of the Wnt signalling cascade. Studies have demonstrated that the re-expression of sFRPs, in particular sFRP4, is associated with a better prognosis, and that experimentally induced expression results in cell death. Results In vitro experimental models determined that sFRP4 was differentially expressed in chemosensitive (A2780) and chemoresistant (A2780 ADR and A2780 Cis) ovarian cell lines, with chemosensitive cells expressing significantly higher levels of sFRP4. Transfection of the chemoresistant cell lines with sFRP4 significantly increased their sensitivity to chemotherapy. Conversely, silencing of sFRP4 expression in the chemosensitive cell line resulted in a corresponding increase in chemoresistance. Comparison of sFRP4 expression in tumour biopsies revealed a positive trend between sFRP4 expression and tumour grade, with mucinous cyst adenocarcinomas exhibiting significantly decreased sFRP4 levels compared to mucinous borderline tumours. Conclusions This study indicates a role for sFRP4 as a predictive marker of chemosensitivity in ovarian cancer and suggests that this pathway may be worth exploiting for novel therapies.
Collapse
Affiliation(s)
- Uttara Saran
- School of Anatomy and Human Biology, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Crawley, Western Australia
| | | | | | | |
Collapse
|