301
|
Jin M, Zhang H, Zhao K, Xu C, Shao D, Huang Q, Shi J, Yang H. Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness. Front Physiol 2018; 9:729. [PMID: 29962963 PMCID: PMC6011188 DOI: 10.3389/fphys.2018.00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Exposure to microgravity or weightlessness leads to various adaptive and pathophysiological alterations in digestive structures and physiology. The current study was carried out to investigate responses of intestinal mucosal barrier functions to simulated weightlessness, by using the hindlimb unloading rats model. Compared with normal controls, simulated weightlessness damaged the intestinal villi and structural integrity of tight junctions, up-regulated the expression of pro-apoptotic protein Bax while down-regulated the expression of anti-apoptotic protein Bcl-2, thus improved the intestinal permeability. It could also influence intestinal microbiota composition with the expansion of Bacteroidetes and decrease of Firmicutes. The predicted metagenomic analysis emphasized significant dysbiosis associated differences in genes involved in membrane transport, cofactors and vitamins metabolism, energy metabolism, and genetic information processing. Moreover, simulated weightlessness could modify the intestinal immune status characterized by the increase of proinflammatory cytokines, decrease of secretory immunoglobulin A, and activation of TLR4/MyD88/NF-κB signaling pathway in ileum. These results indicate the simulated weightlessness disrupts intestinal mucosal barrier functions in animal model. The data also emphasize the necessity of monitoring and regulating astronauts’ intestinal health during real space flights to prevent breakdowns in intestinal homeostasis of crewmembers.
Collapse
Affiliation(s)
- Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
302
|
Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, Wang L, Alnouti Y, Fouts DE, Stärkel P, Loomba R, Coulter S, Liddle C, Yu RT, Ling L, Rossi SJ, DePaoli AM, Downes M, Evans RM, Brenner DA, Schnabl B. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67:2150-2166. [PMID: 29159825 PMCID: PMC5962369 DOI: 10.1002/hep.29676] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Alcoholic liver disease (ALD) is associated with changes in the intestinal microbiota. Functional consequences of alcohol-associated dysbiosis are largely unknown. The aim of this study was to identify a mechanism of how changes in the intestinal microbiota contribute to ALD. Metagenomic sequencing of intestinal contents demonstrated that chronic ethanol feeding in mice is associated with an over-representation of bacterial genomic DNA encoding choloylglycine hydrolase, which deconjugates bile acids in the intestine. Bile acid analysis confirmed an increased amount of unconjugated bile acids in the small intestine after ethanol administration. Mediated by a lower farnesoid X receptor (FXR) activity in enterocytes, lower fibroblast growth factor (FGF)-15 protein secretion was associated with increased hepatic cytochrome P450 enzyme (Cyp)-7a1 protein expression and circulating bile acid levels. Depletion of the commensal microbiota with nonabsorbable antibiotics attenuated hepatic Cyp7a1 expression and reduced ALD in mice, suggesting that increased bile acid synthesis is dependent on gut bacteria. To restore intestinal FXR activity, we used a pharmacological intervention with the intestine-restricted FXR agonist fexaramine, which protected mice from ethanol-induced liver injury. Whereas bile acid metabolism was only minimally altered, fexaramine treatment stabilized the gut barrier and significantly modulated hepatic genes involved in lipid metabolism. To link the beneficial metabolic effect to FGF15, a nontumorigenic FGF19 variant-a human FGF15 ortholog-was overexpressed in mice using adeno-associated viruses. FGF19 treatment showed similarly beneficial metabolic effects and ameliorated alcoholic steatohepatitis. CONCLUSION Taken together, alcohol-associated metagenomic changes result in alterations of bile acid profiles. Targeted interventions improve bile acid-FXR-FGF15 signaling by modulation of hepatic Cyp7a1 and lipid metabolism, and reduce ethanol-induced liver disease in mice. (Hepatology 2018;67:2150-2166).
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Katrin Hochrath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angela Horvath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz Austria
| | - Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lei Ling
- NGM Biopharmaceuticals, Inc., South San Francisco, CA, USA
| | | | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
303
|
Cassard AM, Ciocan D. Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol 2018; 24:100-107. [PMID: 29268595 PMCID: PMC6038939 DOI: 10.3350/cmh.2017.0067] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. Only 20% of heavy alcohol consumers develop alcoholic liver cirrhosis. The intestinal microbiota (IM) has been recently identified as a key player in the severity of liver injury in ALD. Common features of ALD include a decrease of gut epithelial tight junction protein expression, mucin production, and antimicrobial peptide levels. This disruption of the gut barrier, which is a prerequisite for ALD, leads to the passage of bacterial products into the blood stream (endotoxemia). Moreover, metabolites produced by bacteria, such as short chain fatty acids, volatile organic compounds (VOS), and bile acids (BA), are involved in ALD pathology. Probiotic treatment, IM transplantation, or the consumption of dietary fiber, such as pectin, which all alter the ratio of bacterial species, have been shown to improve liver injury in animal models of ALD and to be associated with an improvement in gut barrier function. Although the connections between the microbiota and the host in ALD are well established, the underlying mechanisms are still an active area of research. Targeting the microbiome through the use of prebiotic, probiotic, and postbiotic modalities could be an attractive new approach to manage ALD.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - Dragos Ciocan
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
304
|
Probiotic Lactobacillus Paracasei Expressing a Nucleic Acid-Hydrolyzing Minibody (3D8 Scfv) Enhances Probiotic Activities in Mice Intestine as Revealed by Metagenomic Analyses. Genes (Basel) 2018; 9:genes9060276. [PMID: 29844265 PMCID: PMC6027128 DOI: 10.3390/genes9060276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
Probiotics are well known for their beneficial effects for animals, including humans and livestock. Here, we tested the probiotic activity of Lactobacillus paracasei expressing 3D8 scFv, a nucleic acid-hydrolyzing mini-antibody, in mice intestine. A total of 18 fecal samples derived from three different conditions at two different time points were subjected to high-throughput 16S ribosomal RNA (rRNA) metagenomic analyses. Bioinformatic analyses identified an average of 290 operational taxonomic units. After administration of L. paracasei, populations of the probiotics L. paracasei, Lactobacillus reuteri, and Pediococcus acidilactici increased, whereas the population of harmful bacteria such as Helicobacter species decreased. Furthermore, continuous administration of L. paracasei resulted in L. paracasei emerging as the dominant probiotic after competition with other existing probiotics. Expression of 3D8 scFv protein specifically increased the population of P. acidilactici, which is another probiotic. In summary, our results showed that L. paracasei expressing 3D8 scFv protein enhanced probiotic activity in mice intestine with no observable side effects. Thus, the system developed in this study may be a good tool for the expression of recombinant protein using probiotics.
Collapse
|
305
|
Nie Y, Luo F, Lin Q. Dietary nutrition and gut microflora: A promising target for treating diseases. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
306
|
Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, Ward DV, Grabherr F, Gerner RR, Pfister A, Enrich B, Ciocan D, Macheiner S, Mayr L, Drach M, Moser P, Moschen AR, Perlemuter G, Szabo G, Cassard AM, Tilg H. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018; 67:891-901. [PMID: 28550049 DOI: 10.1136/gutjnl-2016-313432] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Alcoholic liver disease (ALD) is a global health problem with limited therapeutic options. Intestinal barrier integrity and the microbiota modulate susceptibility to ALD. Akkermansia muciniphila, a Gram-negative intestinal commensal, promotes barrier function partly by enhancing mucus production. The aim of this study was to investigate microbial alterations in ALD and to define the impact of A. muciniphila administration on the course of ALD. DESIGN The intestinal microbiota was analysed in an unbiased approach by 16S ribosomal DNA (rDNA) sequencing in a Lieber-DeCarli ALD mouse model, and faecal A. muciniphila abundance was determined in a cohort of patients with alcoholic steatohepatitis (ASH). The impact of A. muciniphila on the development of experimental acute and chronic ALD was determined in a preventive and therapeutic setting, and intestinal barrier integrity was analysed. RESULTS Patients with ASH exhibited a decreased abundance of faecal A. muciniphila when compared with healthy controls that indirectly correlated with hepatic disease severity. Ethanol feeding of wild-type mice resulted in a prominent decline in A. muciniphila abundance. Ethanol-induced intestinal A. muciniphila depletion could be restored by oral A. muciniphila supplementation. Furthermore, A. muciniphila administration when performed in a preventive setting decreased hepatic injury, steatosis and neutrophil infiltration. A. muciniphila also protected against ethanol-induced gut leakiness, enhanced mucus thickness and tight-junction expression. In already established ALD, A. muciniphila used therapeutically ameliorated hepatic injury and neutrophil infiltration. CONCLUSION Ethanol exposure diminishes intestinal A. muciniphila abundance in both mice and humans and can be recovered in experimental ALD by oral supplementation. A. muciniphila promotes intestinal barrier integrity and ameliorates experimental ALD. Our data suggest that patients with ALD might benefit from A. muciniphila supplementation.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Laura Wrzosek
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Doyle V Ward
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Dragos Ciocan
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France.,Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Sophie Macheiner
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Drach
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Patrizia Moser
- Institute of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Gabriel Perlemuter
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France.,Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anne Marie Cassard
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France.,Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
307
|
Fan X, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Freedman ND, Alekseyenko AV, Wu J, Yang L, Pei Z, Hayes RB, Ahn J. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. MICROBIOME 2018; 6:59. [PMID: 29685174 PMCID: PMC5914044 DOI: 10.1186/s40168-018-0448-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Dysbiosis of the oral microbiome can lead to local oral disease and potentially to cancers of the head, neck, and digestive tract. However, little is known regarding exogenous factors contributing to such microbial imbalance. RESULTS We examined the impact of alcohol consumption on the oral microbiome in a cross-sectional study of 1044 US adults. Bacterial 16S rRNA genes from oral wash samples were amplified, sequenced, and assigned to bacterial taxa. We tested the association of alcohol drinking level (non-drinker, moderate drinker, or heavy drinker) and type (liquor, beer, or wine) with overall microbial composition and individual taxon abundance. The diversity of oral microbiota and overall bacterial profiles differed between heavy drinkers and non-drinkers (α-diversity richness p = 0.0059 and β-diversity unweighted UniFrac p = 0.0036), and abundance of commensal order Lactobacillales tends to be decreased with higher alcohol consumption (fold changes = 0.89 and 0.94 for heavy and moderate drinkers, p trend = 0.005 [q = 0.064]). Additionally, certain genera were enriched in subjects with higher alcohol consumption, including Actinomyces, Leptotrichia, Cardiobacterium, and Neisseria; some of these genera contain oral pathogens, while Neisseria can synthesize the human carcinogen acetaldehyde from ethanol. Wine drinkers may differ from non-drinkers in microbial diversity and profiles (α-diversity richness p = 0.048 and β-diversity unweighted UniFrac p = 0.059) after controlling for drinking amount, while liquor and beer drinkers did not. All significant differences between drinkers and non-drinkers remained after exclusion of current smokers. CONCLUSIONS Our results, from a large human study of alcohol consumption and the oral microbiome, indicate that alcohol consumption, and heavy drinking in particular, may influence the oral microbiome composition. These findings may have implications for better understanding the potential role that oral bacteria play in alcohol-related diseases.
Collapse
Affiliation(s)
- Xiaozhou Fan
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
| | - Brandilyn A. Peters
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA 30303 USA
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA 30303 USA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Alexander V. Alekseyenko
- Biomedical Informatics Center, Departments of Public Health Sciences and Oral Health Sciences, Program for Human Microbiome Research, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jing Wu
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
| | - Liying Yang
- Department of Medicine, NYU School of Medicine, 423 East 23rd St, New York, NY 10010 USA
| | - Zhiheng Pei
- NYU Laura and Isaac Perlmutter Cancer Institute, 522 First Avenue, New York, NY 10016 USA
- Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016 USA
- Department of Veterans Affairs New York Harbor Healthcare System, New York, NY 10010 USA
| | - Richard B. Hayes
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
- NYU Laura and Isaac Perlmutter Cancer Institute, 522 First Avenue, New York, NY 10016 USA
| | - Jiyoung Ahn
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
- NYU Laura and Isaac Perlmutter Cancer Institute, 522 First Avenue, New York, NY 10016 USA
| |
Collapse
|
308
|
Ji Y, Park S, Park H, Hwang E, Shin H, Pot B, Holzapfel WH. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model. Front Microbiol 2018; 9:710. [PMID: 29692770 PMCID: PMC5902571 DOI: 10.3389/fmicb.2018.00710] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.
Collapse
Affiliation(s)
- Yosep Ji
- Graduate School of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| | - Soyoung Park
- Graduate School of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| | - Haryung Park
- Graduate School of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| | - Eunchong Hwang
- Graduate School of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| | - Hyeunkil Shin
- School of Life Sciences, Handong Global University, Pohang, South Korea
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wilhelm H Holzapfel
- Graduate School of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| |
Collapse
|
309
|
Sun L, Xiu M, Wang S, Brigstock DR, Li H, Qu L, Gao R. Lipopolysaccharide enhances TGF-β1 signalling pathway and rat pancreatic fibrosis. J Cell Mol Med 2018; 22:2346-2356. [PMID: 29424488 PMCID: PMC5867168 DOI: 10.1111/jcmm.13526] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor-beta1 (TGF-β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF-β1 signalling and pancreatic fibrosis. Sprague-Dawley rats fed with a Lieber-DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP-2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF-β1 which was paralleled by an increased number of TLR4-positive or TGF-β1-positive Mφs or PSCs in ALC-fed rats. In vitro, TLR4 or TGF-β1 production in Mφs or RP-2 cells was up-regulated by LPS. LPS alone or in combination with TGF-β1 significantly increased type I collagen and α-SMA production and Smad2 and 3 phosphorylation in serum-starved RP-2 cells. TGF-β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si-TLR4 RNA or by inhibitors of MyD88/NF-kB. Additionally, knockdown of Bambi with Si-Bambi RNA significantly increased TGF-β1 signalling in RP-2 cells. These findings indicate that LPS increases TGF-β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF-β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF-kB activation.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Ming Xiu
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Shuhua Wang
- Department of Surgical GastroenterologyFirst Hospital of Jilin UniversityChangchunChina
| | | | - Hongyan Li
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Limei Qu
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic MedicineFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
310
|
Shen TCD, Pyrsopoulos N, Rustgi VK. Microbiota and the liver. Liver Transpl 2018; 24:539-550. [PMID: 29316191 DOI: 10.1002/lt.25008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome outnumbers the human genome by 150-fold and plays important roles in metabolism, immune system education, tolerance development, and prevention of pathogen colonization. Dysbiosis has been associated with nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD) as well as cirrhosis and complications. This article provides an overview of this relationship. Liver Transplantation 24 539-550 2018 AASLD.
Collapse
Affiliation(s)
- Ting-Chin David Shen
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nikolaos Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ
| | - Vinod K Rustgi
- Division of Gastroenterology and Hepatology, Robert Wood Johnson School of Medicine, Rutgers Health, New Brunswick, NJ
| |
Collapse
|
311
|
Puri P, Liangpunsakul S, Christensen JE, Shah VH, Kamath PS, Gores GJ, Walker S, Comerford M, Katz B, Borst A, Yu Q, Kumar DP, Mirshahi F, Radaeva S, Chalasani NP, Crabb DW, Sanyal AJ, for the TREAT Consortium. The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology 2018; 67:1284-1302. [PMID: 29083504 PMCID: PMC5867221 DOI: 10.1002/hep.29623] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Intestinal dysbiosis is implicated in alcoholic hepatitis (AH). However, changes in the circulating microbiome, its association with the presence and severity of AH, and its functional relevance in AH is unknown. Qualitative and quantitative assessment of changes in the circulating microbiome were performed by sequencing bacterial DNA in subjects with moderate AH (MAH) (n = 18) or severe AH (SAH) (n = 19). These data were compared with heavy drinking controls (HDCs) without obvious liver disease (n = 19) and non-alcohol-consuming controls (NACs, n = 20). The data were related to endotoxin levels and markers of monocyte activation. Linear discriminant analysis effect size (LEfSe) analysis, inferred metagenomics, and predictive functional analysis using PICRUSt were performed. There was a significant increase in 16S copies/ng DNA both in MAH (P < 0.01) and SAH (P < 0.001) subjects. Compared with NACs, the relative abundance of phylum Bacteroidetes was significantly decreased in HDCs, MAH, and SAH (P < 0.001). In contrast, all alcohol-consuming groups had enrichment with Fusobacteria; this was greatest for HDCs and decreased progressively in MAH and SAH. Subjects with SAH had significantly higher endotoxemia (P = 0.01). Compared with alcohol-consuming groups, predictive functional metagenomics indicated an enrichment of bacteria with genes related to methanogenesis and denitrification. Furthermore, both HDCs and SAH showed activation of a type III secretion system that has been linked to gram-negative bacterial virulence. Metagenomics in SAH versus NACs predicted increased isoprenoid synthesis via mevalonate and anthranilate degradation, known modulators of gram-positive bacterial growth and biofilm production, respectively. CONCLUSION Heavy alcohol consumption appears to be the primary driver of changes in the circulating microbiome associated with a shift in its inferred metabolic functions. (Hepatology 2018;67:1284-1302).
Collapse
Affiliation(s)
- Puneet Puri
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Jeffrey E. Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432 Toulouse Cedex 4, France
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Patrick S. Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Susan Walker
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Megan Comerford
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Barry Katz
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Andrew Borst
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Qigui Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Divya P. Kumar
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - David W. Crabb
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
- Eskenazi Health, Indianapolis, IN
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA
| | | |
Collapse
|
312
|
Ely PH. Is psoriasis a bowel disease? Successful treatment with bile acids and bioflavonoids suggests it is. Clin Dermatol 2018; 36:376-389. [PMID: 29908580 DOI: 10.1016/j.clindermatol.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut is the largest lymphoid organ in the body. The human microbiome is composed of trillions of bacteria. The DNA of these bacteria dwarfs the human genome. Diet and ethanol can cause rapid shifts in the number and types of bacteria in the gut. The psoriatic microbiome is similar to that seen in alcoholics; there is a decrease in bacterial diversity and overgrowth of bacteria in the small bowel. Psoriatics often have liver disease and deficiencies in bile acids. Psoriasis is a disease characterized by a leaky gut. All of the comorbidities of this disease are due to systemic endotoxemia. Bacterial peptidoglycans absorbed from the gut have direct toxic effects on the liver and skin. Their absorption, as well as endotoxin absorption, must be eliminated to treat psoriasis successfully. Endotoxin absorption is markedly increased by ethanol and peppers. Bioflavonoids, such as quercetin and citrus bioflavonoids, prevent this absorption. Bile acids, given orally, break up endotoxin in the intestinal lumen. Pathogens, including Helicobacter pylori and Streptococcus pyogenes, must be eliminated with antimicrobial therapy for any treatment to work. A complete protocol for curing psoriasis is provided.
Collapse
Affiliation(s)
- P Haines Ely
- VA North California Health Care System, Mather, CA; University of California Davis School of Medicine, Sacramento, CA; Department of Dermatology, Sacramento VA Medical Center, Mather, CA.
| |
Collapse
|
313
|
Kharbanda KK, Ronis MJJ, Shearn CT, Petersen DR, Zakhari S, Warner DR, Feldstein AE, McClain CJ, Kirpich IA. Role of Nutrition in Alcoholic Liver Disease: Summary of the Symposium at the ESBRA 2017 Congress. Biomolecules 2018; 8:16. [PMID: 29587455 PMCID: PMC6022870 DOI: 10.3390/biom8020016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
The symposium, "Role of Nutrition in Alcoholic Liver Disease", was held at the European Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece. The goal of the symposium was to highlight recent advances and developments in the field of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of alcoholic liver disease (ALD). The following is a summary of key research presented at this session. The speakers discussed the role of dietary fats and carbohydrates in the development and progression of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Martin J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA.
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA.
| | - Samir Zakhari
- Distilled Spirits Council, Washington, DC 20005, USA.
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Ariel E Feldstein
- Division of Gastroenterology, Department of Pediatrics, University of California, San Diego, CA 92037, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 402202, USA;.
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA.
- Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 402202, USA.
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 402202, USA;.
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 402202, USA.
| |
Collapse
|
314
|
Liang D, Leung RKK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog 2018; 10:3. [PMID: 29416567 PMCID: PMC5785832 DOI: 10.1186/s13099-018-0230-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
The commensal, symbiotic, and pathogenic microbial community which resides inside our body and on our skin (the human microbiome) can perturb host energy metabolism and immunity, and thus significantly influence development of a variety of human diseases. Therefore, the field has attracted unprecedented attention in the last decade. Although a large amount of data has been generated, there are still many unanswered questions and no universal agreements on how microbiome affects human health have been agreed upon. Consequently, this review was written to provide an updated overview of the rapidly expanding field, with a focus on revealing knowledge gaps and research opportunities. Specifically, the review covered animal physiology, optimal microbiome standard, health intervention by manipulating microbiome, knowledge base building by text mining, microbiota community structure and its implications in human diseases and health monitoring by analyzing microbiome in the blood. The review should enhance interest in conducting novel microbiota investigations that will further improve health and therapy.
Collapse
Affiliation(s)
- Dachao Liang
- Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-omics Hong Kong, Hong Kong SAR, China
| | - Ross Ka-Kit Leung
- 2State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Wenda Guan
- 2State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - William W Au
- 3University of Medicine and Pharmacy, Tirgu Mures, Romania.,4Shantou University Medical College, Shantou, China
| |
Collapse
|
315
|
Intestinal dysbiosis and permeability: the yin and yang in alcohol dependence and alcoholic liver disease. Clin Sci (Lond) 2018; 132:199-212. [PMID: 29352076 DOI: 10.1042/cs20171055] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Alcohol dependence and alcoholic liver disease represent a major public health problem with substantial morbidity and mortality. By yet incompletely understood mechanisms, chronic alcohol abuse is associated with increased intestinal permeability and alterations of the gut microbiota composition, allowing bacterial components, bacteria, and metabolites to reach the portal and the systemic circulation. These gut-derived bacterial products are recognized by immune cells circulating in the blood or residing in remote organs such as the liver leading to the release of pro-inflammatory cytokines which are considered important mediators of the liver-gut-brain communication. Although circulating cytokines are likely not the sole factors involved, they can induce liver inflammation/damage and reach the central nervous system where they favor neuroinflammation which is associated with change in mood, cognition, and drinking behavior. In this review, the authors focus on the current evidence describing the changes that occur in the intestinal microbiota with chronic alcohol consumption in conjunction with intestinal barrier breakdown and inflammatory changes sustaining the concept of a gut-liver-brain axis in the pathophysiology of alcohol dependence and alcoholic liver disease.
Collapse
|
316
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. BUGS AS DRUGS 2018:187-212. [DOI: 10.1128/9781555819705.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouyen-Josas France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère; Clamart France
| |
Collapse
|
317
|
Abstract
Immunoglobulin A (IgA) is a major immunoglobulin isotype in the gut and plays a role in maintenance of gut homeostasis. Secretory IgA (SIgA) has multiple functions in the gut, such as to regulate microbiota composition, to protect intestinal epithelium from pathogenic microorganisms, and to help for immune-system development. The liver is the front-line organ that receives gut-derived products through the portal vein, implying that the liver could be severely affected by a disrupted intestinal homeostasis. Indeed, some liver diseases like alcoholic liver disease are associated with an altered composition of gut microbiota and increased blood endotoxin levels. Therefore, deficiency of SIgA function appears as a significant factor for the pathogenesis of liver diseases associated with altered gut microbiome. In this review, we describe SIgA functions on the gut microbiome and discuss the role of IgA for liver diseases, especially alcoholic liver disease and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102 Japan
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, MC0063, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 USA ,Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161 USA
| |
Collapse
|
318
|
Li H, Xiu M, Wang S, Brigstock DR, Sun L, Qu L, Gao R. Role of Gut-Derived Endotoxin on Type I Collagen Production in the Rat Pancreas After Chronic Alcohol Exposure. Alcohol Clin Exp Res 2017; 42:306-314. [PMID: 29121396 DOI: 10.1111/acer.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Hongyan Li
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Ming Xiu
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Shuhua Wang
- Department of Surgical Gastroenterolog; First Hospital of Jilin University; Changchun China
| | | | - Li Sun
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Limei Qu
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| | - Runping Gao
- Department of Hepatic, Biliary Pancreatic Medicine; First Hospital of Jilin University; Changchun China
| |
Collapse
|
319
|
Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. LIVER RESEARCH 2017; 1:197-207. [PMID: 30034913 PMCID: PMC6051712 DOI: 10.1016/j.livres.2017.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol consumption remains one of the predominant causes of liver disease and liver-related death worldwide. Intriguingly, dysregulation of the gut barrier is a key factor promoting the pathogenesis of alcoholic liver disease (ALD). A functional gut barrier, which consists of a mucus layer, an intact epithelial monolayer and mucosal immune cells, supports nutrient absorption and prevents bacterial penetration. Compromised gut barrier function is associated with the progression of ALD. Indeed, alcohol consumption disrupts the gut barrier, increases gut permeability, and induces bacterial translocation both in ALD patients and in experimental models with ALD. Moreover, alcohol consumption also causes enteric dysbiosis with both numerical and proportional perturbations. Here, we review and discuss mechanisms of alcohol-induced gut barrier dysfunction to better understand the contribution of the gut-liver axis to the pathogenesis of ALD. Unfortunately, there is no effectual Food and Drug Administration-approved treatment for any stage of ALD. Therefore, we conclude with a discussion of potential strategies aimed at restoring the gut barrier in ALD. The principle behind antibiotics, prebiotics, probiotics and fecal microbiota transplants is to restore microbial symbiosis and subsequently gut barrier function. Nutrient-based treatments, such as dietary supplementation with zinc, niacin or fatty acids, have been shown to regulate tight junction expression, reduce intestinal inflammation, and prevent endotoxemia as well as liver injury caused by alcohol in experimental settings. Interestingly, saturated fatty acids may also directly control the gut microbiome. In summary, clinical and experimental studies highlight the significance and efficacy of the gut barrier in treating ALD.
Collapse
Affiliation(s)
- Zhanxiang Zhou
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
| |
Collapse
|
320
|
Bajaj JS, Kakiyama G, Zhao D, Takei H, Fagan A, Hylemon P, Zhou H, Pandak WM, Nittono H, Fiehn O, Salzman N, Holtz M, Simpson P, Gavis EA, Heuman DM, Liu R, Kang DJ, Sikaroodi M, Gillevet PM. Continued Alcohol Misuse in Human Cirrhosis is Associated with an Impaired Gut-Liver Axis. Alcohol Clin Exp Res 2017; 41:1857-1865. [PMID: 28925102 DOI: 10.1111/acer.13498] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cirrhosis and alcohol can independently affect the gut-liver axis with systemic inflammation. However, their concurrent impact in humans is unclear. METHODS Our aim was to determine the effect of continued alcohol misuse on the gut-liver axis in cirrhotic patients. Age- and MELD-balanced cirrhotic patients who were currently drinking (Alc) or abstinent (NAlc) and healthy controls underwent serum and stool collection. A subset underwent upper endoscopy and colonoscopy for biopsies and duodenal fluid collection. The groups were compared regarding (i) inflammation/intestinal barrier: systemic tumor necrosis factor levels, intestinal inflammatory cytokine (duodenum, ileum, sigmoid), and ileal antimicrobial peptide expression; (ii) microbiota composition: 16SrRNA sequencing of duodenal, ileal, and colonic mucosal and fecal microbiota; and (iii) microbial functionality: duodenal fluid and fecal bile acid (BA) profile (conjugation and dehydroxylation status), intestinal BA transporter (ASBT, FXR, FGF-19, SHP) expression, and stool metabolomics using gas chromatography/mass spectrometry. RESULTS Alc patients demonstrated a significant duodenal, ileal, and colonic mucosal and fecal dysbiosis, compared to NAlc and controls with lower autochthonous bacterial taxa. BA profile skewed toward a potentially toxic profile (higher secondary and glycine-conjugated BAs) in duodenal fluid and stool in Alc patients. Duodenal fluid demonstrated conjugated secondary BAs only in the Alc group. There was a greater expression of all ileal BA transporters in Alc patients. This group also showed higher endotoxemia, systemic and ileal inflammatory expression, and lower amino acid and bioenergetic-associated metabolites, without change in antimicrobial peptide expression. CONCLUSIONS Despite cirrhosis, continued alcohol misuse predisposes patients to widespread dysbiosis with alterations in microbial functionality such as a toxic BA profile, which can lead to intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Genta Kakiyama
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Derrick Zhao
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Andrew Fagan
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Phillip Hylemon
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Huiping Zhou
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - William M Pandak
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, Davis, California
| | - Nita Salzman
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary Holtz
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Edith A Gavis
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Douglas M Heuman
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Runping Liu
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Dae Joong Kang
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | | | | |
Collapse
|
321
|
Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS, Alexeev DG, Taraskina AY, Nasyrova RF, Krupitsky EM, Shalikiani NV, Bakulin IG, Shcherbakov PL, Skorodumova LO, Larin AK, Kostryukova ES, Abdulkhakov RA, Abdulkhakov SR, Malanin SY, Ismagilova RK, Grigoryeva TV, Ilina EN, Govorun VM. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. MICROBIOME 2017; 5:141. [PMID: 29041989 PMCID: PMC5645934 DOI: 10.1186/s40168-017-0359-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Alcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative "shotgun" metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts-with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group. RESULTS Alcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients. The specific effects on species-level community composition were remarkably different between cohorts with and without liver cirrhosis. In both cases, the commensal microbiota was found to be depleted. Alcoholic dependence was inversely associated with the levels of butyrate-producing species from the Clostridiales order, while the cirrhosis-with multiple members of the Bacteroidales order. The opportunist pathogens linked to alcoholic dependence included pro-inflammatory Enterobacteriaceae, while the hallmarks of cirrhosis included an increase of oral microbes in the gut and more frequent occurrence of abnormal community structures. Interestingly, each of the two factors was associated with the expressed enrichment in many Bifidobacterium and Lactobacillus-but the exact set of the species was different between alcoholic dependence and liver cirrhosis. At the level of functional potential, the patients showed different patterns of increase in functions related to alcohol metabolism and virulence factors, as well as pathways related to inflammation. CONCLUSIONS Multiple shifts in the community structure and metabolic potential suggest strong negative influence of alcohol dependence and associated liver dysfunction on gut microbiota. The identified differences in patterns of impact between these two factors are important for planning of personalized treatment and prevention of these pathologies via microbiota modulation. Particularly, the expansion of Bifidobacterium and Lactobacillus suggests that probiotic interventions for patients with alcohol-related disorders using representatives of the same taxa should be considered with caution. Taxonomic and functional analysis shows an increased propensity of the gut microbiota to synthesis of the toxic acetaldehyde, suggesting higher risk of colorectal cancer and other pathologies in alcoholics.
Collapse
Affiliation(s)
- Veronika B. Dubinkina
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Avenue Urbana, Champaign, IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL 61801 USA
| | - Alexander V. Tyakht
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- ITMO University, Kronverkskiy pr. 49, Saint-Petersburg, 197101 Russia
| | - Vera Y. Odintsova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Konstantin S. Yarygin
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Boris A. Kovarsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Alexander V. Pavlenko
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Dmitry S. Ischenko
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Anna S. Popenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Dmitry G. Alexeev
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Anastasiya Y. Taraskina
- Saint-Petersburg Bekhterev Psychoneurological Research Institute, Bekhtereva 3, Saint-Petersburg, 192019 Russia
| | - Regina F. Nasyrova
- Saint-Petersburg Bekhterev Psychoneurological Research Institute, Bekhtereva 3, Saint-Petersburg, 192019 Russia
| | - Evgeny M. Krupitsky
- Saint-Petersburg Bekhterev Psychoneurological Research Institute, Bekhtereva 3, Saint-Petersburg, 192019 Russia
| | - Nino V. Shalikiani
- Moscow Clinical Scientific Center, Shosse Entuziastov 86, Moscow, 111123 Russia
| | - Igor G. Bakulin
- Moscow Clinical Scientific Center, Shosse Entuziastov 86, Moscow, 111123 Russia
| | - Petr L. Shcherbakov
- Moscow Clinical Scientific Center, Shosse Entuziastov 86, Moscow, 111123 Russia
| | - Lyubov O. Skorodumova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Andrei K. Larin
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Elena S. Kostryukova
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | | | - Sayar R. Abdulkhakov
- Kazan State Medical University, Butlerova 49, Kazan, 420012 Russia
- Kazan Federal University, Kremlyovskaya 18, Kazan, 420008 Russia
| | | | | | | | - Elena N. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Vadim M. Govorun
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| |
Collapse
|
322
|
Capurso G, Lahner E. The interaction between smoking, alcohol and the gut microbiome. Best Pract Res Clin Gastroenterol 2017; 31:579-588. [PMID: 29195678 DOI: 10.1016/j.bpg.2017.10.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The gastrointestinal microbiome is a complex echosystem that establishes a symbiotic, mutually beneficial relation with the host, being rather stable in health, but affected by age, drugs, diet, alcohol, and smoking. Alcohol and smoking contribute to changes in the stomach and affect H pylori-related disorders including the risk of gastric cancer. In the small intestine and in the colon alcohol causes depletion of bacteria with anti-inflammatory activity, eventually resulting in intestinal damage with "leaky gut". These changes contribute to hepatic damage in both alcoholic and non-alcoholic liver disease and have been associated with other disorders. Lactobacillus GG and A. muciniphila exert a protective effect in this setting. Smoking leads to modifications of the gut microbiome linked with a protective effect toward ulcerative colitis and deleterious for Crohn's disease. The exact cause-effect relation between alcohol and smoking and changes of the gastrointestinal microbiome needs further exploration with high throughput methodologies, and controlled studies are necessary to define the role of microbiome modulation on the immune response and systemic activation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Gabriele Capurso
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy.
| | - Edith Lahner
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| |
Collapse
|
323
|
Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Front Microbiol 2017; 8:1829. [PMID: 29033905 PMCID: PMC5627019 DOI: 10.3389/fmicb.2017.01829] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.
Collapse
Affiliation(s)
- Yu Cao
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Sinéad Proos
- Food for Health Ireland, Science Centre South, University College DublinDublin, Ireland
| | | | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| |
Collapse
|
324
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
325
|
Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, Ferreira DC, Nakao LS, Rosado A, Fouque D, Mafra D. Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. J Ren Nutr 2017; 28:28-36. [PMID: 28888762 DOI: 10.1053/j.jrn.2017.06.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE The objective of the study was to evaluate the effects of probiotic supplementation on the gut microbiota profile and inflammatory markers in chronic kidney disease patients undergoing maintenance hemodialysis (HD). DESIGN AND METHODS This was a randomized, double-blind, placebo-controlled study. Forty-six HD patients were assigned to receive 1 of 2 treatments: probiotic (n = 23; Streptococcus thermophilus, Lactobacillus acidophilus e Bifidobacterialongum, 90 billion colony-forming units per day) or placebo (n = 23) daily for 3 months. Blood and feces were collected at baseline and after intervention. The inflammatory markers (C-reactive protein and interleukin-6) were analyzed by immunoenzymatic assay (enzyme-linked immunosorbent assay). Uremic toxins plasma levels (indoxyl sulfate, p-cresyl sulfate, and indole-3-acetic acid) were obtained by Reversed-Phase High-Performance Liquid Chromatography. Routine laboratory parameters were measured by standard techniques. Fecal pH was measured by the colorimetric method, and the gut microbiota profile was assessed by Denaturing Gradient Gel Electrophoresis analysis. RESULTS Sixteen patients remained in the probiotic group (11 men, 53.6 ± 11.0 year old, 25.3 ± 4.6 kg/m2) and 17 in the placebo group (10 men, 50.3 ± 8.5 year old, 25.2 ± 5.7 kg/m2). After probiotic supplementation there was a significant increase in serum urea (from 149.6 ± 34.2 mg/dL to 172.6 ± 45.0 mg/dL, P = .02), potassium (from 4.4 ± 0.4 mmol/L to 4.8 ± 0.4 mmol/L, P = .02), and indoxyl sulfate (from 31.2 ± 15.9 to 36.5 ± 15.0 mg/dL, P = .02). The fecal pH was reduced from 7.2 ± 0.8 to 6.5 ± 0.5 (P = .01). These parameters did not change significantly in placebo group. Changes in the percentage delta (Δ) between groups were exhibited with no statistical differences observed. The inflammatory markers and gut profile were not altered by supplementation. CONCLUSIONS Aprobiotic supplementation failed to reduce uremic toxins and inflammatory markers. Therefore, probiotic therapy should be chosen with caution in HD patients. Further studies addressing probiotic therapy in chronic kidney disease patients are needed.
Collapse
Affiliation(s)
- Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil; Medical Sciences Graduate Program, Federal University Fluminense (UFF), Niterói-RJ, Brazil.
| | - Flávia L Carmo
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Jessyca S de Brito
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Carla J Dolenga
- Basic Pathology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| | - Dennis C Ferreira
- Faculty of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Lia S Nakao
- Basic Pathology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| | - Alexandre Rosado
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hospitalier Lyon Sud, Univ Lyon, UCBL, Inserm Carmen, CENS, F-69622 Lyon, France
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil; Medical Sciences Graduate Program, Federal University Fluminense (UFF), Niterói-RJ, Brazil
| |
Collapse
|
326
|
Cresci GA, Glueck B, McMullen MR, Xin W, Allende D, Nagy LE. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol 2017; 32:1587-1597. [PMID: 28087985 PMCID: PMC5511097 DOI: 10.1111/jgh.13731] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/09/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Impaired gut-liver axis is a potential factor contributing to alcoholic liver disease. Ethanol depletes intestinal integrity and causes gut dysbiosis. Butyrate, a fermentation byproduct of gut microbiota, is altered negatively following chronic ethanol exposure. This study aimed to determine whether prophylactic tributyrin could protect the intestinal barrier and liver in mice during combined chronic-binge ethanol exposure. METHODS C57BL/6J mice exposed to 5% v/v ethanol-containing diet for 10 days received a single ethanol gavage (5 g/kg) 9 h before euthanasia. Control mice were isocalorically pair-fed maltose dextrin for ethanol. Diets were supplemented (5 mM) with tributyrin or glycerol. Intestine and liver disease activity was assessed histologically. Protein and mRNA expression of tight junction (TJ) proteins, toll-like receptors, and tumor necrosis factor-alpha were assessed. Caco-2 monolayers with or without ethanol exposure and/or sodium butyrate were used to test butyrate's direct effects on intestinal integrity. RESULTS Chronic-binge ethanol feeding impaired intestinal TJ protein co-localization staining; however, tributyrin co-treatment mitigated these effects. Ethanol depleted TJ and transepithelial electrical resistance in Caco-2 monolayers, but butyrate co-treatment reduced these effects. Hepatic toll-like receptor mRNA expression and tumor necrosis factor-alpha protein expression was induced by ethanol; however, the response was significantly dampened in mice co-treated with tributyrin. Tributyrin altered localization of both neutrophils and single hepatocyte death: Leukocytes and apoptotic hepatocytes localized predominantly around the portal tract in ethanol-only treated mice, whereas localization predominated around the central vein in ethanol-tributyrin mice. CONCLUSIONS Prophylactic tributyrin supplementation mitigated effects of combined chronic-binge ethanol exposure on disruption of intestinal TJ localization and intestinal permeability and liver injury.
Collapse
Affiliation(s)
- Gail A Cresci
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology/Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.,Pediatric Research Center, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan Glueck
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan R McMullen
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Laura E Nagy
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
327
|
Piotrowski D, Boroń-Kaczmarska A. Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment. Adv Med Sci 2017; 62:345-356. [PMID: 28514703 DOI: 10.1016/j.advms.2016.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/20/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Infections are common among patients with liver cirrhosis. They occur more often in cirrhotic patient groups than in the general population and result in higher mortality. One reason for this phenomenon is bacterial translocation from the intestinal lumen that occurs as a consequence of intestinal bacterial overgrowth, increased permeability and decreased motility. The most common infections in cirrhotic patients are spontaneous bacterial peritonitis and urinary tract infections, followed by pneumonia, skin and soft tissue infections. Intestinal bacterial overgrowth is also responsible for hyperammonemia, which leads to hepatic encephalopathy. All of these complications make this group of patients at high risk for mortality. The role of antibiotics in liver cirrhosis is to treat and in some cases to prevent the development of infectious complications. Based on our current knowledge, antibiotic prophylaxis should be administered to patients with gastrointestinal hemorrhage, low ascitic fluid protein concentration combined with liver or renal failure, and spontaneous bacterial peritonitis as a secondary prophylaxis, as well as after hepatic encephalopathy episodes (also as a secondary prophylaxis). In some cases, the use of non-antibiotic prophylaxis can also be considered. Current knowledge of the treatment of infections allows the choice of a preferred antibiotic for empiric therapy depending on the infection location and whether the source of the disease is nosocomial or community-acquired.
Collapse
Affiliation(s)
- Damian Piotrowski
- Department of Infectious Diseases, Medical University of Silesia in Katowice, Bytom, Poland.
| | - Anna Boroń-Kaczmarska
- Department of Infectious Diseases, Medical University of Silesia in Katowice, Bytom, Poland
| |
Collapse
|
328
|
Activation of autophagy attenuates EtOH-LPS-induced hepatic steatosis and injury through MD2 associated TLR4 signaling. Sci Rep 2017; 7:9292. [PMID: 28839246 PMCID: PMC5571015 DOI: 10.1038/s41598-017-09045-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy serves as a protective mechanism to degrade damaged organelles and proteins. Acute alcohol exposure is known to activate the hepatic autophagy response, whereas chronic alcohol exposure slows autophagosome formation along with an elevation of gut-derived endotoxin. In the current study, we examined whether lipopolysaccharide (LPS) administration decreased autophagic response in the liver of mice treated by short-term alcohol and whether activation of autophagy by rapamycin attenuates EtOH-LPS-induced liver steatosis and injury. We demonstrated that ten-day alcohol feeding primed the liver to LPS-induced lipid accumulation and liver injury with significantly increased hepatic steatosis and serum AST level as well as hepatic cellular NF-κB activation. LPS increased alcohol-mediated reactive oxygen species (ROS) formation while reducing autophagy activation. These deleterious effects were attenuated by rapamycin administration in mice. The protective effects of rapamycin are associated with decreased cellular MD2/TLR4 expression and interaction in Raw264.7 cells. Taken together, our results demonstrated that enhanced gut-derived LPS decreases the hepatic autophagosome numbers in response to alcohol exposure, and activation of autophagy by rapamycin protects from EtOH-LPS-induced liver injury, probably through reduced macrophage expression and interaction of TLR4/MD2 signaling complex.
Collapse
|
329
|
Organ-Organ Crosstalk and Alcoholic Liver Disease. Biomolecules 2017; 7:biom7030062. [PMID: 28812994 PMCID: PMC5618243 DOI: 10.3390/biom7030062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a common custom worldwide, and the toxic effects of alcohol on several target organs are well-understood. Given the poor prognosis of treating clinically-relevant alcoholic liver disease (ALD) (i.e., alcoholic hepatitis (AH) and cirrhosis), additional research is required to develop more effective therapies. While the stages of ALD have been well-characterized, targeted therapies to prevent or reverse this process in humans are still needed. Better understanding of risk factors and mechanisms underlying disease progression can lead to the development of rational therapies to prevent or reverse ALD in the clinic. A potential area of targeted therapy for ALD may be organ–organ communication in the early stages of the disease. In contrast to AH and end-stage liver diseases, the involvement of multiple organs in the development of ALD is less understood. The impact of these changes on pathology to the liver and other organs may not only influence disease progression during the development of the disease, but also outcomes of end stages diseases. The purpose of this review is to summarize the established and proposed communication between the liver and other organ systems that may contribute to the development and progression of liver disease, as well as to other organs. Potential mechanisms of this organ–organ communication are also discussed.
Collapse
|
330
|
Avila DV, Myers SA, Zhang J, Kharebava G, McClain CJ, Kim HY, Whittemore SR, Gobejishvili L, Barve S. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 2017; 125:376-385. [PMID: 28807677 DOI: 10.1016/j.neuropharm.2017.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
It is increasingly evident that alcohol-induced, gut-mediated peripheral endotoxemia plays a significant role in glial cell activation and neuro-inflammation. Using a mouse model of chronic alcohol feeding, we examined the causal role of endotoxin- and cytokine-responsive Pde4 subfamily b (Pde4b) expression in alcohol-induced neuro-inflammation. Both pharmacologic and genetic approaches were used to determine the regulatory role of Pde4b. In C57Bl/6 wild type (WT) alcohol fed (WT-AF) animals, alcohol significantly induced peripheral endotoxemia and Pde4b expression in brain tissue, accompanied by a decrease in cAMP levels. Further, along with Pde4b, there was a robust activation of astrocytes and microglia accompanied by significant increases in the inflammatory cytokines (Tnfα, Il-1β, Mcp-1 and Il-17) and the generalized inflammatory marker Cox-2. At the cellular level, alcohol and inflammatory mediators, particularly LPS, Tnfα and Hmgb1 significantly activated microglial cells (Iba-1 expression) and selectively induced Pde4b expression with a minimal to no change in Pde4a and d isoforms. In comparison, the alcohol-induced decrease in brain cAMP levels was completely inhibited in WT mice treated with the Pde4 specific pharmacologic inhibitor rolipram and in Pde4b-/- mice. Moreover, all the observed markers of alcohol-induced brain inflammation were markedly attenuated. Importantly, glial cell activation induced by systemic endotoxemia (LPS administration) was also markedly decreased in Pde4b-/- mice. Taken together, these findings strongly support the notion that Pde4b plays a critical role in coordinating alcohol-induced, peripheral endotoxemia mediated neuro-inflammation and could serve as a significant therapeutic target.
Collapse
Affiliation(s)
- Diana V Avila
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Scott A Myers
- Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Giorgi Kharebava
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD, USA
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD, USA
| | - Scott R Whittemore
- Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
331
|
Kawaratani H, Moriya K, Namisaki T, Uejima M, Kitade M, Takeda K, Okura Y, Kaji K, Takaya H, Nishimura N, Sato S, Sawada Y, Seki K, Kubo T, Mitoro A, Yamao J, Yoshiji H. Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (Review). Int J Mol Med 2017; 40:263-270. [PMID: 28627645 DOI: 10.3892/ijmm.2017.3015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
Abstract
Excessive alcohol consumption is the most common cause of liver disease in the world. Chronic alcohol abuse leads to liver damage, liver inflammation, fibrosis and hepatocellular carcinoma. Inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, induce liver injury, which leads to the develo-pment of alcoholic liver disease (ALD). Hepatoprotective cytokines, such as interleukin (IL)-6 and IL-10, are also associated with ALD. IL-6 improves ALD via the activation of STAT3 and the subsequent induction of a variety of hepatoprotective genes in hepatocytes. Alcohol consumption promotes liver inflammation by incre-asing the translocation of gut-derived endotoxins to the portal circulation and by activating Kupffer cells through the lipopolysaccharide/Toll-like receptor 4 pathways. Oxidative stress and microflora products are also associated with ALD. Hepatic stellate cells play an important role in angiogenesis and liver fibrosis. Anti-angiogenic therapy has been found to be effective in the prevention of fibrosis. This suggests that blocking angiogenesis could be a promising therapeutic option for patients with advanced fibrosis. This review discusses the main pathways associated with liver inflammation and liver fibrosis as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Hideto Kawaratani
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kei Moriya
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tadashi Namisaki
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masakazu Uejima
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Mitsuteru Kitade
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kousuke Takeda
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yasushi Okura
- Department of Endoscopy and Ultrasound, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kousuke Kaji
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroaki Takaya
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Norihisa Nishimura
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shinya Sato
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yasuhiko Sawada
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kenichiro Seki
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Takuya Kubo
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Akira Mitoro
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Junichi Yamao
- Department of Endoscopy and Ultrasound, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hitoshi Yoshiji
- The Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
332
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0007-2016. [PMID: 28840806 PMCID: PMC11687517 DOI: 10.1128/microbiolspec.bad-0007-2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 02/08/2023] Open
Abstract
Being overweight and obesity are the leading causes of liver disease in Western countries. Liver damage induced by being overweight can range from steatosis, harmless in its simple form, to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Alcohol consumption is an additional major cause of liver disease. Not all individuals who are overweight or excessively consume alcohol develop nonalcoholic fatty liver diseases (NAFLD) or alcoholic liver disease (ALD) and advanced liver disease. The role of the intestinal microbiota (IM) in the susceptibility to liver disease in this context has been the subject of recent studies. ALD and NAFLD appear to be influenced by the composition of the IM, and dysbiosis is associated with ALD and NAFLD in rodent models and human patient cohorts. Several microbial metabolites, such as short-chain fatty acids and bile acids, are specifically associated with dysbiosis. Recent studies have highlighted the causal role of the IM in the development of liver diseases, and the use of probiotics or prebiotics improves some parameters associated with liver disease. Several studies have made progress in deciphering the mechanisms associated with the modulation of the IM. These data have demonstrated the intimate relationship between the IM and metabolic liver disease, suggesting that targeting the gut microbiota could be a new preventive or therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
333
|
A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 2017; 122:148-160. [DOI: 10.1016/j.neuropharm.2017.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
334
|
Dasarathy J, McCullough AJ, Dasarathy S. Sarcopenia in Alcoholic Liver Disease: Clinical and Molecular Advances. Alcohol Clin Exp Res 2017; 41:1419-1431. [PMID: 28557005 DOI: 10.1111/acer.13425] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
Despite advances in treatment of alcohol use disorders that focus on increasing abstinence and reducing recidivism, alcoholic liver disease (ALD) is projected to be the major cause of cirrhosis and its complications. Malnutrition is recognized as the most frequent complication in ALD, and despite the high clinical significance, there are no effective therapies to reverse malnutrition in ALD. Malnutrition is a relatively imprecise term, and sarcopenia or skeletal muscle loss, the major component of malnutrition, is primarily responsible for the adverse clinical consequences in patients with liver disease. It is, therefore, critical to define the specific abnormality (sarcopenia) rather than malnutrition in ALD, so that therapies targeting sarcopenia can be developed. Skeletal muscle mass is maintained by a balance between protein synthesis and proteolysis. Both direct effects of ethanol (EtOH) and its metabolites on the skeletal muscle and the consequences of liver disease result in disturbed proteostasis (protein homeostasis) and consequent sarcopenia. Once cirrhosis develops in patients with ALD, abstinence is unlikely to be effective in completely reversing sarcopenia, as other contributors including hyperammonemia, hormonal, and cytokine abnormalities aggravate sarcopenia and maintain a state of anabolic resistance initiated by EtOH. Cirrhosis is also a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from signaling and substrate functions. Novel therapeutic options are being recognized that are likely to supplant the current "deficiency replacement" approach and instead focus on specific molecular perturbations, given the increasing availability of small molecules that can target specific signaling components. Myostatin antagonists, leucine supplementation, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis in general, and ALD, specifically. Translation of these data to human studies and clinical application requires priority for allocation of resources.
Collapse
Affiliation(s)
| | - Arthur J McCullough
- Department of Gastreoenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Gastreoenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
335
|
Szabo G, Petrasek J. Gut-liver axis and sterile signals in the development of alcoholic liver disease. Alcohol Alcohol 2017; 52:414-424. [PMID: 28482064 PMCID: PMC5860369 DOI: 10.1093/alcalc/agx025] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Innate immunity plays a critical role in the development of alcohol-induced liver inflammation. Understanding the inter-relationship of signals from within and outside of the liver that trigger liver inflammation is pivotal for development of novel therapeutic targets of alcoholic liver disease (ALD). AIM The aim of this paper is to review recent advances in the field of alcohol-induced liver inflammation. METHODS A detailed literature review was performed using the PubMed database published between January 1980 and December 2016. RESULTS We provide an update on the role of intestinal microbiome, metabolome and the gut-liver axis in ALD, discuss the growing body of evidence on the diversity of liver macrophages and their differential contribution to alcohol-induced liver inflammation, and highlight the crucial role of inflammasomes in integration of inflammatory signals in ALD. Studies to date have identified a multitude of new therapeutic targets, some of which are currently being tested in patients with severe alcoholic hepatitis. These treatments aim to strengthen the intestinal barrier, ameliorate liver inflammation and augment hepatocyte regeneration. CONCLUSION Given the complexity of inflammation in ALD, multiple pathobiological mechanisms may need to be targeted at the same time as it seems unlikely that there is a single dominant pathogenic pathway in ALD that would be easily targeted using a single target drug approach. SHORT SUMMARY Here, we focus on recent advances in immunopathogenesis of alcoholic liver disease (ALD), including gut-liver axis, hepatic macrophage activation, sterile inflammation and synergy between bacterial and sterile signals. We propose a multiple parallel hit model of inflammation in ALD and discuss its implications for clinical trials in alcoholic hepatitis.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605,USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605,USA
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
336
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|
337
|
Samuelson DR, Shellito JE, Maffei VJ, Tague ED, Campagna SR, Blanchard EE, Luo M, Taylor CM, Ronis MJJ, Molina PE, Welsh DA. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae. PLoS Pathog 2017; 13:e1006426. [PMID: 28604843 PMCID: PMC5481032 DOI: 10.1371/journal.ppat.1006426] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/22/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these results suggest that alterations in the intestinal immune response as a consequence of alcohol-induced dysbiosis contribute to increased host susceptibility to Klebsiella pneumonia.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| | - Judd E. Shellito
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Vincent J. Maffei
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Eric D. Tague
- The Department of Chemistry, The University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Shawn R. Campagna
- The Department of Chemistry, The University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Eugene E. Blanchard
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Martin J. J. Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - David A. Welsh
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| |
Collapse
|
338
|
Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, Gaudin F, Noordine ML, Robert V, Berrebi D, Thomas M, Naveau S, Perlemuter G, Cassard AM. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66:806-815. [PMID: 27890791 DOI: 10.1016/j.jhep.2016.11.008] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.
Collapse
Affiliation(s)
- Gladys Ferrere
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Laura Wrzosek
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédéric Cailleux
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Williams Turpin
- Division of Gastroenterology, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Medicine, University of Toronto, ON M5S 1A8, Canada
| | - Virginie Puchois
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Madeleine Spatz
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dragos Ciocan
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France; Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France
| | - Cindy Hugot
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Françoise Gaudin
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | - Dominique Berrebi
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; AP-HP, Anatomie et de Cytologie Pathologiques, Hôpital Robert Debré, Paris, France
| | - Muriel Thomas
- INRA, UMR 1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Sylvie Naveau
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Gabriel Perlemuter
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Anne-Marie Cassard
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
339
|
Affiliation(s)
- Craig McClain
- University of Louisville, Louisville, KY, United States.
| | - Shirish Barve
- University of Louisville, Louisville, KY, United States
| |
Collapse
|
340
|
Lowe PP, Gyongyosi B, Satishchandran A, Iracheta-Vellve A, Ambade A, Kodys K, Catalano D, Ward DV, Szabo G. Alcohol-related changes in the intestinal microbiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice. PLoS One 2017; 12:e0174544. [PMID: 28350851 PMCID: PMC5370121 DOI: 10.1371/journal.pone.0174544] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background Alcohol-induced intestinal dysbiosis disrupts homeostatic gut-liver axis function and is essential in the development of alcoholic liver disease. Here, we investigate changes in enteric microbiome composition in a model of early alcoholic steatohepatitis and dissect the pathogenic role of intestinal microbes in alcohol-induced liver pathology. Materials and methods Wild type mice received a 10-day diet that was either 5% alcohol-containing or an isocaloric control diet plus a single binge. 16S rDNA sequencing defined the bacterial communities in the cecum of alcohol- and pair-fed animals. Some mice were treated with an antibiotic cocktail prior to and throughout alcohol feeding. Liver neutrophils, cytokines and steatosis were evaluated. Results Acute-on-chronic alcohol administration induced shifts in various bacterial phyla in the cecum, including increased Actinobacteria and a reduction in Verrucomicrobia driven entirely by a reduction in the genus Akkermansia. Antibiotic treatment reduced the gut bacterial load and circulating bacterial wall component lipopolysaccharide (LPS). We found that bacterial load suppression prevented alcohol-related increases in the number of myeloperoxidase- (MPO) positive infiltrating neutrophils in the liver. Expression of liver mRNA tumor necrosis factor alpha (Tnfα), C-X-C motif chemokine ligand 1 (Cxcl1) and circulating protein monocyte chemoattractant protein-1 (MCP-1) were also reduced in antibiotic-treated alcohol-fed mice. Alcohol-induced hepatic steatosis measured by Oil-Red O staining was significantly reduced in antibiotic treated mice. Genes regulating lipid production and storage were also altered by alcohol and antibiotic treatment. Interestingly, antibiotic treatment did not protect from alcohol-induced increases in serum aminotransferases (ALT/AST). Conclusions Our data indicate that acute-on-chronic alcohol feeding alters the microflora at multiple taxonomic levels and identifies loss of Akkermansia as an early marker of alcohol-induced gut dysbiosis. We conclude that gut microbes influence liver inflammation, neutrophil infiltration and liver steatosis following alcohol consumption and these data further emphasize the role of the gut-liver axis in early alcoholic liver disease.
Collapse
Affiliation(s)
- Patrick P. Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Doyle V. Ward
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
341
|
Zhang X, Wang H, Yin P, Fan H, Sun L, Liu Y. Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis 2017; 16:44. [PMID: 28228158 PMCID: PMC5322643 DOI: 10.1186/s12944-017-0431-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) represents a chronic wide-spectrum of liver injury caused by consistently excessive alcohol intake. Few satisfactory advances have been made in management of ALD. Thus, novel and more practical treatment options are urgently needed. Flaxseed oil (FO) is rich in α-linolenic acid (ALA), a plant-derived n-3 polyunsaturated fatty acids (PUFAs). However, the impact of dietary FO on chronic alcohol consumption remains unknown. METHODS In this study, we assessed possible effects of dietary FO on attenuation of ALD and associated mechanisms in mice. Firstly, mice were randomly allocated into four groups: pair-fed (PF) with corn oil (CO) group (PF/CO); alcohol-fed (AF) with CO group (AF/CO); PF with FO group (PF/FO); AF with FO group (AF/FO). Each group was fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a control or alcohol with corn oil and flaxseed oil, respectively. After 6 weeks feeding, mice were euthanized and associated indications were investigated. RESULTS Body weight (BW) was significantly elevated in AF/FO group compared with AF/CO group. Dietary FO reduced the abnormal elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in chronic ethanol consumption. Amelioration of these parameters as well as liver injury via HE staining in dietary FO supplementation in ALD demonstrated that dietary FO can effectively benefit for the protection against ALD. To further understand the underlying mechanisms, we investigated the inflammatory cytokine levels and gut microbiota. A series of inflammatory cytokines, including TNF-α, IL-1β, IL-6 and IL-10, were determined. As a result, TNF-α, IL-1β and IL-6 were decreased in AF/FO group compared with control group; IL-10 showed no significant alteration between AF/CO and AF/FO groups (p > 0.05). Sequencing and analysis of gut microbiota gene indicated that a reduction of Porphyromonadaceae and Parasutterella, as well as an increase in Firmicutes and Parabacteroides, were seen in AF group compared with PF control. Furthermore, dietary FO in ethanol consumption group induced a significant reduction in Proteobacteria and Porphyromonadaceae compared with AF/CO group. CONCLUSION Dietary FO ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota, thus can potentially serve as an inexpensive interventions for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China.,Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hao Wang
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Peipei Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China
| | - Hang Fan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China
| | - Liwei Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua Donglu No35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
342
|
The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017; 7:e1048. [PMID: 28244981 PMCID: PMC5545644 DOI: 10.1038/tp.2017.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years, some new processes have been proposed to explain how alcohol may influence behavior, psychological symptoms and alcohol seeking in alcohol-dependent subjects. In addition to its important effect on brain and neurotransmitters equilibrium, alcohol abuse also affects peripheral organs including the gut. By yet incompletely understood mechanisms, chronic alcohol abuse increases intestinal permeability and alters the composition of the gut microbiota, allowing bacterial components from the gut lumen to reach the systemic circulation. These gut-derived bacterial products are recognized by immune cells circulating in the blood or residing in target organs, which consequently synthesize and release pro-inflammatory cytokines. Circulating cytokines are considered important mediators of the gut-brain communication, as they can reach the central nervous system and induce neuroinflammation that is associated with change in mood, cognition and drinking behavior. These observations support the possibility that targeting the gut microbiota, by the use of probiotics or prebiotics, could restore the gut barrier function, reduce systemic inflammation and may have beneficial effect in treating alcohol dependence and in reducing alcohol relapse.
Collapse
|
343
|
Neuman MG, French SW, Zakhari S, Malnick S, Seitz HK, Cohen LB, Salaspuro M, Voinea-Griffin A, Barasch A, Kirpich IA, Thomes PG, Schrum LW, Donohue TM, Kharbanda KK, Cruz M, Opris M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 2017; 102:162-180. [PMID: 28077318 DOI: 10.1016/j.yexmp.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Stephen Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Andreea Voinea-Griffin
- Public Health Science Texas A&M University, College of Dentistry, Dallas University, TX, USA
| | - Andrei Barasch
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marcus Cruz
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Opris
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| |
Collapse
|
344
|
Drunk bugs: Chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice. Behav Brain Res 2017; 323:172-176. [PMID: 28161446 DOI: 10.1016/j.bbr.2017.01.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 01/12/2023]
Abstract
The gut microbiota includes a community of bacteria that play an integral part in host health and biological processes. Pronounced and repeated findings have linked gut microbiome to stress, anxiety, and depression. Currently, however, there remains only a limited set of studies focusing on microbiota change in substance abuse, including alcohol use disorder. To date, no studies have investigated the impact of vapour alcohol administration on the gut microbiome. For research on gut microbiota and addiction to proceed, an understanding of how route of drug administration affects gut microbiota must first be established. Animal models of alcohol abuse have proven valuable for elucidating the biological processes involved in addiction and alcohol-related diseases. This is the first study to investigate the effect of vapour route of ethanol administration on gut microbiota in mice. Adult male C57BL/6J mice were exposed to 4 weeks of chronic intermittent vapourized ethanol (CIE, N=10) or air (Control, N=9). Faecal samples were collected at the end of exposure followed by 16S sequencing and bioinformatic analysis. Robust separation between CIE and Control was seen in the microbiome, as assessed by alpha (p<0.05) and beta (p<0.001) diversity, with a notable decrease in alpha diversity in CIE. These results demonstrate that CIE exposure markedly alters the gut microbiota in mice. Significant increases in genus Alistipes (p<0.001) and significant reductions in genra Clostridium IV and XIVb (p<0.001), Dorea (p<0.01), and Coprococcus (p<0.01) were seen between CIE mice and Control. These findings support the viability of the CIE method for studies investigating the microbiota-gut-brain axis and align with previous research showing similar microbiota alterations in inflammatory states during alcoholic hepatitis and psychological stress.
Collapse
|
345
|
Sugimoto K, Takei Y. Pathogenesis of alcoholic liver disease. Hepatol Res 2017; 47:70-79. [PMID: 27138729 DOI: 10.1111/hepr.12736] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) has become one of the most critical health problems in many countries, including Japan. Liver injury in ALD ranges from steatosis and steatohepatitis to fibrosis, cirrhosis, and hepatocellular carcinoma. Many factors are thought to contribute to the development and progression of ALD, particularly insulin resistance, generation of reactive oxygen species during alcohol metabolism, adipokines from visceral adipose tissue, and endotoxin derived from the gut. Although the pathogenesis of ALD has been widely investigated, the precise mechanisms are yet to be elucidated and many questions remain. This article reviews the possible mechanisms for the development of ALD identified to date.
Collapse
Affiliation(s)
- Kazushi Sugimoto
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
346
|
Xiao J, Zhang R, Huang F, Liu L, Deng Y, Wei Z, Zhang Y, Liu D, Zhang M. The biphasic dose effect of lychee (Litchi chinensis Sonn.) pulp phenolic extract on alcoholic liver disease in mice. Food Funct 2017; 8:189-200. [DOI: 10.1039/c6fo01166g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lychee pulp phenolic extract (LPPE) has a biphasic dose response in ethanol-induced liver injury in mice.
Collapse
Affiliation(s)
- Juan Xiao
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Dong Liu
- Shenzhen Key Laboratory of Fermentation
- Purification and Analysis
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| |
Collapse
|
347
|
Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A. Alcohol and Gut-Derived Inflammation. Alcohol Res 2017; 38:163-171. [PMID: 28988571 PMCID: PMC5513683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In large amounts, alcohol and its metabolites can overwhelm the gastrointestinal tract (GI) and liver and lead to damage both within the GI and in other organs. Specifically, alcohol and its metabolites promote intestinal inflammation through multiple pathways. That inflammatory response, in turn, exacerbates alcohol-induced organ damage, creating a vicious cycle and leading to additional deleterious effects of alcohol both locally and systemically. This review summarizes the mechanisms by which chronic alcohol intake leads to intestinal inflammation, including altering intestinal microbiota composition and function, increasing the permeability of the intestinal lining, and affecting the intestinal immune homeostasis. Understanding the mechanisms of alcohol-induced intestinal inflammation can aid in the discovery of therapeutic approaches to mitigate alcohol-induced organ dysfunctions.
Collapse
|
348
|
Barve S, Chen SY, Kirpich I, Watson WH, Mcclain C. Development, Prevention, and Treatment of Alcohol-Induced Organ Injury: The Role of Nutrition. Alcohol Res 2017; 38:289-302. [PMID: 28988580 PMCID: PMC5513692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Alcohol and nutrition have the potential to interact at multiple levels. For example, heavy alcohol consumption can interfere with normal nutrition, resulting in overall malnutrition or in deficiencies of important micronutrients, such as zinc, by reducing their absorption or increasing their loss. Interactions between alcohol consumption and nutrition also can affect epigenetic regulation of gene expression by influencing multiple regulatory mechanisms, including methylation and acetylation of histone proteins and DNA. These effects may contribute to alcohol-related organ or tissue injury. The impact of alcohol-nutrition interactions has been assessed for several organs and tissues, including the intestine, where heavy alcohol use can increase intestinal permeability, and the liver, where the degree of malnutrition can be associated with the severity of liver injury and liver disease. Alcohol-nutrition interactions also play a role in alcohol-related lung injury, brain injury, and immune dysfunction. Therefore, treatment involving nutrient supplementation (e.g., with zinc or S-adenosylmethionine) may help prevent or attenuate some types of alcohol-induced organ damage.
Collapse
Affiliation(s)
- Shirish Barve
- Shirish Barve, Ph.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology; Shao-Yu Chen, Ph.D., is a Professor in the Department of Pharmacology and Toxicology; Irina Kirpich, Ph.D., and Walter H. Watson, Ph.D., both are Assistant Professors in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and in the Department of Pharmacology and Toxicology; all at the University of Louisville School of Medicine, Louisville, Kentucky. Craig McClain, M.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology at the University of Louisville School of Medicine, Louisville, Kentucky, and a Staff Physician at the Robley Rex Veterans Medical Center, Louisville, Kentucky
| | - Shao-Yu Chen
- Shirish Barve, Ph.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology; Shao-Yu Chen, Ph.D., is a Professor in the Department of Pharmacology and Toxicology; Irina Kirpich, Ph.D., and Walter H. Watson, Ph.D., both are Assistant Professors in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and in the Department of Pharmacology and Toxicology; all at the University of Louisville School of Medicine, Louisville, Kentucky. Craig McClain, M.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology at the University of Louisville School of Medicine, Louisville, Kentucky, and a Staff Physician at the Robley Rex Veterans Medical Center, Louisville, Kentucky
| | - Irina Kirpich
- Shirish Barve, Ph.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology; Shao-Yu Chen, Ph.D., is a Professor in the Department of Pharmacology and Toxicology; Irina Kirpich, Ph.D., and Walter H. Watson, Ph.D., both are Assistant Professors in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and in the Department of Pharmacology and Toxicology; all at the University of Louisville School of Medicine, Louisville, Kentucky. Craig McClain, M.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology at the University of Louisville School of Medicine, Louisville, Kentucky, and a Staff Physician at the Robley Rex Veterans Medical Center, Louisville, Kentucky
| | - Walter H Watson
- Shirish Barve, Ph.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology; Shao-Yu Chen, Ph.D., is a Professor in the Department of Pharmacology and Toxicology; Irina Kirpich, Ph.D., and Walter H. Watson, Ph.D., both are Assistant Professors in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and in the Department of Pharmacology and Toxicology; all at the University of Louisville School of Medicine, Louisville, Kentucky. Craig McClain, M.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology at the University of Louisville School of Medicine, Louisville, Kentucky, and a Staff Physician at the Robley Rex Veterans Medical Center, Louisville, Kentucky
| | - Craig Mcclain
- Shirish Barve, Ph.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology; Shao-Yu Chen, Ph.D., is a Professor in the Department of Pharmacology and Toxicology; Irina Kirpich, Ph.D., and Walter H. Watson, Ph.D., both are Assistant Professors in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and in the Department of Pharmacology and Toxicology; all at the University of Louisville School of Medicine, Louisville, Kentucky. Craig McClain, M.D., is a Professor in the Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and a Professor in the Department of Pharmacology and Toxicology at the University of Louisville School of Medicine, Louisville, Kentucky, and a Staff Physician at the Robley Rex Veterans Medical Center, Louisville, Kentucky
| |
Collapse
|
349
|
Zhang M, Zheng M, Wu Z, Guan M, Liu S, Zhao W, Cheng J. Alteration of gut microbial community after N,N-Dimethylformamide exposure. J Toxicol Sci 2017; 42:241-250. [DOI: 10.2131/jts.42.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Man Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| | - Min Zheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| | - Zhijun Wu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| | - Mingyue Guan
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| | - Shuai Liu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| | - Wenjin Zhao
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| | - Juan Cheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, China
| |
Collapse
|
350
|
de Almada CN, Almada CN, Martinez RC, Sant'Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|