301
|
Zhang L, Kempf A, Nehlmeier I, Cossmann A, Richter A, Bdeir N, Graichen L, Moldenhauer AS, Dopfer-Jablonka A, Stankov MV, Simon-Loriere E, Schulz SR, Jäck HM, Čičin-Šain L, Behrens GMN, Drosten C, Hoffmann M, Pöhlmann S. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 2024; 187:596-608.e17. [PMID: 38194966 PMCID: PMC11317634 DOI: 10.1016/j.cell.2023.12.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Najat Bdeir
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | | | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, 75015 Paris, France; National Reference Center for Viruses of respiratory Infections, Institut Pasteur, 75015 Paris, France
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
302
|
Shahabi S, Azizi K, Bakhshi Y, Pirbonyeh N, Moattari A, Sazmand A, Omidian M, Sarkari B. Molecular Investigation of SARS-CoV-2 Circulating in Iranian Bats Using Real-Time RT-PCR for Detection of Envelop (E) Gene of the Virus. Transbound Emerg Dis 2024; 2024:5313346. [PMID: 40303183 PMCID: PMC12017192 DOI: 10.1155/2024/5313346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 05/02/2025]
Abstract
Background The COVID-19 was first reported in 2019 to cause pneumonia in people of Wuhan, Hubei province, China, is now associated with high mortality worldwide. Phylogenetic analysis revealed that SARS-CoV-2 (2019-nCoV) is closely (88%-89% similarity) related to the coronavirus circulating in Rhinolophus (horseshoe bats). More than 50 bat species belonging to eight families have been reported from Iran of which five species belong to the Rhinolophidae family. So far, no study has been done on COVID-19 infection in Iranian bats. Aim The current study was performed, for the first time, to investigate the infection of Iranian bats with SARS-CoV-2. Methods This cross-sectional study was conducted in 2021 using 183 bat samples collected from three caves in the south (Fars province) and two caves in the northwest (Kermanshah and Kurdistan provinces) of Iran. Bats' digestive and respiratory system samples were collected from each bat of different species. The samples were evaluated by real-time PCR and by targeting a 221 bp fragment of the envelop (E) genes of SARS-CoV-2. Results COVID-19 was detected in alimentary specimens of two of the Mediterranean horseshoe (Rhinolophus Euryale) bats. Conclusion Although, based on the findings of the molecular evaluation, the infection of bats with COVID-19 was determined in this study, further studies are needed on a larger number of bats, particularly horseshoe bats, to confirm the potential infection of Iranian bats with COVID-19.
Collapse
Affiliation(s)
- Saeed Shahabi
- Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Azizi
- Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Bakhshi
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
| | - Neda Pirbonyeh
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mostafa Omidian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahador Sarkari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
303
|
El Soufi G, Di Jorio L, Gerber Z, Cluzel N, Van Assche J, Delafoy D, Olaso R, Daviaud C, Loustau T, Schwartz C, Trebouet D, Hernalsteens O, Marechal V, Raffestin S, Rousset D, Van Lint C, Deleuze JF, Boni M, Rohr O, Villain-Gambier M, Wallet C. Highly efficient and sensitive membrane-based concentration process allows quantification, surveillance, and sequencing of viruses in large volumes of wastewater. WATER RESEARCH 2024; 249:120959. [PMID: 38070350 DOI: 10.1016/j.watres.2023.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Wastewater-based epidemiology is experiencing exponential development. Despite undeniable advantages compared to patient-centered approaches (cost, anonymity, survey of large populations without bias, detection of asymptomatic infected peoples…), major technical limitations persist. Among them is the low sensitivity of the current methods used for quantifying and sequencing viral genomes from wastewater. In situations of low viral circulation, during initial stages of viral emergences, or in areas experiencing heavy rains, the extremely low concentrations of viruses in wastewater may fall below the limit of detection of the current methods. The availability during crisis and the cost of the commercial kits, as well as the requirement of expensive materials such as high-speed centrifuge, can also present major blocks to the development of wastewater-based epidemiological survey, specifically in low-income countries. Thereby, highly sensitive, low cost and standardized methods are still needed, to increase the predictability of the viral emergences, to survey low-circulating viruses and to make the results from different labs comparable. Here, we outline and characterize new protocols for concentrating and quantifying SARS-CoV-2 from large volumes (500 mL-1 L) of untreated wastewater. In addition, we report that the methods are applicable for monitoring and sequencing. Our nucleic acid extraction technique (the routine C: 5 mL method) does not require sophisticated equipment such as automatons and is not reliant on commercial kits, making it readily available to a broader range of laboratories for routine epidemiological survey. Furthermore, we demonstrate the efficiency, the repeatability, and the high sensitivity of a new membrane-based concentration method (MBC: 500 mL method) for enveloped (SARS-CoV-2) and non-enveloped (F-specific RNA phages of genogroup II / FRNAPH GGII) viruses. We show that the MBC method allows the quantification and the monitoring of viruses in wastewater with a significantly improved sensitivity compared to the routine C method. In contexts of low viral circulation, we report quantifications of SARS-CoV-2 in wastewater at concentrations as low as 40 genome copies per liter. In highly diluted samples collected in wastewater treatment plants of French Guiana, we confirmed the accuracy of the MBC method compared to the estimations done with the routine C method. Finally, we demonstrate that both the routine C method processing 5 mL and the MBC method processing 500 mL of untreated wastewater are both compatible with SARS-CoV-2 sequencing. We show that the quality of the sequence is correlated with the concentration of the extracted viral genome. Of note, the quality of the sequences obtained with some MBC processed wastewater was improved by dilutions or enzyme substitutions suggesting the presence of specific enzyme inhibitors in some wastewater. To the best of our knowledge, our MBC method is one of the first efficient, sensitive, and repeatable method characterized for SARS-CoV-2 quantification and sequencing from large volumes of wastewater.
Collapse
Affiliation(s)
- G El Soufi
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - L Di Jorio
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - Z Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - N Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, Paris 75005, France
| | - J Van Assche
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - R Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - C Daviaud
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - T Loustau
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - C Schwartz
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Trebouet
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - O Hernalsteens
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - V Marechal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris 75012, France; OBEPINE Consortium, Paris, France
| | - S Raffestin
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - D Rousset
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - C Van Lint
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - J F Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - M Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; OBEPINE Consortium, Paris, France
| | - O Rohr
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France.
| | - M Villain-Gambier
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - C Wallet
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France
| |
Collapse
|
304
|
Awasthy A, Manjula V, Mohanty L, Ahmed T, Latha HA, Jeevitha JY, Makkad RS. An Insight into the Present Pandemic Scenario (COVID-19) with Respect to Maxfac Speciality. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S106-S108. [PMID: 38595437 PMCID: PMC11000877 DOI: 10.4103/jpbs.jpbs_629_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 04/11/2024] Open
Abstract
The December 2019 pandemic killed about 2 million people and impacted countless more. SARS-CoV-2 causes COVID-19. The sickness causes dyspnea, high temperature, dry cough, loss of taste smell, etc., Due to the disease's fast spread, oral and maxillofacial surgical practices must be reconsidered. The World Health Organization, Association of Oral and Maxillofacial Surgeons of India, and other reputable bodies have released guidelines for safe and efficient COVID-19 therapy. This poll seeks surgeons' awareness of these worldwide and national bodies' guidance. A social media poll generated 173 replies, which were analyzed and interpreted. Many surgeons were aware of the recommendations and safety precautions, but others were unaware of the modifications in oral and maxillofacial surgery practice procedures.
Collapse
Affiliation(s)
- Arunima Awasthy
- Department of Oral and Maxillofacial Surgery, New Horizon Dental College and Research Institute, Bilaspur, Chhattisgarh, India
| | - V. Manjula
- Department of Oral and Maxillofacial Surgery, Navodaya Dental College and Hospital, Raichur, Karnataka, India
| | - Liza Mohanty
- Senior Resident, Department of Dentistry, Government Medical College and Hospital, Sundargarh, Odisha, India
| | - Thousif Ahmed
- Department of Oral and Maxillofacial Surgery, Navodaya Dental College and Hospital, Raichur, Karnataka, India
| | - H Aparna Latha
- Department of Oral and Maxillofacial Pathology, Navodaya Dental College and Hospital, Mantralayam Road, Raichur, Karnataka, India
| | - Jessica Y. Jeevitha
- Department of Oral and Maxillofacial Surgery, Chettinad College of Dental and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Ramanpal S. Makkad
- Department of Oral Medicine and Radiology, New Horizon Dental College and Research Institute, Bilaspur, Chhattisgarh, India
| |
Collapse
|
305
|
Huang QS, Turner N, Wood T, Anglemyer A, McIntyre P, Aminisani N, Dowell T, Trenholme A, Byrnes C, Balm M, McIntosh C, Jefferies S, Grant CC, Nesdale A, Dobinson HC, Campbell‐Stokes P, Daniells K, Geoghegan J, de Ligt J, Jelley L, Seeds R, Jennings T, Rensburg M, Cueto J, Caballero E, John J, Penghulan E, Tan CE, Ren X, Berquist K, O'Neill M, Marull M, Yu C, McNeill A, Kiedrzynski T, Roberts S, McArthur C, Stanley A, Taylor S, Wong C, Lawrence S, Baker MG, Kvalsvig A, Van Der Werff K, McAuliffe G, Antoszewska H, Dilcher M, Fahey J, Werno A, Elvy J, Grant J, Addidle M, Zacchi N, Mansell C, Widdowson M, Thomas PG, Webby RJ. Impact of the COVID-19 related border restrictions on influenza and other common respiratory viral infections in New Zealand. Influenza Other Respir Viruses 2024; 18:e13247. [PMID: 38350715 PMCID: PMC10864123 DOI: 10.1111/irv.13247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND New Zealand's (NZ) complete absence of community transmission of influenza and respiratory syncytial virus (RSV) after May 2020, likely due to COVID-19 elimination measures, provided a rare opportunity to assess the impact of border restrictions on common respiratory viral infections over the ensuing 2 years. METHODS We collected the data from multiple surveillance systems, including hospital-based severe acute respiratory infection surveillance, SHIVERS-II, -III and -IV community cohorts for acute respiratory infection (ARI) surveillance, HealthStat sentinel general practice (GP) based influenza-like illness surveillance and SHIVERS-V sentinel GP-based ARI surveillance, SHIVERS-V traveller ARI surveillance and laboratory-based surveillance. We described the data on influenza, RSV and other respiratory viral infections in NZ before, during and after various stages of the COVID related border restrictions. RESULTS We observed that border closure to most people, and mandatory government-managed isolation and quarantine on arrival for those allowed to enter, appeared to be effective in keeping influenza and RSV infections out of the NZ community. Border restrictions did not affect community transmission of other respiratory viruses such as rhinovirus and parainfluenza virus type-1. Partial border relaxations through quarantine-free travel with Australia and other countries were quickly followed by importation of RSV in 2021 and influenza in 2022. CONCLUSION Our findings inform future pandemic preparedness and strategies to model and manage the impact of influenza and other respiratory viral threats.
Collapse
Affiliation(s)
- Q. Sue Huang
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | | | - Tim Wood
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Andrew Anglemyer
- Institute of Environmental Science and ResearchWellingtonNew Zealand
- University of OtagoDunedinNew Zealand
| | | | | | | | - Adrian Trenholme
- Te Whatu Ora, Health New Zealand Counties ManukauAucklandNew Zealand
| | - Cass Byrnes
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Michelle Balm
- Te Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | | | - Sarah Jefferies
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Cameron C. Grant
- University of AucklandAucklandNew Zealand
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Annette Nesdale
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Hazel C. Dobinson
- Te Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Priscilla Campbell‐Stokes
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Karen Daniells
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Jemma Geoghegan
- Institute of Environmental Science and ResearchWellingtonNew Zealand
- University of OtagoDunedinNew Zealand
| | - Joep de Ligt
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Lauren Jelley
- Institute of Environmental Science and ResearchWellingtonNew Zealand
- University of OtagoDunedinNew Zealand
| | - Ruth Seeds
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Tineke Jennings
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Megan Rensburg
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Jort Cueto
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Ernest Caballero
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Joshma John
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Emmanuel Penghulan
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Chor Ee Tan
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Xiaoyun Ren
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Klarysse Berquist
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Meaghan O'Neill
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Maritza Marull
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Chang Yu
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Andrea McNeill
- Institute of Environmental Science and ResearchWellingtonNew Zealand
| | - Tomasz Kiedrzynski
- Te Pou Hauora Tūmatanui, the Public Health AgencyManatū Hauora, Ministry of HealthWellingtonNew Zealand
| | - Sally Roberts
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Colin McArthur
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Alicia Stanley
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Susan Taylor
- Te Whatu Ora, Health New Zealand Counties ManukauAucklandNew Zealand
| | - Conroy Wong
- Te Whatu Ora, Health New Zealand Counties ManukauAucklandNew Zealand
| | - Shirley Lawrence
- Te Whatu Ora, Health New Zealand Counties ManukauAucklandNew Zealand
| | | | | | - Koen Van Der Werff
- Te Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
| | - Gary McAuliffe
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Hanna Antoszewska
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
| | - Meik Dilcher
- Te Whatu Ora, Health New Zealand Waitaha CanterburyChristchurchNew Zealand
| | - Jennifer Fahey
- Te Whatu Ora, Health New Zealand Waitaha CanterburyChristchurchNew Zealand
| | - Anja Werno
- Te Whatu Ora, Health New Zealand Waitaha CanterburyChristchurchNew Zealand
| | - Juliet Elvy
- Southern Community LaboratoriesDunedinNew Zealand
| | - Jenny Grant
- Southern Community LaboratoriesDunedinNew Zealand
| | - Michael Addidle
- Te Whatu Ora, Health New Zealand Hauora a Toi Bay of PlentyTaurangaNew Zealand
| | - Nicolas Zacchi
- Te Whatu Ora, Health New Zealand Hauora a Toi Bay of PlentyTaurangaNew Zealand
| | - Chris Mansell
- Te Whatu Ora, Health New Zealand WaikatoHamiltonNew Zealand
| | | | - Paul G. Thomas
- WHO Collaborating CentreSt Jude Children's Research HospitalMemphisTennesseeUSA
| | - BorderRestrictionImpactOnFluRSV Consortium
- Institute of Environmental Science and ResearchWellingtonNew Zealand
- Te Whatu Ora, Health New Zealand Counties ManukauAucklandNew Zealand
- Te Whatu Ora, Health New Zealand Te Toka Tumai AucklandAucklandNew Zealand
- Regional Public HealthTe Whatu Ora, Health New Zealand Capital, Coast and Hutt ValleyWellingtonNew Zealand
- Te Whatu Ora, Health New Zealand Waitaha CanterburyChristchurchNew Zealand
| | - Richard J. Webby
- WHO Collaborating CentreSt Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
306
|
Bannier-Hélaouët M, Korving J, Ma Z, Begthel H, Giladi A, Lamers MM, van de Wetering WJ, Yawata N, Yawata M, LaPointe VLS, Dickman MM, Kalmann R, Imhoff SM, van Es JH, López-Iglesias C, Peters PJ, Haagmans BL, Wu W, Clevers H. Human conjunctiva organoids to study ocular surface homeostasis and disease. Cell Stem Cell 2024; 31:227-243.e12. [PMID: 38215738 DOI: 10.1016/j.stem.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.
Collapse
Affiliation(s)
- Marie Bannier-Hélaouët
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands
| | - Ziliang Ma
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), and Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Mart M Lamers
- Viroscience Department, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willine J van de Wetering
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan; Singapore Eye Research Institute, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Makoto Yawata
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National University Health System, Singapore, Singapore; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore; NUSMED Immunology Translational Research Program, National University of Singapore, Singapore, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Mor M Dickman
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rachel Kalmann
- Department of Ophthalmology, University Medical Center, Utrecht, the Netherlands
| | - Saskia M Imhoff
- Department of Ophthalmology, University Medical Center, Utrecht, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Carmen López-Iglesias
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), and Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
307
|
Park SY, Trinh KTL, Song YJ, Lee NY. Pipette-free field-deployable molecular diagnostic kit for bimodal visual detection of infectious RNA viruses. Biotechnol J 2024; 19:e2300521. [PMID: 38403439 DOI: 10.1002/biot.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Here, we developed a field-deployable molecular diagnostic kit for the detection of RNA viruses that operates in a pipette-free manner. The kit is composed of acrylic sticks, PCR tubes, and palm-sized three-dimensional(3D)-printed heaters operated by batteries. The kit performs RNA extraction, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), and visual detection in one kit. An acrylic stick was engraved with one shallow and one deep cylindrical chamber at each end for the insertion of an FTA card and ethidium homodimer-1 (EthD-1), respectively, to perform RNA extraction/purification and bimodal visual detection of the target amplicons. First, an intercalation of EthD-1 into the target DNA initially produces fluorescence upon UV illumination. Next, the addition of a strong oxidant, in this case sodium (meta) periodate (NaIO4 ), produces intense aggregates in the presence of EthD-1-intercalated DNA, realized by electrostatic interaction. In the absence of the target amplicon, no fluorescence or aggregates are observed. Using this kit, two major infectious viruses-severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus (SARS-CoV-2)-were successfully detected in 1 h, and the limits of detection (LOD) were approximately 1 virus μL-1 for SFTSV and 103 copies μL-1 for SARS-CoV-2 RNA. The introduced kit is portable, end-user-friendly, and can be operated in a pipette-free manner, paving the way for simple and convenient virus detection in resource-limited settings.
Collapse
Affiliation(s)
- So Yeon Park
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
308
|
Ameri A, Ameri A, Salmanizadeh F, Bahaadinbeigy K. Clinical decision support systems (CDSS) in assistance to COVID-19 diagnosis: A scoping review on types and evaluation methods. Health Sci Rep 2024; 7:e1919. [PMID: 38384976 PMCID: PMC10879639 DOI: 10.1002/hsr2.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Background and Aims Due to the COVID-19 pandemic, a precise and reliable diagnosis of this disease is critical. The use of clinical decision support systems (CDSS) can help facilitate the diagnosis of COVID-19. This scoping review aimed to investigate the role of CDSS in diagnosing COVID-19. Methods We searched four databases (Web of Science, PubMed, Scopus, and Embase) using three groups of keywords related to CDSS, COVID-19, and diagnosis. To collect data from studies, we utilized a data extraction form that consisted of eight fields. Three researchers selected relevant articles and extracted data using a data collection form. To resolve any disagreements, we consulted with a fourth researcher. Results A search of the databases retrieved 2199 articles, of which 68 were included in this review after removing duplicates and irrelevant articles. The studies used nonknowledge-based CDSS (n = 52) and knowledge-based CDSS (n = 16). Convolutional Neural Networks (CNN) (n = 33) and Support Vector Machine (SVM) (n = 8) were employed to design the CDSS in most of the studies. Accuracy (n = 43) and sensitivity (n = 35) were the most common metrics for evaluating CDSS. Conclusion CDSS for COVID-19 diagnosis have been developed mainly through machine learning (ML) methods. The greater use of these techniques can be due to their availability of public data sets about chest imaging. Although these studies indicate high accuracy for CDSS based on ML, their novelty and data set biases raise questions about replacing these systems as clinician assistants in decision-making. Further studies are needed to improve and compare the robustness and reliability of nonknowledge-based and knowledge-based CDSS in COVID-19 diagnosis.
Collapse
Affiliation(s)
- Arefeh Ameri
- Health Information Sciences Department, Faculty of Management and Medical Information SciencesKerman University of Medical SciencesKermanIran
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research CenterKerman University of Medical SciencesKermanIran
| | - Farzad Salmanizadeh
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Kambiz Bahaadinbeigy
- Digital Health TeamAustralian College of Rural and Remote MedicineBrisbaneQueenslandAustralia
| |
Collapse
|
309
|
Wang W, Harrou F, Dairi A, Sun Y. Stacked deep learning approach for efficient SARS-CoV-2 detection in blood samples. Artif Intell Med 2024; 148:102767. [PMID: 38325923 DOI: 10.1016/j.artmed.2024.102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Identifying COVID-19 through blood sample analysis is crucial in managing the disease and improving patient outcomes. Despite its advantages, the current test demands certified laboratories, expensive equipment, trained personnel, and 3-4 h for results, with a notable false-negative rate of 15%-20%. This study proposes a stacked deep-learning approach for detecting COVID-19 in blood samples to distinguish uninfected individuals from those infected with the virus. Three stacked deep learning architectures, namely the StackMean, StackMax, and StackRF algorithms, are introduced to improve the detection quality of single deep learning models. To counter the class imbalance phenomenon in the training data, the Synthetic Minority Oversampling Technique (SMOTE) algorithm is also implemented, resulting in increased specificity and sensitivity. The efficacy of the methods is assessed by utilizing blood samples obtained from hospitals in Brazil and Italy. Results revealed that the StackMax method greatly boosted the deep learning and traditional machine learning methods' capability to distinguish COVID-19-positive cases from normal cases, while SMOTE increased the specificity and sensitivity of the stacked models. Hypothesis testing is performed to determine if there is a significant statistical difference in the performance between the compared detection methods. Additionally, the significance of blood sample features in identifying COVID-19 is analyzed using the XGBoost (eXtreme Gradient Boosting) technique for feature importance identification. Overall, this methodology could potentially enhance the timely and precise identification of COVID-19 in blood samples.
Collapse
Affiliation(s)
- Wu Wang
- Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing 100872, China.
| | - Fouzi Harrou
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia.
| | - Abdelkader Dairi
- Computer Science Department, University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, 31000, Bir El Djir, Algeria.
| | - Ying Sun
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
310
|
Govednik T, Lainšček D, Kuhar U, Lachish M, Janežič S, Štrbenc M, Krapež U, Jerala R, Atlas D, Manček-Keber M. TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences. Antiviral Res 2024; 222:105806. [PMID: 38211737 DOI: 10.1016/j.antiviral.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.
Collapse
Affiliation(s)
- Tea Govednik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Marva Lachish
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, 2000, Maribor, Slovenia
| | - Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Daphne Atlas
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia.
| |
Collapse
|
311
|
Wongchai T, Chuenchom N, Klayut W, Phetsuksiri B, Bhakdeenuan P, Bunchoo S, Srisungngam S, Rudeeaneksin J. Clinical Performance of the Reverse Transcription-Loop-Mediated Isothermal Amplification Assay for the Diagnosis of COVID-19 in a Thai Community Hospital at the Thailand-Myanmar Border. Cureus 2024; 16:e54447. [PMID: 38510857 PMCID: PMC10954319 DOI: 10.7759/cureus.54447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) continues to be a global health threat and is a public health issue in Thailand and other countries. The extensive cross-border between Thailand and Myanmar is considered to be at a potentially high risk for COVID-19 distribution in this region. In this instance, simple and cost-effective tests for rapid and early detection of COVID-19 would be useful for effective patient management and control of the disease. METHODS This study was conducted at Mae Sot Hospital on the border of Thailand-Myanmar to evaluate the diagnostic performance of a simple colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay developed recently for the rapid detection of SARS-CoV-2. Nasopharyngeal specimens were routinely collected and processed through automated nucleic acid extraction followed by real-time reverse transcription-polymerase chain reaction (rRT-PCR) using the Molaccu® COVID-19 Detection Kit. The RT-LAMP assay was further performed on remnant RNA samples, and the visual results were compared to those of rRT-PCR as a reference. RESULTS Of the 727 samples tested, the RT-LAMP assay could detect 322 out of 374 samples positive for SARS-CoV-2 by rRT-PCR with 100% (n = 353/353) negative agreement. The comparative analysis demonstrated the overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the RT-LAMP at 92.85% (n = 675/727, 95% CI: 90.73-94.61), 86.10% (n = 322/374, 95% CI: 82.17-89.44), 100% (n = 353/353, 95% CI: 98.96-100), 100% (n = 322/322, 95% CI: 98.86-100), and 87.16% (n = 353/405, 95% CI: 84.06-89.73), respectively. CONCLUSION This RT-LAMP assay showed good diagnostic performance in the hospital setting. It can increase laboratory capacity for rapid SARS-CoV-2 testing and has the potential for use as an alternative or a backup assay at the point of need, especially where alternatives are unavailable for any reason, such as a decline in COVID-19 cases.
Collapse
Affiliation(s)
- Thanee Wongchai
- Infectious Diseases, Mae Sot Hospital, Ministry of Public Health, Tak, THA
| | | | - Wiphat Klayut
- Infectious Diseases, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, THA
| | - Benjawan Phetsuksiri
- Infectious Diseases, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, THA
| | - Payu Bhakdeenuan
- Infectious Diseases, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, THA
| | - Supranee Bunchoo
- Infectious Diseases, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, THA
| | - Sopa Srisungngam
- Infectious Diseases, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, THA
| | - Janisara Rudeeaneksin
- Infectious Diseases, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, THA
| |
Collapse
|
312
|
Luczo JM, Edwards SJ, Ardipradja K, Suen WW, Au GG, Marsh GA, Godde N, Rootes CL, Bingham J, Sundaramoorthy V. SARS-CoV and SARS-CoV-2 display limited neuronal infection and lack the ability to transmit within synaptically connected axons in stem cell-derived human neurons. J Neurovirol 2024; 30:39-51. [PMID: 38172412 PMCID: PMC11035468 DOI: 10.1007/s13365-023-01187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Sarbecoviruses such as SARS and SARS-CoV-2 have been responsible for two major outbreaks in humans, the latter resulting in a global pandemic. While sarbecoviruses primarily cause an acute respiratory infection, they have been shown to infect the nervous system. However, mechanisms of sarbecovirus neuroinvasion and neuropathogenesis remain unclear. In this study, we examined the infectivity and trans-synaptic transmission potential of the sarbecoviruses SARS and SARS-CoV-2 in human stem cell-derived neural model systems. We demonstrated limited ability of sarbecoviruses to infect and replicate in human stem cell-derived neurons. Furthermore, we demonstrated an inability of sarbecoviruses to transmit between synaptically connected human stem cell-derived neurons. Finally, we determined an absence of SARS-CoV-2 infection in olfactory neurons in experimentally infected ferrets. Collectively, this study indicates that sarbecoviruses exhibit low potential to infect human stem cell-derived neurons, lack an ability to infect ferret olfactory neurons, and lack an inbuilt molecular mechanism to utilise retrograde axonal trafficking and trans-synaptic transmission to spread within the human nervous system.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Sarah J Edwards
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Katie Ardipradja
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Willy W Suen
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Gough G Au
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Glenn A Marsh
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Nathan Godde
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Christina L Rootes
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - John Bingham
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
313
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
314
|
Rahmasari R, Raekiansyah M, Aliyah SH, Yodi P, Baihaqy F, Irhamsyah M, Sari KCDP, Suryadi H, Moi ML, Sauriasari R. Development and validation of cost-effective SYBR Green-based RT-qPCR and its evaluation in a sample pooling strategy for detecting SARS-CoV-2 infection in the Indonesian setting. Sci Rep 2024; 14:1817. [PMID: 38245603 PMCID: PMC10799953 DOI: 10.1038/s41598-024-52250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
A low-cost SYBR Green-based RT-qPCR method to detect SARS-CoV-2 were developed and validated. Primers targeting a conserved and vital region of the N genes of SARS-CoV-2 were designed. In-silico study was performed to analyse the compatibility of the selected primer pair with Indonesian SARS-CoV-2 genome sequences available from the GISAID database. We determined the linearity of our new assay using serial dilution of SARS-CoV-2 RNA from clinical samples with known virus concentration. The assay was then evaluated using clinically relevant samples in comparison to a commercial TaqMan-based test kit. Finally, we applied the assay in sample pooling strategies for SARS-CoV-2 detection. The SYBR Green-based RT-qPCR method was successfully developed with sufficient sensitivity. There is a very low prevalence of genome variation in the selected N primer binding regions, indicating their high conservation. The validation of the assay using clinical samples demonstrated similar performance to the TaqMan method suggesting the SYBR methods is reliable. The pooling strategy by combining 5 RNA samples for SARS-CoV-2 detection using the SYBR RT-qPCR methods is feasible and provides a high diagnostic yield. However, when dealing with samples having a very low viral load, it may increase the risk of missing positive cases.
Collapse
Affiliation(s)
- Ratika Rahmasari
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia.
| | | | - Siti Hana Aliyah
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Priska Yodi
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Fathan Baihaqy
- Helix Laboratory & Clinic, Depok, West Java, Indonesia
- Department of Microbiology, School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | | | | - Herman Suryadi
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rani Sauriasari
- Clinical Pharmacy and Social Pharmacy Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| |
Collapse
|
315
|
Tucker EJ, Wong SW, Marri S, Ali S, Fedele AO, Michael MZ, Rojas-Canales D, Li JY, Lim CK, Gleadle JM. SARS-CoV-2 produces a microRNA CoV2-miR-O8 in patients with COVID-19 infection. iScience 2024; 27:108719. [PMID: 38226175 PMCID: PMC10788221 DOI: 10.1016/j.isci.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Many viruses produce microRNAs (miRNAs), termed viral miRNAs (v-miRNAs), with the capacity to target host gene expression. Bioinformatic and cell culture studies suggest that SARS-CoV-2 can also generate v-miRNAs. This patient-based study defines the SARS-CoV-2 encoded small RNAs present in nasopharyngeal swabs of patients with COVID-19 infection using small RNA-seq. A specific conserved sequence (CoV2-miR-O8) is defined that is not expressed in other coronaviruses but is preserved in all SARS-CoV-2 variants. CoV2-miR-O8 is highly represented in nasopharyngeal samples from patients with COVID-19 infection, is detected by RT-PCR assays in patients, has features consistent with Dicer and Drosha generation as well as interaction with Argonaute and targets specific human microRNAs.
Collapse
Affiliation(s)
- Elise J. Tucker
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Soon Wei Wong
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Saira Ali
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Anthony O. Fedele
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
| | - Michael Z. Michael
- College of Medicine and Public Health, Flinders University, SA, Australia
- Department of Gastroenterology, Flinders Medical Centre, SA, Australia
| | - Darling Rojas-Canales
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Jordan Y. Li
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| | - Chuan Kok Lim
- Infectious Diseases Laboratories, SA Pathology, SA, Australia
| | - Jonathan M. Gleadle
- Department of Renal Medicine, Flinders Medical Centre, SA, Australia
- College of Medicine and Public Health, Flinders University, SA, Australia
| |
Collapse
|
316
|
Okada N, Umemura Y, Shi S, Inoue S, Honda S, Matsuzawa Y, Hirano Y, Kikuyama A, Yamakawa M, Gyobu T, Hosomi N, Minami K, Morita N, Watanabe A, Yamasaki H, Fukaguchi K, Maeyama H, Ito K, Okamoto K, Harano K, Meguro N, Unita R, Koshiba S, Endo T, Yamamoto T, Yamashita T, Shinba T, Fujimi S. "KAIZEN" method realizing implementation of deep-learning models for COVID-19 CT diagnosis in real world hospitals. Sci Rep 2024; 14:1672. [PMID: 38243054 PMCID: PMC10799049 DOI: 10.1038/s41598-024-52135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Numerous COVID-19 diagnostic imaging Artificial Intelligence (AI) studies exist. However, none of their models were of potential clinical use, primarily owing to methodological defects and the lack of implementation considerations for inference. In this study, all development processes of the deep-learning models are performed based on strict criteria of the "KAIZEN checklist", which is proposed based on previous AI development guidelines to overcome the deficiencies mentioned above. We develop and evaluate two binary-classification deep-learning models to triage COVID-19: a slice model examining a Computed Tomography (CT) slice to find COVID-19 lesions; a series model examining a series of CT images to find an infected patient. We collected 2,400,200 CT slices from twelve emergency centers in Japan. Area Under Curve (AUC) and accuracy were calculated for classification performance. The inference time of the system that includes these two models were measured. For validation data, the slice and series models recognized COVID-19 with AUCs and accuracies of 0.989 and 0.982, 95.9% and 93.0% respectively. For test data, the models' AUCs and accuracies were 0.958 and 0.953, 90.0% and 91.4% respectively. The average inference time per case was 2.83 s. Our deep-learning system realizes accuracy and inference speed high enough for practical use. The systems have already been implemented in four hospitals and eight are under progression. We released an application software and implementation code for free in a highly usable state to allow its use in Japan and globally.
Collapse
Affiliation(s)
| | | | - Shoi Shi
- University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ken Okamoto
- Juntendo University Urayasu Hospital, Urayasu, Japan
| | | | | | - Ryo Unita
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Takuro Endo
- International University of Health and Welfare, School of Medicine, Narita Hospital, Narita, Japan
| | | | | | | | | |
Collapse
|
317
|
AlMuammar S, Alshora W, Sadik Gari A, Bahaj RK, Alansari BA. Parental Willingness and Factors Influencing COVID-19 Vaccination for Children in Saudi Arabia. Pediatric Health Med Ther 2024; 15:29-48. [PMID: 38260725 PMCID: PMC10800286 DOI: 10.2147/phmt.s443272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Purpose The study aimed to examine the parents' willingness and its association with demographic factors, attitudes, and practices to vaccinate their child against COVID-19. Patients and Methods The study involved 2500 participants from various regions of Saudi Arabia and was conducted between July 1, 2021, and August 31, 2021. Information was gathered via an online questionnaire comprising 26 questions, distributed across social media platforms. Informed consent was obtained from all participants before the commencement of the study. A chi-square test was applied to analyze the association among variables, utilizing a subset of 2127 participants based on study inclusion criteria. A chi-square test was applied to observe the association. Results The willingness of parents to vaccinae their children against COVID-19 was found 61%. The main reason for taking was "Protect the child" by 1094 (51.4%%) and the main reason for refusing was "Side effects/safety concerns" by 477 (22.4%). 1846 (86.8%) participants, received the COVID-19 vaccine or were planning to receive it. Conclusion Our study concluded that parent's willingness to vaccinate their children against COVID-19 was relatively high in our sample as about two-thirds of them accept the vaccine for their child once it is available. The use of the health belief model demonstrated the urgent requirement for awareness and education campaigns in the private and public sectors to increase awareness of parents not only related to COVID-19 but also to cater to any unexpected or suspected pandemic of infectious disease in the future full capacity.
Collapse
Affiliation(s)
- Sarah AlMuammar
- Family Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Weam Alshora
- Family Medicine Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Atheer Sadik Gari
- Family Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Khalid Bahaj
- Family Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
318
|
Port JR, Yinda CK, Ruckel C, Schulz JE, Smith BJ, Shaia CI, Munster VJ. Augmentation of Omicron BA.1 pathogenicity in hamsters using intratracheal inoculation. NPJ VIRUSES 2024; 2:3. [PMID: 40295685 PMCID: PMC11702663 DOI: 10.1038/s44298-023-00012-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 04/30/2025]
Abstract
The Omicron BA.1 variant of SARS-CoV-2 displays an attenuated phenotype in the Syrian hamster after intranasal inoculation. This is characterized by reduced viral replication and lung pathology in the lower respiratory tract. Here, we report that intratracheal inoculation with Omicron BA.1 recovers the lower respiratory tract replication and pathogenicity as observed with other lineages.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claire Ruckel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
319
|
Sluimer J, van den Akker WMR, Goderski G, Swart A, van der Veer B, Cremer J, Chung NH, Molenkamp R, Voermans J, Guldemeester J, Eggink D, Presser LD, Meijer A. High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment. Sci Rep 2024; 14:1378. [PMID: 38228693 DOI: 10.1038/s41598-023-50912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.
Collapse
Grants
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
- V/190028/22/PR Ministerie van Volksgezondheid, Welzijn en Sport
Collapse
Affiliation(s)
- John Sluimer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Willem M R van den Akker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gabriel Goderski
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bas van der Veer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen Cremer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ngoc Hoa Chung
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolanda Voermans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith Guldemeester
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk Eggink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lance D Presser
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Adam Meijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
320
|
Qin J, Tian X, Liu S, Yang Z, Shi D, Xu S, Zhang Y. Rapid classification of SARS-CoV-2 variant strains using machine learning-based label-free SERS strategy. Talanta 2024; 267:125080. [PMID: 37678002 DOI: 10.1016/j.talanta.2023.125080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 09/09/2023]
Abstract
The spread of COVID-19 over the past three years is largely due to the continuous mutation of the virus, which has significantly impeded global efforts to prevent and control this epidemic. Specifically, mutations in the amino acid sequence of the surface spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have directly impacted its biological functions, leading to enhanced transmission and triggering an immune escape effect. Therefore, prompt identification of these mutations is crucial for formulating targeted treatment plans and implementing precise prevention and control measures. In this study, the label-free surface-enhanced Raman scattering (SERS) technology combined with machine learning (ML) algorithms provide a potential solution for accurate identification of SARS-CoV-2 variants. We establish a SERS spectral database of SARS-CoV-2 variants and demonstrate that a diagnostic classifier using a logistic regression (LR) algorithm can provide accurate results within 10 min. Our classifier achieves 100% accuracy for Beta (B.1.351/501Y.V2), Delta (B.1.617), Wuhan (COVID-19) and Omicron (BA.1) variants. In addition, our method achieves 100% accuracy in blind tests of positive and negative human nasal swabs based on the LR model. This method enables detection and classification of variants in complex biological samples. Therefore, ML-based SERS technology is expected to accurately discriminate various SARS-CoV-2 variants and may be used for rapid diagnosis and therapeutic decision-making.
Collapse
Affiliation(s)
- Jingwang Qin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xiangdong Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Siying Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengxia Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
321
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
322
|
Zarouri A, Barnes AMT, Aboubakr H, Thekkudan Novi V, Dong Q, Nelson A, Goyal S, Abbas A. A high-performance polymer composite column for coronavirus nucleic acid purification. Sci Rep 2024; 14:1138. [PMID: 38212439 PMCID: PMC10784286 DOI: 10.1038/s41598-024-51671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Here, we report the development of a novel polymer composite (PC) purification column and kit. The performance of the PC columns was compared to conventional silica gel (SG) columns for the purification of nucleic acids from coronaviruses, including SARS-CoV-2, in 82 clinical samples. The results shows that PC-based purification outperforms silica gel (SG)-based purification by enabling a higher sensitivity (94%), accuracy (97%), and by eliminating false positives (100% specificity). The high specificity is critical for efficient patient triage and resource management during pandemics. Furthermore, PC-based purification exhibits three times higher analytical precision than a commonly used SG-based nucleic acid purification thereby enabling a more accurate quantification of viral loads and higher reproducibility.
Collapse
Affiliation(s)
- Akli Zarouri
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, Saint Paul, MN, USA
| | - Aaron M T Barnes
- Division of Molecular Pathology and Genomics, Department of Laboratory Medicine and Pathology, University of Minnesota Twin Cities, 420 Delaware Street SE, Minneapolis, MN, USA
- Department of Microbiology and Immunology, University of Minnesota Medical School, 689 23rd Ave SE, Minneapolis, MN, USA
| | - Hamada Aboubakr
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, Saint Paul, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota Twin Cities, 1333 Gortner Ave., Saint Paul, MN, USA
| | - Vinni Thekkudan Novi
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, Saint Paul, MN, USA
| | - Qiuchen Dong
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, Saint Paul, MN, USA
| | - Andrew Nelson
- Division of Molecular Pathology and Genomics, Department of Laboratory Medicine and Pathology, University of Minnesota Twin Cities, 420 Delaware Street SE, Minneapolis, MN, USA
| | - Sagar Goyal
- Department of Veterinary Population Medicine, University of Minnesota Twin Cities, 1333 Gortner Ave., Saint Paul, MN, USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, Saint Paul, MN, USA.
| |
Collapse
|
323
|
Kawase M, Suwa R, Sugimoto S, Kakizaki M, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Ujike M, Hosoya M, Hashimoto K, Shirato K. Evidence of the simultaneous replications of active viruses in specimens positive for multiple respiratory viruses. Microbiol Spectr 2024; 12:e0192023. [PMID: 38051050 PMCID: PMC10783086 DOI: 10.1128/spectrum.01920-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Since the pandemic of coronavirus diseases 2019, the use of real-time PCR assay has become widespread among people who were not familiar with it in virus detection. As a result, whether a high real-time PCR value in one time test indicates virus transmissibly became a complicated social problem, regardless of the difference in assays and/or amplification conditions, the time and number of diagnostic test during the time course of infection. In addition, the multiple positives in the test of respiratory viruses further add to the confusion in the interpretation of the infection. To address this issue, we performed virus isolation using pediatric SARI (severe acute respiratory infections) specimens on air-liquid interface culture of human bronchial/tracheal epithelial cell culture. The result of this study can be a strong evidence that the specimens showing positivity for multiple agents in real-time PCR tests possibly contain infectious viruses.
Collapse
Affiliation(s)
- Miyuki Kawase
- Department of Virology III, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo, Japan
| | - Masatoshi Kakizaki
- Department of Virology III, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Makoto Ujike
- Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo, Japan
| |
Collapse
|
324
|
Victoria C, Schulz G, Klöhn M, Weber S, Holicki CM, Brüggemann Y, Becker M, Gerold G, Eiden M, Groschup MH, Steinmann E, Kirschning A. Halogenated Rocaglate Derivatives: Pan-antiviral Agents against Hepatitis E Virus and Emerging Viruses. J Med Chem 2024; 67:289-321. [PMID: 38127656 PMCID: PMC10788925 DOI: 10.1021/acs.jmedchem.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions 4', 6 and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.
Collapse
Affiliation(s)
- Catherine Victoria
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Göran Schulz
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Mara Klöhn
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Saskia Weber
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Cora M. Holicki
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Yannick Brüggemann
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Miriam Becker
- Institute
for Biochemistry and Research Center for Emerging Infections and Zoonoses
(RIZ), University of Veterinary Medicine
Hannover, Bünteweg
2, 30559 Hannover, Germany
| | - Gisa Gerold
- Institute
for Biochemistry and Research Center for Emerging Infections and Zoonoses
(RIZ), University of Veterinary Medicine
Hannover, Bünteweg
2, 30559 Hannover, Germany
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, 901 87 Umeå, Sweden
- Department
of Clinical Microbiology, Virology, Umeå
University, 901 87 Umeå, Sweden
| | - Martin Eiden
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin H. Groschup
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Eike Steinmann
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Andreas Kirschning
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| |
Collapse
|
325
|
Bagato O, Balkema-Buschmann A, Todt D, Weber S, Gömer A, Qu B, Miskey C, Ivics Z, Mettenleiter TC, Finke S, Brown RJP, Breithaupt A, Ushakov DS. Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs. Microbiol Spectr 2024; 12:e0246923. [PMID: 38009950 PMCID: PMC10782978 DOI: 10.1128/spectrum.02469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.
Collapse
Affiliation(s)
- Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Water Pollution Research Department, Dokki, Giza, Egypt
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Richard J. P. Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Dmitry S. Ushakov
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
326
|
Akter J, Smith WJM, Gebrewold M, Kim I, Simpson SL, Bivins A, Ahmed W. Evaluation of colorimetric RT-LAMP for screening of SARS-CoV-2 in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167964. [PMID: 37865239 DOI: 10.1016/j.scitotenv.2023.167964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study compared reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and three reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays targeting the N and E genes of the SARS-CoV-2 genome for detecting RNA in untreated wastewater samples. RT-qPCR assays exhibited consistent amplification down to 2 × 102 GC/reaction, with greater analytical sensitivity at 2 × 101 GC/reaction by US CDC N1 and US CDC N2 assays. In contrast, RT-LAMP exhibited lower sensitivity, detecting SARS-CoV-2 only at or above 2 × 103 GC/reaction. For SARS-CoV-2 seeded wastewater samples, the US CDC N1 assay exhibited greater analytical sensitivity than the US CDC N2, E_Sarbeco, and RT-LAMP assays. Out of 30 wastewater samples, RT-qPCR detected endogenous SARS-CoV-2 RNA in 29 samples, while RT-LAMP identified 27 positive samples, with 20 displaying consistent amplifications in all three RT-LAMP technical replicates. Agreement analysis revealed a strong concordance between RT-LAMP and the US CDC N1 and E_Sarbeco RT-qPCR assays (κ = 0.474) but lower agreement with the US CDC N2 RT-qPCR assay (κ = 0.359). Quantification of SARS-CoV-2 RNA in positive samples revealed a strong correlation between the US CDC N1 and E_Sarbeco assays, while the US CDC N1 and US CDC N2 assays exhibited weak correlation. Logistic regression analysis indicated that RT-LAMP results correlated with RNA quantified by the US CDC N1 and E_Sarbeco assays, with 95 % limits of detection of 3.99 and 3.47 log10 GC/15 mL, respectively. In conclusion, despite lower sensitivity compared to RT-qPCR assays, RT-LAMP may offer advantages for wastewater surveillance, such as rapid results (estimated as twice as fast), and simplicity, making it a valuable tool in the shifting landscape of COVID-19 wastewater surveillance. Furthermore, LAMP positive wastewater samples might be prioritized for SARS-CoV-2 sequencing due to reduced analytical sensitivity. These findings support the use of RT-LAMP as a specific and efficient method for screening wastewater samples for SARS-CoV-2, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Jesmin Akter
- Department of Civil and Environmental Engineering, University of Science and Technology, Republic of Korea; Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Republic of Korea; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ilho Kim
- Department of Civil and Environmental Engineering, University of Science and Technology, Republic of Korea; Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Republic of Korea
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
327
|
Vaughan TG, Scire J, Nadeau SA, Stadler T. Estimates of early outbreak-specific SARS-CoV-2 epidemiological parameters from genomic data. Proc Natl Acad Sci U S A 2024; 121:e2308125121. [PMID: 38175864 PMCID: PMC10786264 DOI: 10.1073/pnas.2308125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
We estimate the basic reproductive number and case counts for 15 distinct Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks, distributed across 11 populations (10 countries and one cruise ship), based solely on phylodynamic analyses of genomic data. Our results indicate that, prior to significant public health interventions, the reproductive numbers for 10 (out of 15) of these outbreaks are similar, with median posterior estimates ranging between 1.4 and 2.8. These estimates provide a view which is complementary to that provided by those based on traditional line listing data. The genomic-based view is arguably less susceptible to biases resulting from differences in testing protocols, testing intensity, and import of cases into the community of interest. In the analyses reported here, the genomic data primarily provide information regarding which samples belong to a particular outbreak. We observe that once these outbreaks are identified, the sampling dates carry the majority of the information regarding the reproductive number. Finally, we provide genome-based estimates of the cumulative number of infections for each outbreak. For 7 out of 11 of the populations studied, the number of confirmed cases is much bigger than the cumulative number of infections estimated from the sequence data, a possible explanation being the presence of unsequenced outbreaks in these populations.
Collapse
Affiliation(s)
- Timothy G. Vaughan
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Basel4058, Switzerland
- Computational Evolution Group, Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Jérémie Scire
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Basel4058, Switzerland
- Computational Evolution Group, Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Sarah A. Nadeau
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Basel4058, Switzerland
- Computational Evolution Group, Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Basel4058, Switzerland
- Computational Evolution Group, Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| |
Collapse
|
328
|
Yinda CK, Port JR, Bushmaker T, Schulz JE, Gallogly S, Fischer RJ, Munster VJ. Airborne transmission efficiency of SARS-CoV-2 in Syrian hamsters is not influenced by environmental conditions. NPJ VIRUSES 2024; 2:2. [PMID: 40295780 PMCID: PMC11702665 DOI: 10.1038/s44298-023-00011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 04/30/2025]
Abstract
Several human respiratory viruses display a clear seasonal pattern with a higher incidence in the winter season in temperate regions. We previously determined that SARS-CoV-2 is more stable at low-temperature and low-humidity conditions compared to warmer temperature and higher-humidity. To determine if this translates into differential airborne transmission rates in vivo, we performed airborne transmission experiments in the Syrian hamster model under three different environmental conditions (10 °C, 45% relative humidity (RH), 22 °C, 45% RH, and 27 °C, 65% RH). We compared the ancestral SARS-CoV-2 Lineage A with the more transmissible Delta Variant of Concern (VOC). Airborne transmission was evaluated using SARS-CoV-2 infected donor animals at 24 h post inoculation. Sentinels were placed at a 90 cm distance in a transmission set-up and exposed for 1-h to infected donor animals. While environmental conditions moderately impacted lung RNA titers, the shedding kinetics of the donors were not affected by the environmental conditions and did not differ significantly between variants on day 1. Overall, the highest transmission efficiency was observed at 22 °C, 40%RH for Delta (62.5%, based on seroconversion), and ranged between 37.5 and 50% for all other conditions. However, these differences were not significant. To elucidate this further, we performed aerosol stability comparisons and found that infectious virus remained stable during a 1-h time window across all conditions. Our data suggest that even when environmental conditions affect the stability of SARS-CoV-2, this may not directly be translatable to measurable impacts on transmission in an experimental setting when exposure time is restricted.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
329
|
Funk LM, Poschmann G, Rabe von Pappenheim F, Chari A, Stegmann KM, Dickmanns A, Wensien M, Eulig N, Paknia E, Heyne G, Penka E, Pearson AR, Berndt C, Fritz T, Bazzi S, Uranga J, Mata RA, Dobbelstein M, Hilgenfeld R, Curth U, Tittmann K. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Nat Commun 2024; 15:411. [PMID: 38195625 PMCID: PMC10776599 DOI: 10.1038/s41467-023-44621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.
Collapse
Affiliation(s)
- Lisa-Marie Funk
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Ashwin Chari
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Kim M Stegmann
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Marie Wensien
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Nora Eulig
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Elham Paknia
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Gabi Heyne
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Elke Penka
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Arwen R Pearson
- Institute for Nanostructure and Solid-State Physics, Hamburg Centre for Ultrafast Imaging, Hamburg University, HARBOR, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tobias Fritz
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Jon Uranga
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Rolf Hilgenfeld
- Institute for Biochemistry, Lübeck University, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Infection Research, Hamburg - Lübeck-Borstel-Riems Site, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany.
| |
Collapse
|
330
|
Brumini I, Dodig D, Žuža I, Višković K, Mehmedović A, Bartolović N, Šušak H, Cekinović Grbeša Đ, Miletić D. Validation of Diagnostic Accuracy and Disease Severity Correlation of Chest Computed Tomography Severity Scores in Patients with COVID-19 Pneumonia. Diagnostics (Basel) 2024; 14:148. [PMID: 38248025 PMCID: PMC10814884 DOI: 10.3390/diagnostics14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of our study was to establish and compare the diagnostic accuracy and clinical applicability of published chest CT severity scoring systems used for COVID-19 pneumonia assessment and to propose the most efficient CT scoring system with the highest diagnostic performance and the most accurate prediction of disease severity. This retrospective study included 218 patients with PCR-confirmed SARS-CoV-2 infection and chest CT. Two radiologists blindly evaluated CT scans and calculated nine different CT severity scores (CT SSs). The diagnostic validity of CT SSs was tested by ROC analysis. Interobserver agreement was excellent (intraclass correlation coefficient: 0.982-0.995). The predominance of either consolidations or a combination of consolidations and ground-glass opacities (GGOs) was a predictor of more severe disease (both p < 0.005), while GGO prevalence alone was not. Correlation between all CT SSs was high, ranging from 0.848 to 0.971. CT SS 30 had the highest diagnostic accuracy (AUC = 0.805) in discriminating mild from severe COVID-19 disease compared to all the other proposed scoring systems (AUC range 0.755-0.788). In conclusion, CT SS 30 achieved the highest diagnostic accuracy in predicting the severity of COVID-19 disease while maintaining simplicity, reproducibility, and applicability in complex clinical settings.
Collapse
Affiliation(s)
- Ivan Brumini
- Department of Diagnostic and Interventional Radiology, University Hospital Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
- Department of Radiological Technology, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Doris Dodig
- European Telemedicine Clinic S.L., C/Marina 16-18, 08005 Barcelona, Spain
| | - Iva Žuža
- Department of Diagnostic and Interventional Radiology, University Hospital Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
| | - Klaudija Višković
- University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, Mirogojska 8, 10000 Zagreb, Croatia
| | - Armin Mehmedović
- European Telemedicine Clinic S.L., C/Marina 16-18, 08005 Barcelona, Spain
| | - Nina Bartolović
- Department of Diagnostic and Interventional Radiology, University Hospital Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
| | - Helena Šušak
- University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, Mirogojska 8, 10000 Zagreb, Croatia
| | - Đurđica Cekinović Grbeša
- Department for Infectious Diseases, University Hospital Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
| | - Damir Miletić
- Department of Diagnostic and Interventional Radiology, University Hospital Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
| |
Collapse
|
331
|
von Possel R, Menge B, Deschermeier C, Fritzsche C, Hemmer C, Geerdes-Fenge H, Loebermann M, Schulz A, Lattwein E, Steinhagen K, Tönnies R, Ahrendt R, Emmerich P. Performance Analysis of Serodiagnostic Tests to Characterize the Incline and Decline of the Individual Humoral Immune Response in COVID-19 Patients: Impact on Diagnostic Management. Viruses 2024; 16:91. [PMID: 38257792 PMCID: PMC10820597 DOI: 10.3390/v16010091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Serodiagnostic tests for antibody detection to estimate the immunoprotective status regarding SARS-CoV-2 support diagnostic management. This study aimed to investigate the performance of serological assays for COVID-19 and elaborate on test-specific characteristics. Sequential samples (n = 636) of four panels (acute COVID-19, convalescent COVID-19 (partly vaccinated post-infection), pre-pandemic, and cross-reactive) were tested for IgG by indirect immunofluorescence test (IIFT) and EUROIMMUN EUROLINE Anti-SARS-CoV-2 Profile (IgG). Neutralizing antibodies were determined by a virus neutralization test (VNT) and two surrogate neutralization tests (sVNT, GenScript cPass, and EUROIMMUN SARS-CoV-2 NeutraLISA). Analysis of the acute and convalescent panels revealed high positive (78.3% and 91.6%) and negative (91.6%) agreement between IIFT and Profile IgG. The sVNTs revealed differences in their positive (cPass: 89.4% and 97.0%, NeutraLISA: 71.5% and 72.1%) and negative agreement with VNT (cPass: 92.3% and 50.0%, NeutraLISA: 95.1% and 92.5%) at a diagnostic specificity of 100% for all tests. The cPass showed higher inhibition rates than NeutraLISA at VNT titers below 1:640. Cross-reactivities were only found by cPass (57.1%). Serodiagnostic tests, which showed substantial agreement and fast runtime, could provide alternatives for cell-based assays. The findings of this study suggest that careful interpretation of serodiagnostic results obtained at different times after SARS-CoV-2 antigen exposure is crucial to support decision-making in diagnostic management.
Collapse
Affiliation(s)
- Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Babett Menge
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Carlos Fritzsche
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Christoph Hemmer
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Hilte Geerdes-Fenge
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Micha Loebermann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Anette Schulz
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Erik Lattwein
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Katja Steinhagen
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | | | | | - Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
332
|
Yokoo P, Castro ADAE, Fonseca EKUN, Chate RC, Teles GBDS, de Queiroz MRG, Szarf G. COVID-19 pneumonia assessed at a private hospital, a field hospital, and a public-referral hospital: population analysis, chest computed tomography findings, and outcomes. Front Public Health 2024; 11:1280662. [PMID: 38235155 PMCID: PMC10793654 DOI: 10.3389/fpubh.2023.1280662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Objective To compare a private quaternary referral hospital, a public tertiary hospital, and a field hospital dedicated to patients with COVID-19, regarding patients' characteristics, clinical parameters, laboratory, imaging findings, and outcomes of patients with confirmed diagnosis of COVID-19. Methods Retrospective multicenter observational study that assessed the association of clinical, laboratory and CT data of 453 patients with COVID-19, and also their outcomes (hospital discharge or admission, intensive care unit admission, need for mechanical ventilation, and mortality caused by COVID-19). Results The mean age of patients was 55 years (±16 years), 58.1% of them were male, and 41.9% were female. Considering stratification by the hospital of care, significant differences were observed in the dyspnea, fever, cough, hypertension, diabetes mellitus parameters, and CT score (p < 0.05). Significant differences were observed in ward admission rates, with a lower rate in the private hospital (40.0%), followed by the public hospital (74.1%), and a higher rate in the field hospital (89.4%). Regarding intensive care unit admission, there was a higher rate in the public hospital (25.2%), followed by the private hospital (15.5%), and a lower rate in the field hospital (9.9%). In the analysis of the discharge and death outcomes, it was found that there was a higher number of patients discharged from the private hospital (94.2%), compared to the field hospital (90.1%) and public hospital (82.3%) and a higher number of deaths in the public hospital (17.7%) compared to the private hospital and field hospital (5.8 and 0% respectively). Conclusion The analysis of the data regarding the population treated with COVID-19 during the first wave in different levels of care in the public and private health systems in the city of São Paulo revealed statistically significant differences between the populations, reflecting distinct outcomes.
Collapse
|
333
|
Mehmood A, Almajwal AM, Addas A, Zeb F, Alam I, Sehar B. Exploring the relationship of cognitive function with and without COVID-19 recovered schizophrenic patients. Front Public Health 2024; 11:1306132. [PMID: 38235158 PMCID: PMC10791931 DOI: 10.3389/fpubh.2023.1306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Background The Coronavirus disease 2019 (COVID-19) is linked to the deterioration of cognitive function among individuals suffering from schizophrenia. The purpose of this study was to compare the cognitive performance of schizophrenic patients before and after COVID-19. Methods A longitudinal cohort study involving a sample of 219 individuals diagnosed with schizophrenia was enrolled between June 2022 and May 2023. The participants were split into two groups infected with COVID-19 (n = 165) and not infected with COVID-19 (n = 54). The data were gathered via a questionnaire on demographic characteristics, the Brief Assessment of Cognition in Schizophrenia (BACS), the Positive and Negative Syndrome Scale (PANSS), the Calgary Depression Scale for Schizophrenia (CDSS), the Activities of Daily Living (ADL) scale, and the Insomnia Severity Index (ISI). Results The repeated-measures ANOVA showed that Among patients diagnosed with COVID-19, there was a deterioration in global cognitive function (before COVID-19 = -2.45 vs. after COVID-19 = -3.02, p = 0.007), working memory (before COVID-19 = -2.76 vs. after COVID-19 = -3.34, p < 0.00 1), motor speed (before COVID-19 = -1.64 vs. after COVID-19 = -2.12, p < 0.001), attention and speed of information processing (before COVID-19 = -1.93 vs. after COVID-19 = -1.16, p = 0.008). multi-variable analysis showed that several factors as having a secondary grade of education (β = 0.434), experiencing insomnia (β = 0.411)and the interaction between COVID-19 diagnosis and cognition at baseline (β = 0.796) were significantly associated with cognitive deficits. At the same time, no significant associations were found between global cognition and clinical symptoms, autonomy, or depression (p > 0.05). Conclusion The COVID-19 pandemic has significantly impacted various cognitive functions, such as verbal memory, working memory, and global cognition. Insomnia has been identified as the predominant determinant of cognitive impairment, alongside the confirmation of a COVID-19 diagnosis. Additional research is imperative to elucidate the diversification of cognitive functionality observed in individuals diagnosed with schizophrenia who have acquired COVID-19.
Collapse
Affiliation(s)
- Anam Mehmood
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Addas
- Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Landscape Architecture Department, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Falak Zeb
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, KPK, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Luton, United Kingdom
| |
Collapse
|
334
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
335
|
Ramzali M, Salimi V, Cheraghali F, Hosseini SD, Yasaghi M, Samadizadeh S, Rastegar M, Nakstad B, Tahamtan A. Epidemiology and clinical features of respiratory syncytial virus (RSV) infection in hospitalized children during the COVID-19 pandemic in Gorgan, Iran. Health Sci Rep 2024; 7:e1787. [PMID: 38186938 PMCID: PMC10764657 DOI: 10.1002/hsr2.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Background and Aims Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection in infants and young children. Given the altered circulation patterns of respiratory viruses during the coronavirus disease pandemic-2019 (COVID-19), the study aimed to evaluate epidemiology and clinical features of RSV infections in hospitalized children during the COVID-19 pandemic in Gorgan, northeastern Iran. Molecular epidemiology studies on respiratory viral infections are necessary to monitor circulating viruses, disease severity, and clinical symptoms, in addition to early warning of new outbreaks. Methods Overall, 411 respiratory swab samples from hospitalized children from October 2021 to March 2022 were collected at Taleghani Children's Hospital, Gorgan, Iran. The incidence of RSV, as well as the circulating subgroups and genotypes, were investigated and confirmed using PCR methods. Additionally, all samples tested for severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2) and influenza, and demographic and clinical data were analyzed using SPSS software. Results The share of RSV, SARS-CoV-2, and influenza among hospitalized children with acute lower respiratory infections (ALRI) were 27%, 16.5%, and 4.1%, respectively. The RSV subgroup A (genotype ON1) was dominant over subgroup B (genotype BA9), with more severe clinical symptoms. Compared with the prepandemic era there were high numbers of hospitalized SARS-CoV-2 positive children and low numbers of other respiratory viruses. Despite this, the prevalence of ALRI-related RSV-disease among hospitalized children in our specialized pediatric center was higher than COVID-19 disease in the same cohort. Conclusions Studying the epidemiology of respiratory viruses and determining the circulating strains can contribute to effective infection control and treatment strategies.
Collapse
Affiliation(s)
- Mahnaz Ramzali
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Vahid Salimi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Fatemeh Cheraghali
- Department of Pediatrics, School of Medicine, Taleghani Children's HospitalGolestan University of Medical SciencesGorganIran
| | - Seyedeh Delafruz Hosseini
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yasaghi
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Saeed Samadizadeh
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Mostafa Rastegar
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Britt Nakstad
- Department of Pediatric and Adolescent HealthUniversity of BotswanaGaboroneBotswana
- Division of Paediatric and Adolescent Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Alireza Tahamtan
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Department of Microbiology, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
336
|
Shoushtari M, Zeinoddini M, Fathi J, Keshavarz Alikhani H, Shiekhi F. One-step and Rapid Identification of SARS-CoV-2 using Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). Avicenna J Med Biotechnol 2024; 16:3-8. [PMID: 38605744 PMCID: PMC11005395 DOI: 10.18502/ajmb.v16i1.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/29/2023] [Indexed: 04/13/2024] Open
Abstract
Background SARS-CoV-2 as the cause of novel coronavirus disease (COVID-19) is a member of the family Coronaviridea that has generated an emerging global health concern. Controlling and preventing the spread of the disease requires a simple, portable, and rapid diagnostic method. Today, a standard method for detecting SARS-CoV-2 is quantitative real-time reverse transcription PCR, which is time-consuming and needs an advanced device. The aim of this study was to evaluate a faster and more cost-effective field-based testing method at the point of risk. We utilized a one-step RT-LAMP assay and developed, for the first time, a simple and rapid screening detection assay targeting the Envelope (E) gene, using specific primers. Methods For this, the total RNA was extracted from respiratory samples of COVID-19 infected patients and applied to one-step a RT-LAMP reaction. The LAMP products were visualized using green fluorescence (SYBR Green I). Sensitivity testing was conducted using different concentrations of the designed recombinant plasmid (TA-E) as positive control constructs. Additionally, selectivity testing was performed using the influenza H1N1 genome. Finally, the results were compared using with conventional real time RT-PCR. Results It was shown that the RT-LAMP assay has a sensitivity of approximately 15 ng for the E gene of SARS-CoV-2 when using extracted total RNA. Additionally, a sensitivity of 112 pg was achieved when using an artificially prepared TA-E plasmid. Accordingly, for the detection of SARS-CoV-2 infection, the RT-LAMP had high sensitivity and specificity and also could be an alternative method for real-time RT-PCR. Conclusion Overall, this method can be used as a portable, rapid, and easy method for detecting SARS-CoV-2 in the field and clinical laboratories.
Collapse
Affiliation(s)
| | - Mehdi Zeinoddini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Shiekhi
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
337
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
338
|
Chorney W, Wang H, Fan LW. AttentionCovidNet: Efficient ECG-based diagnosis of COVID-19. Comput Biol Med 2024; 168:107743. [PMID: 38000247 DOI: 10.1016/j.compbiomed.2023.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The novel coronavirus caused a worldwide pandemic. Rapid detection of COVID-19 can help reduce the spread of the novel coronavirus as well as the burden on healthcare systems worldwide. The current method of detecting COVID-19 suffers from low sensitivity, with estimates of 50%-70% in clinical settings. Therefore, in this study, we propose AttentionCovidNet, an efficient model for the detection of COVID-19 based on a channel attention convolutional neural network for electrocardiograms. The electrocardiogram is a non-invasive test, and so can be more easily obtained from a patient. We show that the proposed model achieves state-of-the-art results compared to recent models in the field, achieving metrics of 0.993, 0.997, 0.993, and 0.995 for accuracy, precision, recall, and F1 score, respectively. These results indicate both the promise of the proposed model as an alternative test for COVID-19, as well as the potential of ECG data as a diagnostic tool for COVID-19.
Collapse
Affiliation(s)
- Wesley Chorney
- Computational Engineering, Mississippi State University, Mississippi State, 39762, USA.
| | - Haifeng Wang
- Industrial and Systems Engineering, Mississippi State University, Mississippi State, 39762, USA.
| | - Lir-Wan Fan
- Pediatrics/Newborn Medicine, University of Mississippi Medical Center, Mississippi State, 39216, USA.
| |
Collapse
|
339
|
Ray SK, Mukherjee S. Innovation and Patenting Activities During COVID-19 and Advancement of Biochemical and Molecular Diagnosis in the Post- COVID-19 Era. Recent Pat Biotechnol 2024; 18:210-226. [PMID: 37779409 DOI: 10.2174/0118722083262217230921042127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 10/03/2023]
Abstract
The COVID-19 pandemic is to escalate globally and acquire new mutations quickly, so accurate diagnostic technologies play a vital role in controlling and understanding the epidemiology of the disease. A plethora of technologies acquires diagnosis of individuals and informs clinical management of COVID. Some important biochemical parameters for COVID diagnosis are the elevation of liver enzymes, creatinine, and nonspecific inflammatory markers such as C-reactive protein (CRP) and Interleukin 6 (IL-6). The main progression predictors are lymphopenia, elevated D-dimer, and hyperferritinemia, although it is also necessary to consider LDH, CPK, and troponin in the marker panel of diagnosis. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively used for COVID diagnosis for some time now. To make so many diagnostics accessible to general people, many techniques may be exploited, including point of care (POC), also called bedside testing, which is developing as a portable promising tool in pathogen identification. Some other lateral flow assay (LFA)-centered techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor limited uniform detection assay (FELUDA), etc. have shown auspicious results in the rapid detection of pathogens. More recently, low-cost sequencing and advancements in big data management have resulted in a slow but steady rise of next-generation sequencing (NGS)-based approaches for diagnosis that have potential relevance for clinical purposes and may pave the way toward a better future. Due to the COVID-19 pandemic, various institutions provided free, specialized websites and tools to promote research and access to critically needed advanced solutions by alleviating research and analysis of data within a substantial body of scientific and patent literature regarding biochemical and molecular diagnosis published since January 2020. This circumstance is unquestionably unique and difficult for anyone using patent information to find pertinent disclosures at a specific date in a trustworthy manner.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
340
|
Brouwer CWE, Russcher A, Rezek Y, Nijhuis RHT. Evaluation of the fully automated, sample-to-result Seegene STARlet-AIOS platform for detection of SARS-CoV-2, influenza virus A, influenza virus B, and RSV. Eur J Clin Microbiol Infect Dis 2024; 43:87-93. [PMID: 37966626 DOI: 10.1007/s10096-023-04703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Early, accurate, and bulk detection of respiratory pathogens is essential for patient management and infection control. STARlet-All-in-One System (AIOS) (Seegene) is a new, fully automated, sample-to-result, molecular diagnostic platform. This study describes the first evaluation of STARlet-AIOS, by testing the Allplex™ SARS-CoV-2 (AS) and Allplex™ SARS-CoV-2/FluA/FluB/RSV combination (AC) assays in comparison to the SARS-CoV-2 assays used at our institute. Over a 3-week period, all naso-/oropharyngeal specimens tested for SARS-CoV-2 using either GeneXpert, Panther, or in-house developed test (LDT) were tested on the AIOS using the AS or AC assays. In addition, retrospective cohorts of specimens containing SARS-CoV-2, influenza virus A, influenza virus B, and RSV were tested. Discrepant results were re-tested with another assay used in this study. Hands-on time (HOT) and turn-around time (TAT) of the different systems were monitored and compared. A total of 738 specimens were tested on the AIOS using the AS assay. In addition, 210 specimens were tested using the AC assay. Overall agreement for SARS-CoV-2 detection was established as 98.5% and 95.2% for the AS and AC assay, respectively. Retrospective testing revealed high agreements for all targets, except for influenza virus A (agreement of 87.5%). HOT of the system was comparable to the HOT of GeneXpert and Panther and TAT comparable to Panther and LDT. The AIOS proved to be a robust sample-to-result system with low HOT and moderate TAT. This study showed reliable detection of SARS-CoV-2, influenza virus B, and RSV, whereas detection of influenza virus A using the AC assay appeared to be suboptimal.
Collapse
Affiliation(s)
- C W E Brouwer
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - A Russcher
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - Y Rezek
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - R H T Nijhuis
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands.
| |
Collapse
|
341
|
Jobling K, Quintela-Baluja M, Hassard F, Adamou P, Blackburn A, Research Team T, McIntyre-Nolan S, O'Mara O, Romalde JL, Di Cesare M, Graham DW. Comparison of gene targets and sampling regimes for SARS-CoV-2 quantification for wastewater epidemiology in UK prisons. JOURNAL OF WATER AND HEALTH 2024; 22:64-76. [PMID: 38295073 PMCID: wh_2023_093 DOI: 10.2166/wh.2023.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Prisons are high-risk settings for infectious disease transmission, due to their enclosed and semi-enclosed environments. The proximity between prisoners and staff, and the diversity of prisons reduces the effectiveness of non-pharmaceutical interventions, such as social distancing. Therefore, alternative health monitoring methods, such as wastewater-based epidemiology (WBE), are needed to track pathogens, including SARS-CoV-2. This pilot study assessed WBE to quantify SARS-CoV-2 prevalence in prison wastewater to determine its utility within a health protection system for residents. The study analysed 266 samples from six prisons in England over a 12-week period for nucleoprotein 1 (N1 gene) and envelope protein (E gene) using quantitative reverse transcriptase-polymerase chain reaction. Both gene assays successfully detected SARS-CoV-2 fragments in wastewater samples, with both genes significantly correlating with COVID-19 case numbers across the prisons (p < 0.01). However, in 25% of the SARS-positive samples, only one gene target was detected, suggesting that both genes be used to reduce false-negative results. No significant differences were observed between 14- and 2-h composite samples, although 2-h samples showed greater signal variance. Population normalisation did not improve correlations between the N1 and E genes and COVID-19 case data. Overall, WBE shows considerable promise for health protection in prison settings.
Collapse
Affiliation(s)
- Kelly Jobling
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; The authors contributed equally to the manuscript. E-mail:
| | - Marcos Quintela-Baluja
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; The authors contributed equally to the manuscript
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, UK
| | - Panagiota Adamou
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | | | - Jesus L Romalde
- CRETUS, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
342
|
Dutra LB, Stein JF, da Rocha BS, Berger A, de Souza BA, Prandi BA, Mangini AT, Jarenkow A, Campos AAS, Fan FM, de Almeida Silva MC, Lipp-Nissinen KH, Loncan MR, Augusto MR, Franco AC, de Freitas Bueno R, Rigotto C. Environmental monitoring of SARS-CoV-2 in the metropolitan area of Porto Alegre, Rio Grande do Sul (RS), Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2129-2144. [PMID: 38057673 PMCID: PMC10791933 DOI: 10.1007/s11356-023-31081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Since starts the coronavirus disease 2019 (COVID-19) pandemic identified the presence of genomic fragments of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various environmental matrices: domestic sewage, surface waters, and contaminated freshwater. Environmental monitoring of SARS-CoV-2 is a tool for evaluating trend curves over the months, compared to several clinical cases of the disease. The objective of this study was to monitor the SARS-CoV-2 in environmental samples collected in different sites in a metropolitan area of Porto Alegre, Southern Brazil. During 10 months from 2020 to 2021, 300 samples were collected weekly and biweekly from nine points located in 3 cities: one point from a wastewater treatment plant (WWTP) in São Leopoldo (fortnightly collection), two points in Dilúvio Stream in Porto Alegre (fortnightly collection), two points in Pampa and Luiz Rau Streams (weekly collection), and two points in public fountains (fortnightly collection) in Novo Hamburgo. After collection, samples were concentrated by ultracentrifugation, and viral nucleic acids were extracted using MagMax® Core Nucleic Acid Purifications kits and submitted to RT-qPCR, using E, N1, and N2 gene targets of SARS-CoV-2. Only 7% (3/41) samples from public fountains were positive, with a mean viral load (VL) of SARS-CoV-2 RNA of 5.02 × 101 gc/l (2.41~8.59 × 101 gc/l), while the streams had average VL of 7.43 × 105 gc/l (Pampa), 7.06 × 105 gc/l (Luiz Rau), 2.01 × 105 gc/l (Dilúvio), and 4.46 × 105 cg/l (WWTP). The results showed varying levels of viral presence in different sample types, with a demonstrated correlation between environmental viral load and clinical COVID-19 cases. These findings contribute to understanding virus persistence and transmission pathways in the environment. Continuous monitoring, especially in less developed regions, is crucial for early detection of vaccine resistance, new variants, and potential COVID-19 resurgence.
Collapse
Affiliation(s)
- Leticia Batista Dutra
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Janaína Francieli Stein
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Bruna Seixas da Rocha
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Andresa Berger
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Beatriz Andrade de Souza
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Bruno Aschidamini Prandi
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Arthur Tonietto Mangini
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - André Jarenkow
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, RS, CEP 90119-900, Brazil
| | - Aline Alves Scarpellini Campos
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, RS, CEP 90119-900, Brazil
| | - Fernando Mainardi Fan
- Hydraulic Research Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 91501-970, Brazil
| | | | - Katia Helena Lipp-Nissinen
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Manuel Rodrigues Loncan
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Matheus Ribeiro Augusto
- Center of Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo Andre, SP, CEP 09210-580, Brazil
| | - Ana Cláudia Franco
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Rodrigo de Freitas Bueno
- Center of Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo Andre, SP, CEP 09210-580, Brazil
| | - Caroline Rigotto
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil.
| |
Collapse
|
343
|
El Kik A, Eid H, Nassim N, Hoyek K, Riachy A, Habr B, Sleilaty G, Riachy M. Predictors of Functional Impairment in Severe COVID-19 Patients Two Months After Discharge. THERAPEUTIC ADVANCES IN PULMONARY AND CRITICAL CARE MEDICINE 2024; 19:29768675241305102. [PMID: 39713096 PMCID: PMC11660074 DOI: 10.1177/29768675241305102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Background The Post-COVID-19 Functional Status (PCFS) scale is a validated tool used to measure the functional status of patients discharged from the hospital. Objectives To describe the functional limitations of hospitalized COVID-19 patients at the time of discharge and two months afterward, and to identify risk factors associated with functional impairment. Design Retrospective study. Methods A total of 540 patients were included in this monocentric study. The functional status assessment using the PCFS scale and ventilatory needs were recorded at discharge and two months later. Univariate and multivariate analyses were performed in order to identify the risk factors of a high PCFS score. Results Two months after discharge, the PCFS grade was 0 in 60,6% of the survivors, 1 in 24.5%, 2 in 6.9%, 3 in 2.8%, and 4 in 5.3%. The identified risk factors of a high PCFS scale were: age, arterial hypertension, diabetes mellitus, immunosuppression, cardiovascular disease, high need for oxygen and high News2 score at admission, a high percentage of ground glass at chest CT scan performed at admission or during follow-up, elevated leukocytes, neutrophils, LDH, D-dimers, procalcitonin, and serum creatinine levels. During the hospital stay, treatment with steroids, tocilizumab, longer duration of hospitalization, ICU admission and prolonged stay, and the occurrence of thromboembolic or hemorrhagic events were also significantly associated with a higher PCFS. Multivariate analysis identified that only age and a high News2 score at admission were independent risk factors of a low PCFS score. Conclusion Multiple risk factors for a higher PCFS score were identified, but only age and a high News2 score at admission were found to be independent risk factors.
Collapse
Affiliation(s)
- Antoine El Kik
- Antoine El Kik,
Department of Pulmonary and Critical Care Medicine, Hôtel-Dieu de France University, Medical Center (HDFUMC) of the Saint-Joseph University of Beirut (USJ), Beirut, Lebanon.
| | | | | | | | | | - Bassem Habr
- Department of Pulmonary and Critical Care Medicine, Hôtel-Dieu de France University, Medical Center (HDFUMC) of the Saint-Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Ghassan Sleilaty
- Department of Clinical Research, Hôtel-Dieu de France University Medical Center (HDFUMC) of the Saint-Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Moussa Riachy
- Department of Pulmonary and Critical Care Medicine, Hôtel-Dieu de France University, Medical Center (HDFUMC) of the Saint-Joseph University of Beirut (USJ), Beirut, Lebanon
| |
Collapse
|
344
|
Chen YY, Yang MH, Lai JZ, Chen JW, Wang YL, Wei ST, Hou SM, Chen CJ, Wu HS. Seroprevalence of Anti-SARS-CoV-2 Remained Extremely Low in Taiwan Until the Vaccination Program Was Implemented. Open Forum Infect Dis 2024; 11:ofad614. [PMID: 38192381 PMCID: PMC10773475 DOI: 10.1093/ofid/ofad614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Background The Taiwanese government made a concerted effort to contain a coronavirus disease 2019 (COVID-19) nosocomial outbreak of variant B.1.429, shortly before universal vaccination program implementation. This study aimed to investigate seroprevalence in the highest-risk regions. Methods Between January and February 2021, we retrieved 10 000 repository serum samples from blood donors to examine for antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) and spike (S) antigens. A positive result was confirmed if anti-N and anti-S antibodies were positive. Overall, 2000 donors residing in the highest-risk district and donating blood in January 2021 were further examined for SARS-CoV-2 RNA. We estimated seroprevalence and compared the epidemic curve between confirmed COVID-19 cases and blood donors with positive antibodies or viral RNA. Results Twenty-one cases with COVID-19 were confirmed in the nosocomial cluster, with an incidence of 1.27/100 000 in the COVID-affected districts. Among 4888 close contacts of the nosocomial cases, 20 (0.4%) became confirmed cases during isolation. Anti-SARS-CoV-2 was detected in 2 of the 10000 blood donors, showing a seroprevalence of 2/10000 (95% CI, 0.55-7.29). None of the 2000 donors who underwent tests for SARS-CoV-2 RNA were positive. The SARS-CoV-2 infection epidemic curve was observed sporadically in blood donors compared with the nosocomial cluster. Conclusions In early 2021, an extremely low anti-SARS-CoV-2 seroprevalence among blood donors was observed. Epidemic control measures through precise close contact tracing, testing, and isolation effectively contained SARS-CoV-2 transmission before universal vaccination program implementation.
Collapse
Affiliation(s)
| | | | | | - Jen-Wei Chen
- Taiwan Blood Services Foundation, Taipei, Taiwan
| | | | | | - Sheng-Mou Hou
- Taiwan Blood Services Foundation, Taipei, Taiwan
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | - Ho-Sheng Wu
- Hsinchu Blood Center, Hsinchu, Taiwan
- Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
345
|
Elomaa P, Ojalehto T, Kumar D, Jokinen V, Saavalainen P. Manually pressurized droplet digital PCR chip for rapid SARS-CoV-2 diagnostics. BIOMICROFLUIDICS 2024; 18:014106. [PMID: 38420041 PMCID: PMC10901548 DOI: 10.1063/5.0180394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Droplet digital PCR (ddPCR) is a technique in which PCR reaction is divided into thousands of nanoliter-sized droplets and has proven to be a great tool in virus diagnostics. Compared to the gold standard system quantitative real-time PCR (RT-qPCR), ddPCR functions particularly well when dealing with samples with low template counts, such as viral concentration. This feature makes the technique suitable for early detection of the virus. In this study, a novel portable PDMS ddPCR chip is introduced. The chip functions without external pumps using manual pressurization with a multichannel pipet. The created droplets are monodispersed and form a monolayer on the chip's collection chamber, from where they can be effortlessly imaged. Droplets were analyzed and counted using artificial intelligence. The use of the manually pressurized chip was demonstrated for a SARS-CoV-2 assay, which takes advantage of isothermal strand invasion-based amplification (SIBA) technology, allowing quick and accurate, even point-of-care analysis of the sample. The results demonstrate that SIBA assays can be divided into nanoliter-sized droplets and used as quantitative assays, giving an approximation of the samples' viral count.
Collapse
Affiliation(s)
| | | | | | - Ville Jokinen
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, Tietotie 3, Espoo 02150, Finland
| | | |
Collapse
|
346
|
Celik IH, Ozkaya Parlakay A, Canpolat FE. Management of neonates with maternal prenatal coronavirus infection and influencing factors. Pediatr Res 2024; 95:436-444. [PMID: 37857851 DOI: 10.1038/s41390-023-02855-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) in pregnancy causes adverse outcomes for both the mother and the fetus. Neonates are at risk of vertical transmission and in-utero infection. Additionally, intensive care unit (ICU) admission and impairment in the organ systems of the mother are associated with neonatal outcomes, including impaired intrauterine growth, prematurity, and neonatal ICU admission. The management of neonates born from infected mothers has changed over the progress of the pandemic. At the beginning of the pandemic, cesarean section, immediate separation of mother-infant dyads, isolation of neonates, and avoiding of skin-to-skin contact, breast milk, and breastfeeding were the main practices to reduce vertical and horizontal transmission risk in the era of insufficient knowledge. The effects of antenatal steroids and delayed cord clamping on COVID-19 were also not known. As the pandemic progressed, data showed that prenatal, delivery room, and postnatal care of neonates can be performed as pre-pandemic practices. Variants and vaccines that affect clinical course and outcomes have emerged during the pandemic. The severity of the disease and the timing of infection in pregnancy also influence maternal and neonatal outcomes. The knowledge and lessons from COVID-19 will be helpful for the next pandemic if it happens. IMPACT: Prenatal infection with COVID-19 is associated with adverse maternal and neonatal outcomes. Our review includes the management of neonates with prenatal COVID-19 infection exposure, maternal-fetal, delivery room, and postnatal care of neonates, clinical features, treatment of neonates, and influencing factors such as variants, vaccination, severity of maternal disease, and timing of infection during pregnancy. There is a growing body of data and evidence about the COVID-19 pandemic. The knowledge and lessons from the pandemic will be helpful for the next pandemic if it happens.
Collapse
Affiliation(s)
- Istemi Han Celik
- University of Health Sciences Turkey; Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, Department of Pediatrics, Division of Neonatology, Ankara, Türkiye.
| | - Aslinur Ozkaya Parlakay
- Ankara Yildirim Beyazit University; Ankara Bilkent City Hospital, Department of Pediatrics, Pediatric Infectious Diseases Unit, Ankara, Türkiye
| | - Fuat Emre Canpolat
- University of Health Sciences Turkey, Ankara Bilkent City Hospital, Department of Pediatrics, Division of Neonatology, Ankara, Türkiye
| |
Collapse
|
347
|
Aksu M, Kumar P, Güttler T, Taxer W, Gregor K, Mußil B, Rymarenko O, Stegmann KM, Dickmanns A, Gerber S, Reineking W, Schulz C, Henneck T, Mohamed A, Pohlmann G, Ramazanoglu M, Mese K, Groß U, Ben-Yedidia T, Ovadia O, Fischer DW, Kamensky M, Reichman A, Baumgärtner W, von Köckritz-Blickwede M, Dobbelstein M, Görlich D. Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters. Antiviral Res 2024; 221:105778. [PMID: 38065245 DOI: 10.1016/j.antiviral.2023.105778] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.
Collapse
Affiliation(s)
- Metin Aksu
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Priya Kumar
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Thomas Güttler
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany; Octapharma Biopharmaceuticals GmbH, Im Neuenheimer Feld 590, 69120 Heidelberg, Germany
| | - Waltraud Taxer
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kathrin Gregor
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bianka Mußil
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Oleh Rymarenko
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kim M Stegmann
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Sabrina Gerber
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Ahmed Mohamed
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Gerhard Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Mehmet Ramazanoglu
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Kemal Mese
- University Medical Center Göttingen, Dept. of Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Dept. of Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Tamar Ben-Yedidia
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Oded Ovadia
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Dalit Weinstein Fischer
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Merav Kamensky
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Amir Reichman
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Matthias Dobbelstein
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany.
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
348
|
Piewbang C, Poonsin P, Lohavicharn P, Punyathi P, Kesdangsakonwut S, Kasantikul T, Techangamsuwan S. Natural SARS-CoV-2 infection in dogs: Determination of viral loads, distributions, localizations, and pathology. Acta Trop 2024; 249:107070. [PMID: 37956819 DOI: 10.1016/j.actatropica.2023.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Instances of reverse zoonosis involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been documented in both controlled experiments and spontaneous cases. Although dogs are susceptible to infection, clinical significance is limited to mild or asymptomatic. Here, we investigate the fatal cases of natural SARS-CoV-2 infection in dogs in Thailand. Pathological findings of SARS-CoV-2-infected dogs reveal severe diffuse alveolar damage, pulmonary hyalinization and fibrosis, and syncytial formation, together with minor lesions in brain and kidney. Employing reverse transcription-digital PCR, substantial viral loads of SARS-CoV-2 were detected in lung, kidney, brain, trachea, tonsil, tracheobronchial lymph node, liver, and intestine, respectively. Localization of SARS-CoV-2 within various tissues was examined through immunohistochemistry (IHC), where the co-localization of the viral spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor was illustrated using double IHC. SARS-CoV-2 localization was markedly identified in the epithelial cells of the lung, trachea, intestine and kidneys, and moderately presented in the salivary gland and gall bladder, where the co-localization with the ACE2 was also evident. Neurons in the brainstem where exhibited lymphocytic perivascular cuffing were also found to be positive for SARS-CoV-2 in IHC testing, despite lacking ACE2 receptor expression. In addition, SARS-CoV-2 replication within the lungs of infected dogs was confirmed by transmission electron microscopy, visualizing free viral particles within the cytosol or the endoplasmic reticulum of syncytial cells within the lung. This study considerably expanded on the knowledge of the pathology associated with natural SARS-CoV-2 infection in dogs, a scenario that is relatively infrequent but occasionally leads to fatal outcome. Furthermore, these findings suggest the potential utility of dogs as a model for studying SARS-CoV-2 infection in humans, warranting further investigation.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panida Poonsin
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattiya Lohavicharn
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panitnan Punyathi
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sawang Kesdangsakonwut
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanit Kasantikul
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
349
|
Constantinescu-Bercu A, Lobiuc A, Căliman-Sturdza OA, Oiţă RC, Iavorschi M, Pavăl NE, Șoldănescu I, Dimian M, Covasa M. Long COVID: Molecular Mechanisms and Detection Techniques. Int J Mol Sci 2023; 25:408. [PMID: 38203577 PMCID: PMC10778767 DOI: 10.3390/ijms25010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), has emerged as a significant health concern following the COVID-19 pandemic. Molecular mechanisms underlying the occurrence and progression of long COVID include viral persistence, immune dysregulation, endothelial dysfunction, and neurological involvement, and highlight the need for further research to develop targeted therapies for this condition. While a clearer picture of the clinical symptomatology is shaping, many molecular mechanisms are yet to be unraveled, given their complexity and high level of interaction with other metabolic pathways. This review summarizes some of the most important symptoms and associated molecular mechanisms that occur in long COVID, as well as the most relevant molecular techniques that can be used in understanding the viral pathogen, its affinity towards the host, and the possible outcomes of host-pathogen interaction.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Olga Adriana Căliman-Sturdza
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Suceava Emergency Clinical County Hospital, 720224 Suceava, Romania
| | - Radu Cristian Oiţă
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Monica Iavorschi
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
- Department of Computers, Electronics and Automation, Ştefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91711, USA
| |
Collapse
|
350
|
de la Cruz Barron M, Kneis D, Geissler M, Dumke R, Dalpke A, Berendonk TU. Evaluating the sensitivity of droplet digital PCR for the quantification of SARS-CoV-2 in wastewater. Front Public Health 2023; 11:1271594. [PMID: 38425410 PMCID: PMC10903512 DOI: 10.3389/fpubh.2023.1271594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Wastewater surveillance for SARS-CoV-2 has been demonstrated to be a valuable tool in monitoring community-level virus circulation and assessing new outbreaks. It may become a useful tool in the early detection and response to future pandemics, enabling public health authorities to implement timely interventions and mitigate the spread of infectious diseases with the fecal excretion of their agents. It also offers a chance for cost-effective surveillance. Reverse transcription-quantitative polymerase chain reaction (RTqPCR) is the most commonly used method for viral RNA detection in wastewater due to its sensitivity, reliability, and widespread availability. However, recent studies have indicated that reverse transcription droplet digital PCR (RTddPCR) has the potential to offer improved sensitivity and accuracy for quantifying SARS-CoV-2 RNA in wastewater samples. In this study, we compared the performance of RTqPCR and RTddPCR approaches for SARS-CoV-2 detection and quantification on wastewater samples collected during the third epidemic wave in Saxony, Germany, characterized by low-incidence infection periods. The determined limits of detection (LOD) and quantification (LOQ) were within the same order of magnitude, and no significant differences were observed between the PCR approaches with respect to the number of positive or quantifiable samples. Our results indicate that both RTqPCR and RTddPCR are highly sensitive methods for detecting SARS-CoV-2. Consequently, the actual gain in sensitivity associated with ddPCR lags behind theoretical expectations. Hence, the choice between the two PCR methods in further environmental surveillance programs is rather a matter of available resources and throughput requirements.
Collapse
Affiliation(s)
| | - David Kneis
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|