301
|
Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. MOLECULAR BIOMEDICINE 2020; 1:16. [PMID: 34765999 PMCID: PMC7711057 DOI: 10.1186/s43556-020-00017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hanyue Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wen Guo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuling Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Ming Wang
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiyan Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Deng
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, 10465 USA
| | - Fushen Sha
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
302
|
Faktor J, Grasso G, Zavadil Kokas F, Kurkowiak M, Mayordomo MY, Kote S, Singh A, Ruidong L, O'Neill JR, Muller P, Goodlett D, Vojtesek B, Hupp T. The effects of p53 gene inactivation on mutant proteome expression in a human melanoma cell model. Biochim Biophys Acta Gen Subj 2020; 1864:129722. [DOI: 10.1016/j.bbagen.2020.129722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
|
303
|
Jain S, Batra H, Yadav P, Chand S. COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines (Basel) 2020; 8:vaccines8040649. [PMID: 33153096 PMCID: PMC7711779 DOI: 10.3390/vaccines8040649] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
With a death toll of over one million worldwide, the COVID-19 pandemic caused by SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of acquiring infection and spreading to vulnerable people has severely impacted society's socio-economic status. To put an end to this growing number of infections and deaths as well as to switch from restricted to everyday living, an effective vaccine is desperately needed. As a result, enormous efforts have been made globally to develop numerous vaccine candidates in a matter of months. Currently, over 30 vaccine candidates are under assessment in clinical trials, with several undergoing preclinical studies. Here, we reviewed the major vaccine candidates based on the specific vaccine platform utilized to develop them. We also discussed the immune responses generated by these candidates in humans and preclinical models to determine vaccine safety, immunogenicity, and efficacy. Finally, immune responses induced in recovered COVID-19 patients and their possible vaccine development implications were also briefly reviewed.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (S.J.); (H.B.)
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (S.J.); (H.B.)
| | - Poonam Yadav
- CHI Health, Department of Pulmonary Medicine, Creighton University Medical Center, Omaha, NE 68131, USA;
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8017
| |
Collapse
|
304
|
Ahammad I, Lira SS. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int J Biol Macromol 2020; 162:820-837. [PMID: 32599237 PMCID: PMC7319648 DOI: 10.1016/j.ijbiomac.2020.06.213] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is the deadly virus behind COVID-19, the disease that went on to ravage the world and caused the biggest pandemic 21st century has witnessed so far. On the face of ongoing death and destruction, the urgent need for the discovery of a vaccine against the virus is paramount. This study resorted to the emerging discipline of immunoinformatics in order to design a multi-epitope mRNA vaccine against the spike glycoprotein of SARS-CoV-2. Various immunoinformatics tools were utilized to predict T and B lymphocyte epitopes. The epitopes were channeled through a filtering pipeline comprised of antigenicity, toxicity, allergenicity, and cytokine inducibility evaluation with the goal of selecting epitopes capable of generating both T and B cell-mediated immune responses. Molecular docking simulation between the epitopes and their corresponding MHC molecules was carried out. 13 epitopes, a highly immunogenic adjuvant, elements for proper sub-cellular trafficking, a secretion booster, and appropriate linkers were combined for constructing the vaccine. The vaccine was found to be antigenic, almost neutral at physiological pH, non-toxic, non-allergenic, capable of generating a robust immune response and had a decent worldwide population coverage. Based on these parameters, this design can be considered a promising choice for a vaccine against SARS-CoV-2.
Collapse
MESH Headings
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Drug Design
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- RNA, Messenger/immunology
- SARS-CoV-2
- Sequence Analysis, Protein
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Department of Biochemistry and Microbiology, North South University, Dhaka 1229, Bangladesh.
| | - Samia Sultana Lira
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
305
|
Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS NANO 2020; 14:12522-12537. [PMID: 33034449 PMCID: PMC7553041 DOI: 10.1021/acsnano.0c07197] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
Humanity is experiencing a catastrophic pandemic. SARS-CoV-2 has spread globally to cause significant morbidity and mortality, and there still remain unknowns about the biology and pathology of the virus. Even with testing, tracing, and social distancing, many countries are struggling to contain SARS-CoV-2. COVID-19 will only be suppressible when herd immunity develops, either because of an effective vaccine or if the population has been infected and is resistant to reinfection. There is virtually no chance of a return to pre-COVID-19 societal behavior until there is an effective vaccine. Concerted efforts by physicians, academic laboratories, and companies around the world have improved detection and treatment and made promising early steps, developing many vaccine candidates at a pace that has been unmatched for prior diseases. As of August 11, 2020, 28 of these companies have advanced into clinical trials with Moderna, CanSino, the University of Oxford, BioNTech, Sinovac, Sinopharm, Anhui Zhifei Longcom, Inovio, Novavax, Vaxine, Zydus Cadila, Institute of Medical Biology, and the Gamaleya Research Institute having moved beyond their initial safety and immunogenicity studies. This review analyzes these frontrunners in the vaccine development space and delves into their posted results while highlighting the role of the nanotechnologies applied by all the vaccine developers.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Veronique Beiss
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Steven N. Fiering
- Geisel School of Medicine, Dartmouth
College, Hanover, New Hampshire 03755, United
States
- Norris Cotton Cancer Center,
Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766,
United States
| | - Nicole F. Steinmetz
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of Radiology, University of
California San Diego, La Jolla, California 92093, United
States
- Moores Cancer Center, University of California
San Diego, La Jolla, California 92093, United
States
- Center for Nano-ImmunoEngineering,
University of California San Diego, La Jolla, California
92093, United States
| |
Collapse
|
306
|
Abstract
The current COVID-19 pandemic has substantially accelerated the demands for efficient vaccines. A wide spectrum of approaches includes live attenuated and inactivated viruses, protein subunits and peptides, viral vector-based delivery, DNA plasmids, and synthetic mRNA. Preclinical studies have demonstrated robust immune responses, reduced viral loads and protection against challenges with SARS-CoV-2 in rodents and primates. Vaccine candidates based on all delivery systems mentioned above have been subjected to clinical trials in healthy volunteers. Phase I clinical trials have demonstrated in preliminary findings good safety and tolerability. Evaluation of immune responses in a small number of individuals has demonstrated similar or superior levels of neutralizing antibodies in comparison to immunogenicity detected in COVID-19 patients. Both adenovirus- and mRNA-based vaccines have entered phase II and study protocols for phase III trials with 30,000 participants have been finalized.
Collapse
|
307
|
Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci 2020; 21:E6582. [PMID: 32916818 PMCID: PMC7554980 DOI: 10.3390/ijms21186582] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Messenger ribonucleic acid (mRNA)-based drugs, notably mRNA vaccines, have been widely proven as a promising treatment strategy in immune therapeutics. The extraordinary advantages associated with mRNA vaccines, including their high efficacy, a relatively low severity of side effects, and low attainment costs, have enabled them to become prevalent in pre-clinical and clinical trials against various infectious diseases and cancers. Recent technological advancements have alleviated some issues that hinder mRNA vaccine development, such as low efficiency that exist in both gene translation and in vivo deliveries. mRNA immunogenicity can also be greatly adjusted as a result of upgraded technologies. In this review, we have summarized details regarding the optimization of mRNA vaccines, and the underlying biological mechanisms of this form of vaccines. Applications of mRNA vaccines in some infectious diseases and cancers are introduced. It also includes our prospections for mRNA vaccine applications in diseases caused by bacterial pathogens, such as tuberculosis. At the same time, some suggestions for future mRNA vaccine development about storage methods, safety concerns, and personalized vaccine synthesis can be found in the context.
Collapse
Affiliation(s)
- Shuqin Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
| | - Kunpeng Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
| | - Rose Li
- M.B.B.S., School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
308
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
309
|
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6:e05007. [PMID: 32984620 PMCID: PMC7501848 DOI: 10.1016/j.heliyon.2020.e05007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), the pandemic that originated in China has already spread into more than 190 countries, resulting in huge loss of human life and many more are at the stake of losing it; if not intervened with the best therapeutics to contain the disease. For that aspect, various scientific groups are continuously involved in the development of an effective line of treatment to control the novel coronavirus from spreading rapidly. Worldwide scientists are evaluating various biomolecules and synthetic inhibitors against COVID-19; where the nucleic acid-based molecules may be considered as potential drug candidates. These molecules have been proved potentially effective against SARS-CoV, which shares high sequence similarity with SARS-CoV-2. Recent advancements in nucleic acid-based therapeutics are helpful in targeted drug delivery, safely and effectively. The use of nucleic acid-based molecules also known to regulate the level of gene expression inside the target cells. This review mainly focuses on various nucleic acid-based biologically active molecules and their therapeutic potentials in developing vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Ravikant Piyush
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Keshav Rajarshi
- School of Community Science and Technology (SOCSAT) Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Rajni Khan
- Motihari College of Engineering, Bariyarpur, Motihari, NH 28A, Furshatpur, Motihari, Bihar 845401, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University Motihari, 845401, India
| |
Collapse
|
310
|
Kim YH, Bang YJ, Park HJ, Li Ko H, Park SI, Hwang KA, Kim H, Nam JH. Inactivated influenza vaccine formulated with single-stranded RNA-based adjuvant confers mucosal immunity and cross-protection against influenza virus infection. Vaccine 2020; 38:6141-6152. [DOI: 10.1016/j.vaccine.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/20/2020] [Accepted: 07/12/2020] [Indexed: 01/31/2023]
|
311
|
Wang J, Peng Y, Xu H, Cui Z, Williams RO. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech 2020; 21:225. [PMID: 32761294 PMCID: PMC7405756 DOI: 10.1208/s12249-020-01744-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.
Collapse
Affiliation(s)
- Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
312
|
McNee A, Smith TRF, Holzer B, Clark B, Bessell E, Guibinga G, Brown H, Schultheis K, Fisher P, Ramos S, Nunez A, Bernard M, Graham S, Martini V, Chrun T, Xiao Y, Kash JC, Taubenberger JK, Elliott S, Patel A, Beverley P, Rijal P, Weiner DB, Townsend A, Broderick KE, Tchilian E. Establishment of a Pig Influenza Challenge Model for Evaluation of Monoclonal Antibody Delivery Platforms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:648-660. [PMID: 32591390 PMCID: PMC7372317 DOI: 10.4049/jimmunol.2000429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
mAbs are a possible adjunct to vaccination and drugs in treatment of influenza virus infection. However, questions remain whether small animal models accurately predict efficacy in humans. We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing mAbs. We show that a strongly neutralizing mAb (2-12C) against the hemagglutinin head administered prophylactically at 15 mg/kg reduced viral load and lung pathology after pandemic H1N1 influenza challenge. A lower dose of 1 mg/kg of 2-12C or a DNA plasmid-encoded version of 2-12C reduced pathology and viral load in the lungs but not viral shedding in nasal swabs. We propose that the pig influenza model will be useful for testing candidate mAbs and emerging delivery platforms prior to human trials.
Collapse
Affiliation(s)
- Adam McNee
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | - Barbara Holzer
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Emily Bessell
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | | | | | | | | | - Alejandro Nunez
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Matthieu Bernard
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Simon Graham
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | | | - Tiphany Chrun
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203
| | - Sarah Elliott
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19103
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19103
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, United Kingdom; and
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19103
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Elma Tchilian
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom;
| |
Collapse
|
313
|
Affiliation(s)
- Chaoyang Meng
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Zhe Chen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Gang Li
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Thomas Welte
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Cancer Center Houston Methodist Hospital Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
314
|
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:911-927. [PMID: 32123302 PMCID: PMC7468530 DOI: 10.1038/s41401-020-0372-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy, as a powerful strategy for cancer treatment, has achieved tremendous efficacy in clinical trials. Despite these advancements, there is much to do in terms of enhancing therapeutic benefits and decreasing the side effects of cancer immunotherapy. Advanced nanobiomaterials, including liposomes, polymers, and silica, play a vital role in the codelivery of drugs and immunomodulators. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses and simultaneously reduce toxic adverse effects. Furthermore, nanobiomaterials may also combine with each other or with traditional drugs via different mechanisms, thus giving rise to more accurate and efficient tumor treatment. Here, an overview of the latest advancement in these nanobiomaterials used for cancer immunotherapy is given, describing outstanding systems, including lipid-based nanoparticles, polymer-based scaffolds or micelles, inorganic nanosystems, and others.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yan-Peng Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jin-Rong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
315
|
Abstract
As the most powerful antigen-presenting cell type, dendritic cells (DCs) can induce potent antigen-specific immune responses in vivo, hence becoming optimal cell population for vaccination purposes. DCs can be derived ex vivo in quantity and manipulated extensively to be endowed with adequate immune-stimulating capacity. After pulsing with cancer antigens in various ways, the matured DCs are administrated back into the patient. DCs home to lymphoid organs to present antigens to and activate specific lymphocytes that react to a given cancer. Ex vivo pulsed DC vaccines have been vigorously investigated for decades, registering encouraging results in relevant immunotherapeutic clinical trials, while facing some solid challenges. With more details in DC biology understood, new theory proposed, and novel technology introduced (featuring recently emerged mRNA vaccine technology), it is becoming increasingly likely that ex vivo pulsed DC vaccine will fulfill its potential in cancer immunotherapy.
Collapse
|
316
|
Kis Z, Kontoravdi C, Dey AK, Shattock R, Shah N. Rapid development and deployment of high-volume vaccines for pandemic response. ACTA ACUST UNITED AC 2020; 2:e10060. [PMID: 33977274 PMCID: PMC7361221 DOI: 10.1002/amp2.10060] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Overcoming pandemics, such as the current Covid‐19 outbreak, requires the manufacture of several billion doses of vaccines within months. This is an extremely challenging task given the constraints in small‐scale manufacturing for clinical trials, clinical testing timelines involving multiple phases and large‐scale drug substance and drug product manufacturing. To tackle these challenges, regulatory processes are fast‐tracked, and rapid‐response manufacturing platform technologies are used. Here, we evaluate the current progress, challenges ahead and potential solutions for providing vaccines for pandemic response at an unprecedented scale and rate. Emerging rapid‐response vaccine platform technologies, especially RNA platforms, offer a high productivity estimated at over 1 billion doses per year with a small manufacturing footprint and low capital cost facilities. The self‐amplifying RNA (saRNA) drug product cost is estimated at below 1 USD/dose. These manufacturing processes and facilities can be decentralized to facilitate production, distribution, but also raw material supply. The RNA platform technology can be complemented by an a priori Quality by Design analysis aided by computational modeling in order to assure product quality and further speed up the regulatory approval processes when these platforms are used for epidemic or pandemic response in the future.
Collapse
Affiliation(s)
- Zoltán Kis
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering Imperial College London London UK
| | - Cleo Kontoravdi
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering Imperial College London London UK
| | - Antu K Dey
- International AIDS Vaccine Initiative (IAVI) New York New York USA
| | - Robin Shattock
- Department of Infectious Disease, Faculty of Medicine Imperial College London UK
| | - Nilay Shah
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering Imperial College London London UK
| |
Collapse
|
317
|
Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, Spandidos DA, Tsatsakis A. Towards effective COVID‑19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med 2020; 46:3-16. [PMID: 32377694 PMCID: PMC7255458 DOI: 10.3892/ijmm.2020.4596] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS-COV-2, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID-19 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.
Collapse
Affiliation(s)
- Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Demetrios Petrakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Alex M Egorov
- FSBSI 'Chumakov Federal Scientific Center for Research and Development of Immune‑ and Biological Products of Russian Academy of Sciences', 108819 Moscow, Russia
| | - Aydar A Ishmukhametov
- FSBSI 'Chumakov Federal Scientific Center for Research and Development of Immune‑ and Biological Products of Russian Academy of Sciences', 108819 Moscow, Russia
| | | | - Michael I Shtilman
- D.I. Mendeleyev University of Chemical Technology, 125047 Moscow, Russia
| | - Ronald Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‑313 Porto, Portugal
| | - Marco Vinceti
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
318
|
Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit 2020; 26:e924700. [PMID: 32366816 PMCID: PMC7218962 DOI: 10.12659/msm.924700] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The first outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, Hubei Province, China, in late 2019. The subsequent COVID-19 pandemic rapidly affected the health and economy of the world. The global approach to the pandemic was to isolate populations to reduce the spread of this deadly virus while vaccines began to be developed. In March 2020, the first phase I clinical trial of a novel lipid nanoparticle (LNP)-encapsulated mRNA-based vaccine, mRNA-1273, which encodes the spike protein (S protein) of SARS-CoV-2, began in the United States (US). The production of mRNA-based vaccines is a promising recent development in the production of vaccines. However, there remain significant challenges in the development and testing of vaccines as rapidly as possible to control COVID-19, which requires international collaboration. This review aims to describe the background to the rationale for the development of mRNA-based SARS-CoV-2 vaccines and the current status of the mRNA-1273 vaccine.
Collapse
Affiliation(s)
- Fuzhou Wang
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, U.S.A
- Institute for Translational Medicine on Molecular Function and Artificial Intelligence Imaging, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, Guangdong, P.R. China
| | | | - George B. Stefano
- International Scientific Information, Inc., Melville, NY, U.S.A
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
319
|
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics 2020; 12:E102. [PMID: 32013049 PMCID: PMC7076378 DOI: 10.3390/pharmaceutics12020102] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
In the past few years, there has been increasing focus on the use of messenger RNA (mRNA) as a new therapeutic modality. Current clinical efforts encompassing mRNA-based drugs are directed toward infectious disease vaccines, cancer immunotherapies, therapeutic protein replacement therapies, and treatment of genetic diseases. However, challenges that impede the successful translation of these molecules into drugs are that (i) mRNA is a very large molecule, (ii) it is intrinsically unstable and prone to degradation by nucleases, and (iii) it activates the immune system. Although some of these challenges have been partially solved by means of chemical modification of the mRNA, intracellular delivery of mRNA still represents a major hurdle. The clinical translation of mRNA-based therapeutics requires delivery technologies that can ensure stabilization of mRNA under physiological conditions. Here, we (i) review opportunities and challenges in the delivery of mRNA-based therapeutics with a focus on non-viral delivery systems, (ii) present the clinical status of mRNA vaccines, and (iii) highlight perspectives on the future of this promising new type of medicine.
Collapse
Affiliation(s)
| | | | | | | | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
320
|
Okay S, Özge Özcan Ö, Karahan M. Nanoparticle-based delivery platforms for mRNA vaccine development. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
321
|
Lee K, Kim SY, Seo Y, Kim MH, Chang J, Lee H. Adjuvant incorporated lipid nanoparticles for enhanced mRNA-mediated cancer immunotherapy. Biomater Sci 2019; 8:1101-1105. [PMID: 31793928 DOI: 10.1039/c9bm01564g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For mRNA mediated cancer immunotherapy, Pam3 was incorporated as an adjuvant within lipid nanoparticles (LNPs) with OVA mRNA. The developed Pam3 incorporated LNPs showed successful expression of tumor antigens with enhanced immune stimulation. We demonstrated that the synergies of Pam3 LNPs could greatly improve the efficacy of tumor prevention by mRNA vaccines.
Collapse
Affiliation(s)
- Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Soo Young Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Myung Hee Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jun Chang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
322
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
323
|
Zhao Z, Zheng L, Chen W, Weng W, Song J, Ji J. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol 2019; 12:126. [PMID: 31779642 PMCID: PMC6883629 DOI: 10.1186/s13045-019-0817-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has become an emerging strategy for the treatment of cancer. Immunotherapeutic drugs have been increasing for clinical treatment. Despite significant advances in immunotherapy, the clinical application of immunotherapy for cancer patients has some challenges associated with safety and efficacy, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome. Novel strategies, particularly improved delivery strategies, including nanoparticles, scaffolds, and hydrogels, are able to effectively target tumors and/or immune cells of interest, increase the accumulation of immunotherapies within the lesion, and reduce off-target effects. Here, we briefly describe five major types of cancer immunotherapy, including their clinical status, strengths, and weaknesses. Then, we introduce novel delivery strategies, such as nanoparticle-based delivery of immunotherapy, implantable scaffolds, injectable biomaterials for immunotherapy, and matrix-binding molecular conjugates, which can improve the efficacy and safety of immunotherapies. Also, the limitations of novel delivery strategies and challenges of clinical translation are discussed.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Wei Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China. .,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.
| |
Collapse
|
324
|
mRNA as a Novel Treatment Strategy for Hereditary Spastic Paraplegia Type 5. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:359-370. [PMID: 31828178 PMCID: PMC6888748 DOI: 10.1016/j.omtm.2019.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
Hereditary spastic paraplegia type 5 is a neurodegenerative disease caused by loss-of-function mutations in the CYP7B1 gene encoding the oxysterol 7-α-hydroxylase involved in bile acid synthesis in the liver. Lack of CYP7B1 leads to an accumulation of its oxysterol substrates, in particular 25-hydroxycholesterol and 27-hydroxycholesterol that are able to cross the blood-brain barrier and have neurotoxic properties. A potential therapeutic strategy for SPG5 is the replacement of CYP7B1 by administration of mRNA. Here, we studied the intravenous application of formulated mouse and human CYP7B1 mRNA in mice lacking the endogenous Cyp7b1 gene. A single-dose injection of either mouse or human CYP7B1 mRNA led to a pronounced degradation of oxysterols in liver and serum within 2 days of treatment. Pharmacokinetics indicate a single injection of human CYP7B1 mRNA to be effective in reducing oxysterols for at least 5 days. Repetitive applications of mRNA were safe for at least 17 days and resulted in a significant reduction of neurotoxic oxysterols not only in liver and serum but also to some extent in the brain. Our study highlights the potential to use mRNA as a novel therapy to treat patients with SPG5 disease.
Collapse
|
325
|
Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, Moon JJ. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019; 3:768-782. [PMID: 31406259 PMCID: PMC6783331 DOI: 10.1038/s41551-019-0436-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Research into the immunological processes implicated in cancer has yielded a basis for the range of immunotherapies that are now considered the fourth pillar of cancer treatment (alongside surgery, radiotherapy and chemotherapy). For some aggressive cancers, such as advanced non-small-cell lung carcinoma, combination immunotherapies have resulted in unprecedented treatment efficacy for responding patients, and have become frontline therapies. Individualized immunotherapy, enabled by the identification of patient-specific mutations, neoantigens and biomarkers, and facilitated by advances in genomics and proteomics, promises to broaden the responder patient population. In this Perspective, we give an overview of immunotherapies leveraging engineering approaches, including the design of biomaterials, delivery strategies and nanotechnology solutions, for the realization of individualized cancer treatments such as nanoparticle vaccines customized with neoantigens, cell therapies based on patient-derived dendritic cells and T cells, and combinations of theranostic strategies. Developments in precision cancer immunotherapy will increasingly rely on the adoption of engineering principles.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
326
|
Advances in RNA Vaccines for Preventive Indications: A Case Study of A Vaccine Against Rabies. Vaccines (Basel) 2019; 7:vaccines7040132. [PMID: 31569785 PMCID: PMC6963972 DOI: 10.3390/vaccines7040132] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
There is a global need for effective and affordable rabies vaccines, which is unmet by current vaccines due to limitations in their production capacities, required administration schedules, storage requirements, and cost. Many different experimental approaches previously used for bacterial and viral vaccines have been applied to rabies, but with variable success. One of the most promising new concepts is the use of messenger RNA (mRNA) in encoding the main rabies virus antigen, the envelope glycoprotein (RABV-G). CureVac has applied their proprietary technology platform for the production of mRNA to this problem, resulting in the rabies vaccine candidate CV7201. Following preclinical studies in mice and pigs showing that CV7201 could induce neutralizing immune responses that protected against rabies virus, different dosages and routes of administration of CV7201 were tested in a phase 1 human study. This clinical study proved that mRNA vaccination was safe and had an acceptable reactogenicity profile, but immune responses depended on the mode of administration, and they did not unequivocally support CV7201 for further development as a prophylactic vaccine with this particular formulation. Further, preclinical studies using RABV-G mRNA encapsulated in lipid nanoparticles (LNPs) showed an improved response in both mice and nonhuman primates, and these encouraging results are currently being followed up in clinical studies in humans. This review summarizes the recent advances in mRNA vaccines against rabies.
Collapse
|
327
|
Aligholipour Farzani T, Földes K, Ergünay K, Gurdal H, Bastug A, Ozkul A. Immunological Analysis of a CCHFV mRNA Vaccine Candidate in Mouse Models. Vaccines (Basel) 2019; 7:vaccines7030115. [PMID: 31527460 PMCID: PMC6789841 DOI: 10.3390/vaccines7030115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Development of new vaccine platforms against viral diseases is considered urgent. In recent years, mRNA constructs have attracted great interest in this field due to unique advantages over conventional gene transfer platforms. In the present study, we developed a new naked conventional mRNA vaccine expressing the non-optimized small (S) segment of the Ank-2 strain of Crimean-Congo Hemorrhagic Fever virus (CCHFV). We then analyzed its single and booster dose immunogenicity and protection potential in the challenge assay in two mice models, including IFNα/β/γR-/- and C57BL/6. The results obtained from the immunological assays, namely IL-4 and IFN-gamma ELISPOT, intracellular IFN-gamma staining, in-house sandwich ELISA, and survival data, demonstrated that our construct elicited the production of anti-nucleocapsid (N) specific immune responses in both mice models. A 100% protection rate was only obtained in the booster dose group of IFNα/β/γR-/- mice, indicating that this platform needs further optimization in future studies. In conclusion, we assessed a novel approach in CCHFV vaccination by introducing a conventional mRNA platform which can be considered in future experiments as an efficient and safe way to battle this disease.
Collapse
Affiliation(s)
| | - Katalin Földes
- Virology Department, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey.
| | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey.
| | - Hakan Gurdal
- Pharmacology Department, Faculty of Medicine, Ankara University, 06100 Ankara, Turkey.
| | - Aliye Bastug
- Infectious Disease Department, Ankara Numune Training and Research Hospital, 06800 Ankara, Turkey.
| | - Aykut Ozkul
- Virology Department, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey.
- Biotechnology Institute, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
328
|
Goswami R, Chatzikleanthous D, Lou G, Giusti F, Bonci A, Taccone M, Brazzoli M, Gallorini S, Ferlenghi I, Berti F, O’Hagan DT, Pergola C, Baudner BC, Adamo R. Mannosylation of LNP Results in Improved Potency for Self-Amplifying RNA (SAM) Vaccines. ACS Infect Dis 2019; 5:1546-1558. [PMID: 31290323 DOI: 10.1021/acsinfecdis.9b00084] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mannosylation of Lipid Nanoparticles (LNP) can potentially enhance uptake by Antigen Presenting Cells, which are highly abundant in dermal tissues, to improve the potency of Self Amplifying mRNA (SAM) vaccines in comparison to the established unmodified LNP delivery system. In the current studies, we evaluated mannosylated LNP (MLNP), which were obtained by incorporation of a stable Mannose-cholesterol amine conjugate, for the delivery of an influenza (hemagglutinin) encoded SAM vaccine in mice, by both intramuscular and intradermal routes of administration. SAM MLNP exhibited in vitro enhanced uptake in comparison to unglycosylated LNP from bone marrow-derived dendritic cells, and in vivo more rapid onset of the antibody response, independent of the route. The increased binding antibody levels also translated into higher functional hemagglutinin inhibition titers, particularly following intradermal administration. T cell assay on splenocytes from immunized mice also showed an increase in antigen specific CD8+ T responses, following intradermal administration of MLNP SAM vaccines. Induction of enhanced antigen specific CD4+ T cells, correlating with higher IgG2a antibody responses, was also observed. Hence, the present work illustrates the benefit of mannosylation of LNPs to achieve a faster immune response with SAM vaccines and these observations could contribute to the development of novel skin delivery systems for SAM vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Derek T. O’Hagan
- GSK, 14200 Shady Grove Road, Rockville, Maryland 20850, United States
| | | | | | | |
Collapse
|
329
|
Guevara ML, Persano S, Persano F. Lipid-Based Vectors for Therapeutic mRNA-Based Anti-Cancer Vaccines. Curr Pharm Des 2019; 25:1443-1454. [DOI: 10.2174/1381612825666190619150221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Cancer vaccines have been widely explored as a key tool for effective cancer immunotherapy. Despite
a convincing rationale behind cancer vaccines, extensive past efforts were unsuccessful in mediating significantly
relevant anti-tumor activity in clinical studies. One of the major reasons for such poor outcome, among others, is
the low immunogenicity of more traditional vaccines, such as peptide-, protein- and DNA- based vaccines.
Recently, mRNA emerged as a promising alternative to traditional vaccine strategies due to its high immunogenicity,
suitability for large-scale and low-cost production, and superior safety profile. However, the clinical
application of mRNA-based anti-cancer vaccines has been limited by their instability and inefficient in vivo delivery.
Recent technological advances have now largely overcome these issues and lipid-based vectors have demonstrated
encouraging results as mRNA vaccine platforms against several types of cancers. This review intends to
provide a detailed overview of lipid-based vectors for the development of therapeutic mRNA-based anti-tumor
vaccines.
Collapse
Affiliation(s)
- Maria L. Guevara
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Persano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
330
|
Chiocchetti A, Cappellano G, Dianzani U. To each his own: a personalized vaccine for metastatic melanoma. Gland Surg 2019; 8:329-333. [PMID: 31538056 PMCID: PMC6723019 DOI: 10.21037/gs.2017.11.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
331
|
Kis Z, Papathanasiou M, Calvo‐Serrano R, Kontoravdi C, Shah N. A model‐based quantification of the impact of new manufacturing technologies on developing country vaccine supply chain performance: A Kenyan case study. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/amp2.10025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zoltán Kis
- Center for Process Systems Engineering, Department of Chemical Engineering, Faculty of EngineeringImperial College London London UK
| | - Maria Papathanasiou
- Center for Process Systems Engineering, Department of Chemical Engineering, Faculty of EngineeringImperial College London London UK
| | - Raul Calvo‐Serrano
- Center for Process Systems Engineering, Department of Chemical Engineering, Faculty of EngineeringImperial College London London UK
| | - Cleo Kontoravdi
- Center for Process Systems Engineering, Department of Chemical Engineering, Faculty of EngineeringImperial College London London UK
| | - Nilay Shah
- Center for Process Systems Engineering, Department of Chemical Engineering, Faculty of EngineeringImperial College London London UK
| |
Collapse
|
332
|
Schlake T, Thran M, Fiedler K, Heidenreich R, Petsch B, Fotin-Mleczek M. mRNA: A Novel Avenue to Antibody Therapy? Mol Ther 2019; 27:773-784. [PMID: 30885573 PMCID: PMC6453519 DOI: 10.1016/j.ymthe.2019.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
First attempts to use exogenous mRNA for protein expression in vivo were made more than 25 years ago. However, widespread appreciation of in vitro transcribed mRNA as a powerful technology for supplying therapeutic proteins to the body has evolved only during the past few years. Various approaches to turning mRNA into a potent therapeutic have been developed. All of them share utilization of specifically designed, rather than endogenous, sequences and thorough purification protocols. Apart from this, there are two fundamental philosophies, one promoting the use of chemically modified nucleotides, the other advocating restriction to unmodified building blocks. Meanwhile, both strategies have received broad support by successful mRNA-based protein treatments in animal models. For such in vivo use, specifically optimized mRNA had to be combined with potent formulations to enable efficient in vivo delivery. The present review analyzes the applicability of mRNA technology to antibody therapy in all main fields: antitoxins, infectious diseases, and oncology.
Collapse
|
333
|
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Front Immunol 2019; 10:594. [PMID: 30972078 PMCID: PMC6446947 DOI: 10.3389/fimmu.2019.00594] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
During the last two decades, there has been broad interest in RNA-based technologies for the development of prophylactic and therapeutic vaccines. Preclinical and clinical trials have shown that mRNA vaccines provide a safe and long-lasting immune response in animal models and humans. In this review, we summarize current research progress on mRNA vaccines, which have the potential to be quick-manufactured and to become powerful tools against infectious disease and we highlight the bright future of their design and applications.
Collapse
Affiliation(s)
- Cuiling Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Junwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
334
|
Abstract
Immunotherapy has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing, with numerous treatments in clinical and preclinical development. However, a key challenge in the broad implementation of immunotherapies for cancer remains the controlled modulation of the immune system, as these therapeutics have serious adverse effects including autoimmunity and nonspecific inflammation. Understanding how to increase the response rates to various classes of immunotherapy is key to improving efficacy and controlling these adverse effects. Advanced biomaterials and drug delivery systems, such as nanoparticles and the use of T cells to deliver therapies, could effectively harness immunotherapies and improve their potency while reducing toxic side effects. Here, we discuss these research advances, as well as the opportunities and challenges for integrating delivery technologies into cancer immunotherapy, and we critically analyse the outlook for these emerging areas.
Collapse
Affiliation(s)
- Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
335
|
Li Y, Junod SL, Ruba A, Kelich JM, Yang W. Nuclear export of mRNA molecules studied by SPEED microscopy. Methods 2019; 153:46-62. [PMID: 30125665 PMCID: PMC7138453 DOI: 10.1016/j.ymeth.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
The nuclear exit of messenger RNA (mRNA) molecules through the nuclear pore complex (NPC) is an essential step in the translation process of all proteins. The current limitations of conventional fluorescence and electron microscopy have prevented elucidation of how mRNA exports through the NPCs of live cells. In the recent years, various single-molecule fluorescence (SMF) microscopy techniques have been developed to improve the temporal and spatial resolutions of live-cell imaging allowing a more comprehensive understanding of the dynamics of mRNA export through native NPCs. In this review, we firstly evaluate the necessity of single-molecule live-cell microscopy in the study of mRNA nuclear export. Then, we highlight the application of single-point edge-excitation sub-diffraction (SPEED) microscopy that combines high-speed SMF microscopy and a 2D-to-3D transformation algorithm in the studies of nuclear transport kinetics and route for mRNAs. Finally, we summarize the new features of mRNA nuclear export found with SPEED microscopy as well as the reliability and accuracy of SPEED microscopy in mapping the 3D spatial locations of transport routes adopted by proteins and mRNAs through the NPCs.
Collapse
Affiliation(s)
- Yichen Li
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Samuel L Junod
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Andrew Ruba
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Joseph M Kelich
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
336
|
Arsenović-Ranin N. New vaccines on the horizon. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
337
|
Sharifnia Z, Bandehpour M, Kazemi B, Zarghami N. Design and Development of Modified mRNA Encoding Core Antigen of Hepatitis C Virus: a Possible Application in Vaccine Production. IRANIAN BIOMEDICAL JOURNAL 2019; 23:57-67. [PMID: 30056690 PMCID: PMC6305823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/05/2018] [Indexed: 10/06/2023]
Abstract
Background Hepatitis C virus (HCV) is a blood-borne pathogen, resulting in liver cirrhosis and liver cancer. Despite of many efforts in development of treatments for HCV, no vaccine has been licensed yet. The purpose of this study was to design and prepare a specific mRNA, without 5' cap and poly (A) tail transcribed in vitro capable of coding core protein and also to determine its functionality. Methods Candidate mRNA was prepared by in vitro transcription of the designed construct consisting of 5ʹ and 3ʹ untranslated regions of heat shock proteins 70 (hsp70) mRNA, T7 promoter, internal ribosome entry site (IRES) sequences of eIF4G related to human dendritic cells (DCs), and the Core gene of HCV. To design the modified mRNA, the 5' cap and poly (A) tail structures were not considered. DCs were transfected by in vitro-transcribed messenger RNA (IVT-mRNA) and the expressions of green fluorescent protein (GFP), and Core genes were determined by microscopic examination and Western blotting assay. Results Cell transfection results showed that despite the absence of 5' cap and poly (A) tail, the structure of the mRNA was stable. Moreover, the successful expressions of GFP and Core genes were achieved. Conclusion Our findings indicated the effectiveness of a designed IVT-mRNA harboring the Core gene of HCV in transfecting and expressing the antigens in DCs. Considering the simple and efficient protocol for the preparation of this IVT-mRNA and its effectiveness in expressing the gene that it carries, this IVT-mRNA could be suitable for development of an RNA vaccine against HCV.
Collapse
Affiliation(s)
- Zarin Sharifnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratories Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
338
|
Xu Y, Huang L, Kirschman JL, Vanover DA, Tiwari PM, Santangelo PJ, Shen X, Russell DG. Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. THE JOURNAL OF IMMUNOLOGY 2018; 202:608-617. [PMID: 30541883 DOI: 10.4049/jimmunol.1800924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Therapeutic strategies based on in vitro-transcribed mRNA (IVT) are attractive because they avoid the permanent signature of genomic integration that is associated with DNA-based therapy and result in the transient production of proteins of interest. To date, IVT has mainly been used in vaccination protocols to generate immune responses to foreign Ags. In this "proof-of-principle" study, we explore a strategy of combinatorial IVT to recruit and reprogram immune effector cells to acquire divergent biological functions in mice in vivo. First, we demonstrate that synthetic mRNA encoding CCL3 is able to recruit murine monocytes in a nonprogrammed state, exhibiting neither bactericidal nor tissue-repairing properties. However, upon addition of either Ifn-γ mRNA or Il-4 mRNA, we successfully polarized these cells to adopt either M1 or M2 macrophage activation phenotypes. This cellular reprogramming was demonstrated through increased expression of known surface markers and through the differential modulation of NADPH oxidase activity, or the superoxide burst. Our study demonstrates how IVT strategies can be combined to recruit and reprogram immune effector cells that have the capacity to fulfill complex biological tasks in vivo.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Lu Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Xiling Shen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.,School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853; and.,Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - David G Russell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
339
|
Trepotec Z, Aneja MK, Geiger J, Hasenpusch G, Plank C, Rudolph C. Maximizing the Translational Yield of mRNA Therapeutics by Minimizing 5'-UTRs. Tissue Eng Part A 2018; 25:69-79. [PMID: 29638193 DOI: 10.1089/ten.tea.2017.0485] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 5'-untranslated region (5'-UTR) of mRNA contains structural elements, which are recognized by cell-specific RNA-binding proteins, thereby affecting the translation of the molecule. The activation of an innate immune response upon transfection of mRNA into cells is reduced when the mRNA comprises chemically modified nucleotides, putatively by altering the secondary structure of the molecule. Such alteration in the 5'-UTR in turn may affect the functionality of mRNA. In this study, we report on the impact of seven synthetic minimalistic 5'-UTR sequences on the translation of luciferase-encoding unmodified and different chemically modified mRNAs upon transfection in cell culture and in vivo. One minimalistic 5'-UTR, consisting of 14 nucleotides combining the T7 promoter with a Kozak consensus sequence, yielded similar or even higher expression than a 37 nucleotides human alpha-globin 5'-UTR containing mRNA in HepG2 and A549 cells. Furthermore, also the kind of modified nucleotides used in in vitro transcription, affected mRNA translation when using different translation regulators (Kozak vs. translation initiator of short UTRs). The in vitro data were confirmed by bioluminescence imaging of expression in mouse livers, 6 h postintravenous injection of a lipidoid nanoparticle-formulated RNA in female Balb/c mice. Luciferase measurements from liver and spleen showed that minimal 5'-UTRs (3 and 7) were either equally effective or better than human alpha-globin 5'-UTR. These findings were confirmed with a human erythropoietin (hEPO)-encoding mRNA. Significantly, higher levels of hEPO could be quantified in supernatants from A549 cells transfected with minimal 5'-UTR7 containing RNA when compared to commonly used benchmarks 5'-UTRs. Our results demonstrate the superior potential of synthetic minimalistic 5'-UTRs for use in transcript therapies.
Collapse
Affiliation(s)
- Zeljka Trepotec
- 1 Department of Pediatrics, Ludwig-Maximilian-University of Munich, Munich, Germany
| | | | | | | | - Christian Plank
- 2 Ethris GmbH, Planegg, Germany.,3 Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Carsten Rudolph
- 1 Department of Pediatrics, Ludwig-Maximilian-University of Munich, Munich, Germany.,2 Ethris GmbH, Planegg, Germany
| |
Collapse
|
340
|
Thran M, Mukherjee J, Pönisch M, Fiedler K, Thess A, Mui BL, Hope MJ, Tam YK, Horscroft N, Heidenreich R, Fotin-Mleczek M, Shoemaker CB, Schlake T. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol Med 2018; 9:1434-1447. [PMID: 28794134 PMCID: PMC5623855 DOI: 10.15252/emmm.201707678] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The delivery of genetic information has emerged as a valid therapeutic approach. Various reports have demonstrated that mRNA, besides its remarkable potential as vaccine, can also promote expression without inducing an adverse immune response against the encoded protein. In the current study, we set out to explore whether our technology based on chemically unmodified mRNA is suitable for passive immunization. To this end, various antibodies using different designs were expressed and characterized in vitro and in vivo in the fields of viral infections, toxin exposure, and cancer immunotherapies. Single injections of mRNA-lipid nanoparticle (LNP) were sufficient to establish rapid, strong, and long-lasting serum antibody titers in vivo, thereby enabling both prophylactic and therapeutic protection against lethal rabies infection or botulinum intoxication. Moreover, therapeutic mRNA-mediated antibody expression allowed mice to survive an otherwise lethal tumor challenge. In conclusion, the present study demonstrates the utility of formulated mRNA as a potent novel technology for passive immunization.
Collapse
Affiliation(s)
| | - Jean Mukherjee
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | | | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | | | | | | | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | |
Collapse
|
341
|
Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat Commun 2018; 9:3999. [PMID: 30275522 PMCID: PMC6167369 DOI: 10.1038/s41467-018-06508-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach. Engineered neutralizing antibodies are potential therapeutics for numerous viruses, such as respiratory syncytial virus (RSV). Here, the authors develop an mRNA-based approach to express membrane-anchored neutralizing antibodies in the lung and demonstrate that it inhibits RSV infections in mice.
Collapse
|
342
|
Cancer Vaccine Immunotherapy with RNA-Loaded Liposomes. Int J Mol Sci 2018; 19:ijms19102890. [PMID: 30249040 PMCID: PMC6213933 DOI: 10.3390/ijms19102890] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines may be harnessed to incite immunity against poorly immunogenic tumors, however they have failed in therapeutic settings. Poor antigenicity coupled with systemic and intratumoral immune suppression have been significant drawbacks. RNA encoding for tumor associated or specific epitopes can serve as a more immunogenic and expeditious trigger of anti-tumor immunity. RNA stimulates innate immunity through toll like receptor stimulation producing type I interferon, and it mediates potent adaptive responses. Since RNA is inherently unstable, delivery systems have been developed to protect and deliver it to intended targets in vivo. In this review, we discuss liposomes as RNA delivery vehicles and their role as cancer vaccines.
Collapse
|
343
|
Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018; 9:1963. [PMID: 30283434 PMCID: PMC6156540 DOI: 10.3389/fimmu.2018.01963] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.
Collapse
|
344
|
Metabolically stabilized double-stranded mRNA polyplexes. Gene Ther 2018; 25:473-484. [PMID: 30154525 DOI: 10.1038/s41434-018-0038-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The metabolic instability of mRNA currently limits its utility for gene therapy. Compared to plasmid DNA, mRNA is significantly more susceptible to digestion by RNase in the circulation following systemic dosing. To increase mRNA metabolic stability, we hybridized a complementary reverse mRNA with forward mRNA to generate double-stranded mRNA (dsmRNA). RNase A digestion of dsmRNA established a 3000-fold improved metabolic stability compared to single-stranded mRNA (ssmRNA). Formulation of a dsmRNA polyplex using a PEG-peptide further improved the stability by 3000-fold. Hydrodynamic dosing and quantitative bioluminescence imaging of luciferase expression in the liver of mice established the potent transfection efficiency of dsmRNA and dsmRNA polyplexes. However, hybridization of the reverse mRNA against the 5' and 3' UTR of forward mRNA resulted in UTR denaturation and a tenfold loss in expression. Repeat dosing of dsmRNA polyplexes produced an equivalent transient expression, suggesting the lack of an immune response in mice. Co-administration of excess uncapped dsmRNA with a dsmRNA polyplex failed to knock down expression, suggesting that dsmRNA is not a Dicer substrate. Maximal circulatory stability was achieved using a fully complementary dsmRNA polyplex. The results established dsmRNA as a novel metabolically stable and transfection-competent form of mRNA.
Collapse
|
345
|
Shin H, Park SJ, Yim Y, Kim J, Choi C, Won C, Min DH. Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800065] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojeong Shin
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Se-Jin Park
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Yeajee Yim
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Jungho Kim
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Chulwon Choi
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| |
Collapse
|
346
|
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018; 29:3072-3083. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
347
|
Sharifnia Z, Bandehpour M, Kazemi B, Zarghami N. Design and Development of Modified mRNA Encoding Core Antigen of Hepatitis C Virus: a Possible Application in Vaccine Production. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 30056690 PMCID: PMC6305823 DOI: 10.29252/.23.1.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Hepatitis C virus (HCV) is a blood-borne pathogen, resulting in liver cirrhosis and liver cancer. Despite of many efforts in development of treatments for HCV, no vaccine has been licensed yet. The purpose of this study was to design and prepare a specific mRNA, without 5’ cap and poly (A) tail transcribed in vitro capable of coding core protein and also to determine its functionality. Methods: Candidate mRNA was prepared by in vitro transcription of the designed construct consisting of 5’ and 3’ untranslated regions of heat shock proteins 70 (hsp70) mRNA, T7 promoter, internal ribosome entry site (IRES) sequences of eIF4G related to human dendritic cells (DCs), and the Core gene of HCV. To design the modified mRNA, the 5’ cap and poly (A) tail structures were not considered. DCs were transfected by in vitro-transcribed messenger RNA (IVT-mRNA) and the expressions of green fluorescent protein (GFP), and Core genes were determined by microscopic examination and Western blotting assay. Results: Cell transfection results showed that despite the absence of 5’ cap and poly (A) tail, the structure of the mRNA was stable. Moreover, the successful expressions of GFP and Core genes were achieved. Conclusion: Our findings indicated the effectiveness of a designed IVT-mRNA harboring the Core gene of HCV in transfecting and expressing the antigens in DCs. Considering the simple and efficient protocol for the preparation of this IVT-mRNA and its effectiveness in expressing the gene that it carries, this IVT-mRNA could be suitable for development of an RNA vaccine against HCV.
Collapse
Affiliation(s)
- Zarin Sharifnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratories Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
348
|
Bell GD, Yang Y, Leung E, Krissansen GW. mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS One 2018; 13:e0201464. [PMID: 30059522 PMCID: PMC6066245 DOI: 10.1371/journal.pone.0201464] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/15/2018] [Indexed: 12/21/2022] Open
Abstract
Messenger RNA (mRNA) transfection is a developing field that has applications in research and gene therapy. Potentially, mRNA transfection can be mediated efficiently by cell-penetrating peptides (CPPs) as they may be modified to target specific tissues. However, whilst CPPs are well-documented to transfect oligonucleotides and plasmids, mRNA transfection by CPPs has barely been explored. Here we report that peptides, including a truncated form of protamine and the same peptide fused to the CPP Xentry (Xentry-protamine; XP), can transfect mRNAs encoding reporter genes into human cells. Further, this transfection is enhanced by the anti-malarial chloroquine (CQ) and the toll-like receptor antagonist E6446 (6-[3-(pyrrolidin-1-yl)propoxy)-2-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl]benzo[d]oxazole), with E6446 being >5-fold more potent than CQ at enhancing this transfection. Finally, E6446 facilitated the transfection by XP of mRNA encoding the cystic fibrosis transmembrane regulator, the protein mutated in cystic fibrosis. As such, these findings introduce E6446 as a novel transfection enhancer and may be of practical relevance to researchers seeking to improve the mRNA transfection efficiency of their preferred CPP.
Collapse
Affiliation(s)
- Glenn D. Bell
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yi Yang
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Geoffrey W. Krissansen
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
349
|
Meng Z, O'Keeffe-Ahern J, Lyu J, Pierucci L, Zhou D, Wang W. A new developing class of gene delivery: messenger RNA-based therapeutics. Biomater Sci 2018; 5:2381-2392. [PMID: 29063914 DOI: 10.1039/c7bm00712d] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapy has long been held as having the potential to become a front line treatment for various genetic disorders. However, the direct delivery of nucleic acids to correct a genetic disorder has numerous limitations owing to the inability of naked nucleic acids (DNA and RNA) to traverse the cell membrane. Recently, messenger RNA (mRNA) based delivery has become a more attractive alternative to DNA due to the relatively easier transfection process, higher efficiency and safety profile. As with all gene therapies, the central challenge that remains is the efficient delivery of nucleic acids intracellularly. This review presents the recent progress in mRNA delivery, focusing on comparing the advantages and limitations of non-viral based delivery vectors.
Collapse
Affiliation(s)
- Zhao Meng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
350
|
Latest development on RNA-based drugs and vaccines. Future Sci OA 2018; 4:FSO300. [PMID: 29796303 PMCID: PMC5961404 DOI: 10.4155/fsoa-2017-0151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 12/25/2022] Open
Abstract
Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods. Drug development has suffered from inefficiency, side effects and high costs. For this reason novel approaches for drug discovery are of great importance. RNA-based methods provide the advantage of targeting ‘production’ of drugs to diseased cells and vaccines to immune response-stimulating cells. RNA drugs have demonstrated therapeutic efficacy in eye and heart diseases and in various cancers in clinical trials. Likewise, RNA-based vaccines have provided protection against challenges with lethal doses of viruses such as Ebola and cancer cells in animal models.
Collapse
|