301
|
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The Role of Neutrophil Extracellular Traps in Cancer. Front Oncol 2021; 11:714357. [PMID: 34476216 PMCID: PMC8406742 DOI: 10.3389/fonc.2021.714357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.
Collapse
Affiliation(s)
| | | | | | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
302
|
Okamoto Y, Devoe S, Seto N, Minarchick V, Wilson T, Rothfuss HM, Mohning MP, Arbet J, Kroehl M, Visser A, August J, Thomas SM, Lenis Charry L, Fleischer C, Feser ML, Frazer-Abel AA, Norris JM, Cherrington BD, Janssen WJ, Kaplan MJ, Deane KD, Holers VM, Demoruelle MK. Sputum Neutrophil Extracellular Trap Subsets Associate with IgA Anti-Citrullinated Protein Antibodies in Subjects At-Risk for Rheumatoid Arthritis. Arthritis Rheumatol 2021; 74:38-48. [PMID: 34369110 PMCID: PMC8712364 DOI: 10.1002/art.41948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 11/06/2022]
Abstract
Objective Mechanisms leading to anti–citrullinated protein antibody (ACPA) generation in rheumatoid arthritis (RA) are hypothesized to originate in the lung. We undertook this study to understand associations between neutrophil extracellular trap (NET) formation in the lung and local ACPA generation in subjects at risk of developing RA. Methods Induced sputum was collected from 49 subjects at risk of developing RA, 12 patients with RA, and 18 controls. Sputum neutrophils were tested for ex vivo NET formation, and sputum‐induced NET formation of control neutrophils was measured using immunofluorescence imaging. Sputum macrophages were tested for ex vivo endocytosis of apoptotic and opsonized cells. Levels of ACPA, NET remnants, and inflammatory proteins were quantified in sputum supernatant. Results Spontaneous citrullinated histone H3 (Cit‐H3)–expressing NET formation was higher in sputum neutrophils from at‐risk subjects and RA patients compared to controls (median 12%, 22%, and 0%, respectively; P < 0.01). In at‐risk subjects, sputum IgA ACPA correlated with the percentage of neutrophils that underwent Cit‐H3+ NET formation (r = 0.49, P = 0.002) and levels of Cit‐H3+ NET remnants (r = 0.70, P < 0.001). Reduced endocytic capacity of sputum macrophages was found in at‐risk subjects and RA patients compared to controls. Using a mediation model, we found that sputum inflammatory proteins were associated with sputum IgA ACPA through a pathway mediated by Cit‐H3+ NET remnants. Sputum‐induced Cit‐H3+ NET formation also correlated with sputum levels of interleukin‐1β (IL‐1β), IL‐6, and tumor necrosis factor in at‐risk subjects, suggesting a causal relationship. Conclusion These data support a potential mechanism for mucosal ACPA generation in subjects at risk of developing RA, whereby inflammation leads to increased citrullinated protein–expressing NETs that promote local ACPA generation.
Collapse
Affiliation(s)
- Yuko Okamoto
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA.,Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan
| | - Stephanie Devoe
- University of Colorado Denver, Department of Immunology, Aurora, CO, USA
| | - Nickie Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Valerie Minarchick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Timothy Wilson
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Heather M Rothfuss
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY, USA
| | - Michael P Mohning
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Jaron Arbet
- University of Colorado Denver, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Miranda Kroehl
- University of Colorado Denver, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Stacey M Thomas
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie L Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Brian D Cherrington
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY, USA
| | - William J Janssen
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | |
Collapse
|
303
|
Fetz AE, Radic MZ, Bowlin GL. Human neutrophil FcγRIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials. Acta Biomater 2021; 130:281-290. [PMID: 34116225 PMCID: PMC8316391 DOI: 10.1016/j.actbio.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
During the acute inflammatory response, the release of neutrophil extracellular traps (NETs) is a pro-inflammatory, preconditioning event on a biomaterial surface. Therefore, regulation of NET release through biomaterial design is one strategy to enhance biomaterial-guided in situ tissue regeneration. In this study, IgG adsorption on electrospun polydioxanone biomaterials with differing fiber sizes was explored as a regulator of in vitro human neutrophil NET release. The propensity to release NETs was increased and decreased by modulating adsorbed IgG, suggesting a functional link between IgG and NET formation. Fiber-size dependent NET release was reduced by blocking FcγRIIIb, but not FcγRI, FcγRIIa, or Mac-1 (CD11b/CD18), indicating a specific receptor mediated neutrophil response. Inhibition of transforming growth factor-β-activated kinase 1 (TAK1), which is activated downstream of FcγRIIIb, significantly reduced the release of NETs in a fiber size-independent manner. These results indicate that in vitro electrospun biomaterial-induced NET release is largely regulated by IgG adsorption, engagement of FcγRIIIb, and signaling through TAK1. Modulation of this pathway may have beneficial therapeutic effects for regulating neutrophil-mediated inflammation by avoiding the adverse effects of NETs and increasing the potential for in situ tissue regeneration. STATEMENT OF SIGNIFICANCE: Electrospun biomaterials have great potential for in situ tissue engineering because of their versatility and biomimetic properties. However, understanding how to design the biomaterial to regulate acute inflammation, dominated by neutrophils, remains a great challenge for successful tissue integration and regeneration. In this work, we demonstrate for the first time how protein adsorption on the biomaterial surface and engagement of a specific neutrophil receptor induces intracellular signals that regulate the pro-inflammatory release of neutrophil extracellular traps (NETs). Given the deleterious effects of NETs during the acute inflammatory response to a biomaterial, our work highlights the importance of considering biomaterial-neutrophil interactions on degradable and non-degradable biomaterials to achieve the desired biological outcome.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Avenue, Memphis, TN, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Avenue, Memphis, TN, USA.
| |
Collapse
|
304
|
Abstract
As a basic biological phenomenon of cells, regulated cell death (RCD) has irreplaceable influence on the occurrence and development of many processes of life and diseases. RCD plays an important role in the stability of the homeostasis, the development of multiple systems and the evolution of organisms. Thus comprehensively understanding of RCD is undoubtedly helpful in the innovation of disease treatment. Recently, research on the underlying mechanisms of the major forms of RCD, such as apoptosis, autophagy, necroptosis, pyroptosis, paraptosis and neutrophils NETosis has made significant breakthroughs. In addition, the interconnections among them have attracted increasing attention from global scholars in the field of life sciences. Here, recent advances in RCD research field are discussed.
Collapse
|
305
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|
306
|
Hook JS, Patel PA, O'Malley A, Xie L, Kavanaugh JS, Horswill AR, Moreland JG. Lipoproteins from Staphylococcus aureus Drive Neutrophil Extracellular Trap Formation in a TLR2/1- and PAD-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 207:966-973. [PMID: 34290104 DOI: 10.4049/jimmunol.2100283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Neutrophils, polymorphonuclear leukocytes (PMN), play a critical role in the innate immune response to Staphylococcus aureus, a pathogen that continues to be associated with significant morbidity and mortality. Neutrophil extracellular trap (NET) formation is involved in ensnaring and killing of S. aureus, but this host-pathogen interaction also leads to host tissue damage. Importantly, NET components including neutrophil proteases are under consideration as therapeutic targets in a variety of disease processes. Although S. aureus lipoproteins are recognized to activate cells via TLRs, specific mechanisms of interaction with neutrophils are poorly delineated. We hypothesized that a lipoprotein-containing cell membrane preparation from methicillin-resistant S. aureus (MRSA-CMP) would elicit PMN activation, including NET formation. We investigated MRSA-CMP-elicited NET formation, regulated elastase release, and IL-8 production in human neutrophils. We studied PMN from healthy donors with or without a common single-nucleotide polymorphism in TLR1, previously demonstrated to impact TLR2/1 signaling, and used cell membrane preparation from both wild-type methicillin-resistant S. aureus and a mutant lacking palmitoylated lipoproteins (lgt). MRSA-CMP elicited NET formation, elastase release, and IL-8 production in a lipoprotein-dependent manner. TLR2/1 signaling was involved in NET formation and IL-8 production, but not elastase release, suggesting that MRSA-CMP-elicited elastase release is not mediated by triacylated lipoproteins. MRSA-CMP also primed neutrophils for enhanced NET formation in response to a subsequent stimulus. MRSA-CMP-elicited NET formation did not require Nox2-derived reactive oxygen species and was partially dependent on the activity of peptidyl arginine deiminase (PAD). In conclusion, lipoproteins from S. aureus mediate NET formation via TLR2/1 with clear implications for patients with sepsis.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Parth A Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aidan O'Malley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lihua Xie
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO.,Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO; and
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
307
|
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol 2021; 79:91-104. [PMID: 34280576 DOI: 10.1016/j.semcancer.2021.07.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Beyond their well-known functions in the acute phases of the immune response, neutrophils play important roles in the various phases of tumor initiation and progression, through the release of their stored or newly synthesized mediators. In addition to reactive oxygen species, cytokines, chemokines, granule proteins and lipid mediators, neutrophil extracellular traps (NETs) can also be released upon neutrophil activation. NET formation can be achieved through a cell-death process or in association with the release of mitochondrial DNA from viable neutrophils. NETs are described as extracellular fibers of DNA and decorating proteins responsible for trapping and killing extracellular pathogens, playing a protective role in the antimicrobial defense. There is increasing evidence, however, that NETs play multiple roles in the scenario of cancer-related inflammation. For instance, NETs directly or indirectly promote tumor growth and progression, fostering tumor spread at distant sites and shielding cancer cells thus preventing the effects of cytotoxic lymphocytes. NETs can also promote tumor angiogenesis and cancer-associated thrombosis. On the other hand, there is some evidence that NETs may play anti-inflammatory and anti-tumorigenic roles. In this review, we focus on the main mechanisms underlying the emerging effects of NETs in cancer initiation and progression.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
308
|
Carminita E, Crescence L, Brouilly N, Altié A, Panicot-Dubois L, Dubois C. DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl Acad Sci U S A 2021; 118:e2100561118. [PMID: 34260389 PMCID: PMC8285961 DOI: 10.1073/pnas.2100561118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The contribution of NETs (neutrophil extracellular traps) to thrombus formation has been intensively documented in both arterial and venous thrombosis in mice. We previously demonstrated that adenosine triphosphate (ATP)-activated neutrophils play a key role in initiating the tissue factor-dependent activation of the coagulation cascade, leading to thrombus formation following laser-induced injury. Here, we investigated the contribution of NETs to thrombus formation in a laser-induced injury model. In vivo, treatment of mice with DNase-I significantly inhibited the accumulation of polymorphonuclear neutrophils at the site of injury, neutrophil elastase secretion, and platelet thrombus formation within seconds following injury. Surprisingly, electron microscopy of the thrombus revealed that neutrophils present at the site of laser-induced injury did not form NETs. In vitro, ATP, the main neutrophil agonist present at the site of laser-induced injury, induced the overexpression of PAD4 and CitH3 but not NETosis. However, compared to no treatment, the addition of DNase-I was sufficient to cleave ATP and adenosine diphosphate (ADP) in adenosine. Human and mouse platelet aggregation by ADP and neutrophil activation by ATP were also significantly reduced in the presence of DNase-I. We conclude that following laser-induced injury, neutrophils but not NETs are involved in thrombus formation. Treatment with DNase-I induces the hydrolysis of ATP and ADP, leading to the generation of adenosine and the inhibition of thrombus formation in vivo.
Collapse
Affiliation(s)
- Estelle Carminita
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), 13380 Marseille, France
| | - Lydie Crescence
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), 13380 Marseille, France
- Aix Marseille University, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, 13380 Marseille, France
| | - Nicolas Brouilly
- CNRS UMR 7288, Institut de Biologie du Développement de Marseille, 13288 Marseille, France
| | - Alexandre Altié
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), 13380 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), 13380 Marseille, France
- Aix Marseille University, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, 13380 Marseille, France
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), 13380 Marseille, France;
- Aix Marseille University, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, 13380 Marseille, France
| |
Collapse
|
309
|
Kinoshita M, Ogawa Y, Hama N, Ujiie I, Hasegawa A, Nakajima S, Nomura T, Adachi J, Sato T, Koizumi S, Shimada S, Fujita Y, Takahashi H, Mizukawa Y, Tomonaga T, Nagao K, Abe R, Kawamura T. Neutrophils initiate and exacerbate Stevens-Johnson syndrome and toxic epidermal necrolysis. Sci Transl Med 2021; 13:13/600/eaax2398. [PMID: 34193610 DOI: 10.1126/scitranslmed.aax2398] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 12/13/2020] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening mucocutaneous adverse drug reactions characterized by massive epidermal detachment. Cytotoxic T cells and associated effector molecules are known to drive SJS/TEN pathophysiology, but the contribution of innate immune responses is not well understood. We describe a mechanism by which neutrophils triggered inflammation during early phases of SJS/TEN. Skin-infiltrating CD8+ T cells produced lipocalin-2 in a drug-specific manner, which triggered the formation of neutrophil extracellular traps (NETs) in early lesional skin. Neutrophils undergoing NETosis released LL-37, an antimicrobial peptide, which induced formyl peptide receptor 1 (FPR1) expression by keratinocytes. FPR1 expression caused keratinocytes to be vulnerable to necroptosis that caused further release of LL-37 by necroptotic keratinocytes and induced FPR1 expression on surrounding keratinocytes, which likely amplified the necroptotic response. The NETs-necroptosis axis was not observed in less severe cutaneous adverse drug reactions, autoimmune diseases, or neutrophil-associated disorders, suggesting that this was a process specific to SJS/TEN. Initiation and progression of SJS/TEN keratinocyte necroptosis appear to involve a cascade of events mediated by innate and adaptive immune responses, and understanding these responses may contribute to the identification of diagnostic markers or therapeutic targets for these adverse drug reactions.
Collapse
Affiliation(s)
- Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Natsumi Hama
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Inkin Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takuya Sato
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiko Mizukawa
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
310
|
Volkov DV, Tetz GV, Rubtsov YP, Stepanov AV, Gabibov AG. Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae 2021; 13:15-23. [PMID: 34707894 PMCID: PMC8526190 DOI: 10.32607/actanaturae.11503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Antitumor therapy, including adoptive immunotherapy, inevitably faces powerful counteraction from advanced cancer. If hematological malignancies are currently amenable to therapy with CAR-T lymphocytes (T-cells modified by the chimeric antigen receptor), solid tumors, unfortunately, show a significantly higher degree of resistance to this type of therapy. As recent studies show, the leading role in the escape of solid tumors from the cytotoxic activity of immune cells belongs to the tumor microenvironment (TME). TME consists of several types of cells, including neutrophils, the most numerous cells of the immune system. Recent studies show that the development of the tumor and its ability to metastasize directly affect the extracellular traps of neutrophils (neutrophil extracellular traps, NETs) formed as a result of the response to tumor stimuli. In addition, the nuclear DNA of neutrophils - the main component of NETs - erects a spatial barrier to the interaction of CAR-T with tumor cells. Previous studies have demonstrated the promising potential of deoxyribonuclease I (DNase I) in the destruction of NETs. In this regard, the use of eukaryotic deoxyribonuclease I (DNase I) is promising in the effort to increase the efficiency of CAR-T by reducing the NETs influence in TME. We will examine the role of NETs in TME and the various approaches in the effort to reduce the effect of NETs on a tumor.
Collapse
Affiliation(s)
- D. V. Volkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - G. V. Tetz
- Pavlov First State Medical University of St. Petersburg, St Petersburg, 197022 Russia
| | - Y. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - A. V. Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| |
Collapse
|
311
|
Liu X, Arfman T, Wichapong K, Reutelingsperger CPM, Voorberg J, Nicolaes GAF. PAD4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease. J Thromb Haemost 2021; 19:1607-1617. [PMID: 33773016 PMCID: PMC8360066 DOI: 10.1111/jth.15313] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PAD4) is an enzyme that converts arginine into citrulline. PAD4 is expressed in neutrophils that, when activated, can drive the formation of neutrophil extracellular traps (NETs). Uncontrolled activation of PAD4 and subsequent citrullination of proteins is increasingly recognized as a driver of (auto)immune diseases. Currently, our understanding of PAD4 structure-function relationships and activity control in vivo is incomplete. AIMS To provide the current state-of-the-art on PAD4 structure-activity relationships and involvement of PAD4 in autoimmune disorders as well as in thrombo-inflammatory disease. MATERIALS & METHODS Literature review and molecular modelling Results: In this review, we used molecular modelling to generate a three-dimensional structure of the complete PAD4 molecule. Using our model, we discuss the catalytic conversion of the arginine substrate to citrulline. Besides mechanistic insight into PAD4 function, we give an overview of biological functions of PAD4 and mechanisms that influence its activation. In addition, we discuss the crucial role of PAD4-mediated citrullination of histones during the formation of NETs. Subsequently, we focus on the role of PAD4-mediated NET formation and its role in pathogenesis of rheumatoid arthritis, sepsis and (immune-)thrombosis. Finally, we summarize current efforts to design different classes of PAD4 inhibitors that are being developed for improved treatment of autoimmune disorders as well as thrombo-inflammatory disease. DISCUSSION Advances in PAD4 structure-function are still necessary to gain a complete insight in mechanisms that control PAD4 activity in vivo. The involvement of PAD4 in several diseases signifies the need for a PAD4 inhibitor. Although progress has been made to produce an isotype specific and potent PAD4 inhibitor, currently no PAD4 inhibitor is ready for clinical use. CONCLUSION More research into PAD4 structure and function and into the regulation of its activity is required for the development of PAD4 specific inhibitors that may prove vital to combat and prevent autoimmune disorders and (thrombo)inflammatory disease.
Collapse
Affiliation(s)
- Xiaosong Liu
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| | - Tom Arfman
- Department of Molecular and Cellular HaemostasisSanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Kanin Wichapong
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| | - Chris P. M. Reutelingsperger
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| | - Jan Voorberg
- Department of Molecular and Cellular HaemostasisSanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Gerry A. F. Nicolaes
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
312
|
Zhou Y, Cheng L, Lei YL, Ren B, Zhou X. The Interactions Between Candida albicans and Mucosal Immunity. Front Microbiol 2021; 12:652725. [PMID: 34234752 PMCID: PMC8255368 DOI: 10.3389/fmicb.2021.652725] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Mucosa protects the body against external pathogen invasion. However, pathogen colonies on the mucosa can invade the mucosa when the immunosurveillance is compromised, causing mucosal infection and subsequent diseases. Therefore, it is necessary to timely and effectively monitor and control pathogenic microorganisms through mucosal immunity. Candida albicans is the most prevalent fungi on the mucosa. The C. albicans colonies proliferate and increase their virulence, causing severe infectious diseases and even death, especially in immunocompromised patients. The normal host mucosal immune defense inhibits pathogenic C. albicans through stepwise processes, such as pathogen recognition, cytokine production, and immune cell phagocytosis. Herein, the current advances in the interactions between C. albicans and host mucosal immune defenses have been summarized to improve understanding on the immune mechanisms against fungal infections.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yu L. Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
313
|
New Insights on NETosis Induced by Entamoeba histolytica: Dependence on ROS from Amoebas and Extracellular MPO Activity. Antioxidants (Basel) 2021; 10:antiox10060974. [PMID: 34206992 PMCID: PMC8233886 DOI: 10.3390/antiox10060974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023] Open
Abstract
NETosis is a neutrophil process involving sequential steps from pathogen detection to the release of DNA harboring antimicrobial proteins, including the central generation of NADPH oxidase dependent or independent ROS. Previously, we reported that NETosis triggered by Entamoeba histolytica trophozoites is independent of NADPH oxidase activity in neutrophils, but dependent on the viability of the parasites and no ROS source was identified. Here, we explored the possibility that E. histolytica trophozoites serve as the ROS source for NETosis. NET quantitation was performed using SYTOX® Green assay in the presence of selective inhibitors and scavengers. We observed that respiratory burst in neutrophils was inhibited by trophozoites in a dose dependent manner. Mitochondrial ROS was not also necessary, as the mitochondrial scavenger mitoTEMPO did not affect the process. Surprisingly, ROS-deficient amoebas obtained by pre-treatment with pyrocatechol were less likely to induce NETs. Additionally, we detected the presence of MPO on the cell surface of trophozoites after the interaction with neutrophils and found that luminol and isoluminol, intracellular and extracellular scavengers for MPO derived ROS reduced the amount of NET triggered by amoebas. These data suggest that ROS generated by trophozoites and processed by the extracellular MPO during the contact with neutrophils are required for E. histolytica induced NETosis.
Collapse
|
314
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
315
|
Dömer D, Walther T, Möller S, Behnen M, Laskay T. Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. Front Immunol 2021; 12:636954. [PMID: 34168641 PMCID: PMC8217666 DOI: 10.3389/fimmu.2021.636954] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Neutrophil extracellular traps (NETs) consist of decondensed nuclear chromatin that is associated with proteins and are released by neutrophils during an inflammatory response. Released NETs are able to capture pathogens, prevent their dissemination and potentially kill them via antimicrobial peptides and proteins that are associated with the decondensed chromatin. In addition to their antimicrobial functions, NETs have also been shown to exert immunomodulatory effects by activation and differentiation of macrophages, dendritic cells and T cells. However, the effect of NETs on neutrophil functions is poorly understood. Here we report the first comprehensive study regarding the effects of NETs on human primary neutrophils in vitro. NETs were isolated from cultures of PMA-exposed neutrophils. Exposure of neutrophils to isolated NETs resulted in the activation of several neutrophil functions in a concentration-dependent manner. NETs induced exocytosis of granules, the production of reactive oxygen species (ROS) by the NADPH oxidase NOX2, NOX2-dependent NET formation, increased the phagocytosis and killing of microbial pathogens. Furthermore, NETs induced the secretion of the proinflammatory chemokine IL-8 and the B-cell-activating cytokine BAFF. We could show that the NET-induced activation of neutrophils occurs by pathways that involve the phosphorylation of Akt, ERK1/2 and p38. Taken together our results provide further insights into the proinflammatory role of NETs by activating neutrophil effector function and further supports the view that NETs can amplify inflammatory events. On the one hand the amplified functions enhance the antimicrobial defense. On the other hand, NET-amplified neutrophil functions can be involved in the pathophysiology of NET-associated diseases. In addition, NETs can connect the innate and adaptive immune system by inducing the secretion of the B-cell-activating cytokine BAFF.
Collapse
Affiliation(s)
- Daniel Dömer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tabea Walther
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Martina Behnen
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
316
|
Speziale P, Pietrocola G. Staphylococcus aureus induces neutrophil extracellular traps (NETs) and neutralizes their bactericidal potential. Comput Struct Biotechnol J 2021; 19:3451-3457. [PMID: 34194670 PMCID: PMC8220102 DOI: 10.1016/j.csbj.2021.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are considered part of the innate human immune system because they are involved in host defense during bacterial infections. NETs are formed by activated neutrophils and consist of a DNA backbone combined with proteins with different biological functions. The activity of NETs can be significantly reduced by a Staphylococcus aureus DNase, which degrades the DNA backbone and enables the liberation of bacteria from NETs, and by Eap, a secreted protein which binds and aggregates linearized DNA, suppressing the formation of NETs. Furthermore, the pathogen can resist NET-mediated killing by expressing the surface protein FnBPB, which neutralizes the bactericidal activity of histones. Finally, the anti-staphylococcal activity of NETs is counteracted and blocked by S. aureus biofilm. Staphylococcal cells and several virulence factors such as protein A and phenol-soluble modulins can also elicit the formation of NETs which in turn can cause tissue injury, enhancing bacterial performance in host colonization. The identification of additional virulence factors involved in NET formation/neutralization could provide the basis for therapeutic interventions against this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, Viale Taramelli 3/b, 27100 Pavia, Italy
| |
Collapse
|
317
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
318
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
319
|
Arroyo AB, Fernández-Pérez MP, Del Monte A, Águila S, Méndez R, Hernández-Antolín R, García-Barber N, de Los Reyes-García AM, González-Jiménez P, Arcas MI, Vicente V, Menéndez R, Andrés V, González-Conejero R, Martínez C. miR-146a is a pivotal regulator of neutrophil extracellular trap formation promoting thrombosis. Haematologica 2021; 106:1636-1646. [PMID: 32586906 PMCID: PMC8168495 DOI: 10.3324/haematol.2019.240226] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Neutrophil extracellular traps (NETs) induce a procoagulant response linking inflammation and thrombosis. Low levels of miR-146a, a brake of inflammatory response, are involved in higher risk for cardiovascular events, but the mechanisms explaining how miR-146a exerts its function remain largely undefined. The aim of this study was to explore the impact of miR-146a deficiency in NETosis both, in sterile and non-sterile models in vivo, and to inquire into the underlying mechanism. Two models of inflammation were performed: 1) Ldlr-/- mice transplanted with bone marrow from miR-146a-/- or wild type (WT) were fed high-fat diet, generating an atherosclerosis model; and 2) an acute inflammation model was generated by injecting lipopolysaccharide (LPS) (1 mg/Kg) into miR-146a-/- and WT mice. miR-146a deficiency increased NETosis in both models. Accordingly, miR-146a-/- mice showed significant reduced carotid occlusion time and elevated levels of NETs in thrombi following FeCl3-induced thrombosis. Infusion of DNAse I abolished arterial thrombosis in WT and miR-146a-/- mice. Interestingly, miR-146a deficient mice have aged, hyperreactive and pro-inflammatory neutrophils in circulation that are more prone to form NETs independently of the stimulus. Furthermore, we demonstrated that community acquired pneumonia (CAP) patients with reduced miR-146a levels associated with the T variant of the functional rs2431697, presented an increased risk for cardiovascular events due in part to an increased generation of NETs.
Collapse
|
320
|
Yazdani HO, Kaltenmeier C, Morder K, Moon J, Traczek M, Loughran P, Zamora R, Vodovotz Y, Li F, Wang JHC, Geller DA, Simmons RL, Tohme S. Exercise Training Decreases Hepatic Injury and Metastases Through Changes in Immune Response to Liver Ischemia/Reperfusion in Mice. Hepatology 2021; 73:2494-2509. [PMID: 32924145 PMCID: PMC7956053 DOI: 10.1002/hep.31552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Liver ischemia/reperfusion injury (IRI) induces local and systemic inflammation in which neutrophil extracellular traps (NETs) are major drivers. IRI markedly augments metastatic growth, which is consistent with the notion that the liver IRI can serve as a premetastatic niche. Exercise training (ExT) confers a sustainable protection, reducing IRI in some animal models, and has been associated with improved survival in patients with cancer; however, the impact of ExT on liver IRI or development of hepatic metastases is unknown. APPROACH AND RESULTS Mice were randomized into exercise (ExT) and sedentary groups before liver IRI and tumor injection. Computerized dynamic network analysis of 20 inflammatory mediators was used to dissect the sequence of mediator interactions after ischemia/reperfusion (I/R) that induce injury. ExT mice showed a significant decrease in hepatic IRI and tissue necrosis. This coincided with disassembly of complex networks among inflammatory mediators seen in sedentary mice. Neutrophil infiltration and NET formation were decreased in the ExT group, which suppressed the expression of liver endothelial cell adhesion molecules. Concurrently, ExT mice revealed a distinct population of infiltrating macrophages expressing M2 phenotypic genes. In a metastatic model, fewer metastases were present 3 weeks after I/R in the ExT mice, a finding that correlated with a marked increase in tumor-suppressing T cells within the tumor microenvironment. CONCLUSIONS ExT preconditioning mitigates the inflammatory response to liver IRI, protecting the liver from injury and metastases. In light of these findings, potential may exist for the reduction of liver premetastatic niches induced by liver IRI through the use of ExT as a nonpharmacologic therapy before curative surgical approaches.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Kristin Morder
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Juik Moon
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Madelyn Traczek
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA,Center for Biologic Imaging, Department of Cell Biology, University of, Pittsburgh, PA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Feng Li
- Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA
| | - James H-C Wang
- Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA
| | - David A Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA,Corresponding author: Name: Samer Tohme; , Telephone number: 412-692-2001; Fax number: 412-692-2002, Postal address: 3459 Fifth Avenue, UPMC Montefiore, 7 South, Pittsburgh, PA 15213-2582
| |
Collapse
|
321
|
Münzer P, Negro R, Fukui S, di Meglio L, Aymonnier K, Chu L, Cherpokova D, Gutch S, Sorvillo N, Shi L, Magupalli VG, Weber ANR, Scharf RE, Waterman CM, Wu H, Wagner DD. NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Front Immunol 2021; 12:683803. [PMID: 34122445 PMCID: PMC8195330 DOI: 10.3389/fimmu.2021.683803] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick Münzer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Roberto Negro
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lucas di Meglio
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Laboratory of Vascular Translational Science, U1148 INSERM University of Paris, Paris, France
| | - Karen Aymonnier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicoletta Sorvillo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lai Shi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Venkat Giri Magupalli
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Rüdiger E Scharf
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Division of Experimental and Clinical Hemostasis, Hemotherapy, and Transfusion Medicine, and Hemophilia Comprehensive Care Center, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Clare M Waterman
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, United States
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
322
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
323
|
Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes. Antibiotics (Basel) 2021; 10:antibiotics10060633. [PMID: 34070557 PMCID: PMC8228312 DOI: 10.3390/antibiotics10060633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence factors genes for biofilm production and antimicrobial resistance to β-lactams and tetracyclines in 137 staphylococcal isolates from goats (86) and sheep (51). The presence of coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK, and tetM genes was investigated. The nuc gene was detected in all S. aureus isolates and in some coagulase-negative staphylococci (CNS). None of the S. aureus isolates carried the bap gene, while 8 out of 18 CNS harbored this gene. The icaA gene was detected in S. aureus and S. warneri, while icaD only in S. aureus. None of the isolates carrying the bap gene harbored the ica genes. None of the biofilm-associated genes were detected in 14 isolates (six S. aureus and eight CNS). An association was found between Staphylococcus species and resistance to some antibiotics and between antimicrobial resistance and animal species. Nine penicillin-susceptible isolates exhibited the blaZ gene, questioning the reliability of susceptibility testing. Most S. aureus isolates were susceptible to tetracycline, and no cefazolin or gentamycin resistance was detected. These should replace other currently used antimicrobials.
Collapse
|
324
|
Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin Rev Allergy Immunol 2021; 62:160-179. [PMID: 34024033 PMCID: PMC8140557 DOI: 10.1007/s12016-021-08861-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.
Collapse
|
325
|
Neutrophil stimulation with citrullinated histone H4 slows down calcium influx and reduces NET formation compared with native histone H4. PLoS One 2021; 16:e0251726. [PMID: 33999963 PMCID: PMC8128235 DOI: 10.1371/journal.pone.0251726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) catalyzes posttranslational modification of many target proteins through converting protein arginine or mono-methylarginine to citrulline. Neutrophil extracellular trap (NET) formation is the most dramatic manifestation of PAD4-mediated hypercitrullination reaction in neutrophils, which is characterized by the release of nuclear chromatin to form a chromatin network in the extracellular space. Histones H4, one of the major protein components of chromatin, is released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury and can also be released during the process of NET formation, along with its citrullinated form. The present study showed that histone H4 can induce NET formation in a calcium and PAD4 dependent manner. Histone H4 caused permeabilization of the neutrophil membrane and sustained rise in intracellular calcium that is necessary for activation of PAD4. In comparison, citrullinated histone H4 induced less calcium influx compared with its native form, leading to reduced NET formation. These studies suggest that citrullinated histone H4 could serve as a brake in the pathology of NETs, slowing down the vicious circle between histone H4 and NETs.
Collapse
|
326
|
Removal of Circulating Neutrophil Extracellular Trap Components With an Immobilized Polymyxin B Filter: A Preliminary Study. Shock 2021; 54:44-49. [PMID: 31764624 DOI: 10.1097/shk.0000000000001476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Components of neutrophil extracellular traps (NETs) are released into the circulation by neutrophils and contribute to microcirculatory disturbance in sepsis. Removing NET components (DNA, histones, and proteases) from the circulation could be a new strategy for counteracting NET-dependent tissue damage. We evaluated the effect of hemoperfusion with a polymyxin B (PMX) cartridge, which was originally developed for treating gram-negative infection, on circulating NET components in patients with septic shock, as well as the effect on phorbol myristate acetate (PMA)-stimulated neutrophils obtained from healthy volunteers. Ex vivo closed loop hemoperfusion was performed through PMX filters in a laboratory circuit. Whole blood from healthy volunteers (incubated with or without PMA) or from septic shock patients was perfused through the circuit. For in vivo experiment blood samples were collected before and immediately after hemoperfusion with PMX to measure the plasma levels of cell-free NETs. The level of cell-free NETs was assessed by measuring myeloperoxidase-associated DNA (MPO-DNA), neutrophil elastase-associated DNA (NE-DNA), and cell-free DNA (cf-DNA). Plasma levels of MPO-DNA, NE-DNA, and cf-DNA were significantly increased after 2 h of PMA stimulation. When the circuit was perfused with blood from septic shock patients or PMA-stimulated neutrophils from healthy volunteers, circulating levels of MPO-DNA, NE-DNA, and cf-DNA were significantly reduced after 1 and 2 h of perfusion with a PMX filter compared with perfusion without a PMX filter. In 10 patients with sepsis, direct hemoperfusion through filters with immobilized PMX significantly reduced plasma levels of MPO-DNA and NE-DNA. These ex vivo and in vivo findings demonstrated that hemoperfusion with PMX removes circulating NET components. Selective removal of circulating NET components from the blood could be effective for prevention/treatment of NET-related inappropriate inflammation and thrombogenesis in patients with sepsis.
Collapse
|
327
|
Neutrophil specific granule and NETosis defects in gray platelet syndrome. Blood Adv 2021; 5:549-564. [PMID: 33496751 DOI: 10.1182/bloodadvances.2020002442] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. Rare loss-of-function variants in neurobeachin-like 2 (NBEAL2), a member of the family of beige and Chédiak-Higashi (BEACH) genes, are causal of GPS. It is suggested that BEACH domain containing proteins are involved in fusion, fission, and trafficking of vesicles and granules. Studies in knockout mice suggest that NBEAL2 may control the formation and retention of granules in neutrophils. We found that neutrophils obtained from the peripheral blood from 13 patients with GPS have a normal distribution of azurophilic granules but show a deficiency of specific granules (SGs), as confirmed by immunoelectron microscopy and mass spectrometry proteomics analyses. CD34+ hematopoietic stem cells (HSCs) from patients with GPS differentiated into mature neutrophils also lacked NBEAL2 expression but showed similar SG protein expression as control cells. This is indicative of normal granulopoiesis in GPS and identifies NBEAL2 as a potentially important regulator of granule release. Patient neutrophil functions, including production of reactive oxygen species, chemotaxis, and killing of bacteria and fungi, were intact. NETosis was absent in circulating GPS neutrophils. Lack of NETosis is suggested to be independent of NBEAL2 expression but associated with SG defects instead, as indicated by comparison with HSC-derived neutrophils. Since patients with GPS do not excessively suffer from infections, the consequence of the reduced SG content and lack of NETosis for innate immunity remains to be explored.
Collapse
|
328
|
Fetz AE, Bowlin GL. Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:437-450. [PMID: 33736452 DOI: 10.1089/ten.teb.2021.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species, the release of granules, the phagocytosis of invaders, and the extrusion of neutrophil extracellular traps (NETs). However, these canonical protective mechanisms can also have detrimental effects both in the context of infection and in response to sterile injuries. Of particular interest to biomaterials and tissue engineering is the release of NETs, which are extracellular structures composed of decondensed chromatin and various toxic nuclear and granular components. These structures and their dysregulated release can cause collateral tissue damage, uncontrolled inflammation, and fibrosis and prevent the neutrophil from exerting its prohealing functions. This review discusses our knowledge of NETs, including their composition and morphology, signaling pathways, inhibitors, and contribution to inflammatory pathologies, as well as their role in the resolution of inflammation. In addition, we summarize what is known about the release of NETs as a preconditioning event in the response to biomaterials and highlight future considerations to target the neutrophil response and enhance biomaterial-guided tissue repair and regeneration. Impact statement Neutrophil extracellular trap (NET) release is an active process programmed into the neutrophil's molecular machinery to prevent infection. However, the release of NETs on biomaterials appears to be a significant preconditioning event that influences the potential for tissue healing with largely detrimental consequences. Given their contribution to inflammatory pathologies, this review highlights the role of NETs in the response to biomaterials. Together, the studies discussed in this review suggest that biomaterials should be designed to regulate NET release to avoid maladaptive immune responses and improve the therapeutic potential of tissue-engineered biomaterials and their applications in the clinical setting.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
329
|
Hayden H, Ibrahim N, Klopf J, Zagrapan B, Mauracher LM, Hell L, Hofbauer TM, Ondracek AS, Schoergenhofer C, Jilma B, Lang IM, Pabinger I, Eilenberg W, Neumayer C, Brostjan C. ELISA detection of MPO-DNA complexes in human plasma is error-prone and yields limited information on neutrophil extracellular traps formed in vivo. PLoS One 2021; 16:e0250265. [PMID: 33886636 PMCID: PMC8062102 DOI: 10.1371/journal.pone.0250265] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past years, neutrophil extracellular traps (NETs) were shown to contribute to states of acute and chronic inflammatory disease. They are composed of expelled chromatin and decorated by neutrophil-derived proteins. Therefore, the analysis of DNA complexes with myeloperoxidase (MPO) by ELISA has become an attractive tool to measure NET formation in in vitro and in vivo samples. When we used a published MPO-DNA ELISA protocol and included an isotype control for the anti-MPO coating antibody, we observed high assay specificity for in vitro prepared NET samples, whereas the specificity for in vivo plasma samples was low. In addition, the assay failed to detect in vitro generated MPO-DNA complexes when spiked into plasma. Therefore, we set out to improve the specificity of the MPO-DNA ELISA for plasma samples. We found that the use of Fab fragments or immunoglobulins from different species or reversal of the antibody pair led to either a high background or a low dynamic range of detection that did not improve the specificity for plasma samples. Also, the use of higher plasma dilutions or pre-clearing of plasma immunoglobulins were ineffective. Finally, we found that a commercial reagent designed to block human anti-mouse antibodies and multivalent substances increased the detection window between the MPO antibody and isotype control for highly diluted plasma. We applied this modified ELISA protocol to analyze MPO-DNA complexes in human blood samples of acute and chronic inflammatory conditions. While markers of neutrophil activation and NET formation such as MPO, elastase and citrullinated histone H3 correlated significantly, we observed no correlation with the levels of MPO-DNA complexes. Therefore, we conclude that ELISA measurements of MPO-DNA complexes in human plasma are highly questionable regarding specificity of NET detection. In general, plasma analyses by ELISA should more frequently include isotype controls for antibodies to demonstrate target specificity.
Collapse
Affiliation(s)
- Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Nahla Ibrahim
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Johannes Klopf
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Branislav Zagrapan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lisa-Marie Mauracher
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lena Hell
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Thomas M. Hofbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Anna S. Ondracek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christian Schoergenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Irene M. Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ingrid Pabinger
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
- * E-mail:
| |
Collapse
|
330
|
Gómez RM, López Ortiz AO, Schattner M. Platelets and extracellular traps in infections. Platelets 2021; 32:305-313. [PMID: 31984825 DOI: 10.1080/09537104.2020.1718631] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Platelets have a well-recognized role in hemostasis and thrombosis, and they are important amplifiers of inflammation and innate immune responses. The formation of DNA extracellular traps (ETs) is a complex cellular mechanism, which occurs in response to microbial infections and sterile inflammation, and results in the release of DNA complexed with histones and various granular proteins. ETs were first discovered in neutrophils (NETs); however, it is now accepted that other leukocytes, including eosinophils (EETs) and monocytes/macrophages (MoETs/METs), can also generate them. Moreover, several types of ETs have been described.Increasing evidence has demonstrated that platelets modulate the formation of ETs. This review summarizes recent findings about the physiopathological role of platelets in the formation of ETs during infection and future perspectives in the field.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina
- Global Viral Network, Baltimore, MD, USA
| | - Aída O López Ortiz
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| |
Collapse
|
331
|
Adjuvants and Vaccines Used in Allergen-Specific Immunotherapy Induce Neutrophil Extracellular Traps. Vaccines (Basel) 2021; 9:vaccines9040321. [PMID: 33915724 PMCID: PMC8066953 DOI: 10.3390/vaccines9040321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Aluminum hydroxide (alum) and monophosphoryl-lipid A (MPLA) are conventional adjuvants in vaccines for allergen-specific immunotherapy (AIT). Alum triggers the release of neutrophil extracellular traps (NETs) by neutrophils. NETs contain expelled decondensed chromatin associated with granular material and may act as danger-associated molecular patterns and activate antigen-presenting cells. We investigated whether adjuvant-induced NETs contribute to innate responses to AIT-vaccines. Human neutrophils were incubated with alum, MPLA and adjuvant-containing AIT-vaccine preparations. NETs were verified by time-lapse and confocal fluorescence microscopy and quantitatively assessed by DNA and elastase release and ROS production. In contrast to MPLA, alum represented a potent trigger for NET release. Vaccine formulations containing alum resulted in less NET release than alum alone, whereas the vaccine containing MPLA induced stronger NET responses than MPLA alone. NETs and alum alone and synergistically increased the expression of molecules involved in antigen presentation, i.e., CD80, CD86 and CD83, by peripheral blood monocytes. Monocyte priming with NETs resulted in individually differing IL-1β- and IL-6-responses. Thus, NETs induced by adjuvants in AIT-vaccines can provide autonomous and cooperative effects on early innate responses. The high diversity of individual innate responses to adjuvants and AIT-vaccines may affect their therapeutic efficacy.
Collapse
|
332
|
Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, Pandian D, Gudjonsson JE, Kahlenberg JM, O'Riordan MX, Knight JS. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. J Clin Invest 2021; 131:137866. [PMID: 33561013 DOI: 10.1172/jci137866] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex-stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex-mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.
Collapse
Affiliation(s)
- Gautam Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | - Paul A Steffes
- Division of Rheumatology, Department of Internal Medicine
| | | | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine
| |
Collapse
|
333
|
Wang J, Zhou Y, Ren B, Zou L, He B, Li M. The Role of Neutrophil Extracellular Traps in Periodontitis. Front Cell Infect Microbiol 2021; 11:639144. [PMID: 33816343 PMCID: PMC8012762 DOI: 10.3389/fcimb.2021.639144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic, destructive disease of periodontal tissues caused by multifaceted, dynamic interactions. Periodontal bacteria and host immunity jointly contribute to the pathological processes of the disease. The dysbiotic microbial communities elicit an excessive immune response, mainly by polymorphonuclear neutrophils (PMNs). As one of the main mechanisms of PMN immune response in the oral cavity, neutrophil extracellular traps (NETs) play a crucial role in the initiation and progression of late-onset periodontitis. NETs are generated and released by neutrophils stimulated by various irritants, such as pathogens, host-derived mediators, and drugs. Chromatin and proteins are the main components of NETs. Depending on the characteristics of the processes, three main pathways of NET formation have been described. NETs can trap and kill pathogens by increased expression of antibacterial components and identifying and trapping bacteria to restrict their spread. Moreover, NETs can promote and reduce inflammation, inflicting injuries on the tissues during the pro-inflammation process. During their long-term encounter with NETs, periodontal bacteria have developed various mechanisms, including breaking down DNA of NETs, degrading antibacterial proteins, and impacting NET levels in the pocket environment to resist the antibacterial function of NETs. In addition, periodontal pathogens can secrete pro-inflammatory factors to perpetuate the inflammatory environment and a friendly growth environment, which are responsible for the progressive tissue damage. By learning the strategies of pathogens, regulating the periodontal concentration of NETs becomes possible. Some practical ways to treat late-onset periodontitis are reducing the concentration of NETs, administering anti-inflammatory therapy, and prescribing broad-spectrum and specific antibacterial agents. This review mainly focuses on the mechanism of NETs, pathogenesis of periodontitis, and potential therapeutic approaches based on interactions between NETs and periodontal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
334
|
Apel F, Andreeva L, Knackstedt LS, Streeck R, Frese CK, Goosmann C, Hopfner KP, Zychlinsky A. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal 2021; 14:14/673/eaax7942. [PMID: 33688080 DOI: 10.1126/scisignal.aax7942] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of chromatin and antimicrobial molecules that are released by neutrophils during a form of regulated cell death called NETosis. NETs trap invading pathogens, promote coagulation, and activate myeloid cells to produce type I interferons (IFNs), proinflammatory cytokines that regulate the immune system. Here, we showed that macrophages and other myeloid cells phagocytosed NETs. Once in phagosomes, NETs translocated to the cytosol, where the DNA backbones of these structures activated the innate immune sensor cyclic GMP-AMP synthase (cGAS) and induced type I IFN production. The NET-associated serine protease neutrophil elastase (NE) mediated the activation of this pathway. We showed that NET induction in mice treated with the lectin concanavalin A, a model of autoimmune hepatitis, resulted in cGAS-dependent stimulation of an IFN response, suggesting that NETs activated cGAS in vivo. Thus, our findings suggest that cGAS is a sensor of NETs, mediating immune cell activation during infection.
Collapse
Affiliation(s)
- Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Liudmila Andreeva
- Gene Center, Ludwig-Maximillians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lorenz Sebastian Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany.,T-Knife GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Robert Streeck
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Karl Frese
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Goosmann
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| | - Karl-Peter Hopfner
- Gene Center, Ludwig-Maximillians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany. .,Department of Biology, Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
335
|
Silva JDC, Thompson-Souza GDA, Barroso MV, Neves JS, Figueiredo RT. Neutrophil and Eosinophil DNA Extracellular Trap Formation: Lessons From Pathogenic Fungi. Front Microbiol 2021; 12:634043. [PMID: 33679665 PMCID: PMC7929991 DOI: 10.3389/fmicb.2021.634043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal infections represent a worldwide health problem. Fungal pathogens are responsible for a variety of conditions, including superficial diseases, allergic pathologies and potentially lethal invasive infections. Neutrophils and eosinophils have been implicated as effector cells in several pathologies. Neutrophils are major effector cells involved in the control of fungal infections and exhibit a plethora of antifungal mechanisms, such as phagocytosis, reactive oxygen species production, degranulation, extracellular vesicle formation, and DNA extracellular trap (ET) release. Eosinophils are polymorphonuclear cells classically implicated as effector cells in the pathogenesis of allergic diseases and helminthic infections, although their roles as immunomodulatory players in both innate and adaptive immunity are currently recognized. Eosinophils are also endowed with antifungal activities and are abundantly found in allergic conditions associated with fungal colonization and sensitization. Neutrophils and eosinophils have been demonstrated to release their nuclear and mitochondrial DNA in response to many pathogens and pro-inflammatory stimuli. ETs have been implicated in the killing and control of many pathogens, as well as in promoting inflammation and tissue damage. The formation of ETs by neutrophils and eosinophils has been described in response to pathogenic fungi. Here, we provide an overview of the mechanisms involved in the release of neutrophil and eosinophil ETs in response to fungal pathogens. General implications for understanding the formation of ETs and the roles of ETs in fungal infections are discussed.
Collapse
Affiliation(s)
- Juliana da Costa Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marina Valente Barroso
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane Sabbadini Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
336
|
Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol 2021; 12:321-333. [PMID: 33689803 PMCID: PMC8166923 DOI: 10.1016/j.jcmgh.2021.03.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The Inflammatory Bowel Diseases (IBD), Ulcerative Colitis (UC) and Crohn's Disease (CD) are characterised by chronic non-resolving gut mucosal inflammation involving innate and adaptive immune responses. Neutrophils, usually regarded as first responders in inflammation, are a key presence in the gut mucosal inflammatory milieu in IBD. Here, we review the role of neutrophil extracellular trap (NET) formation as a potential effector disease mechanism. NETs are extracellular webs of chromatin, microbicidal proteins and oxidative enzymes that are released by neutrophils to contain pathogens. NETs contribute to the pathogenesis of several immune-mediated diseases such as systemic lupus erythematosus and rheumatoid arthritis; and recently, as a major tissue damaging process involved in the host response to severe acute respiratory syndrome coronavirus 2 infection. NETs are pertinent as a defence mechanism at the gut mucosal interphase exposed to high levels of bacteria, viruses and fungi. On the other hand, NETs can also potentiate and perpetuate gut inflammation. In this review, we discuss the broad protective vs. pathogenic roles of NETs, explanatory factors that could lead to an increase in NET formation in IBD and how NETs may contribute to gut inflammation and IBD-related complications. Finally, we summarise therapeutic opportunities to target NETs in IBD.
Collapse
Affiliation(s)
- Broc Drury
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Gareth Hardisty
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Robert D Gray
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
337
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: Many Ways to Die. Front Immunol 2021; 12:631821. [PMID: 33746968 PMCID: PMC7969520 DOI: 10.3389/fimmu.2021.631821] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.
Collapse
Affiliation(s)
- Erandi Pérez-Figueroa
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pablo Álvarez-Carrasco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
338
|
Mondal S, Thompson PR. Chemical biology of protein citrullination by the protein A arginine deiminases. Curr Opin Chem Biol 2021; 63:19-27. [PMID: 33676233 DOI: 10.1016/j.cbpa.2021.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 12/25/2022]
Abstract
Citrullination is a post-translational modification (PTM) that converts peptidyl-arginine into peptidyl-citrulline; citrullination is catalyzed by the protein arginine deiminases (PADs). This PTM is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation, and DNA-damage induced apoptosis. Notably, aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. As such, the PADs are promising therapeutic targets. In this review, we discuss recent advances in the development of PAD inhibitors and activity-based probes, the development and use of citrulline-specific probes in chemoproteomic applications, and methods to site-specifically incorporate citrulline into proteins.
Collapse
Affiliation(s)
- Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
339
|
Dong Y, Jin C, Ding Z, Zhu Y, He Q, Zhang X, Ai R, Yin Y, He Y. TLR4 regulates ROS and autophagy to control neutrophil extracellular traps formation against Streptococcus pneumoniae in acute otitis media. Pediatr Res 2021; 89:785-794. [PMID: 32438368 DOI: 10.1038/s41390-020-0964-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/29/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Otitis media (OM), a prevalent pediatric infectious disease, is mainly caused by Streptococcus pneumoniae (S.pn). Neutrophil extracellular traps (NETs), a novel antimicrobial strategy, were reported in 2004. We found that NETs formed in the middle ear with acute otitis media (AOM) induced by S.pn. However, the mechanisms of NETs formation are not entirely clear. METHODS We stimulated neutrophils isolated from mouse bone marrow with S.pn clinical stain 19F in vitro, and established mouse model of AOM via transbullar injection with S.pn. NETs formation, reactive oxygen species (ROS) production, autophagy activation and bacterial load were analyzed in TLR4-/- and wild-type neutrophils stimulated in vitro with S.pn and in vivo during AOM. RESULTS We found that autophagy and ROS were required for S.pn-induced NETs formation. Moreover, TLR4 partly mediated NETs formation in response to S.pn in vitro and in vivo during AOM. We also showed that attenuated NETs formation in TLR4-/- neutrophils correlated with an impaired ROS production and autophagy activation in vitro and in vivo. In addition, both the in vivo and in vitro-produced NETs were able to engulf and kill S.pn. CONCLUSIONS TLR4 regulates ROS and autophagy to control NETs formation against S.pn in the course of AOM. IMPACT S.pn can induce NETs formation in vitro and in vivo; TLR4 regulates NETs formation by ROS and autophagy; NETs contribute to the clearance of bacteria in acute otitis media. In this study, we firstly found that autophagy and ROS were required for S.pn-induced NETs formation in the model of acute otitis media (AOM). And to some extent, TLR4 mediated NETs formation during AOM. Our research might provide a potential strategy for the treatment of otitis media.
Collapse
Affiliation(s)
- Yilin Dong
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunfang Jin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China.,Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Zhiqiang Ding
- School of Computer Science, Chongqing Institute of Engineering, Chongqing, People's Republic of China
| | - Yiting Zhu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinxin Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Rongshuang Ai
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
340
|
Silver Nanoparticles Induce Neutrophil Extracellular Traps Via Activation of PAD and Neutrophil Elastase. Biomolecules 2021; 11:biom11020317. [PMID: 33669660 PMCID: PMC7922014 DOI: 10.3390/biom11020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.
Collapse
|
341
|
Barroso MV, Gropillo I, Detoni MAA, Thompson-Souza GA, Muniz VS, Vasconcelos CRI, Figueiredo RT, Melo RCN, Neves JS. Structural and Signaling Events Driving Aspergillus fumigatus-Induced Human Eosinophil Extracellular Trap Release. Front Microbiol 2021; 12:633696. [PMID: 33679663 PMCID: PMC7930393 DOI: 10.3389/fmicb.2021.633696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Eosinophils are granulocytes classically involved in allergic diseases and in the host immune responses to helminths, fungi, bacteria and viruses. The release of extracellular DNA traps by leukocytes is an important mechanism of the innate immune response to pathogens in various infectious conditions, including fungal infections. Aspergillus fumigatus is an opportunistic fungus responsible for allergic bronchopulmonary aspergillosis (ABPA), a pulmonary disease marked by prominent eosinophilic inflammation. Previously, we demonstrated that isolated human eosinophils release extracellular DNA traps (eosinophil extracellular traps; EETs) when stimulated by A. fumigatus in vitro. This release occurs through a lytic non-oxidative mechanism that involves CD11b and Syk tyrosine kinase. In this work, we unraveled different intracellular mechanisms that drive the release of extracellular DNA traps by A. fumigatus-stimulated eosinophils. Ultrastructurally, we originally observed that A. fumigatus-stimulated eosinophils present typical signs of extracellular DNA trap cell death (ETosis) with the nuclei losing both their shape (delobulation) and the euchromatin/heterochromatin distinction, followed by rupture of the nuclear envelope and EETs release. We also found that by targeting class I PI3K, and more specifically PI3Kδ, the release of extracellular DNA traps induced by A. fumigatus is inhibited. We also demonstrated that A. fumigatus-induced EETs release depends on the Src family, Akt, calcium and p38 MAPK signaling pathways in a process in which fungal viability is dispensable. Interestingly, we showed that A. fumigatus-induced EETs release occurs in a mechanism independent of PAD4 histone citrullination. These findings may contribute to a better understanding of the mechanisms that underlie EETs release in response to A. fumigatus, which may lead to better knowledge of ABPA pathophysiology and treatment.
Collapse
Affiliation(s)
- Marina Valente Barroso
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Gropillo
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcella A A Detoni
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Valdirene S Muniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rodrigo T Figueiredo
- Institute of Biomedical Sciences/Campus of Duque de Caxias, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
342
|
Tackenberg H, Möller S, Filippi MD, Laskay T. The Small GTPase Cdc42 Negatively Regulates the Formation of Neutrophil Extracellular Traps by Engaging Mitochondria. Front Immunol 2021; 12:564720. [PMID: 33679729 PMCID: PMC7925625 DOI: 10.3389/fimmu.2021.564720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophil granulocytes represent the first line of defense against invading pathogens. In addition to the production of Reactive Oxygen Species, degranulation, and phagocytosis, these specialized cells are able to extrude Neutrophil Extracellular Traps. Extensive work was done to elucidate the mechanism of this special form of cell death. However, the exact mechanisms are still not fully uncovered. Here we demonstrate that the small GTPase Cdc42 is a negative regulator of NET formation in primary human and murine neutrophils. We present a functional role for Cdc42 activity in NET formation that differs from the already described NETosis pathways. We show that Cdc42 deficiency induces NETs independent of the NADPH-oxidase but dependent on protein kinase C. Furthermore, we demonstrate that Cdc42 deficiency induces NETosis through activation of SK-channels and that mitochondria play a crucial role in this process. Our data therefore suggests a mechanistic role for Cdc42 activity in primary human neutrophils, and identify Cdc42 activity as a target to modulate the formation of Neutrophil Extracellular Traps.
Collapse
Affiliation(s)
- Heidi Tackenberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
343
|
Vorobjeva NV. Neutrophil Extracellular Traps: New Aspects. ACTA ACUST UNITED AC 2021; 75:173-188. [PMID: 33583971 PMCID: PMC7869772 DOI: 10.3103/s0096392520040112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
Abstract
Neutrophils are the "first line" of defense against pathogens in the locus of inflammation, where they use effector functions such as phagocytosis, degranulation, and formation of reactive oxygen species (ROS). In 2004, Artuto Zychlinsky characterized one more neutrophil effector function-the release of neutrophil extracellular traps (or NETs). NETs are a modified chromatin "decorated" by bactericidal proteins of granules, nucleus, and cytoplasm. The release of NETs can be activated by diverse physiological and pharmacological stimuli and depends on ROS, for which NADPH oxidase is the main source. In the process of NET formation, the release of bactericidal components of granules into the cytoplasm, modification of histones leading to chromatin decondensation, destruction of the nuclear envelope and cytoplasmic membrane with the involvement of gasdermin D protein, and, finally, the release of chromatin outside the cell occurs. At the same time, uncontrolled formation of NETs is a provoking factor in the development of many inflammatory and autoimmune diseases. NETs were found at autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, psoriasis, and vasculitis; NETs are involved in the pathogenesis of cardiovascular, pulmonary, and oncological diseases. In this review, the main ideas about the mechanisms of NET formation, as well as their role in physiological processes and pathogenesis of a number of diseases (including COVID-19), are discussed.
Collapse
Affiliation(s)
- N V Vorobjeva
- Department of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
344
|
Abaricia JO, Shah AH, Olivares-Navarrete R. Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials 2021; 271:120715. [PMID: 33677375 DOI: 10.1016/j.biomaterials.2021.120715] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Neutrophils predominate the early inflammatory response to tissue injury and implantation of biomaterials. Recent studies have shown that neutrophil activation can be regulated by mechanical cues such as stiffness or surface wettability; however, it is not known how neutrophils sense and respond to physical cues, particularly how they form neutrophil extracellular traps (NET formation). To examine this, we used polydimethylsiloxane (PDMS) substrates of varying physiologically relevant stiffness (0.2-32 kPa) and examined the response of murine neutrophils to untreated surfaces or to surfaces coated with various extracellular matrix proteins recognized by integrin heterodimers (collagen, fibronectin, laminin, vitronectin, synthetic RGD). Neutrophils on higher stiffness PDMS substrates had increased NET formation and higher secretion of pro-inflammatory cytokines and chemokines. Extracellular matrix protein coatings showed that fibronectin induced the most NET formation and this effect was stiffness dependent. Synthetic RGD peptides induced similar levels of NET formation and pro-inflammatory cytokine release than the full-length fibronectin protein. To determine if the observed NET formation in response to substrate stiffness required focal adhesion kinase (FAK) activity, which is down stream of integrin activation, FAK inhibitor PF-573228 was used. Inhibition of FAK using PF-573228 ablated the stiffness-dependent increase in NET formation and pro-inflammatory molecule secretion. These findings demonstrate that neutrophils regulate NET formation in response to physical and mechanical biomaterial cues and this process is regulated through integrin/FAK signaling.
Collapse
Affiliation(s)
- Jefferson O Abaricia
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Arth H Shah
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
345
|
Ali RA, Gandhi AA, Dai L, Weiner J, Estes SK, Yalavarthi S, Gockman K, Sun D, Knight JS. Antineutrophil properties of natural gingerols in models of lupus. JCI Insight 2021; 6:138385. [PMID: 33373329 PMCID: PMC7934838 DOI: 10.1172/jci.insight.138385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Ginger is known to have antiinflammatory and antioxidative effects and has traditionally been used as an herbal supplement in the treatment of various chronic diseases. Here, we report antineutrophil properties of 6-gingerol, the most abundant bioactive compound of ginger root, in models of lupus and antiphospholipid syndrome (APS). Specifically, we demonstrate that 6-gingerol attenuates neutrophil extracellular trap (NET) release in response to lupus- and APS-relevant stimuli through a mechanism that is at least partially dependent on inhibition of phosphodiesterases. At the same time, administration of 6-gingerol to mice reduces NET release in various models of lupus and APS, while also improving other disease-relevant endpoints, such as autoantibody formation and large-vein thrombosis. In summary, this study is the first to our knowledge to demonstrate a protective role for ginger-derived compounds in the context of lupus. Importantly, it provides a potential mechanism for these effects via phosphodiesterase inhibition and attenuation of neutrophil hyperactivity.
Collapse
Affiliation(s)
- Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Weiner
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
346
|
Messerer DAC, Schmidt H, Frick M, Huber-Lang M. Ion and Water Transport in Neutrophil Granulocytes and Its Impairment during Sepsis. Int J Mol Sci 2021; 22:1699. [PMID: 33567720 PMCID: PMC7914618 DOI: 10.3390/ijms22041699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophil granulocytes are the vanguard of innate immunity in response to numerous pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns, thereby contributing substantially to the resolution of inflammation. However, excessive stimulation during sepsis leads to cellular unresponsiveness, immunological dysfunction, bacterial expansion, and subsequent multiple organ dysfunction. During the short lifespan of neutrophils, they can become significantly activated by complement factors, cytokines, and other inflammatory mediators. Following stimulation, the cells respond with a defined (electro-)physiological pattern, including depolarization, calcium influx, and alkalization as well as with increased metabolic activity and polarization of the actin cytoskeleton. Activity of ion transport proteins and aquaporins is critical for multiple cellular functions of innate immune cells, including chemotaxis, generation of reactive oxygen species, and phagocytosis of both pathogens and tissue debris. In this review, we first describe the ion transport proteins and aquaporins involved in the neutrophil ion-water fluxes in response to chemoattractants. We then relate ion and water flux to cellular functions with a focus on danger sensing, chemotaxis, phagocytosis, and oxidative burst and approach the role of altered ion transport protein expression and activity in impaired cellular functions and cell death during systemic inflammation as in sepsis.
Collapse
Affiliation(s)
- David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, 89081 Ulm, Germany;
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, 89081 Ulm, Germany
| | - Hanna Schmidt
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (H.S.); (M.F.)
- Department of Pediatrics and Adolescent Medicine, University Hospital of Ulm, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (H.S.); (M.F.)
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, 89081 Ulm, Germany;
| |
Collapse
|
347
|
Linssen RS, Chai G, Ma J, Kummarapurugu AB, van Woensel JBM, Bem RA, Kaler L, Duncan GA, Zhou L, Rubin BK, Xu Q. Neutrophil Extracellular Traps Increase Airway Mucus Viscoelasticity and Slow Mucus Particle Transit. Am J Respir Cell Mol Biol 2021; 64:69-78. [PMID: 33095650 DOI: 10.1165/rcmb.2020-0168oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucus obstruction is a key feature of many inflammatory airway diseases. Neutrophil extracellular traps (NETs) are released upon neutrophil stimulation and consist of extracellular chromatin networks studded with cytotoxic proteins. When released in the airways, these NETs can become part of the airway mucus. We hypothesized that the extracellular DNA and/or oxidative stress (e.g., by the release of reactive oxygen species and myeloperoxidase during NETs formation in the airways) would increase mucus viscoelasticity. We collected human airway mucus from endotracheal tubes of healthy patients admitted for elective surgery and coincubated these samples with NETs from phorbol 12-myristate 13-acetate-stimulated neutrophils. Unstimulated neutrophils served as controls, and blocking experiments were performed with dornase alfa for extracellular DNA and the free radical scavenger dimethylthiourea for oxidation. Compared with controls, the coincubation of mucus with NETs resulted in 1) significantly increased mucus viscoelasticity (macrorheology) and 2) significantly decreased mesh pore size of the mucus and decreased movement of muco-inert nanoparticles through the mucus (microrheology), but 3) NETs did not cause visible changes in the microstructure of the mucus by scanning EM. Incubation with either dornase alfa or dimethylthiourea attenuated the observed changes in macrorheology and microrheology. This suggests that the release of NETs may contribute to airway mucus obstruction by increasing mucus viscoelasticity and that this effect is not solely due to the release of DNA but may in part be due to oxidative stress.
Collapse
Affiliation(s)
- Rosalie S Linssen
- Pediatric Intensive Care Unit, Emma Children's Hospital, and.,Amsterdam Reproduction & Development Research Department, University Medical Center Amsterdam, Academic Medical Center (AMC), Amsterdam, the Netherlands.,Department of Pediatrics, Children's Hospital of Richmond
| | | | - Jonathan Ma
- Department of Pediatrics, Children's Hospital of Richmond
| | | | - Job B M van Woensel
- Pediatric Intensive Care Unit, Emma Children's Hospital, and.,Amsterdam Reproduction & Development Research Department, University Medical Center Amsterdam, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, and.,Amsterdam Reproduction & Development Research Department, University Medical Center Amsterdam, Academic Medical Center (AMC), Amsterdam, the Netherlands
| | | | - Gregg A Duncan
- Biophysics Program and.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | | | - Bruce K Rubin
- Department of Pediatrics, Children's Hospital of Richmond.,Department of Physiology, and
| | - Qingguo Xu
- Department of Pharmaceutics.,Department of Physiology, and.,Department of Ophthalmology, Center for Pharmaceutical Engineering, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and
| |
Collapse
|
348
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
349
|
Site-specific incorporation of citrulline into proteins in mammalian cells. Nat Commun 2021; 12:45. [PMID: 33398026 PMCID: PMC7782748 DOI: 10.1038/s41467-020-20279-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
Citrullination is a post-translational modification (PTM) of arginine that is crucial for several physiological processes, including gene regulation and neutrophil extracellular trap formation. Despite recent advances, studies of protein citrullination remain challenging due to the difficulty of accessing proteins homogeneously citrullinated at a specific site. Herein, we report a technology that enables the site-specific incorporation of citrulline (Cit) into proteins in mammalian cells. This approach exploits an engineered E. coli-derived leucyl tRNA synthetase-tRNA pair that incorporates a photocaged-citrulline (SM60) into proteins in response to a nonsense codon. Subsequently, SM60 is readily converted to Cit with light in vitro and in living cells. To demonstrate the utility of the method, we biochemically characterize the effect of incorporating Cit at two known autocitrullination sites in Protein Arginine Deiminase 4 (PAD4, R372 and R374) and show that the R372Cit and R374Cit mutants are 181- and 9-fold less active than the wild-type enzyme. This technology possesses the potential to decipher the biology of citrullination. Citrullination of arginine is crucial for several physiological processes. Here the authors report the site-specific incorporation of citrulline into proteins in mammalian cells using an engineered tRNA synthetase/tRNA pair and a photocaged-citrulline.
Collapse
|
350
|
Abstract
Thrombosis is the most feared complication of cardiovascular diseases and a main cause of death worldwide, making it a major health-care challenge. Platelets and the coagulation cascade are effectively targeted by antithrombotic approaches, which carry an inherent risk of bleeding. Moreover, antithrombotics cannot completely prevent thrombotic events, implicating a therapeutic gap due to a third, not yet adequately addressed mechanism, namely inflammation. In this Review, we discuss how the synergy between inflammation and thrombosis drives thrombotic diseases. We focus on the huge potential of anti-inflammatory strategies to target cardiovascular pathologies. Findings in the past decade have uncovered a sophisticated connection between innate immunity, platelet activation and coagulation, termed immunothrombosis. Immunothrombosis is an important host defence mechanism to limit systemic spreading of pathogens through the bloodstream. However, the aberrant activation of immunothrombosis in cardiovascular diseases causes myocardial infarction, stroke and venous thromboembolism. The clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is supported by the increased risk of cardiovascular events in patients with inflammatory diseases but also during infections, including in COVID-19. Clinical trials in the past 4 years have confirmed the anti-ischaemic effects of anti-inflammatory strategies, backing the concept of a prothrombotic function of inflammation. Targeting inflammation to prevent thrombosis leaves haemostasis mainly unaffected, circumventing the risk of bleeding associated with current approaches. Considering the growing number of anti-inflammatory therapies, it is crucial to appreciate their potential in covering therapeutic gaps in cardiovascular diseases.
Collapse
|