351
|
Lim JU, Kang HS. A narrative review of current and potential prognostic biomarkers for immunotherapy in small-cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:809. [PMID: 34268422 PMCID: PMC8246157 DOI: 10.21037/atm-21-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Small-cell lung cancer (SCLC) is a highly invasive and rapidly proliferating pathologic subtype that accounts for 13-15% of all lung cancer cases. Recently in extensive-stage SCLC, treatments that combine immunotherapy and chemotherapy showed increased efficacy compared to chemotherapy alone in several trials. However, the combination of immunotherapy and conventional chemotherapy regimens was introduced only recently for extensive-stage SCLC, with relatively little real-world data. The demand for reliable biomarkers that can predict the efficacy of immunotherapy in SCLC is high. Several studies evaluated various parameters including programmed cell death ligand-1 (PD-L1) expression, tumor mutation burden (TMB), gene expression profiling, autoantibody, and blood cytokines for predictive value for response to immunotherapy in SCLC. Despite some observed correlations, there is a lack of concrete support for the use of PD-L1 expression levels for readily available biomarker. High TMB in combination with smoking history is predictive of a better response to immunotherapy, but validation of cutoffs and testing methods is necessary before it can be widely applied in clinical settings. Other candidate biomarkers such as immune cell distribution among tumor microenvironment, and systemic inflammatory markers can also be evaluated, after an accumulation of real-life data from SCLC patients under immunotherapy.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Seon Kang
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
352
|
Niu X, Jones T, BéruBé K, Chuang HC, Sun J, Ho KF. The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144391. [PMID: 33429274 DOI: 10.1016/j.scitotenv.2020.144391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Indoor air pollution sources with emissions of fine particles (PM2.5), including environmental tobacco smoke (ETS) and incense smoke (IS) deteriorate indoor air quality and may cause respiratory diseases in humans. This study characterized the emission factors (EFs) of five types of tobacco and incense in Hong Kong using an environmental chamber. Human alveolar epithelial cells (A549) were exposed to PM2.5 collected from different indoor sources to determine their cytotoxicity. The PM2.5 EF of ETS (109.7±36.5 mg/g) was higher than IS (97.1±87.3 mg/g). The EFs of total polycyclic aromatic hydrocarbons (PAHs) and carbonyls for IS were higher than ETS, and these two combustion sources showed similar distributions of individual PAHs and carbonyls. Oxidative damage and inflammatory responses (i.e. DNA damage, 8-hydroxy-desoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6)) of A549 cells was triggered by exposure to PM2.5 generated from ETS and IS. Different indoor sources showed different responses to oxidative stress and inflammations due to the accumulation effects of mixed organic compounds. High molecular weight PAHs from incense combustion showed higher correlations with DNA damage markers, and most of the PAHs from indoor sources demonstrated significant correlations with inflammation. Exposure to anthropogenic produced combustion emissions such as ETS and IS results in significant risks (e.g. lung cancer) to the alveolar epithelium within the distal human respiratory tract, of which incense emissions posed a higher cytotoxicity.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tim Jones
- School of Earth and Ocean Sciences, Cardiff University, Museum Avenue, Cardiff CF10 3YE, UK
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
353
|
Tamási L, Horváth K, Kiss Z, Bogos K, Ostoros G, Müller V, Urbán L, Bittner N, Sárosi V, Vastag A, Polányi Z, Nagy-Erdei Z, Daniel A, Nagy B, Rokszin G, Abonyi-Tóth Z, Moldvay J, Vokó Z, Gálffy G. Age and Gender Specific Lung Cancer Incidence and Mortality in Hungary: Trends from 2011 Through 2016. Pathol Oncol Res 2021; 27:598862. [PMID: 34257553 PMCID: PMC8262188 DOI: 10.3389/pore.2021.598862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
Objective: No assessment was conducted describing the age and gender specific epidemiology of lung cancer (LC) prior to 2018 in Hungary, thus the objective of this study was to appraise the detailed epidemiology of lung cancer (ICD-10 C34) in Hungary based on a retrospective analysis of the National Health Insurance Fund database. Methods: This longitudinal study included patients aged ≥20 years with LC diagnosis (ICD-10 C34) between January 1, 2011 and December 31, 2016. Patients with different cancer-related codes 6 months before or 12 months after LC diagnosis or having any cancer treatment other than lung cancer protocols were excluded. Results: Lung cancer incidence and mortality increased with age, peaking in the 70–79 age group (375.0/100,000 person-years) among males, while at 60–69 age group for females (148.1/100,000 person-years). The male-to-female incidence rate ratio reached 2.46–3.01 (p < 0.0001) among the 70–79 age group. We found 2–11% decrease in male incidence rate at most age groups, while a significant 1–3% increase was observed in older females (>60) annually during the study period. Conclusion: This nationwide epidemiology study demonstrated that LC incidence and mortality in Hungary decreased in younger male and female population, however we found significant increase of incidence in older female population, similar to international trends. Incidence rates peaked in younger age-groups compared to Western countries, most likely due to higher smoking prevalence in these cohorts, while lower age LC incidence could be attributed to higher competing cardiovascular risk resulting in earlier mortality in smoking population.
Collapse
Affiliation(s)
- Lilla Tamási
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Krisztián Horváth
- Department of Health Policy and Health Economics, Eötvös Loránd University, Budapest, Hungary
| | | | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Department of Pulmonology, Budapest, Hungary
| | - Gyula Ostoros
- National Korányi Institute of Pulmonology, Department of Pulmonology, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - László Urbán
- Mátraháza Healthcare Center and University Teaching Hospital, Mátraháza, Hungary
| | - Nóra Bittner
- Pulmonology Clinic, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | - Balázs Nagy
- Department of Health Policy and Health Economics, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsolt Abonyi-Tóth
- RxTarget Ltd., Szolnok, Hungary.,University of Veterinary Medicine, Budapest, Hungary
| | - Judit Moldvay
- Department of Tumor Biology, National Korányi Institute of Pulmonology - Semmelweis University, Budapest, Hungary.,2nd Department of Pathology, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Zoltán Vokó
- Department of Health Policy and Health Economics, Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Gálffy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.,Pulmonology Hospital, Törökbálint, Hungary
| |
Collapse
|
354
|
Mehta M, Dhanjal DS, Satija S, Wadhwa R, Paudel KR, Chellappan DK, Mohammad S, Haghi M, Hansbro PM, Dua K. Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier Based Drug Delivery Systems. Curr Pharm Des 2021; 26:5380-5392. [PMID: 33198611 DOI: 10.2174/1381612826999201116161143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Daljeet Singh Dhanjal
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Keshav Raj Paudel
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Shiva Mohammad
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
355
|
Cattelan M, Dumontier C. Metastatic tumour of the hand - Three new cases and a literature review. J Plast Reconstr Aesthet Surg 2021; 74:2163-2168. [PMID: 34001450 DOI: 10.1016/j.bjps.2021.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/31/2020] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
Metastatic tumours of the hand are rare, and therefore, is the subject of only a few publications in the literature. We report on three new cases along with a retrospective and descriptive study with file and literature analysis dating from 1900 to 2017, which reported on 337 studies. To perform the statistical analysis, ordinary lease square regression was used to group the metastases into distal phalanx, proximal/middle phalanx, thumb, hand and carpus. We found 564 metastases at the hand for a total of 482 patients. Of the reported cases, 60% were male. The average age was 59 years. The main primary cancers were lung cancer (40%), followed by gastrointestinal (19%), genito-urinary (13%), gynaecological (11%) and ear, nose and throat (6%) cancers. The mean survival time was 7.2 months. Fifty-nine per cent was bone metastasis, 18% tissue metastasis and 3% cutaneous metastasis. In 20% of cases, the type of metastasis was not mentioned. Of all the tissue metastases, 47 (54%) were subungual and in that group, the thumb was the finger most commonly affected. Overall, metastases most commonly appeared in the distal phalanx, which can be explained by a greater vascularisation as well as microtraumatisms. Survival was independent of the epidemiological criteria and of the location and type of metastasis. Patients with primary urological cancer lived on average 3 months longer than patients with other types of primary cancers.
Collapse
Affiliation(s)
- M Cattelan
- Hand and Plastic Surgery, Unfallklinik Offenburg, Ebertplatz 12, 77654 Offenburg, Deutschland
| | - C Dumontier
- Reconstructive and Esthetic Surgery, Guadeloupe - French West Indies, France.
| |
Collapse
|
356
|
Chen E, Zhou J, Xu E, Zhang C, Liu J, Zhou J, Li M, Wu J, Yang Q. A genome-wide screen for differentially methylated long noncoding RNAs identified that lncAC007255.8 is regulated by promoter DNA methylation in Beas-2B cells malignantly transformed by NNK. Toxicol Lett 2021; 346:34-46. [PMID: 33872747 DOI: 10.1016/j.toxlet.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023]
Abstract
Tobacco exposure is well known to induce genetic and epigenetic changes that contribute to the pathogenesis of lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a significant tobacco-specific carcinogen, but the oncogenic mechanisms of NNK have not been thoroughly elucidated. In this study we found that DNA methyltransferase 1 (DNMT1) was overexpressed in malignantly transformed human bronchial epithelial Beas-2B cells induced by NNK (2B-NNK cells), by treatment with NNK (400 μg/mL) for 7 days. An Arraystar Human noncoding RNA Promoter Microarray was used to detect the DNA methylation status of the promoter region of long noncoding RNAs (lncRNAs). The result showed that 1010 differentially methylated fragments were present in the lncRNA promoter region. QRT-PCR revealed that the expression of lncRNA AC007255.8 was remarkably downregulated in 2B-NNK cells and lung cancer tissues. Furthermore, Methylation-specific PCR showed that the methylation of the lncRNA AC007255.8 promoter was increased in 2B-NNK cells and lung cancer tissues. The reduced expression of lncRNA AC007255.8 was significantly associated with hypermethylation of lncRNA AC007255.8 promoter region. LncRNA AC007255.8 overexpression could result in decreased cell proliferation and increased cell apoptosis in 2B-NNK cells. In conclusion, NNK induced lncRNA AC007255.8 promoter hypermethylation via upregulation of DNMT1 in Beas-2B cells, leading to downregulation of lncRNA AC007255.8, and ultimately the enhancement of cell proliferation and the inhibition of apoptosis. This research affords novel insights into the epigenetic mechanisms of lung cancer, and will stimulate further research into the involvement of aberrant DNA methylation of non-coding regions of the genome in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Enzhao Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiaxin Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Cheng Zhang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiayu Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Mengcheng Li
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jianjun Wu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Qiaoyuan Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
357
|
Sun J, Jia J, Yuan W, Liu S, Wang W, Ge L, Ge L, Liu XJ. LncRNA BLACAT1 Accelerates Non-small Cell Lung Cancer Through Up-Regulating the Activation of Sonic Hedgehog Pathway. Front Oncol 2021; 11:625253. [PMID: 33937028 PMCID: PMC8080024 DOI: 10.3389/fonc.2021.625253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, increasing evidence has displayed that lncRNAs can exhibit crucial function in cancer progression, including lung cancer. LncRNA bladder cancer-associated transcript 1 (BLACAT1) is reported to participate in various cancers. The aim of our current study was to investigate the function of BLACAT1 in non-small cell lung cancer progression and study the functional pathway. Here, we reported BLACAT1 was significantly up-regulated in lung cancer tissues in comparison to the adjacent normal tissues, which suggested BLACAT1 might act as an oncogene in lung cancer. Then, A549 and PC9 cells were infected with BLACAT1 overexpression plasmid and shRNA. As shown, we proved up-regulation of BLACAT1 greatly induced the growth of non-small cell lung cancer cells. Reversely, knockdown of BLACAT1 reduced A549 and PC9 cell proliferation, migration and invasion. Sonic hedgehog (shh) signaling is able to exert a significant role in carcinogenesis, including lung cancer. Currently, we proved that up-regulation of BLACAT1 activated shh signaling pathway, via inducing shh, Gli-1 and Smo expression. shh pathway inhibitor GANT-61 reversed the effect of overexpression of BLACAT1 on non-small cell lung cancer. Moreover, we manifested that loss of BLACAT1 remarkably reduced the in vivo growth and metastasis of A549 cells via enhancing infiltrating CD3+ T cells. In conclusion, our research revealed a critical role of BLACAT1 in the modulation of non-small cell lung cancer via modulating shh pathway.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jingzhou Jia
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Wuying Yuan
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Shu Liu
- Department of Respiratory, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wei Wang
- Department of Oncology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lili Ge
- Department of Clinical Laboratory, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Liyue Ge
- Department of Oncology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Jun Liu
- Outpatient Department of External Injury and Wound, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
358
|
Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13040554. [PMID: 33920031 PMCID: PMC8071053 DOI: 10.3390/pharmaceutics13040554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) controls several cancer aggressive potentials of cell movement and dissemination. As epithelial–mesenchymal transition (EMT) and the migratory-associated integrins, known influencers of metastasis, have been found to be linked with FAK activity, this study unraveled the potential pharmacological effect of artocarpin in targeting FAK resulting in the suppression of EMT and migratory behaviors of lung cancer cells. Treatment with artocarpin was applied at concentrations of 0–10 μM, and the results showed non-cytotoxicity in lung cancer cell lines (A549 and H460), normal lung (BEAS-2B) cells and primary metastatic lung cancer cells (ELC12, ELC16, and ELC20). We also found that artocarpin (0–10 µM) had no effect on cell viability, proliferation, and migration in BEAS-2B cells. For metastasis-related approaches, artocarpin significantly inhibited cell migration, invasion, and filopodia formation. Artocarpin also dramatically suppressed anchorage-independent growth, cancer stem cell (CSC) spheroid formation, and viability of CSC-rich spheroids. For molecular targets of artocarpin action, computational molecular docking revealed that artocarpin had the best binding affinity of −8.0 kcal/mol with FAK protein. Consistently, FAK-downstream proteins, namely active Akt (phosphorylated Akt), active mTOR (phosphorylated mTOR), and Cdc42, and EMT marker and transcription factor (N-cadherin, Vimentin, and Slug), were found to be significantly depleted in response to artocarpin treatment. Furthermore, we found the decrease of Caveolin-1 (Cav-1) accompanied by the reduction of integrin-αν and integrin-β3. Taken together, these findings support the anti-metastasis potentials of the compound to be further developed for cancer therapy.
Collapse
|
359
|
Abstract
The assumption that light cigarette smoking, meaning smoking one to five cigarettes per day, is not so harmful has been dissipated by several studies. Regardless of the quantity of tobacco cigarettes, smoking remains a leading risk factor for the development and progression of cardiovascular diseases. Smoke is a mixture of several toxic chemicals, such as nicotine, carbon monoxide, and oxidants, implicated in the pathogenesis of cardiovascular and pulmonary diseases. Despite anti-smoking campaigns, a misconception concerning “safe smoking” still exists. The purpose of this literature review is to highlight the deleterious effect of light cigarette smoking and claim the consensus that there is no safe smoking.
Collapse
|
360
|
Pulmonary Inflammation and KRAS Mutation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33788188 DOI: 10.1007/978-3-030-63046-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2023]
Abstract
Chronic lung infection and lung cancer are two of the most important pulmonary diseases. Respiratory infection and its associated inflammation have been increasingly investigated for their role in increasing the risk of respiratory diseases including chronic obstructive pulmonary disease (COPD) and lung cancer. Kirsten rat sarcoma viral oncogene (KRAS) is one of the most important regulators of cell proliferation, differentiation, and survival. KRAS mutations are among the most common drivers of cancer. Lung cancer harboring KRAS mutations accounted for ~25% of the incidence but the relationship between KRAS mutation and inflammation remains unclear. In this chapter, we will describe the roles of KRAS mutation in lung cancer and how elevated inflammatory responses may increase KRAS mutation rate and create a vicious cycle of chronic inflammation and KRAS mutation that likely results in persistent potentiation for KRAS-associated lung tumorigenesis. We will discuss in this chapter regarding the studies of KRAS gene mutations in specimens from lung cancer patients and in animal models for investigating the role of inflammation in increasing the risk of lung tumorigenesis driven primarily by oncogenic KRAS.
Collapse
|
361
|
Hwang SR, Sawatsky AP. 48-Year-Old Woman With Dyspnea and Chest Pain. Mayo Clin Proc 2021; 96:1041-1046. [PMID: 33714593 DOI: 10.1016/j.mayocp.2020.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 10/21/2022]
Affiliation(s)
- Steven R Hwang
- Resident in Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN
| | - Adam P Sawatsky
- Advisor to resident and Consultant in General Internal Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
362
|
Evren AE, Yurttaş L, Ekselli B, Aksoy O, Akalin-Çiftçi G. Design and Efficient Synthesis of Novel 4,5-Dimethylthiazole-Hydrazone Derivatives and their Anticancer Activity. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201022192937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background::
Recently, researchers have been warning about the increased mortality of
the various cancer types. Also, the lung adenocarcinoma and the glioma types are burning issues for
world's health due to late or wrong diagnosis and/or insufficient treatment methods. For this
purpose, our research group designed and synthesized novel 4,5-dimethyl thiazole-hydrazone
derivatives which were tested against cancer and normal cell lines to understand the structureactivity
relationship (SAR).
Method::
The lead compounds were obtained by reacting 2-(substituted aryl-2-ylmethylene)
hydrazin-1-carbothioamide with 3-chloro-2-butanone derivatives. The structural elucidation of the
compounds was performed by 1H-NMR, 13C-NMR, and LC/MS-IT-TOF spectral and elemental
analyses. The synthesized compounds were tested in vitro for the anticancer activity against A549
human lung adenocarcinoma and C6 rat glioma cells and investigated for which pathway to induce
cell death. Also, the docking study of the active compounds was achieved to understand the SAR.
Result and Discussion::
The targeted compounds (2a-2l) were synthesized successfully above 70% yields, and
the analysis findings proved their purity. In general, the results of activity studies displayed
significant effects against at least one cell line, except compounds 2e (indol-3-yl) and 2h
(4-dimethylaminophenyl). Furthermore, compounds 2b and 2f displayed potential anticancer
activity. With the help of molecular docking study, a potential selectivity of compound 2f was
observed for type II protein kinase. On the other hand, compound 2b interacted with the active site
nearly the same as Dasatinib. Therefore, these two compounds could be used as a base on
developing selective anticancer drugs.
Conclusion::
Pyridin-2-yl (2b) derivative was found to be a favorable molecule with high anticancer
potency against C6 and A549 cell lines. Additionally, 1-naphthyl (2f) derivative was a worthy
compound for potential selectivity. In future studies, it will be our priority to focus on developing
derivatives of these two compounds (2b and 2f) and elucidate their mechanisms.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,,Turkey
| | - Büşra Ekselli
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| | - Onur Aksoy
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| | - Gülşen Akalin-Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| |
Collapse
|
363
|
Study of age specific lung cancer mortality trends in the US using functional data analysis. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS 2021. [DOI: 10.29220/csam.2021.28.2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
364
|
Vanthomme K, Rosskamp M, De Schutter H, Vandenheede H. Lung cancer incidence differences in migrant men in Belgium, 2004-2013: histology-specific analyses. BMC Cancer 2021; 21:328. [PMID: 33785005 PMCID: PMC8010968 DOI: 10.1186/s12885-021-08038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immigrants make up an important share of European populations which has led to a growing interest in research on migrants' health. Many studies have assessed migrants' cancer mortality patterns, yet few have studied incidence differences. This paper will probe into histology-specific lung cancer incidence by migrant origin aiming to enhance the knowledge on lung cancer aetiology and different risk patterns among population groups. METHODS We used data on all lung cancer diagnoses during 2004-2013 delivered by the Belgian Cancer Registry individually linked with the 2001 Belgian Census and the Crossroads Bank for Social Security. Absolute and relative inequalities in overall and histology-specific lung cancer incidence have been calculated for first-generation Italian, Turkish and Moroccan migrant men aged 50-74 years compared to native Belgian men. RESULTS Moroccan men seemed to be the most advantaged group. Both in absolute and relative terms they consistently had lower overall and histology-specific lung cancer incidence rates compared with native Belgian men, albeit less clear for adenocarcinoma. Turkish men only showed lower overall lung cancer incidence when adjusting for education. On the contrary, Italian men had higher incidence for overall lung cancer and squamous cell carcinoma, which was explained by adjusting for education. CONCLUSIONS Smoking habits are likely to explain the results for Moroccan men who had lower incidence for smoking-related histologies. The full aetiology for adenocarcinoma is still unknown, yet the higher incidence among Italian men could point to differences in occupational exposures, e.g. to carcinogenic radon while working in the mines.
Collapse
Affiliation(s)
- Katrien Vanthomme
- Interface Demography, Department of Social Research, Faculty of Economic and Social Sciences & Solvay Business School, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Michael Rosskamp
- Research Department, Belgian Cancer Registry, Koningsstraat 215, 1210, Brussels, Belgium
| | - Harlinde De Schutter
- Research Department, Belgian Cancer Registry, Koningsstraat 215, 1210, Brussels, Belgium
| | - Hadewijch Vandenheede
- Interface Demography, Department of Social Research, Faculty of Economic and Social Sciences & Solvay Business School, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
365
|
Geng W, Lv Z, Fan J, Xu J, Mao K, Yin Z, Qing W, Jin Y. Identification of the Prognostic Significance of Somatic Mutation-Derived LncRNA Signatures of Genomic Instability in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:657667. [PMID: 33855028 PMCID: PMC8039462 DOI: 10.3389/fcell.2021.657667] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor with substantial somatic mutations and genome instability, which are emerging hallmarks of cancer. Long non-coding RNAs (lncRNAs) are promising cancer biomarkers that are reportedly involved in genomic instability. However, the identification of genome instability-related lncRNAs (GInLncRNAs) and their clinical significance has not been investigated in LUAD. Methods: We determined GInLncRNAs by combining somatic mutation and transcriptome data of 457 patients with LUAD and probed their potential function using co-expression network and Gene Ontology (GO) enrichment analyses. We then filtered GInLncRNAs by Cox regression and LASSO regression to construct a genome instability-related lncRNA signature (GInLncSig). We subsequently evaluated GInLncSig using correlation analyses with mutations, external validation, model comparisons, independent prognostic significance analyses, and clinical stratification analyses. Finally, we established a nomogram for prognosis prediction in patients with LUAD and validated it in the testing set and the entire TCGA dataset. Results: We identified 161 GInLncRNAs, of which seven were screened to develop a prognostic GInLncSig model (LINC01133, LINC01116, LINC01671, FAM83A-AS1, PLAC4, MIR223HG, and AL590226.1). GInLncSig independently predicted the overall survival of patients with LUAD and displayed an improved performance compared to other similar signatures. Furthermore, GInLncSig was related to somatic mutation patterns, suggesting its ability to reflect genome instability in LUAD. Finally, a nomogram comprising the GInLncSig and tumor stage exhibited improved robustness and clinical practicability for predicting patient prognosis. Conclusion: Our study identified a signature for prognostic prediction in LUAD comprising seven lncRNAs associated with genome instability, which may provide a useful indicator for clinical stratification management and treatment decisions for patients with LUAD.
Collapse
Affiliation(s)
- Wei Geng
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Lv
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshuo Fan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaimin Mao
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Yin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanlu Qing
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Jin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
366
|
Role of dietary carbohydrates on risk of lung cancer. Lung Cancer 2021; 155:87-93. [PMID: 33756357 DOI: 10.1016/j.lungcan.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Inconsistent findings have been reported on the link between dietary carbohydrates and lung cancer. This study aims to comprehensively evaluate the role of dietary carbohydrates on lung cancer risk. MATERIALS AND METHODS The prospective study is based on the PLCO trial, which recruited 113,096 eligible participants across the United States. Participants had to have completed baseline and diet history questionnaires. The incidence of lung cancer was acquired through self-report and medical record follow-up. A multivariable logistic model adjusted for confounders was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) of dietary carbohydrates, fiber, whole grains, glycemic index (GI) and glycemic load (GL) for lung cancer. Similar methods were applied in analyzing the carbohydrates and fiber from different food sources. Multinomial logistic models were used for sensitivity analysis with lung cancer subtypes as outcomes. RESULTS Dietary carbohydrates and GL were inversely associated with lung cancer incidence in the PLCO population. Among various carbohydrates, 30-g daily consumption of dietary fiber was related to a lower risk of lung cancer (fourth vs first quartile OR: 0.62, 95 % CI: 0.54-0.72) compared with 8.8-g. Furthermore, consuming whole grains 2.3 servings per day as opposed to 0.3 servings per day was associated with a lower risk of lung cancer (OR: 0.73, 95 % CI: 0.64-0.83). A higher risk of lung cancer was seen for the consumption of high-GI food (OR: 1.19, 95 % CI: 1.05-1.35) and refined carbohydrates from soft drinks (OR: 1.23, 95 % CI: 1.04-1.46). CONCLUSION Carbohydrates and fiber from fruits, vegetables and whole grains are associated with lower lung cancer risk. Refined carbohydrates from processed food, such as soft drinks, appear to increase risk.
Collapse
|
367
|
LSR Promotes Cell Proliferation and Invasion in Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6651907. [PMID: 33763152 PMCID: PMC7964108 DOI: 10.1155/2021/6651907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
The lipolysis-stimulated lipoprotein receptor (LSR) displays an important regulatory role in cancer. However, the association between LSR and lung cancer is still elusive. Here, the candidate oncogene LSR on Ch.9q was obtained and assessed by bioinformatics analysis of The Cancer Genome Atlas (TCGA) dataset of lung cancer. We conducted clinical pathology and survival analysis based on the lung cancer database. We assessed the biological effects of LSR in lung cancer cells on cell proliferation. Our data indicated that LSR was upregulated in lung cancer cells. Meanwhile, LSR was identified in this study to be a poor prognostic factor, and its high expression exhibited relations with grades, stages, and nodal metastasis status. Using in vitro analysis, our data revealed that LSR could promote lung cancer progression by regulating cell proliferation, migration, and invasion. In our study, our data demonstrated that LSR was a tumor promoter for lung cancer and was a potential biomarker and target for lung cancer prognosis and treatment.
Collapse
|
368
|
Ma Y, Yang Z, Wu W, Xie H, Gu L. Target localization during respiration motion based on LSTM: A pilot study on robotic puncture system. Int J Med Robot 2021; 17:e2247. [PMID: 33665936 DOI: 10.1002/rcs.2247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND In the needle biopsy, the respiratory motion causes the displacement of thoracic-abdominal soft tissues, which brings great difficulty to accurate localization. Based on internal target motion and external marker motion, the existing methods need to establish a correlation model or a prediction model to compensate the respiratory movement, which can hardly achieve required accuracy in clinic use due to the complexity of the internal tissue motion. METHODS In order to improve the tracking accuracy and reduce the number of models, we propose a framework for target localization based on long short-term memory (LSTM) method. Combined with the correlation model and the prediction model by using LSTM, we adopted the principal component of time-series features of external surrogate signals to predict the trajectory of the internal tumour target. Additionally, based on the electromagnetic tracking system and Universal Robots 3 robotic arm, we applied the proposed approach to a prototype of robotic puncture system for real-time tumour tracking. RESULTS To verify the proposed method, experiments on both public datasets and customized motion phantom for respiratory simulation were performed. In the public dataset study, an average mean absolute error, and an average root-mean-square error of predictive results of 0.44 and 0.58 mm were achieved, respectively. In the motion phantom study, an average root mean square of puncturing error resulted in 0.65 mm. CONCLUSION The experimental results demonstrate the proposed method improves the accuracy of target localization during respiratory movement and appeals the potentials applying to clinical application.
Collapse
Affiliation(s)
- Yuxiang Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Zhikai Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Hongzhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Lixu Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
369
|
Zeng SHG, Xie JH, Zeng QY, Dai SHH, Wang Y, Wan XM, Liu JCH. lncRNA PVT1 Promotes Metastasis of Non-Small Cell Lung Cancer Through EZH2-Mediated Activation of Hippo/NOTCH1 Signaling Pathways. CELL JOURNAL 2021; 23:21-31. [PMID: 33650817 PMCID: PMC7944120 DOI: 10.22074/cellj.2021.7010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
Objective: Although growing evidences have showed that long non-coding RNA (lncRNAs) plasmacytoma variant
translocation 1 (PVT1) plays a critical role in the progression of non-small cell lung cancer (NSCLC), there are still many
unsolved mysteries remains to be deeply elucidated. This study aimed to find a new underlying mechanism of PVT1 in
regulating the tumorigenesis and development of NSCLC. Materials and Methods: In this experimental study, Quantitative reverse transcription polymerase chain reaction (qRTPCR) was used to profile the expression of PVT1 in NSCLC tissues and cells. The effects of PVT1 on cell growth,
migration and invasion were detected by colony formation assay, Matrigel-free transwell and Matrigel transwell assays,
respectively. Changes of the key protein expression in Hippo and NOTCH signaling pathways, as well as epithelialmesenchymal transition (EMT) markers, were analyzed using western blot. Interaction of PVT1 with enhancer of zeste
homolog 2 (EZH2) was verified by RNA pull-down, and their binding to the downstream targets was detected by
Chromatin Immunoprecipitation (ChIP) assays. Results: These results showed that PVT1 was up-regulated in NSCLC tissue and cell lines, promoting NSCLC cell
proliferation, migration and invasion. Knockdown of PVT1 inhibited the expression of Yes-associated protein 1 (YAP1)
and NOTCH1 signaling activation. Further, we have confirmed that PVT1 regulated expression of YAP1 through
EZH2-mediated miR-497 promoter methylation resulting in the inhibition of miR-497 transcription and its target YAP1
upregulation, and finally NOTCH signaling pathway was activated, which promoted EMT and invasion and metastasis. Conclusion: These results suggested that lncRNA PVT1 promotes NSCLC metastasis through EZH2-mediated
activation of Hippo/NOTCH1 signaling pathways. This study provides a new opportunity to advance our understanding
in the potential mechanism of NSCLC development.
Collapse
Affiliation(s)
- S Hang Gan Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Jian-Hong Xie
- Department of Surgery, Suichuan People's Hospital, Ji'an 343900, P.R China
| | - Qun-Ying Zeng
- Department of Surgery, Suichuan People's Hospital, Ji'an 343900, P.R China
| | - S Hao Hua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Yun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Xue-Mei Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R China
| | - Ji C Hun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R China.
| |
Collapse
|
370
|
Pinton G, Manzotti B, Balzano C, Moro L. Expression and clinical implications of estrogen receptors in thoracic malignancies: a narrative review. J Thorac Dis 2021; 13:1851-1863. [PMID: 33841973 PMCID: PMC8024832 DOI: 10.21037/jtd-20-2277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thoracic malignancies represent a significant global health burden with incidence and mortality increasing year by year. Thoracic cancer prognosis and treatment options depend on several factors, including the type and size of the tumor, its location, and the overall health status of patients. Gender represents an important prognostic variable in thoracic malignancies. One of the greatest biological differences between women and men is the presence of female sex hormones, and an increasing number of studies suggest that estrogens may play either a causative or a protective role in thoracic malignancies. Over the past 60 years since the discovery of the first nuclear estrogen receptor (ER) isoform α and the almost 20 years since the discovery of the second estrogen receptor, ERβ, different mechanisms governing estrogen action have been identified and characterized. This literature review reports the published data regarding the expression and function of ERs in different thoracic malignancies and discuss sex disparity in clinical outcomes. From this analysis emerges that further efforts are warranted to better elucidate the role of sex hormones in thoracic malignancies, and to reduce disparities in care between genders. Understanding the mechanisms by which gender-related differences can affect and interfere with the onset and evolution of thoracic malignancies and impact on response to therapies could help to improve the knowledge needed to develop increasingly personalized and targeted treatments.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Beatrice Manzotti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cecilia Balzano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
371
|
Nagah A, Amer A. Different Mechanisms of Cigarette Smoking-Induced Lung Cancer. Acta Biotheor 2021; 69:37-52. [PMID: 32979115 DOI: 10.1007/s10441-020-09394-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
The risk of cigarette smoking plays a pivotal role in increasing the incidence rates of lung cancer. This paper sheds new light on modeling the impact of cigarette smoking on lung cancer evolution, especially genetic instability and the number of gene mutations in the genome of stem cells. To handle this issue, we have set up stochastic multi-stage models to fit the data set of the probabilities of current and former smokers from the Nurses' Health Study cohort of females (NHS) and the Health Professionals Follow up Study cohort of men (HPFS). Throughout this paper, we consider both mutation rates and clonal expansion rates as parameters in each compartment. For current and former smokers, three-driver mutations are most likely to take place in the progression of lung cancer under smoking risk. For current smokers, our findings reveal that two to sixteen gene mutations are required to obtain a cancerous cell among men and women in US. Moreover, two to six (eleven) cancer-mutations are available in the pathway to lung cancer among former smokers who have quit smoking for more (less) than ten years for both male and female patients. This highlights that cigarette smoking stimulates the number of driver mutations during lung tumorigenesis in both sexes. It is very crucial to examine the role of cigarette smoking in determining whether genomic instability is an early stage or late stage in the process of lung carcinogenesis.
Collapse
|
372
|
Garon EB, Brodrick P. Targeted Therapy Approaches for MET Abnormalities in Non-Small Cell Lung Cancer. Drugs 2021; 81:547-554. [PMID: 33638808 DOI: 10.1007/s40265-021-01477-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The tyrosine kinase receptor mesenchymal epithelial transition (MET) is a proto-oncogene that, through the activation of the MET-hepatocyte growth factor (HGF) pathway, encodes a variety of biological processes, including cell development, proliferation, invasion, and migration. Abnormal activation of the MET pathway, occurring through MET protein overexpression, and gene amplification or mutation, can contribute to oncogenesis and has been implicated in non-small cell lung cancer (NSCLC). Though it is associated with poor clinical outcome in NSCLCs, MET overexpression and its role as a therapeutic target remains somewhat elusive due to discrepancies in its occurrence. Unlike MET overexpression, MET amplification has demonstrated a stronger potential as a biomarker for therapeutic treatment, with clinical data indicating a compelling connection between a high MET gene copy number and a high response rate to targeted therapies. However, MET exon 14 skipping mutations, occurring in 3%-4 % of lung adenocarcinomas, are of particular interest, as tumors harboring these mutations have shown a significant response to MET inhibitors. Following the discovery of MET as a potential therapeutic target, extensive clinical studies have proposed three approaches to targeting MET: (1) MET tyrosine kinase inhibitors (TKIs), including crizotinib, capmatinib, tepotinib, savolinitib, and cabozantinib; (2) MET or HGF monoclonal antibodies, including emibetuzumab and ficlatuzumab; and (3) MET or HGF antibody drug conjugates, including telisotuzumab. Herein, we discuss the relevant clinical trials, particularly focusing on the efficacy as well as the safety and tolerability of the treatment options, in the promising field of targeting MET in NSCLC.
Collapse
Affiliation(s)
- Edward B Garon
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Paige Brodrick
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
373
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
374
|
Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB. Surface peptide functionalization of zeolitic imidazolate framework-8 for autonomous homing and enhanced delivery of chemotherapeutic agent to lung tumor cells. Dalton Trans 2021; 50:2375-2386. [PMID: 33555001 DOI: 10.1039/d1dt00116g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic agents used in treating certain cancer types operate in a non-selective manner tending to accumulate in normal, healthy tissue when high doses are used. To mitigate the toxicity effect resulting from this, there is an urgent need to develop active nano delivery systems capable of regulating optimal doses specifically to cancer cells without harming adjacent normal cells. Herein, we report a versatile nanoparticle - zeolitic imidazolate framework-8 (nZIF-8) - that is loaded with a chemotherapeutic agent (gemcitabine; GEM) and surface-functionalized with an autonomous homing system (Arg-Gly-Asp peptide ligand; RGD) via a straightforward, one-pot solvothermal reaction. Successful functionalization of the surface of nZIF-8 loaded GEM (GEM⊂nZIF-8) with RGD was proven by spectroscopic and electron microscopy techniques. This surface-functionalized nanoparticle (GEM⊂RGD@nZIF-8) exhibited enhanced uptake in human lung cancer cells (A549), compared with non-functionalized GEM⊂nZIF-8. The GEM⊂RGD@nZIF-8, experienced not only efficient uptake within A549, but also induced obvious cytotoxicity (75% at a concentration of 10 μg mL-1) and apoptosis (62%) after 48 h treatment when compared to the nanoparticle absent of the RGD homing system (GEM⊂nZIF-8). Most importantly, this surface-functionalized nanoparticle was more selective towards lung cancer cells (A549) than normal human lung fibroblast cells (MRC-5) with a selectivity index (SI) of 3.98. This work demonstrates a new one-pot strategy for realizing a surface-functionalized zeolitic imidazolate framework that actively targets cancer cells via an autonomous homing peptide system to deliver a chemotherapeutic payload effectively.
Collapse
Affiliation(s)
- Nurul Akmarina Mohd Abdul Kamal
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia. and UPM-MAKNA Cancer Laboratory, Institute of Bioscience, UPM, Serdang 43400, Selangor, Malaysia and Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Pekan 26600, Pahang, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, Serdang 43400, Selangor, Malaysia
| | - Kyle E Cordova
- Materials Discovery Research Unit, Advanced Research Centre, Royal Scientific Society, Amman 11941, Jordan.
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia. and UPM-MAKNA Cancer Laboratory, Institute of Bioscience, UPM, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
375
|
Janciauskiene S, Wrenger S, Günzel S, Gründing AR, Golpon H, Welte T. Potential Roles of Acute Phase Proteins in Cancer: Why Do Cancer Cells Produce or Take Up Exogenous Acute Phase Protein Alpha1-Antitrypsin? Front Oncol 2021; 11:622076. [PMID: 33680966 PMCID: PMC7933442 DOI: 10.3389/fonc.2021.622076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
An association between acute-phase proteins (APPs) and cancer has long been established and there are numerous reports correlating altered levels and/or molecular forms of APPs with different types of cancers. Many authors have shown a positive correlation between high levels of APPs, like alpha1-antitrypsin (AAT), and unfavorable clinical outcome in cancers. Conversely, others proposed that high levels of APPs are probably just a part of nonspecific inflammatory response to cancer development. However, this might not be always true, because many cancerous cells produce or take up exogenous APPs. What is the biological significance of this and what benefit do cancer cells have from these proteins remains largely unknown. Recent data revealed that some APPs, including AAT, are able to enhance cancer cell resistance against anticancer drug-induced apoptosis and autophagy. In this review, we specifically discuss our own findings and controversies in the literature regarding the role of AAT in cancer.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steffen Günzel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Anna Ricarda Gründing
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
376
|
Is IMRT or VMAT superior or inferior to 3D conformal therapy in the treatment of lung cancer? A brief literature review. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s146039692100008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Aim:
To identify treatment outcome, dose uniformity, treatment time, toxicity among 3D conformal therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT) for non-small-cell lung cancer (NSCLC) based on literature review.
Methods:
A literature search was conducted using PubMed/MEDLINE, BMC—part of Springer Nature, Google Scholar and iMEDPub Ltd with the following keywords for filtering: 3D-CRT, IMRT, VMAT, lung cancer, local control and radiobiology. A total of 14 publications were finally selected for the comparison of 3D-CRT, IMRT and VMAT to determine which technique is superior or inferior among these three.
Results:
Compared to 3D-CRT, IMRT delivers more precise treatment, has better conformal dose coverage to planning target volume (PTV) that covers gross tumour with microscopic extension, respiratory tumour motion and setup margin. 3D-CRT has large number of limitations: low overall survival (OS), large toxicity, secondary malignancies.
Conclusions:
It is difficult to choose the best technique for treating NSCLC due to patient conditions and technique availability. A high-precision treatment may improve tumour control probability (TCP) and patient’s quality of life. VMAT, whether superior or not, needs more clinical trials to treat NSCLC and requires longer dose optimisation time with the greatest benefit of rapid treatment delivery, improved patient comfort, reduced intrafraction motion and increased patient throughput compared to IMRT and 3D-CRT.
Collapse
|
377
|
Maiuthed A, Prakhongcheep O, Chanvorachote P. Microarray-based Analysis of Genes, Transcription Factors, and Epigenetic Modifications in Lung Cancer Exposed to Nitric Oxide. Cancer Genomics Proteomics 2021; 17:401-415. [PMID: 32576585 DOI: 10.21873/cgp.20199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Nitric oxide (NO) is recognized as an important biological mediator that exerts several human physiological functions. As its nature is an aqueous soluble gas that can diffuse through cells and tissues, NO can affect cell signaling, the phenotype of cancer and modify surrounding cells. The variety of effects of NO on cancer cell biology has convinced researchers to determine the defined mechanisms of these effects and how to control this mediator for a better understanding as well as for therapeutic gain. MATERIALS AND METHODS We used bioinformatics and pharmacological experiments to elucidate the potential regulation and underlying mechanisms of NO in non-small a lung cancer cell model. RESULTS Using microarrays, we identified a total of 151 NO-regulated genes (80 up-regulated genes, 71 down-regulated genes) with a strong statistically significant difference compared to untreated controls. Among these, the genes activated by a factor of more than five times were: DCBLD2, MGC24975, RAB40AL, PER3, RCN1, MRPL51, PTTG1, KLF5, NFIX. On the other hand, the expression of RBMS2, PDP2, RBAK, ORMDL2, GRPEL2, ZNF514, MTHFD2, POLR2D, RCBTB1, JOSD1, RPS27, GPR4 genes were significantly decreased by a factor of more than five times. Bioinformatics further revealed that NO exposure of lung cancer cells resulted in a change in transcription factors (TFs) and epigenetic modifications (histone modification and miRNA). Interestingly, NO treatment was shown to potentiate cancer stem cell-related genes and transcription factors Oct4, Klf4, and Myc. CONCLUSION Through this comprehensive approach, the present study illustrated the scheme of how NO affects molecular events in lung cancer cells.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ornjira Prakhongcheep
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand .,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
378
|
Lee JG, Kim HC, Choi CM. Recent Trends of Lung Cancer in Korea. Tuberc Respir Dis (Seoul) 2021; 84:89-95. [PMID: 33587838 PMCID: PMC8010413 DOI: 10.4046/trd.2020.0134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths in Korea. Although the smoking rate has decreased over time, the prevalence of lung cancer still remains high. In this study, we reviewed recent trends on the incidence, epidemiology, screening, diagnosis, and treatment of lung cancer in Korea by analyzing data from the national lung cancer registry and recently-published studies. Although approximately 40% of patients with non-small cell lung cancer (NSCLC) were diagnosed as stage IV, the 5-year relative survival rate improved from 11.3% (1993-1995) to 30.2% (2013-2017), possibly due to advances in methods of diagnosis and therapy. In addition, the 2019 implementation of the national lung cancer screening program with low-dose computed tomography may have also contributed to these improvements in survival rates. Recently, molecular diagnosis has become more widely used in the identification of genetic mutations in tissue specimens. Target therapy and immune checkpoint inhibitors have also been successfully used, particularly in cases of advanced NSCLC. In the future, further research on the optimal management of lung cancer remains necessary.
Collapse
Affiliation(s)
- Jae Guk Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
379
|
Durosini I, Janssens R, Arnou R, Veldwijk J, Smith MY, Monzani D, Smith I, Galli G, Garassino M, Katz EG, Bailo L, Louis E, Vandevelde M, Nackaerts K, de Wit GA, Pravettoni G, Huys I. Patient Preferences for Lung Cancer Treatment: A Qualitative Study Protocol Among Advanced Lung Cancer Patients. Front Public Health 2021; 9:622154. [PMID: 33634069 PMCID: PMC7900128 DOI: 10.3389/fpubh.2021.622154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction: Lung cancer is the deadliest and most prevalent cancer worldwide. Lung cancer treatments have different characteristics and are associated with a range of benefits and side effects for patients. Such differences may raise uncertainty among drug developers, regulators, payers, and clinicians regarding the value of these treatment effects to patients. The value of conducting patient preference studies (using qualitative and/or quantitative methods) for benefits and side effects of different treatment options has been recognized by healthcare stakeholders, such as drug developers, regulators, health technology assessment bodies, and clinicians. However, evidence-based guidelines on how and when to conduct and use these studies in drug decision-making are lacking. As part of the Innovative Medicines Initiative PREFER project, we developed a protocol for a qualitative study that aims to understand which treatment characteristics are most important to lung cancer patients and to develop attributes and levels for inclusion in a subsequent quantitative preference survey. Methods: The study protocol specifies a four-phased approach: (i) a scoping literature review of published literature, (ii) four focus group discussions with stage III and IV Non-Small Cell Lung Cancer patients, (iii) two nominal group discussions with stage III and IV Non-Small Cell Lung Cancer patients, and (iv) multi-stakeholder discussions involving clinicians and preference experts. Discussion: This protocol outlines methodological and practical steps as to how qualitative research can be applied to identify and develop attributes and levels for inclusion in patient preference studies aiming to inform decisions across the drug life cycle. The results of this study are intended to inform a subsequent quantitative preference survey that assesses patient trade-offs regarding lung cancer treatment options. This protocol may assist researchers, drug developers, and decision-makers in designing qualitative studies to understand which treatment aspects are most valued by patients in drug development, regulation, and reimbursement.
Collapse
Affiliation(s)
- Ilaria Durosini
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rosanne Janssens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Reinhard Arnou
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jorien Veldwijk
- School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Meredith Y Smith
- Alexion Pharmaceuticals, Inc., University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Dario Monzani
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ian Smith
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Giulia Galli
- Unit of Thoracic Oncology, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Garassino
- Unit of Thoracic Oncology, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eva G Katz
- Janssen Research and Development, Raritan, NJ, United States
| | - Luca Bailo
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Evelyne Louis
- Department of Pneumology/Respiratory Oncology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Marie Vandevelde
- Department of Pneumology/Respiratory Oncology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Kristiaan Nackaerts
- Department of Pneumology/Respiratory Oncology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - G Ardine de Wit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Isabelle Huys
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
380
|
Denzler S, Vuong D, Bogowicz M, Pavic M, Frauenfelder T, Thierstein S, Eboulet EI, Maurer B, Schniering J, Gabryś HS, Schmitt-Opitz I, Pless M, Foerster R, Guckenberger M, Tanadini-Lang S. Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue types. Br J Radiol 2021; 94:20200947. [PMID: 33544646 DOI: 10.1259/bjr.20200947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES In this study, we aimed to assess the impact of different CT reconstruction kernels on the stability of radiomic features and the transferability between different diseases and tissue types. Three lung diseases were evaluated, i.e. non-small cell lung cancer (NSCLC), malignant pleural mesothelioma (MPM) and interstitial lung disease related to systemic sclerosis (SSc-ILD) as well as four different tissue types, i.e. primary tumor, largest involved lymph node ipsilateral and contralateral lung. METHODS Pre-treatment non-contrast enhanced CT scans from 23 NSCLC, 10 MPM and 12 SSc-ILD patients were collected retrospectively. For each patient, CT scans were reconstructed using smooth and sharp kernel in filtered back projection. The regions of interest (ROIs) were contoured on the smooth kernel-based CT and transferred to the sharp kernel-based CT. The voxels were resized to the largest voxel dimension of each cohort. In total, 1386 features were analyzed. Feature stability was assessed using the intraclass correlation coefficient. Features above the stability threshold >0.9 were considered stable. RESULTS We observed a strong impact of the reconstruction method on stability of the features (at maximum 26% of the 1386 features were stable). Intensity features were the most stable followed by texture and wavelet features. The wavelet features showed a positive correlation between percentage of stable features and size of the ROI (R2 = 0.79, p = 0.005). Lymph node radiomics showed poorest stability (<10%) and lung radiomics the largest stability (26%). Robustness analysis done on the contralateral lung could to a large extent be transferred to the ipsilateral lung, and the overlap of stable lung features between different lung diseases was more than 50%. However, results of robustness studies cannot be transferred between tissue types, which was investigated in NSCLC and MPM patients; the overlap of stable features for lymph node and lung, as well as for primary tumor and lymph node was very small in both disease types. CONCLUSION The robustness of radiomic features is strongly affected by different reconstruction kernels. The effect is largely influenced by the tissue type and less by the disease type. ADVANCES IN KNOWLEDGE The study presents to our knowledge the most complete analysis on the impact of convolution kernel on the robustness of CT-based radiomics for four relevant tissue types in three different lung diseases. .
Collapse
Affiliation(s)
- Sarah Denzler
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Britta Maurer
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Janine Schniering
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hubert Szymon Gabryś
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Isabelle Schmitt-Opitz
- Department of Thoracic Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Miklos Pless
- Department of Medical Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Robert Foerster
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
381
|
Aydin N, Çelik Ö, Aslan AF, Odabaş A, Dündar E, Şahin MC. Detection Of Lung Cancer On Computed Tomography Using Artificial Intelligence Applications Developed By Deep Learning Methods And The Contribution Of Deep Learning To The Classification Of Lung Carcinoma. Curr Med Imaging 2021; 17:1137-1141. [PMID: 33563200 DOI: 10.2174/1573405617666210204210500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In every year, lung cancer is an important cause of deaths in the world. Early detection of lung cancer is important for treatment, and non-invasive rapid methods are needed for diagnosis. INTRODUCTION In this study, we aimed to detect lung cancer using deep learning methods and determine the contribution of deep learning to the classification of lung carcinoma using a convolutional neural network (CNN). METHOD A total of 301 patients with diagnosed with lung carcinoma pathologies in our hospital were included in the study. In the thorax computed tomography (CT) performed for diagnostic purposes prior to treatment. After tagging the section images, tumor detection, small-non-small cell lung carcinoma differentiation, adenocarcinoma-squamous cell lung carcinoma differentiation, and adenocarcinoma-squamous cell-small cell lung carcinoma differentiation were sequentially performed using deep CNN methods. RESULT In total, 301 lung carcinoma images were used to detect tumors, and the model obtained with the deep CNN system had 0.93 sensitivity, 0.82 precision, and 0.87 F1 score in detecting lung carcinoma. In the differentiation of small cell-non-small cell lung carcinoma, the sensitivity, precision and F1 score of the CNN model at the test stage were 0.92, 0.65, and 0.76, respectively. In the adenocarcinoma-squamous cancer differentiation, the sensitivity, precision, and F1 score were 0.95, 0.80, and 0.86, respectively. The patients were finally grouped as small cell lung carcinoma, adenocarcinoma, and squamous cell lung carcinoma, and the CNN model was used to determine whether it could differentiate these groups. The sensitivity, specificity, and F1 score of this model were 0.90, 0.44, and 0.59, respectively for this differentiation. CONCLUSION In this study, we successfully detected tumors and differentiated between adenocarcinoma-squamous cell carcinoma groups with the deep learning method using the CNN model. Due to their non-invasive nature and success of the deep learning methods, they should be integrated into radiology to diagnose lung carcinoma.
Collapse
Affiliation(s)
- Nevin Aydin
- Department of Radiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, . Turkey
| | - Özer Çelik
- Department of Mathematics and Computer, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, . Turkey
| | - Ahmet Faruk Aslan
- Department of Mathematics and Computer, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, . Turkey
| | - Alper Odabaş
- Department of Mathematics and Computer, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, . Turkey
| | - Emine Dündar
- Department of Medical Pathology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, . Turkey
| | - Meryem Cansu Şahin
- Kutahya Health Sciences University Research and Training Center, Kutahya, . Turkey
| |
Collapse
|
382
|
Sadiq M, Pang L, Johnson M, Sathish V, Zhang Q, Wang D. 2D Nanomaterial, Ti 3C 2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management. BIOSENSORS-BASEL 2021; 11:bios11020040. [PMID: 33557033 PMCID: PMC7913740 DOI: 10.3390/bios11020040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Major advances in cancer control can be greatly aided by early diagnosis and effective treatment in its pre-invasive state. Lung cancer (small cell and non-small cell) is a leading cause of cancer-related deaths among both men and women around the world. A lot of research attention has been directed toward diagnosing and treating lung cancer. A common method of lung cancer treatment is based on COX-2 (cyclooxygenase-2) inhibitors. This is because COX-2 is commonly overexpressed in lung cancer and also the abundance of its enzymatic product prostaglandin E2 (PGE2). Instead of using traditional COX-2 inhibitors to treat lung cancer, here, we introduce a new anti-cancer strategy recently developed for lung cancer treatment. It adopts more abundant omega-6 (ω-6) fatty acids such as dihomo-γ-linolenic acid (DGLA) in the daily diet and the commonly high levels of COX-2 expressed in lung cancer to promote the formation of 8-hydroxyoctanoic acid (8-HOA) through a new delta-5-desaturase (D5Di) inhibitor. The D5Di does not only limit the metabolic product, PGE2, but also promote the COX-2 catalyzed DGLA peroxidation to form 8-HOA, a novel anti-cancer free radical byproduct. Therefore, the measurement of the PGE2 and 8-HOA levels in cancer cells can be an effective method to treat lung cancer by providing in-time guidance. In this paper, we mainly report on a novel sensor, which is based on a newly developed functionalized nanomaterial, 2-dimensional nanosheets, or Ti3C2 MXene. The preliminary results have proven to sensitively, selectively, precisely, and effectively detect PGE2 and 8-HOA in A549 lung cancer cells. The capability of the sensor to detect trace level 8-HOA in A549 has been verified in comparison with the traditional gas chromatography–mass spectrometry (GC–MS) method. The sensing principle could be due to the unique structure and material property of Ti3C2 MXene: a multilayered structure and extremely large surface area, metallic conductivity, and ease and versatility in surface modification. All these make the Ti3C2 MXene-based sensor selectively adsorb 8-HOA molecules through effective charge transfer and lead to a measurable change in the conductivity of the material with a high signal-to-noise ratio and excellent sensitivity.
Collapse
Affiliation(s)
- Mahek Sadiq
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58108, USA;
| | - Lizhi Pang
- Department of Pharmaceutical Science, North Dakota State University, Fargo, ND 58108, USA; (L.P.); (V.S.)
| | - Michael Johnson
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA; (M.J.); (Q.Z.)
| | - Venkatachalem Sathish
- Department of Pharmaceutical Science, North Dakota State University, Fargo, ND 58108, USA; (L.P.); (V.S.)
| | - Qifeng Zhang
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA; (M.J.); (Q.Z.)
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Danling Wang
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58108, USA;
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, USA; (M.J.); (Q.Z.)
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: ; Tel.: +1-701-231-8396
| |
Collapse
|
383
|
Li W, Liu Y, Li ZJ, Shi Y, Deng J, Bai J, Ma L, Zeng XX, Feng SS, Ren JL, Luo FJ, Rong DY, Chen XQ, Yin HQ, Chen Z, Da F. Unravelling the Role of LncRNA WT1-AS/miR-206/NAMPT Axis as Prognostic Biomarkers in Lung Adenocarcinoma. Biomolecules 2021; 11:biom11020203. [PMID: 33540574 PMCID: PMC7912827 DOI: 10.3390/biom11020203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the world's highest morbidity and mortality of malignant tumors, with lung adenocarcinoma (LUAD) as a major subtype. The competitive endogenous RNA (ceRNA) regulative network provides opportunities to understand the relationships among different molecules, as well as the regulative mechanisms among them in order to investigate the whole transcriptome landscape in cancer pathology. We designed this work to explore the role of a key oncogene, MYC, in the pathogenesis of LUAD, and this study aims to identify important long noncoding RNA (lncRNA)-microRNA (miRNA)- transcription factor (TF) interactions in non-small cell lung cancer (NSCLC) using a bioinformatics analysis. The Cancer Genome Atlas (TCGA) database, containing mRNA expression data of NSCLC, was used to determine the deferentially expressed genes (DEGs), and the ceRNA network was composed of WT1-AS, miR-206, and nicotinamide phosphoribosyltransferase (NAMPT) bashing on the MYC expression level. The Kaplan-Meier univariate survival analysis showed that these components may be closely related prognostic biomarkers and will become new ideas for NSCLC treatment. Moreover, the high expression of WT1-AS and NAMPT and low expression of miR-206 were associated with a shortened survival in NSCLC patients, which provided a survival advantage. In summary, the current study constructing a ceRNA-based WT1-AS/miR-206/NAMPT axis might be a novel important prognostic factor associated with the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
| | - Yu Liu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
| | - Zi Jin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
| | - Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
| | - Jing Deng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
- Correspondence: (J.D.); (Z.C.); (F.D.); Tel.: +86-731-85658893 (J.D.); +86-731-22183913 (Z.C.); +86-021-66300381(F.D.)
| | - Jie Bai
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
| | - Xiao Xi Zeng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
| | - Shan Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
| | - Jia Li Ren
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
| | - Fei Jun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
| | - Duo Yan Rong
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
| | - Xiao Qi Chen
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
| | - Hua Qun Yin
- School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China;
| | - Zhu Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (Y.L.); (Y.S.); (L.M.); (X.X.Z.); (S.S.F.); (D.Y.R.)
- Correspondence: (J.D.); (Z.C.); (F.D.); Tel.: +86-731-85658893 (J.D.); +86-731-22183913 (Z.C.); +86-021-66300381(F.D.)
| | - Fu Da
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (Z.J.L.); (J.B.); (J.L.R.); (F.J.L.); (X.Q.C.)
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tong Ji University School of Medicine, Shanghai 200072, China
- Correspondence: (J.D.); (Z.C.); (F.D.); Tel.: +86-731-85658893 (J.D.); +86-731-22183913 (Z.C.); +86-021-66300381(F.D.)
| |
Collapse
|
384
|
Gu X, Chu Q, Zheng Q, Wang J, Zhu H. The dual functions of the long noncoding RNA CASC15 in malignancy. Biomed Pharmacother 2021; 135:111212. [PMID: 33433353 DOI: 10.1016/j.biopha.2020.111212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) play vital roles in tumorigenesis and progression. LncRNAs can participate in various biological processes, such as cell growth, anti-apoptosis functions, migration, and invasion. Cancer susceptibility candidate 15 (CASC15) is a cancer-related lncRNA that has been reported to play opposite roles in the pathogenesis of different types of cancers. Studies have shown that CASC15 is downregulated in ovarian cancer and neuroblastoma, acting mainly as a tumour suppressor, while it is highly expressed and carcinogenic in hepatocellular carcinoma (HCC), lung cancer, tongue squamous cell carcinoma, gastric cancer, colorectal cancer, cervical cancer, and breast cancer. Furthermore, aberrant CASC15 expression is associated with tumorigenesis, progression, and patient outcomes via regulation of target genes and signalling pathways. In this review, we summarize current data concerning the regulatory functions and underlying mechanisms of CASC15 in tumour development. We also highlight its potential clinical utility as a biomarker for early detection or as a therapeutic target in human cancers.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
385
|
Abstract
Atrial fibrillation is associated with aging, obesity, heart disease, diabetes, and/or hypertension. Recent evidence suggests that parenchymal and vascular lung diseases increase atrial fibrillation risk. We review the epidemiology, clinical features, pathophysiologic mechanisms, and treatment implications of atrial fibrillation associated with diseases of the lungs and their vasculature, especially pulmonary hypertension. We also consider other features of pulmonary disease-associated atrial fibrillation. A key mediator of these conditions is right heart disease and right atrial remodeling. We pay particular attention to the pathophysiology and treatment challenges in atrial fibrillation associated with right heart disease induced by pulmonary diseases, including pulmonary hypertension.
Collapse
Affiliation(s)
- Roddy Hiram
- Department of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montréal, Quebec, Canada.
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec, Canada; Department of medicine, Université Laval, 2325 rue de l'Universite, Montréal, Quebec G1V 0A6, Canada
| |
Collapse
|
386
|
The Effect of Continuous Low-Intensity Exposure to Electromagnetic Fields from Radio Base Stations to Cancer Mortality in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031229. [PMID: 33573059 PMCID: PMC7908558 DOI: 10.3390/ijerph18031229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Background: this study aims to estimate the rate of death by cancer as a result of Radio Base Station (RBS) radiofrequency exposure, especially for breast, cervix, lung, and esophagus cancers. Methods: we collected information on the number of deaths by cancer, gender, age group, gross domestic product per capita, death year, and the amount of exposure over a lifetime. We investigated all cancer types and some specific types (breast, cervix, lung, and esophagus cancers). Results: in capitals where RBS radiofrequency exposure was higher than 2000/antennas-year, the average mortality rate was 112/100,000 for all cancers. The adjusted analysis showed that, the higher the exposure to RBS radiofrequency, the higher cancer mortality was. The highest adjusted risk was observed for cervix cancer (rate ratio = 2.18). The spatial analysis showed that the highest RBS radiofrequency exposure was observed in a city in southern Brazil that also showed the highest mortality rate for all types of cancer and specifically for lung and breast cancer. Conclusion: the balance of our results indicates that exposure to radiofrequency electromagnetic fields from RBS increases the rate of death for all types of cancer.
Collapse
|
387
|
Malik V, Kumar V, Kaul SC, Wadhwa R, Sundar D. Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers. Biomolecules 2021; 11:biom11020160. [PMID: 33530424 PMCID: PMC7911128 DOI: 10.3390/biom11020160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
The anticancer activities of Withaferin-A (Wi-A) and Withanone (Wi-N) from Ashwagandha and Caffeic Acid Phenethyl Ester (CAPE) from honeybee propolis have been well documented. Here, we examined the binding potential of these natural compounds to inhibit the constitutive phosphorylation of epidermal growth factor receptors (EGFRs). Exon 20 insertion mutants of EGFR, which show resistance to various FDA approved drugs and are linked to poor prognosis of lung cancer patients, were the primary focus of this study. Apart from exon 20 insertion mutants, the potential of natural compounds to serve as ATP competitive inhibitors of wildtype protein and other common mutants of EGFR, namely L858R and exon19del, were also examined. The potential of natural compounds was compared to the positive controls such as erlotinib, TAS6417 and poziotinib. Similar to known inhibitors, Wi-A and Wi-N could displace and binds at the ATP orthosteric site of exon19del, L858R and exon20, while CAPE was limited to wildtype EGFR and exon 20 insertion mutants only. Moreover, the binding free energy of the natural drugs against EGFRs was also comparable to the positive controls. This computational study suggests that Wi-A and Wi-N have potential against multiple mutated EGFRs, warranting further in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Vidhi Malik
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (V.M.); (V.K.)
| | - Vipul Kumar
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (V.M.); (V.K.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan;
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan;
- Correspondence: (R.W.); (D.S.); Tel.: +81-29-861-9464 (R.W.); +91-11-2659-1066 (D.S.)
| | - Durai Sundar
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (V.M.); (V.K.)
- Correspondence: (R.W.); (D.S.); Tel.: +81-29-861-9464 (R.W.); +91-11-2659-1066 (D.S.)
| |
Collapse
|
388
|
Al-Yozbaki M, Jabre I, Syed NH, Wilson CM. Targeting DNA methyltransferases in non-small-cell lung cancer. Semin Cancer Biol 2021; 83:77-87. [PMID: 33486076 DOI: 10.1016/j.semcancer.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Despite the advances in treatment using chemotherapy or targeted therapies, due to static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. However, treatment using single epigenetic agents on solid tumours has been inadequate; whereas, treatment with a combination of DNMTs inhibitors with chemotherapy and immunotherapy has shown great promise. Dietary sources of phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel and promising way to prevent and treat cancer. Herein, we will discuss the different DNMTs, DNA methylation profiling in NSCLC as well as current demethylating agents in ongoing clinical trials. Therefore, providing a concise overview of future developments in the field of epigenetic therapy in NSCLC.
Collapse
Affiliation(s)
- Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Ibtissam Jabre
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naeem H Syed
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, UK.
| |
Collapse
|
389
|
Ni XF, Xie QQ, Zhao JM, Xu YJ, Ji M, Hu WW, Wu J, Wu CP. The hepatic microenvironment promotes lung adenocarcinoma cell proliferation, metastasis, and epithelial-mesenchymal transition via METTL3-mediated N6-methyladenosine modification of YAP1. Aging (Albany NY) 2021; 13:4357-4369. [PMID: 33495421 PMCID: PMC7906215 DOI: 10.18632/aging.202397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023]
Abstract
The inflammatory microenvironment plays an important role in the onset and progression of lung adenocarcinoma (LUAD), and the liver is a suitable site of metastasis for LUAD cells. However, whether the inflammatory microenvironment of the liver is conducive to the proliferation, invasion, and metastasis of LUAD cells remains unclear. In this study, we confirmed that the hepatic inflammatory microenvironment stimulated by IL-6 promoted the proliferation, migration, invasion, and epithelial–mesenchymal transition of LUAD cells, increased the m6A methylation of total RNA, and transcriptionally activated METTL3 expression. Additionally, METTL3 activated the YAP1/TEAD signaling pathway by increasing the m6A modification and expression of YAP1 mRNA. These results indicate that the hepatic inflammatory microenvironment plays a role in regulating the biological functions of LUAD cells. Further, our study identifies a molecular mechanism that may provide a new strategy for the early diagnosis, treatment, and prognosis of liver metastasis in LUAD patients.
Collapse
Affiliation(s)
- Xue-Feng Ni
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Quan-Qin Xie
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie-Min Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan-Jie Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wen-Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chang-Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
390
|
Plausible Role of Estrogens in Pathogenesis, Progression and Therapy of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020648. [PMID: 33466597 PMCID: PMC7828659 DOI: 10.3390/ijerph18020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Malignant neoplasms are among the most common diseases and are responsible for the majority of deaths in the developed world. In contrast to men, available data show a clear upward trend in the incidence of lung cancer in women, making it almost as prevalent as breast cancer. Women might be more susceptible to the carcinogenic effect of tobacco smoke than men. Furthermore, available data indicate a much more frequent mutation of the tumor suppressor gene-p53 in non-small cell lung cancer (NSCLC) female patients compared to males. Another important factor, however, might lie in the female sex hormones, whose mitogenic or carcinogenic effect is well known. Epidemiologic data show a correlation between hormone replacement therapy (HRT) or oral contraceptives (OCs), and increased mortality rates due to the increased incidence of malignant tumors, including lung cancer. Interestingly, two types of estrogen receptors have been detected in lung cancer cells: ERα and ERβ. The presence of ERα has been detected in tissues and non-small-cell lung carcinoma (NSCLC) cell lines. In contrast, overexpression of ERβ is a prognostic marker in NSCLC. Herein, we summarize the current knowledge on the role of estrogens in the etiopathogenesis of lung cancer, as well as biological, hormonal and genetic sex-related differences in this neoplasm.
Collapse
|
391
|
Jeevanandam J, Sabbih G, Tan KX, Danquah MK. Oncological Ligand-Target Binding Systems and Developmental Approaches for Cancer Theranostics. Mol Biotechnol 2021; 63:167-183. [PMID: 33423212 DOI: 10.1007/s12033-020-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Targeted treatment of cancer hinges on the identification of specific intracellular molecular receptors on cancer cells to stimulate apoptosis for eventually inhibiting growth; the development of novel ligands to target biomarkers expressed by the cancer cells; and the creation of novel multifunctional carrier systems for targeted delivery of anticancer drugs to specific malignant sites. There are numerous receptors, antigens, and biomarkers that have been discovered as oncological targets (oncotargets) for cancer diagnosis and treatment applications. Oncotargets are critically important to navigate active anticancer drug ingredients to specific disease sites with no/minimal effect on surrounding normal cells. In silico techniques relating to genomics, proteomics, and bioinformatics have catalyzed the discovery of oncotargets for various cancer types. Effective oncotargeting requires high-affinity probes engineered for specific binding of receptors associated with the malignancy. Computational methods such as structural modeling and molecular dynamic (MD) simulations offer opportunities to structurally design novel ligands and optimize binding affinity for specific oncotargets. This article proposes a streamlined approach for the development of ligand-oncotarget bioaffinity systems via integrated structural modeling and MD simulations, making use of proteomics, genomic, and X-ray crystallographic resources, to support targeted diagnosis and treatment of cancers and tumors.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Kei X Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA.
| |
Collapse
|
392
|
Haralsingh A, West M. Tissue Yields for Epidermal Growth Factor Receptor Analysis in Non-Small Cell Lung Cancer Patients in Trinidad and Tobago. Cureus 2021; 13:e12531. [PMID: 33425564 PMCID: PMC7788053 DOI: 10.7759/cureus.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction Patients with unresectable non-small cell lung cancer (NSCLC) may benefit from chemotherapy, tyrosine kinase inhibitor (TKI) therapy, or both. TKI therapy may be administered to the subset of patients who harbor the epidermal growth factor receptor (EGFR) mutation. EGFR mutation testing now plays a vital role in the diagnostic work-up of advanced NSCLC patients to determine which patients are more likely to benefit from TKI therapy. The role of surgery in these patients is mostly limited to obtaining an adequate biopsy for histological, immunohistochemical, and EGFR analysis using the least invasive methods possible. It is thought that larger volume samples, such as those obtained from traditional surgical lung biopsies (SLBs), have better yield than small volume samples, such as those obtained from transthoracic needle lung biopsies (TTNLBs), for EGFR analysis. Aim The aim of this was to determine which biopsy procedures provide superior yield for EGFR mutation analysis among primary NSCLC patients at the Eric Williams Medical Sciences Complex (EWMSC) and whether these tissue yields are in keeping with international recommendations. Methods This is a retrospective, observational study using patient data obtained from the Lung Malignancy Unit, which is based at the EWMSC. The study population was limited to primary NSCLC patients presenting to the EWMSC from January 2014 to June 2017 whose biopsy samples were sent for EGFR testing. Relevant patient data were entered onto a spreadsheet using Microsoft Excel. Patients were classified as having had either an SLB, bronchial biopsy (BB), TTNLB, or some other biopsy procedure. All samples were sent for histological analysis, followed by immunohistochemistry and finally EGFR testing. All EGFR mutation analysis was performed at a single laboratory in the USA. A minimum of 200 tumor cells or 10% tumor content defined an adequate sample for EGFR mutation analysis. Samples that yielded a positive or negative result were considered adequate samples in this study. The number of adequate and inadequate samples for each procedure group was tabulated and the yield was determined as the percentage of adequate samples obtained for each procedure group. Results SLBs had superior yield (95.6%) compared to BBs (88.5%) and TTNLB (85%) in obtaining adequate samples for EGFR analysis. Conclusion SLBs demonstrated superior yield in attaining adequate tissue samples for EGFR mutation analysis compared to BBs and TTNLBs.
Collapse
Affiliation(s)
- Aaron Haralsingh
- Surgery, Eric Williams Medical Sciences Complex, St. Joseph, TTO
| | - Mark West
- Surgery, Eric Williams Medical Sciences Complex, St. Joseph, TTO
| |
Collapse
|
393
|
Salem ML, El-Ashmawy NE, Abd El-Fattah EE, Khedr EG. Immunosuppressive role of Benzo[a]pyrene in induction of lung cancer in mice. Chem Biol Interact 2021; 333:109330. [PMID: 33245929 DOI: 10.1016/j.cbi.2020.109330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
AIM Benzo[a]pyrene [BP] is one of the major carcinogenic precursors of cigarette smoke that primary affects the lung at its first proximity. The goal of the current research was to elucidate new mechanisms underlying the tumorigenic impact of oral BP in the lung of mice, with focus on immunosuppressive effects and cancer stemming properties. METHODS Female albino mice (n = 44) were divided into 2 groups: normal control and BP group. BP was administered orally to mice (50 mg/kg body weight), twice a week for four weeks in succession. At the end of experiment (22 weeks), gene expression were measured for transforming growth factor-β (TGF-β), cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death ligand 1(PD-L1), forkhead box protein P3 (FOXP3) and interleukin 12 (IL-12) and CD83+, CD8+ and CD166+ cell percentage were measured in lung tissue. RESULTS The results indicated the tumorigenic role of BP in the lung which was evidenced by histopathological examination. BP group also showed immunosuppressive role which evidenced by increased expression of lung TGF-β, CTLA-4, PD-L1, FOXP3 genes and decreased expression of lung IL-12 gene compared with normal control group. BP group also showed decreased CD83+ cells, CD8+ cells and increased number of CD166+ cells. CONCLUSION Our findings indicated that BP has immunosuppressive role in lung cancer besides increasing the percentage of cancer stem like cells.
Collapse
Affiliation(s)
- Mohamed L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Manasoura, Dakahleya, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
394
|
Bracken-Clarke D, Kapoor D, Baird AM, Buchanan PJ, Gately K, Cuffe S, Finn SP. Vaping and lung cancer - A review of current data and recommendations. Lung Cancer 2021; 153:11-20. [PMID: 33429159 DOI: 10.1016/j.lungcan.2020.12.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Lung cancer is the most common cause of cancer mortality worldwide and, while tobacco smoke remains the primary cause, there is increasing concern that vaping and E-cigarette use may also increase lung cancer risk. This review concentrates on the current data, scholarship and active foci of research regarding potential cancer risk and oncogenic mechanisms of vaping and lung cancer. MATERIALS AND METHODS We performed a literature review of current and historical publications on lung cancer oncogenesis, vaping device/e-liquid contents and daughter products, molecular oncogenic mechanisms and the fundamental, potentially oncogenic, effects of electronic cigarette smoke/e-liquid products. RESULTS E-cigarette devices and vaping fluids demonstrably contain a series of both definite and probable oncogens including nicotine derivatives (e.g. nitrosnornicotine, nitrosamine ketone), polycyclic aromatic hydrocarbons, heavy metals (including organometal compounds) and aldehydes/other complex organic compounds. These arise both as constituents of the e-liquid (with many aldehydes and other complex organics used as flavourings) and as a result of pyrolysis/complex organic reactions in the electronic cigarette device (including unequivocal carcinogens such as formaldehyde - formed from pyrolysis of glycerol). Various studies demonstrate in vitro transforming and cytotoxic activity of these derivatives. E-cigarette device use has been significantly increasing - particularly amongst the younger cohort and non-smokers; thus, this is an area of significant concern for the future. CONCLUSION Although research remains somewhat equivocal, there is clear reason for concern regarding the potential oncogenicity of E-Cigarettes/E-Liquids with a strong basic and molecular science basis. Given lag times (extrapolating from tobacco smoke data) of perhaps 20 years, this may have significant future public health implications. Thus, the authors feel further study in this field is strongly warranted and consideration should be made for tighter control and regulation of these products.
Collapse
Affiliation(s)
| | - Dhruv Kapoor
- Department of Medical Oncology, St James' Hospital, Dublin, Ireland
| | - Anne Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Paul James Buchanan
- DCU Cancer Research, Faculty of Science and Health, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Kathy Gately
- Department of Clinical Medicine, Trinity College School of Medicine and St James's Hospital, Dublin, Ireland
| | - Sinead Cuffe
- Department of Medical Oncology, St James' Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Pathology, St James' Hospital and Trinity College School of Medicine, Dublin, Ireland
| |
Collapse
|
395
|
Cai B, Zhou ZY, Xue W, Hazra NC, Singh M, Mishra D, Brixner D, Oderda G, Biskupiak J. Budget impact of capmatinib for adults with metastatic non-small cell lung cancer harboring a MET exon 14 skipping mutation in the United States. J Med Econ 2021; 24:131-139. [PMID: 33397178 DOI: 10.1080/13696998.2020.1867470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
AIMS To estimate the budget impact of adding capmatinib, the first FDA approved MET inhibitor, to a US commercial or Medicare health plan for patients with metastatic non-small cell lung cancer (mNSCLC) whose tumors have a mutation that leads to MET exon 14 (METex14) skipping. METHODS Target population size was estimated using published epidemiology data. Clinical data were obtained from the GEOMETRY mono-1 capmatinib trial and published trials. Treatments in the market mix included crizotinib, pembrolizumab, ramucirumab, and chemotherapy. Uptake of capmatinib and testing rates were based on market research. All costs (drug acquisition and administration, pre-progression, progression, terminal care, adverse event, and testing) were estimated based on public sources (2020 USD). RESULTS The number of patients eligible for capmatinib in the first three years was estimated to be 2-3 in a hypothetical 1 million member commercial plan and 34-44 in a hypothetical 1 million member Medicare plan each year. The estimated total budget impact ranged from $9,695 to $67,725 for a commercial plan and $141,350 to $985,695 for Medicare. With capmatinib included, a marginal per member per month budget impact was estimated (commercial: $0.0008 to $0.0056; Medicare: $0.0118 to $0.0821). Capmatinib inclusion resulted in lower medical costs (commercial: -$0.0003 to -$0.0007; Medicare: -$0.0037 to -$0.0106), partially offsetting increased drug costs ($0.0011 to $0.0064; $0.0154 to $0.0928, respectively), and were primarily driven by reductions in progression and terminal care costs (-$0.0003 to -$0.0009; -$0.0037 to -$0.0125, respectively). The results were most sensitive to capmatinib market share, capmatinib price, and treatment duration. LIMITATIONS Certain assumptions were applied to the model to account for inputs with limited evidence. CONCLUSIONS The estimated budget impact of including capmatinib for mNSCLC with a METex14 skipping mutation is minimal, and the increased drug costs were partially offset by savings in AEs, and progression-related and terminal care costs.
Collapse
Affiliation(s)
- Beilei Cai
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | | | | | | | - Diana Brixner
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA
| | - Gary Oderda
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA
| | - Joseph Biskupiak
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA
| |
Collapse
|
396
|
Jacob SSK. Distribution and Expression of Programmed Death Ligand -1 (PD-L1) in Non-Small Cell Carcinomas of the Lung in a Tertiary Care Centre in South India. Turk Patoloji Derg 2021; 37:139-144. [PMID: 33973642 PMCID: PMC10512669 DOI: 10.5146/tjpath.2021.01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Non-small cell lung carcinomas often present at an advanced stage with a grim prognosis. Immune checkpoint (ICP) inhibitors have drastically changed the scenario, and the response to ICP inhibitors is determined by analyzing the expression of PD-L1 by immunohistochemistry. PD-L1 immunohistochemistry helps in optimizing the treatment, and avoiding unnecessary exposure of patients to the toxic effects of the drugs that are ineffective and expensive in non-expressing tumors. This study was conducted to assess the prevalence of the expression of PD-L1 in non-small cell carcinomas of the lung diagnosed at our institution, which is a tertiary care center in South India. MATERIAL AND METHOD The PD-L1 immunohistochemistry of 77 cases of non-small cell carcinomas of the lung diagnosed over a period of two years were reviewed and analyzed (2018-2020). All tissues were fixed in 10% neutral buffered formalin and processed by standard methods, and the Ventana SP263 clone was used. RESULTS Seventy-seven cases of non-small cell lung carcinomas were reviewed and studied for (PD-L1) expression. 35/77 (45%) of the cases had PD-L1 expression (≥ 1%) and 14 (18 %) had high (PD-L1) expression. Also there was a male preponderance of 2.3:1. High PD-L1 expression was seen mostly in patients above 60 years of age and was usually associated with high tumor grade. CONCLUSION It is important to assess PD-L1 expression in non-small cell carcinomas of patients especially with higher tumor grade and older age groups that they may benefit from immune checkpoint inhibitor therapy.
Collapse
|
397
|
Kumar KS, Vadala R, Talwar D. An unusual cause of "reverse batwing" sign. Lung India 2021; 38:196-198. [PMID: 33687019 PMCID: PMC8098904 DOI: 10.4103/lungindia.lungindia_212_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Kadli Shirish Kumar
- Department of Pulmonary and Critical Care, Metro Centre for Respiratory Diseases, Metro Multispeciality Hospital, Noida, Uttar Pradesh, India
| | - Rohit Vadala
- Department of Pulmonary and Critical Care, Metro Centre for Respiratory Diseases, Metro Multispeciality Hospital, Noida, Uttar Pradesh, India
| | - Deepak Talwar
- Department of Pulmonary and Critical Care, Metro Centre for Respiratory Diseases, Metro Multispeciality Hospital, Noida, Uttar Pradesh, India
| |
Collapse
|
398
|
Association between Risk Factors and the Existence of Lung Malignancies in a Population from the South-West Romania: A Single-Center Study. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:485-493. [PMID: 35444830 PMCID: PMC8987467 DOI: 10.12865/chsj.47.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Lung cancer, one of the most prominent malignancies of today worldwide, affects mainly men; however, recently women have also been increasingly afflicted by the disease. Our aim was to retrospectively analyze a series of potential risk factors for the disease and their potential to affect both genders. METHODS Our retrospective study relied on anonymized data collected between 2017 and 2020 at a single hospital specialized on lung diseases. After receiving ethical clearance, data pertaining to risk factors as well as statistical aspects of the lot were recorded and analyzed. RESULTS We found 493 patients (398 men) aged between 31 and 90 years (median 67) who were found with lung tumors and selected a matched cohort of patients with other diseases. We found positive associations between the presence of smoking, COPD, or pollution and the occurrence of lung cancer. Almost all lung cancer patients presented different significant associated diseases. Family history also favored the appearance of lung cancer. CONCLUSION Several risk factors remain high in lung tumor patients, and rapid measures to diminish the impact of such factors are needed in order to decrease the overall incidence of this pathology.
Collapse
|
399
|
Feng J, Li J, Qie P, Li Z, Xu Y, Tian Z. Long non-coding RNA (lncRNA) PGM5P4-AS1 inhibits lung cancer progression by up-regulating leucine zipper tumor suppressor (LZTS3) through sponging microRNA miR-1275. Bioengineered 2020; 12:196-207. [PMID: 33315502 PMCID: PMC8806334 DOI: 10.1080/21655979.2020.1860492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is necessary to explore new molecules for the improvement of precise diagnosis and antitumor therapies in lung cancer. LncRNAs (long non-coding RNAs) play an important role in the regulation of cancer cell malignant behavior and tumor development. In this work, we found that a newly discovered lncRNA, lncRNA PGM5P4-AS1, was lower expressed in lung cancer tissues than adjacent tissues. Then, the lncRNA PGM5P4-AS1 was overexpressed or knocked-down in different lung cancer cells, and its effects on the malignant phenotypes were measured by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle assay, wound healing assay, and transwell assay. The results showed that the overexpression of PGM5P4-AS1 inhibited lung cancer cell proliferation, migration, and invasion activities, while these abilities were prominently promoted by the interference of PGM5P4-AS1. Further, the growth of lung cancer tumors in nude mice was also inhibited by PGM5P4-AS1 overexpression. In mechanism, PGM5P4-AS1 has the binding site of miR-1275 and could positively regulate the expression of LZTS3 via sponging miR-1275. In conclusion, PGM5P4-AS1 could be a potential precise diagnosis and therapeutic target biomarker of lung cancer.
Collapse
Affiliation(s)
- Junpeng Feng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P.R. China.,Department of Thoracic Surgery, Hebei Chest Hospital , Shijiazhuang, P.R. China
| | - Jianhang Li
- Department of Thoracic Surgery, Hebei Chest Hospital , Shijiazhuang, P.R. China
| | - Peng Qie
- Department of Thoracic Surgery, Hebei General Hospital , Shijiazhuang, P.R. China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P.R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P.R. China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang, P.R. China
| |
Collapse
|
400
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|