351
|
Abstract
Tumor microenvironment is a network of complex cellular and molecular systems where cells will gain specific phenotypes and specific functions that would drive tumorigenesis. In skin cancers, tumor microenvironment is characterized by tumor infiltrating immune cells that sustain immune suppression, mainly lymphocytes. Melanoma cellular heterogeneity can be described on genetic, proteomic, transcriptomic and metabolomic levels. Melanoma cells display a metabolic reprogramming triggered by both genetic alterations and adaptation to a microenvironment that lacks nutrients and oxygen supply. Tumor cells present clear metabolic adaptations and identifying deregulated glycolysis pathway could offer new therapy targets. Moreover, the immune cells (T lymphocytes, macrophages, NK cells, neutrophils and so on) that infiltrate melanoma tumors have metabolic particularities that, upon interaction within tumor microenvironment, would favor tumorigenesis. Analyzing both tumor cell metabolism and the metabolic outline of immune cells can offer innovative insights in new therapy targets and cancer therapeutical approaches. In addition to already approved immune- and targeted therapy in melanoma, approaching metabolic check-points could improve therapy efficacy and hinder resistance to therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina University Hospital, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| |
Collapse
|
352
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
353
|
Turbitt WJ, Rosean CB, Weber KS, Norian LA. Obesity and CD8 T cell metabolism: Implications for anti-tumor immunity and cancer immunotherapy outcomes. Immunol Rev 2020; 295:203-219. [PMID: 32157710 PMCID: PMC7416819 DOI: 10.1111/imr.12849] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Obesity is an established risk factor for many cancers and has recently been found to alter the efficacy of T cell-based immunotherapies. Currently, however, the effects of obesity on immunometabolism remain unclear. Understanding these associations is critical, given the fact that T cell metabolism is tightly linked to effector function. Thus, any obesity-associated changes in T cell bioenergetics are likely to drive functional changes at the cellular level, alter the metabolome and cytokine/chemokine milieu, and impact cancer immunotherapy outcomes. Here, we provide a brief overview of T cell metabolism in the presence and absence of solid tumor growth and summarize current literature regarding obesity-associated changes in T cell function and bioenergetics. We also discuss recent findings related to the impact of host obesity on cancer immunotherapy outcomes and present potential mechanisms by which T cell metabolism may influence therapeutic efficacy. Finally, we describe promising pharmaceutical therapies that are being investigated for their ability to improve CD8 T cell metabolism and enhance cancer immunotherapy outcomes in patients, regardless of their obesity status.
Collapse
Affiliation(s)
- William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
354
|
18F-fluorodeoxyglucose positron emission tomography correlates with tumor immunometabolic phenotypes in resected lung cancer. Cancer Immunol Immunother 2020; 69:1519-1534. [PMID: 32300858 DOI: 10.1007/s00262-020-02560-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Enhanced tumor glycolytic activity is a mechanism by which tumors induce an immunosuppressive environment to resist adoptive T cell therapy; therefore, methods of assessing intratumoral glycolytic activity are of considerable clinical interest. In this study, we characterized the relationships among tumor 18F-fluorodeoxyglucose (FDG) retention, tumor metabolic and immune phenotypes, and survival in patients with resected non-small cell lung cancer (NSCLC). We retrospectively analyzed tumor preoperative positron emission tomography (PET) 18F-FDG uptake in 59 resected NSCLCs and investigated correlations between PET parameters (SUVMax, SUVTotal, SUVMean, TLG), tumor expression of glycolysis- and immune-related genes, and tumor-associated immune cell densities that were quantified by immunohistochemistry. Tumor glycolysis-associated immune gene signatures were analyzed for associations with survival outcomes. We found that each 18F-FDG PET parameter was positively correlated with tumor expression of glycolysis-related genes. Elevated 18F-FDG SUVMax was more discriminatory of glycolysis-associated changes in tumor immune phenotypes than other 18F-FDG PET parameters. Increased SUVMax was associated with multiple immune factors characteristic of an immunosuppressive and poorly immune infiltrated tumor microenvironment, including elevated PD-L1 expression, reduced CD57+ cell density, and increased T cell exhaustion gene signature. Elevated SUVMax identified immune-related transcriptomic signatures that were associated with enhanced tumor glycolytic gene expression and poor clinical outcomes. Our results suggest that 18F-FDG SUVMax has potential value as a noninvasive, clinical indicator of tumor immunometabolic phenotypes in patients with resectable NSCLC and warrants investigation as a potential predictor of therapeutic response to immune-based treatment strategies.
Collapse
|
355
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
356
|
The Biology of Immune-Active Cancers and Their Regulatory Mechanisms. Cancer Treat Res 2020; 180:149-172. [PMID: 32215869 DOI: 10.1007/978-3-030-38862-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The development of cancer results from the evolutionary balance between the proliferating aptitude of cancer cells and the response of the host's tissues. Some cancers are characterized by genetic instability dependent upon impaired DNA repair mechanisms that lead to the chaotic disruption of multiple cellular functions often in excess of the cancer survival needs and may exert broad effects on surrounding tissues, some beneficial and some detrimental to cancer growth. Among them, inflammatory processes that accompany wound healing may initiate a reaction of the host against the neo-formation. This is possibly triggered by the release by dying cancer cells of molecules known as Damage-Associated Molecular Patterns (DAMPs) following a process termed Immunogenic Cell Death (ICD) that initiates an immune response through innate and adaptive mechanisms. Indeed, analysis of large cancer data sets has shown that ICD is strictly associated with the activation of other immune effector or immune-regulatory pathways. Here, we will describe how immune activation and compensatory immune-regulatory mechanisms balance anti-cancer immune surveillance and the roles that innate and adaptive immunity play including the weight that neo-epitopes may exert as initiators and sculptors of high-affinity memory and effector immune responses against cancer. We will discuss the evolutionary basis for the existence of immune checkpoints and how several theories raised to explain cancer resistance to immunotherapy represent a facet of a similar evolutionary phenomenon that we described in the Theory of Everything. We will show how the biology of immunogenicity and counterbalancing immune regulation is widespread across cancers independent of their ontogenesis while subtle idiosyncratic differences are discernible among them. Finally, we will suggest that overcoming immune resistance implies distinct approaches relevant to the immune context of individual cancers.
Collapse
|
357
|
Jin C, Zhu X, Wu H, Wang Y, Hu X. Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells. J Biol Chem 2020; 295:6425-6446. [PMID: 32217690 DOI: 10.1074/jbc.ra119.012312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The V max of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.
Collapse
Affiliation(s)
- Chengmeng Jin
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiaobing Zhu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yuqi Wang
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
358
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
359
|
Kennedy BE, Sadek M, Gujar SA. Targeted Metabolic Reprogramming to Improve the Efficacy of Oncolytic Virus Therapy. Mol Ther 2020; 28:1417-1421. [PMID: 32243836 DOI: 10.1016/j.ymthe.2020.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OVs) represent a promising new class of cancer therapeutics and cause antitumor effects by two major mechanisms: (1) directly killing cancer cells in a process known as oncolysis, or (2) initiating a powerful antitumor immune response. Interestingly, energy metabolism, within either cancer cells or immune cells, plays a pivotal role in defining the outcome of OV-mediated antitumor effects. Following therapeutic administration, OVs must hijack host cell metabolic pathways to acquire building blocks such as nucleotides, lipids, and amino acids for the process of replication that is necessary for oncolysis. Additionally, OV-stimulated antitumor immune responses are highly dependent on the metabolic state within the tumor microenvironment. Thus, metabolic reprogramming strategies bear the potential to enhance the efficacy of both OV-mediated oncolysis and antitumor immune responses.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Maryanne Sadek
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Shashi A Gujar
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
360
|
Tomita M, Suzuki M, Kono Y, Nakajima K, Matsuda T, Kuge Y, Ogawa M. Influence on [ 18F]FDG uptake by cancer cells after anti-PD-1 therapy in an enforced-immune activated mouse tumor. EJNMMI Res 2020; 10:24. [PMID: 32189078 PMCID: PMC7080890 DOI: 10.1186/s13550-020-0608-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Anti-programmed cell death 1 (PD-1) antibody is an immune checkpoint inhibitor, and anti-PD-1 therapy improves the anti-tumor functions of T cells and affects tumor microenvironment. We previously reported that anti-PD-1 treatment affected tumor glycolysis by using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET). That study showed that anti-PD-1 therapy in a mouse B16F10 melanoma model increased glucose metabolism in cancer cells at the point where anti-PD-1 therapy did not cause a significant inhibition of tumor growth. However, the B16F10 melanoma model is poorly immunogenic, so it is not clear how anti-PD-1 treatment affects glucose metabolism in highly immunogenic cancer models. In this study, we used a cyclic dinucleotide GMP-AMP (cGAMP)-injected B16F10 melanoma model to investigate the effect of anti-PD-1 therapy on [18F]FDG uptake in a highly immune activated tumor in mice. Results To compare the cGAMP-injected B16F10 model with the B16F10 model, experiments were performed as described in our previous manuscript. [18F]FDG-PET was measured before treatment and 7 days after the start of treatment. In this study, [18F]FDG uptake in tumors in the cGAMP/anti-PD-1 combination group was lower than that in the anti-PD-1 treatment group tumors on day 7, as shown by PET and ex vivo validation. Flow-cytometry was performed to assess immune cell populations and glucose metabolism. Anti-PD-1 and/or cGAMP treatment increased the infiltration level of immune cells into tumors. The cGAMP/anti-PD-1 combination group had significantly lower levels of GLUT1high cells/hexokinase IIhigh cells in CD45− cancer cells compared with tumors in the anti-PD-1 treated group. These results suggested that if immune responses in tumors are higher than a certain level, glucose uptake in cancer cells is reduced depending on that level. Such a change of glucose uptake might be caused by the difference in infiltration or activation level of immune cells between the anti-PD-1 treated group and the cGAMP/anti-PD-1 combination group. Conclusions [18F]FDG uptake in cancer cells after anti-PD-1 treatment might be affected by the tumor immune microenvironment including immune cell infiltration, composition, and activation status.
Collapse
Affiliation(s)
- Mayu Tomita
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Yusuke Kono
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Takuma Matsuda
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
361
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
362
|
Wu Y, Zhang S, Yan J. IRF1 association with tumor immune microenvironment and use as a diagnostic biomarker for colorectal cancer recurrence. Oncol Lett 2020; 19:1759-1770. [PMID: 32194669 PMCID: PMC7039159 DOI: 10.3892/ol.2020.11289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is considered to be one of the most lethal cancer types globally, and its recurrence is a major treatment challenge. Identifying the factors involved when determining the risk of CRC recurrence is required to improve personalized therapy for patients with CRC. Based on the GSE39582 dataset, the present study demonstrated that a higher ratio of M1 macrophages and activated memory CD4+ T cells indicated a better recurrence-free survival (RFS) time for CRC, using CIBERSORT and Pearson's correlation analysis. Through weighted correlation network analysis (WGCNA), an immune-associated module was identified that was significantly positively correlated with the ratio of M1 macrophages and activated memory CD4+ T cells. In this module, using WGCNA and a protein-protein interaction network, interferon regulatory factor 1 (IRF1), chemokine ligand 5, ubiquitin/ISG15-conjugating enzyme E2 L6, guanylate binding protein 1 and interleukin 2 receptor subunit beta were identified as hub genes. Among these genes, univariate Cox and multivariate Cox analysis revealed that IRF1 may be a potential diagnostic biomarker for RFS in patients with CRC. This was further validated using The Cancer Genome Atlas data. Gene set enrichment analysis demonstrated that IRF1 influenced the genes and pathways that are associated with immune cell recruitment and activation. Additionally, the DNA methylation of cg27587780 and cg15375424 CpG sites in the IRF1 gene region was indicated to be negatively correlated with IRF1 mRNA expression and positively correlated with the recurrence of CRC. Collectively, the results of the present study demonstrated that IRF1 may be a potential diagnostic biomarker for RFS in patients with CRC.
Collapse
Affiliation(s)
- Yanfang Wu
- Department of Gastroenterology, The Fourth People's Hospital of Shaanxi, Xi'an, Shanxi 710032, P.R. China
| | - Shuju Zhang
- Hunan Children's Research Institute, Hunan Children's Hospital, University of South China, Changsha, Hunan 410007, P.R. China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| |
Collapse
|
363
|
Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, Gerritsen W, Mehra N. Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology 2020; 9:1731942. [PMID: 32158624 PMCID: PMC7051189 DOI: 10.1080/2162402x.2020.1731942] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/14/2022] Open
Abstract
Lactate dehydrogenase (LDH) levels are inversely related with response to checkpoint inhibitors. Elevated LDH levels are the product of enhanced glycolytic activity of the tumor and tumor necrosis due to hypoxia, the latter being associated with high tumor burden. In this review, we elucidate the effects of glycolysis and hypoxia on antitumor immunity and set forth ways to improve response to immunotherapy in cancer patients with elevated LDH levels. We discuss the current knowledge on combining immunotherapy with glycolysis inhibitors, anti-acidifying drugs, anti-angiogenic or cytoreductive therapy.
Collapse
Affiliation(s)
- Sandra Van Wilpe
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rutger Koornstra
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Oncology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Martijn Den Brok
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Willem De Groot
- Department of Medical Oncology, Isala Oncology Center, Zwolle, The Netherlands
| | - Christian Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jolanda De Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Winald Gerritsen
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
364
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
365
|
Li W, Xu M, Li Y, Huang Z, Zhou J, Zhao Q, Le K, Dong F, Wan C, Yi P. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J Transl Med 2020; 18:92. [PMID: 32070368 PMCID: PMC7029444 DOI: 10.1186/s12967-020-02267-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Metabolic reprogramming, immune evasion and tumor-promoting inflammation are three hallmarks of cancer that provide new perspectives for understanding the biology of cancer. We aimed to figure out the relationship of tumor glycolysis and immune/inflammation function in the context of breast cancer, which is significant for deeper understanding of the biology, treatment and prognosis of breast cancer. Methods Using mRNA transcriptome data, tumor-infiltrating lymphocytes (TILs) maps based on digitized H&E-stained images and clinical information of breast cancer from The Cancer Genome Atlas projects (TCGA), we explored the expression and prognostic implications of glycolysis-related genes, as well as the enrichment scores and dual role of different immune/inflammation cells in the tumor microenvironment. The relationship between glycolysis activity and immune/inflammation function was studied by using the differential genes expression analysis, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analyses (GSEA) and correlation analysis. Results Most glycolysis-related genes had higher expression in breast cancer compared to normal tissue. Higher phosphoglycerate kinase 1 (PGK1) expression was associated with poor prognosis. High glycolysis group had upregulated immune/inflammation-related genes expression, upregulated immune/inflammation pathways especially IL-17 signaling pathway, higher enrichment of multiple immune/inflammation cells such as Th2 cells and macrophages. However, high glycolysis group was associated with lower infiltration of tumor-killing immune cells such as NKT cells and higher immune checkpoints expression such as PD-L1, CTLA4, FOXP3 and IDO1. Conclusions In conclusion, the enhanced glycolysis activity of breast cancer was associated with pro-tumor immunity. The interaction between tumor glycolysis and immune/inflammation function may be mediated through IL-17 signaling pathway.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwei Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiuyang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pengfei Yi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
366
|
Schurich A, Magalhaes I, Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy 2020; 11:335-345. [PMID: 30678555 DOI: 10.2217/imt-2018-0141] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of immunometabolism has attracted growing attention as an area at the heart of immune regulation. Upon activation, T cells undergo significant metabolic changes allowing them to mediate effector responses. The advent of chimeric antigen receptor T cell-adoptive therapy has shown some striking clinical efficacy but fails to induce sufficient antitumor response in many patients. Solid tumors put up significant opposition creating a microenvironment deficient of oxygen and glucose, depriving T cells of energy and pushing them to exhaustion. Here, we focus on immune suppressive mechanisms related to hypoxia in the tumor microenvironment and the resulting metabolic changes in T cells. New therapeutic approaches such as generating chimeric antigen receptor T cells able to withstand the challenging solid tumor microenvironment are needed.
Collapse
Affiliation(s)
- Anna Schurich
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
367
|
Liu A, Curran MA. Tumor hypermetabolism confers resistance to immunotherapy. Semin Cancer Biol 2020; 65:155-163. [PMID: 31982512 DOI: 10.1016/j.semcancer.2020.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Advances in our understanding of tumor immune biology and development of cancer immunotherapies have led to improved outcomes for patients that suffer from aggressive cancers such as metastatic melanoma. Despite these advances, a significant proportion of patients still fail to benefit, and as a result, attention has shifted to understanding how cancer cells escape immune destruction. Of particular interest is the metabolic landscape of the tumor microenvironment, as recent studies have demonstrated how both competition for essential nutrients and depletion of specific amino acids can promote T cell dysfunction. Here, we will discuss the major energetic pathways engaged by both T cells and cancer cells, metabolic substrates present in the tumor microenvironment, and emerging therapeutic strategies that seek to improve T cell metabolic fitness and bolster the antitumor immune response.
Collapse
Affiliation(s)
- Arthur Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA.
| |
Collapse
|
368
|
Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 2020; 17:77-106. [PMID: 31953517 DOI: 10.1038/s41585-019-0263-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Bladder cancer - the tenth most frequent cancer worldwide - has a heterogeneous natural history and clinical behaviour. The predominant histological subtype, urothelial bladder carcinoma, is characterized by high recurrence rates, progression and both primary and acquired resistance to platinum-based therapy, which impose a considerable economic burden on health-care systems and have substantial effects on the quality of life and the overall outcomes of patients with bladder cancer. The incidence of urothelial tumours is increasing owing to population growth and ageing, so novel therapeutic options are vital. Based on work by The Cancer Genome Atlas project, which has identified targetable vulnerabilities in bladder cancer, immune checkpoint inhibitors (ICIs) have arisen as an effective alternative for managing advanced disease. However, although ICIs have shown durable responses in a subset of patients with bladder cancer, the overall response rate is only ~15-25%, which increases the demand for biomarkers of response and therapeutic strategies that can overcome resistance to ICIs. In ICI non-responders, cancer cells use effective mechanisms to evade immune cell antitumour activity; the overlapping Warburg effect machinery of cancer and immune cells is a putative determinant of the immunosuppressive phenotype in bladder cancer. This energetic interplay between tumour and immune cells leads to metabolic competition in the tumour ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. Thus, molecular hallmarks of cancer cell metabolism are potential therapeutic targets, not only to eliminate malignant cells but also to boost the efficacy of immunotherapy. In this sense, integrating the targeting of tumour metabolism into immunotherapy design seems a rational approach to improve the therapeutic efficacy of ICIs.
Collapse
|
369
|
Chen PM, Li JR, Liu CC, Tang FY, Chiang EPI. Metabolic Pathways Enhancement Confers Poor Prognosis in p53 Exon Mutant Hepatocellular Carcinoma. Cancer Inform 2020; 19:1176935119899913. [PMID: 31933519 PMCID: PMC6947881 DOI: 10.1177/1176935119899913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
RNA-Sequencing (RNA-Seq), the most commonly used sequencing application tool, is not only a method for measuring gene expression but also an excellent media to detect important structural variants such as single nucleotide variants (SNVs), insertion/deletion (Indels), or fusion transcripts. The Cancer Genome Atlas (TCGA) contains genomic data from a variety of cancer types and also provides the raw data generated by TCGA consortium. p53 is among the top 10 somatic mutations associated with hepatocellular carcinoma (HCC). The aim of the present study was to analyze concordant different gene profiles and the priori defined set of genes based on p53 mutation status in HCC using RNA-Seq data. In the study, expression profile of 11 799 genes on 42 paired tumor and adjacent normal tissues was collected, processed, and further stratified by the mutated versus normal p53 expression. Furthermore, we used a knowledge-based approach Gene Set Enrichment Analysis (GSEA) to compare between normal and p53 mutation gene expression profiles. The statistical significance (nominal P value) of the enrichment score (ES) genes was calculated. The ranked gene list that reflects differential expression between p53 wild-type and mutant genotypes was then mapped to metabolic process by KEGG, an encyclopedia of genes and genomes to assign functional meanings. These approaches enable us to identify pathways and potential target gene/pathways that are highly expressed in p53 mutated HCC. Our analysis revealed 2 genes, the hexokinase 2 (HK2) and Enolase 1 (ENO1), were conspicuous of red pixel in the heatmap. To further explore the role of these genes in HCC, the overall survival plots by Kaplan-Meier method were performed for HK2 and ENO1 that revealed high HK2 and ENO1 expression in patients with HCC have poor prognosis. These results suggested that these glycolysis genes are associated with mutated-p53 in HCC that may contribute to poor prognosis. In this proof-of-concept study, we proposed an approach for identifying novel potential therapeutic targets in human HCC with mutated p53. These approaches can take advantage of the massive next-generation sequencing (NGS) data generated worldwide and make more out of it by exploring new potential therapeutic targets.
Collapse
Affiliation(s)
- Po-Ming Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung
| | - Jian-Rong Li
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung
| | - Feng-Yao Tang
- Department of Nutrition, China Medical University, Taichung
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung.,Innovation and Development Center of Sustainable Agriculture (IDCSA), Taichung
| |
Collapse
|
370
|
Immune-resistant mechanisms in cancer immunotherapy. Int J Clin Oncol 2020; 25:810-817. [PMID: 31919690 DOI: 10.1007/s10147-019-01611-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Immune checkpoint inhibitors (ICI) such as PD-1/PD-L1 antibodies (Abs) and CTLA4 Abs and T cell-based adoptive cell therapies are effective for patients with various cancers. However, response rates of ICI monotherapies are still limited due to lack of immunogenic antigens and various immune-resistant mechanisms. The latter includes adaptive immune resistance that is caused by anti-tumor T cells (e.g. PD-L1 induced by IFN-γ from T cells) and primary immune resistance that is caused by cancer cells (e.g. immunosuppressive cytokines produced by cancer cells). Further understanding of the immune-resistant mechanisms, which may be possible through comparative analyses of responders and non-responders to the immunotherapies, will lead to the identification of new diagnostic biomarkers and therapeutic targets for development of effective cancer immuno therapies.
Collapse
|
371
|
Sheppard AD, Lysaght J. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods Mol Biol 2020; 2184:233-263. [PMID: 32808230 DOI: 10.1007/978-1-0716-0802-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The last century of research in tumor immunology has culminated in the advent of immunotherapy, most notably immune checkpoint inhibitors. These drugs have shown encouraging results across a multitude of malignancies and have shifted the paradigm of cancer treatment. However, no more than 40% of patients treated with these immune checkpoint blockade inhibitors respond. Thus, resistance is a barrier to therapy that remains poorly understood. All cells require energy and biosynthetic precursors for survival, growth, and functioning, where multiple metabolic pathways allow for flexibility in how nutrients are utilized. A defining hallmark of many cancers is altered cellular metabolism, creating an imbalanced demand for nutrients within the tumor microenvironment. Immunometabolism is increasingly understood to be vital to the functions and phenotypes of a myriad of immune cell subsets. In tumors, the high demand for nutrients by the tumor drives competition between tumor cells and infiltrating immune cells, culminating in dysfunctional immune responses. This chapter discusses the recent successes in cancer immunotherapy and highlights challenges to therapy. We also outline the major metabolic processes involved in the generation of an immune response, how this can become dysregulated in the context of the tumor microenvironment, and how this contributes to resistance to immunotherapy. Finally, we explore the potential for targeting immunometabolic pathways to improve immunotherapy, and examine current trials targeting various aspects of metabolism in an attempt to improve the outcomes from immunotherapy.
Collapse
Affiliation(s)
- Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
372
|
Nguyen DJM, Theodoropoulos G, Li YY, Wu C, Sha W, Feun LG, Lampidis TJ, Savaraj N, Wangpaichitr M. Targeting the Kynurenine Pathway for the Treatment of Cisplatin-Resistant Lung Cancer. Mol Cancer Res 2020; 18:105-117. [PMID: 31628200 PMCID: PMC7262740 DOI: 10.1158/1541-7786.mcr-19-0239] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023]
Abstract
Cisplatin resistance is a major barrier in the effective treatment of lung cancer. Cisplatin-resistant (CR) lung cancer cells do not primarily use glucose but rather consume amino acids such as glutamine and tryptophan (Trp) for survival. CR cells activate the kynurenine (KYN) pathway (KP) to cope with excessive reactive oxygen species (ROS) and maintain homeostasis for growth and proliferation. Consequently, indoleamine 2,3-dioxygenase-1 (IDO1) becomes an essential enzyme for CR cells' survival because it initiates and regulates the first step in the KP. Increased IDO1 activities and ROS levels are found in CR cells versus cisplatin-sensitive lung cancer. Importantly, significantly greater KYN/Trp ratio (P = 0.005) is detected in serum of patients who fail cisplatin when compared with naïve treatment. Knocking down IDO1 using shRNA or IDO1 inhibitors heightens ROS levels and results in a significant growth inhibitory effect only on CR cells and not on cisplatin-sensitive cells. Exposing CR cells to antioxidant (TIRON) results in suppression of IDO1 activity and confers resistance to IDO1 inhibition, indicating an interrelationship between ROS and IDO1. Because KYN plays a critical role in reprogramming naïve T cells to the immune-suppressive regulatory T-cell (T-reg) phenotype, we observed higher expression of TGFβ, FoxP3, and CD4+CD25+ in mice bearing CR tumors compared with tumors from cisplatin-sensitive counterparts. IMPLICATIONS: Findings suggest that the enzyme-inhibitory activity and antitumor efficacy of IDO1 inhibitors rely in part on ROS levels, arguing that IDO1 expression alone may be insufficient to determine the clinical benefits for this class of experimental cancer drugs. Importantly, IDO1 inhibitors may be more suitable to treat patients with lung cancer who failed cisplatin therapy than naïve treatment patients.
Collapse
Affiliation(s)
- Dan J M Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida
| | - George Theodoropoulos
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida
| | - Ying-Ying Li
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida
| | - Wei Sha
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida
| | - Lynn G Feun
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Theodore J Lampidis
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Niramol Savaraj
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida.
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, Florida.
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
373
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
374
|
Abstract
Checkpoint inhibitor therapy (CIT) has revolutionized cancer treatment but it has also reached a standstill when an absent dialog between cancer and immune cells makes it irrelevant. This occurs with high prevalence in the context of "immune silent" and, even perhaps, "immune-excluded" tumors. The latter are characterized by T cells restricted to the periphery of cancer nests. Since in either case T cells do not come in direct contact with most cancer cells, CIT rests immaterial. Adoptive cell therapy (ACT), may also be affected by limited access to antigen-bearing cancer cells. While lack of immunogenicity intuitively explains the immune silent phenotype, immune exclusion is perplexing. The presence of T cells at the periphery suggests that chemo-attraction recruits them and an immunogenic stimulus promotes their persistence. However, what stops the T cells from infiltrating the tumors' nests and reaching the germinal center (GC)? Possibly, a concentric gradient of increased chemo-repulsion or decreased chemo-attraction demarcates an abrupt "do not trespass" warning. Various hypotheses suggest physical or functional barriers but no definitive consensus exists over the weight that each plays in human cancers. On one hand, it could be hypothesized that the intrinsic biology of cancer cells may degenerate from a "cancer stem cell" (CSC)-like phenotype in the GC toward a progressively more immunogenic phenotype prone to immunogenic cell death (ICD) at the periphery. On the other hand, the intrinsic biology of the cancer cells may not change but it is the disorderly architecture of the tumor microenvironment (TME) that alters in a centripetal direction cancer cell metabolism, both directly and indirectly, the function of surrounding stromal cells. In this chapter, we examine whether the paradoxical exclusion of T cells from tumors may serve as a model to understand the requirements for tumor immune infiltration and, correspondingly, we put forth strategies to restore the dialog between immune cells and cancer to enhance the effectiveness of immune oncology (IO) approaches.
Collapse
Affiliation(s)
- Sara I Pai
- Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | | | | |
Collapse
|
375
|
Hargadon KM. Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clin Transl Med 2020; 10:374-411. [PMID: 32508018 PMCID: PMC7240858 DOI: 10.1002/ctm2.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is fast becoming one of the most promising means of treating malignant disease. Cancer vaccines, adoptive cell transfer therapies, and immune checkpoint blockade have all shown varying levels of success in the clinical management of several cancer types in recent years. However, despite the clinical benefits often achieved by these regimens, an ongoing problem for many patients is the inherent or acquired resistance of their cancer to immunotherapy. It is now appreciated that dendritic cells and T lymphocytes both play key roles in antitumor immune responses and that the tumor microenvironment presents a number of barriers to the function of these cells that can ultimately limit the success of immunotherapy. In particular, the engagement of several immunologic and metabolic checkpoints within the hostile tumor microenvironment can severely compromise the antitumor functions of these important immune populations. This review highlights work from both preclinical and clinical studies that has shaped our understanding of the tumor microenvironment and its influence on dendritic cell and T cell function. It focuses on clinically relevant targeted and immunotherapeutic strategies that have emerged from these studies in an effort to prevent or overcome immune subversion within the tumor microenvironment. Emphasis is also placed on the potential of next-generation combinatorial regimens that target metabolic and immunologic impediments to dendritic cell and T lymphocyte function as strategies to improve antitumor immune reactivity and the clinical outcome of cancer immunotherapy going forward.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon LaboratoryDepartment of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| |
Collapse
|
376
|
Zhao Z, Xiao X, Saw PE, Wu W, Huang H, Chen J, Nie Y. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. SCIENCE CHINA-LIFE SCIENCES 2019; 63:180-205. [PMID: 31883066 DOI: 10.1007/s11427-019-9665-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cell is a novel approach, which utilizes anti-tumor immunity for cancer treatment. As compared to the traditional cell-mediated immunity, CAR-T possesses the improved specificity of tumor antigens and independent cytotoxicity from major histocompatibility complex molecules through a monoclonal antibody in addition to the T-cell receptor. CAR-T cell has proven its effectiveness, primarily in hematological malignancies, specifically where the CD 19 CAR-T cells were used to treat B-cell acute lymphoblastic leukemia and B-cell lymphomas. Nevertheless, there is little progress in the treatment of solid tumors despite the fact that many CAR agents have been created to target tumor antigens such as CEA, EGFR/EGFRvIII, GD2, HER2, MSLN, MUC1, and other antigens. The main obstruction against the progress of research in solid tumors is the tumor microenvironment, in which several elements, such as poor locating ability, immunosuppressive cells, cytokines, chemokines, immunosuppressive checkpoints, inhibitory metabolic factors, tumor antigen loss, and antigen heterogeneity, could affect the potency of CAR-T cells. To overcome these hurdles, researchers have reconstructed the CAR-T cells in various ways. The purpose of this review is to summarize the current research in this field, analyze the mechanisms of the major barriers mentioned above, outline the main solutions, and discuss the outlook of this novel immunotherapeutic modality.
Collapse
Affiliation(s)
- Zijun Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyun Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongyan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
377
|
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol 2019; 17:27-35. [PMID: 31853000 DOI: 10.1038/s41423-019-0344-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The failure of a massive influx of tumor-infiltrating T lymphocytes to eradicate tumor cells in the tumor microenvironment is mainly due to the dysfunction of T cells hyporesponsive to tumors. T-cell exhaustion and senescence induced by malignant tumors are two important dysfunctional states that coexist in cancer patients, hindering effective antitumor immunity and immunotherapy and sustaining the suppressive tumor microenvironment. Although exhausted and senescent T cells share a similar dysfunctional role in antitumor immunity, they are distinctly different in terms of generation, development, and metabolic and molecular regulation during tumor progression. Here, we discuss the unique phenotypic and functional characteristics of these two types of dysfunctional T cells and their roles in tumor development and progression. In addition, we further discuss the potential molecular and metabolic signaling pathways responsible for the control of T-cell exhaustion and senescence in the suppressive tumor microenvironment. Understanding these critical and fundamental features should facilitate rethinking the unresponsiveness to current immunotherapies in clinical patients and lead to further development of novel and effective strategies that target different types of dysfunctional T cells to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
378
|
O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19:324-335. [PMID: 30820043 DOI: 10.1038/s41577-019-0140-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At the centre of the therapeutic dilemma posed by cancer is the question of how to develop more effective treatments that discriminate between normal and cancerous tissues. Decades of research have shown us that universally applicable principles are rare, but two well-accepted concepts have emerged: first, that malignant transformation goes hand in hand with distinct changes in cellular metabolism; second, that the immune system is critical for tumour control and clearance. Unifying our understanding of tumour metabolism with immune cell function may prove to be a powerful approach in the development of more effective cancer therapies. Here, we explore how nutrient availability in the tumour microenvironment shapes immune responses and identify areas of intervention to modulate the metabolic constraints placed on immune cells in this setting.
Collapse
Affiliation(s)
- David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,University of Freiburg, Freiburg, Germany.
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
379
|
Zhang H, Liu L, Zhang J, Chen J, Ye J, Shukla S, Qiao J, Zhan X, Chen H, Wu CJ, Fu YX, Li B. Investigation of Antigen-Specific T-Cell Receptor Clusters in Human Cancers. Clin Cancer Res 2019; 26:1359-1371. [PMID: 31831563 DOI: 10.1158/1078-0432.ccr-19-3249] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer antigen-specific T cells are key components in antitumor immune response, yet their identification in the tumor microenvironment remains challenging, as most cancer antigens are unknown. Recent advance in immunology suggests that similar T-cell receptor (TCR) sequences can be clustered to infer shared antigen specificity. This study aims to identify antigen-specific TCRs from the tumor genomics sequencing data. EXPERIMENTAL DESIGN We used the TRUST (Tcr Repertoire Utilities for Solid Tissue) algorithm to assemble the TCR hypervariable CDR3 regions from 9,700 bulk tumor RNA-sequencing (RNA-seq) samples, and developed a computational method, iSMART, to group similar TCRs into antigen-specific clusters. Integrative analysis on the TCR clusters with multi-omics datasets was performed to profile cancer-associated T cells and to uncover novel cancer antigens. RESULTS Clustered TCRs are associated with signatures of T-cell activation after antigen encounter. We further elucidated the phenotypes of clustered T cells using single-cell RNA-seq data, which revealed a novel subset of tissue-resident memory T-cell population with elevated metabolic status. An exciting application of the TCR clusters is to identify novel cancer antigens, exemplified by our identification of a candidate cancer/testis gene, HSFX1, through integrated analysis of HLA alleles and genomics data. The target was further validated using vaccination of humanized HLA-A*02:01 mice and ELISpot assay. Finally, we showed that clustered tumor-infiltrating TCRs can differentiate patients with early-stage cancer from healthy donors, using blood TCR repertoire sequencing data, suggesting potential applications in noninvasive cancer detection. CONCLUSIONS Our analysis on the antigen-specific TCR clusters provides a unique resource for alternative antigen discovery and biomarker identification for cancer immunotherapies.
Collapse
Affiliation(s)
- Hongyi Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Longchao Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Jian Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiahui Chen
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Sachet Shukla
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jian Qiao
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Xiaowei Zhan
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Hao Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Catherine J Wu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas. .,Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
380
|
Han L, Yao S, Cao S, Mo G, Li J, Cao Y, Huang F. Triterpenoid Saponins from Anemone flaccida Suppress Tumor Cell Proliferation by Regulating MAPK, PD1/PDL1, and STAT3 Signaling Pathways and Altering Cancer Metabolism. Onco Targets Ther 2019; 12:10917-10930. [PMID: 31849495 PMCID: PMC6913295 DOI: 10.2147/ott.s212666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose Natural triterpenoid saponins isolated from Anemone flaccida Fr. Schmidt have exhibited anti-cancer properties and exerted remarkable inhibitory effects on tumor growth. Herein, we investigated the potential mechanism involved in the suppression of hepatocellular carcinoma (HCC) development by triterpenoid saponins in a mouse model. Methods An HCC model was established in H22 tumor-bearing mice and triterpenoid saponins were administered at various doses. Immunofluorescence, flow cytometry, and western blot were performed to analyze the effect of triterpenoid saponins on immune response in tumor tissues. Metabolomic analysis was carried out to assess the metabolites involved in mediating the effect of triterpenoid saponins on tumor tissues. Results Triterpenoid saponins induced anti-tumor immune response by decreasing the number of Treg cells, increasing that of B cells, natural killer cells, and CD3+/CD28+ T cells, and reducing the secretion of inflammatory factors including nuclear factor-κB, cyclooxygenase-2, and microsomal prostaglandin E synthase-1. In addition, triterpenoid saponins inhibited tumor growth and induced the apoptosis of HCC cells by blocking the activation of PD1/PD-L1, ERK1/2, p38 MAPK, JNK, and STAT3 signaling pathways. Furthermore, triterpenoid saponins regulated tumor immune response by upregulating a number of metabolites (including 1,3-diaminopropane, lauric acid, 2,4-diaminobutyric acid 2, and ribitol) and modulating the metabolism of histidine, arginine, proline, beta-alanine, glycine, serine, and threonine. Conclusion The findings suggested that triterpenoid saponins interfered with multiple signaling cascades involved in tumorigenesis and tumor metabolism and have potential applications in HCC therapy.
Collapse
Affiliation(s)
- Lintao Han
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei 430061, People's Republic of China
| | - Shiqi Yao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, People's Republic of China
| | - Sa Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, People's Republic of China
| | - Guoyan Mo
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei 430061, People's Republic of China
| | - Jingjing Li
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei 430061, People's Republic of China
| | - Yan Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, People's Republic of China
| | - Fang Huang
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei 430061, People's Republic of China
| |
Collapse
|
381
|
Armstrong D, Chang CY, Lazarus DR, Corry D, Kheradmand F. Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses. Front Oncol 2019; 9:1384. [PMID: 31921642 PMCID: PMC6914699 DOI: 10.3389/fonc.2019.01384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
The interplay between tumors and their immune microenvironment is critical for cancer development and progression. The discovery of tumor heterogeneity has provided a window into a complex interplay between tumors, their secreted products, and host immune responses at the cellular and molecular levels. Tumor heterogeneity can also act as a driving force in promoting treatment resistance and correlates with distinct tumor-mediated acquired immune responses. A prevailing question is how genetic aberrations in solid tumors can shape the immune landscape, resulting in pro-tumor or anti-tumor activities. Here we review evidence for clinical and pathophysiological mechanisms that underlie different types of non-small cell lung cancer (NSCLC) and provide new insights for future immunomodulatory-based therapies. Some of the more common driver mutations in NSCLC heterogeneity includes the opposing immune responses in oncogenic mutations in K-ras vs. non-K-ras models and their pro-inflammatory cytokines such as interleukin (IL)17A. We will discuss possible molecular and metabolic mechanisms that may govern the opposing immune responses observed in distinct genetic models of NSCLCs. A deeper understanding of how tumor heterogeneity modulates immune response can improve current therapeutic strategies and provide precise treatment to individual lung cancer patients.
Collapse
Affiliation(s)
- Dominique Armstrong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Donald R Lazarus
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs, Houston, TX, United States
| | - David Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
382
|
Ye S, Wang H, He K, Shen H, Peng M, Nian Y, Cui R, Yi L. Gene set based systematic analysis of prostate cancer and its subtypes. Future Oncol 2019; 16:4381-4393. [PMID: 31814446 DOI: 10.2217/fon-2019-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: A gene set based systematic analysis strategy is used to investigate prostate tumors and its subclusters with focuses on similarities and differences of biological functions. Results: Dysregulation of methylation status, as well as RAS/RAF/ERK and PI3K-ATK signaling pathways, were found to be the most dramatic changes during prostate cancer tumorigenesis. Besides, neural and inflammation microenvironment is also significantly divergent between tumor and adjacent tissues. Insights of subclasses within prostate tumor cohorts revealed four different clusters with distinct gene expression patterns. We found that samples are mainly clustered by immune environments and proliferation traits. Conclusion: The findings of this article may help to advance the progress of identifying better diagnosis biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Senlin Ye
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Haohui Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Kancheng He
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Hongwei Shen
- Central Lab of the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Yeqi Nian
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Rongrong Cui
- Institute of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Lu Yi
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| |
Collapse
|
383
|
Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, Ko CJ, Gao T, Hernandez BE, Cheng X, Sun SC. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol 2019; 21:1604-1614. [PMID: 31792381 PMCID: PMC6901116 DOI: 10.1038/s41556-019-0429-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
The kinase TBK1 responds to microbial stimuli and mediates type I interferon (IFN-I) induction. We show that TBK1 is also a central mediator of growth factor signaling; this function relies on a specific adaptor, TBK-binding protein 1 (TBKBP1). TBKBP1 recruits TBK1 to PKCθ via a scaffold protein, Card10, which allows PKCθ to phosphorylate TBK1 at serine-716, a crucial step for TBK1 activation by growth factors but not by innate immune stimuli. While the TBK1/TBKBP1 signaling axis is dispensable for IFN-I induction, it mediates mTORC1 activation and oncogenesis. Lung epithelial cell-conditional deletion of either TBK1 or TBKBP1 inhibits tumorigenesis in a mouse model of lung cancer. In addition to promoting tumor growth, the TBK1/TBKBP1 axis facilitates tumor-mediated immunosuppression by a mechanism involving induction of the checkpoint molecule PD-L1 and stimulation of glycolysis. These findings suggest a PKCθ-TBKBP1-TBK1 growth factor signaling axis mediating both tumor growth and immunosuppression.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Blanca E Hernandez
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
384
|
Mougiakakos D. The Induction of a Permissive Environment to Promote T Cell Immune Evasion in Acute Myeloid Leukemia: The Metabolic Perspective. Front Oncol 2019; 9:1166. [PMID: 31781489 PMCID: PMC6851227 DOI: 10.3389/fonc.2019.01166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is the acute leukemia with highest incidence amongst adults. Despite significant improvements in understanding the genomic landscape and the introduction of novel drugs, long-term outcome remains unsatisfactory. Recently, immunotherapeutic approaches have heralded a new era in cancer treatment. The success of allogeneic hematopoietic stem cell transplantation in AML highlights the disease's immunoresponsiveness. Several immunotherapeutic applications are currently under clinical evaluation and include immune checkpoint blockades, T cell-engaging antibodies, and genetically engineered T cells. However, immunoevasive mechanisms employed by AML blasts severely hamper our endeavors. A better understanding of the underlying mechanisms remains a prerequisite for improving treatment efficacy. One of the hallmarks of the cancer cells is metabolic reprogramming, introduced by Otto Warburg's seminal studies during the beginnings of the last century. Nowadays, it is well established that metabolic adaptation is not just an epiphenomenon during oncogenesis but rather a necessity for tumor development and progression. Furthermore, accumulating data suggest an important role of aberrant tumor cell metabolism for immune escape. AML blasts display a number of metabolic alterations that could be linked to immunoregulation, and these include competition over substrates, abundant release of bioactive metabolites, and an overall microenvironmental metabolic re-modeling that favors the induction or survival of immunoregulatory cell subsets such as regulatory T cells. In this review, we outline the immunoevasive character of the AML blasts' bioenergetics, set it into context with oncogenic mutations, and discuss potentially suitable countermeasures and their limitations.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Medicine 5, Hematology and Medical Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
385
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
386
|
Hammerl D, Massink MPG, Smid M, van Deurzen CHM, Meijers-Heijboer HEJ, Waisfisz Q, Debets R, Martens JWM. Clonality, Antigen Recognition, and Suppression of CD8 + T Cells Differentially Affect Prognosis of Breast Cancer Subtypes. Clin Cancer Res 2019; 26:505-517. [PMID: 31649042 DOI: 10.1158/1078-0432.ccr-19-0285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE In breast cancer, response rates to immune therapies are generally low and differ significantly across molecular subtypes, urging a better understanding of immunogenicity and immune evasion. EXPERIMENTAL DESIGN We interrogated large gene-expression data sets including 867 node-negative, treatment-naïve breast cancer patients (microarray data) and 347 breast cancer patients (whole-genome sequencing and transcriptome data) according to parameters of T cells as well as immune microenvironment in relation to patient survival. RESULTS We developed a 109-immune gene signature that captures abundance of CD8 tumor-infiltrating lymphocytes (TIL) and is prognostic in basal-like, her2, and luminal B breast cancer, but not in luminal A or normal-like breast cancer. Basal-like and her2 are characterized by highest CD8 TIL abundance, highest T-cell clonality, highest frequencies of memory T cells, and highest antigenicity, yet only the former shows highest expression level of immune and metabolic checkpoints and highest frequency of myeloid suppressor cells. Also, luminal B shows a high antigenicity and T-cell clonality, yet a low abundance of CD8 TILs. In contrast, luminal A and normal-like both show a low antigenicity, and notably, a low and high abundance of CD8 TILs, respectively, which associates with T-cell influx parameters, such as expression of adhesion molecules. CONCLUSIONS Collectively, our data argue that not only CD8 T-cell presence itself, but rather T-cell clonality, T-cell subset distribution, coinhibition, and antigen presentation reflect occurrence of a CD8 T-cell response in breast cancer subtypes, which have been aborted by distinct T-cell-suppressive mechanisms, providing a rationale for subtype-specific combination immune therapies.
Collapse
Affiliation(s)
- Dora Hammerl
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Maarten P G Massink
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
387
|
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol 2019; 10:2278. [PMID: 31616440 PMCID: PMC6769035 DOI: 10.3389/fimmu.2019.02278] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022] Open
Abstract
Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
388
|
Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, Shenoy A, Ayasun R, Knafo N, Xu S, Anafi L, Yanovich-Arad G, Barnabas GD, Ashkenazi S, Besser MJ, Schachter J, Bosenberg M, Shadel GS, Barshack I, Kaech SM, Markel G, Geiger T. Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell 2019; 179:236-250.e18. [PMID: 31495571 PMCID: PMC7993352 DOI: 10.1016/j.cell.2019.08.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023]
Abstract
Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and ∼4,500 proteins across most samples in each dataset. Statistical analyses revealed higher oxidative phosphorylation and lipid metabolism in responders than in non-responders in both treatments. To elucidate the effects of the metabolic state on the immune response, we examined melanoma cells upon metabolic perturbations or CRISPR-Cas9 knockouts. These experiments indicated lipid metabolism as a regulatory mechanism that increases melanoma immunogenicity by elevating antigen presentation, thereby increasing sensitivity to T cell mediated killing both in vitro and in vivo. Altogether, our proteomic analyses revealed association between the melanoma metabolic state and the response to immunotherapy, which can be the basis for future improvement of therapeutic response.
Collapse
Affiliation(s)
- Michal Harel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Rona Ortenberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Mariya Mardamshina
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Ettai Markovits
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Erez N Baruch
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - May Arama-Chayoth
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Eyal Greenberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Ruveyda Ayasun
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Naama Knafo
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Liat Anafi
- Institute of Pathology, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Gali Yanovich-Arad
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Shira Ashkenazi
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; The Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, New Haven, CT 06510, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Iris Barshack
- Institute of Pathology, Sheba Medical Center, Tel Hashomer 5265601, Israel; The Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gal Markel
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Tel Hashomer 5265601, Israel; Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel.
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
389
|
Vashisht Gopal YN, Gammon S, Prasad R, Knighton B, Pisaneschi F, Roszik J, Feng N, Johnson S, Pramanik S, Sudderth J, Sui D, Hudgens C, Fischer GM, Deng W, Reuben A, Peng W, Wang J, McQuade JL, Tetzlaff MT, Di Francesco ME, Marszalek J, Piwnica-Worms D, DeBerardinis RJ, Davies MA. A Novel Mitochondrial Inhibitor Blocks MAPK Pathway and Overcomes MAPK Inhibitor Resistance in Melanoma. Clin Cancer Res 2019; 25:6429-6442. [PMID: 31439581 DOI: 10.1158/1078-0432.ccr-19-0836] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/25/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study is to determine if inhibition of mitochondrial oxidative phosphorylation (OxPhos) is an effective strategy against MAPK pathway inhibitor (MAPKi)-resistant BRAF-mutant melanomas.Experimental Design: The antimelanoma activity of IACS-010759 (OPi), a novel OxPhos complex I inhibitor, was evaluated in vitro and in vivo. Mechanistic studies and predictors of response were evaluated using molecularly and metabolically stratified melanoma cell lines. 13C-labeling and targeted metabolomics were used to evaluate the effect of OPi on cellular energy utilization. OxPhos inhibition in vivo was evaluated noninvasively by [18F]-fluoroazomycin arabinoside (FAZA) PET imaging. RESULTS OPi potently inhibited OxPhos and the in vivo growth of multiple MAPKi-resistant BRAF-mutant melanoma models with high OxPhos at well-tolerated doses. In vivo tumor regression with single-agent OPi treatment correlated with inhibition of both MAPK and mTOR complex I activity. Unexpectedly, antitumor activity was not improved by combined treatment with MAPKi in vitro or in vivo. Signaling and growth-inhibitory effects were mediated by LKB1-AMPK axis, and proportional to AMPK activation. OPi increased glucose incorporation into glycolysis, inhibited glucose and glutamine incorporation into the mitochondrial tricarboxylic acid cycle, and decreased cellular nucleotide and amino acid pools. Early changes in [18F]-FAZA PET uptake in vivo, and the degree of mTORC1 pathway inhibition in vitro, correlated with efficacy. CONCLUSIONS Targeting OxPhos with OPi has significant antitumor activity in MAPKi-resistant, BRAF-mutant melanomas, and merits further clinical investigation as a potential new strategy to overcome intrinsic and acquired resistance to MAPKi in patients.
Collapse
Affiliation(s)
- Y N Vashisht Gopal
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas. .,Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Seth Gammon
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rishika Prasad
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Barbara Knighton
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- Center for Co-Clinical Trials, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Sarah Johnson
- Center for Co-Clinical Trials, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Snigdha Pramanik
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jessica Sudderth
- Children's Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dawen Sui
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Courtney Hudgens
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Grant M Fischer
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Wanleng Deng
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic H&N Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jian Wang
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Michael T Tetzlaff
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.,Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Maria E Di Francesco
- Institute for Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Joe Marszalek
- Center for Co-Clinical Trials, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ralph J DeBerardinis
- Children's Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.,Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.,Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
390
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
391
|
Peng W, Williams LJ, Xu C, Melendez B, McKenzie JA, Chen Y, Jackson HL, Voo KS, Mbofung RM, Leahey SE, Wang J, Lizee G, Tawbi HA, Davies MA, Hoos A, Smothers J, Srinivasan R, Paul EM, Yanamandra N, Hwu P. Anti-OX40 Antibody Directly Enhances The Function of Tumor-Reactive CD8 + T Cells and Synergizes with PI3Kβ Inhibition in PTEN Loss Melanoma. Clin Cancer Res 2019; 25:6406-6416. [PMID: 31371342 DOI: 10.1158/1078-0432.ccr-19-1259] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE OX40 agonist-based combinations are emerging as a novel avenue to improve the effectiveness of cancer immunotherapy. To better guide its clinical development, we characterized the role of the OX40 pathway in tumor-reactive immune cells. We also evaluated combining OX40 agonists with targeted therapy to combat resistance to cancer immunotherapy.Experimental Design: We utilized patient-derived tumor-infiltrating lymphocytes (TILs) and multiple preclinical models to determine the direct effect of anti-OX40 agonistic antibodies on tumor-reactive CD8+ T cells. We also evaluated the antitumor activity of an anti-OX40 antibody plus PI3Kβ inhibition in a transgenic murine melanoma model (Braf mutant, PTEN null), which spontaneously develops immunotherapy-resistant melanomas. RESULTS We observed elevated expression of OX40 in tumor-reactive CD8+ TILs upon encountering tumors; activation of OX40 signaling enhanced their cytotoxic function. OX40 agonist antibody improved the antitumor activity of CD8+ T cells and the generation of tumor-specific T-cell memory in vivo. Furthermore, combining anti-OX40 with GSK2636771, a PI3Kβ-selective inhibitor, delayed tumor growth and extended the survival of mice with PTEN-null melanomas. This combination treatment did not increase the number of TILs, but it instead significantly enhanced proliferation of CD8+ TILs and elevated the serum levels of CCL4, CXCL10, and IFNγ, which are mainly produced by memory and/or effector T cells. CONCLUSIONS These results highlight a critical role of OX40 activation in potentiating the effector function of tumor-reactive CD8+ T cells and suggest further evaluation of OX40 agonist-based combinations in patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Leila J Williams
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chunyu Xu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brenda Melendez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jodi A McKenzie
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuan Chen
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather L Jackson
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Kui S Voo
- Department of Oncology Research for Biologics and Immunotherapy Translation Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rina M Mbofung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sara Elizabeth Leahey
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Axel Hoos
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - James Smothers
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Roopa Srinivasan
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Elaine M Paul
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Niranjan Yanamandra
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania.
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
392
|
Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov 2019; 18:669-688. [PMID: 31363227 DOI: 10.1038/s41573-019-0032-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Metabolic programming is emerging as a critical mechanism to alter immune cell activation, differentiation and function. Targeting metabolism does not completely suppress or activate the immune system but selectively regulates immune responses. The different metabolic requirements of the diverse cells that constitute an immune response provide a unique opportunity to separate effector functions from regulatory functions. Likewise, cells can be metabolically reprogrammed to promote either their short-term effector functions or long-term memory capacity. Studies in the growing field of immunometabolism support a paradigm of 'cellular selectivity based on demand', in which generic inhibitors of ubiquitous metabolic processes selectively affect cells with the greatest metabolic demand and have few effects on other cells of the body. Targeting metabolism, rather than particular cell types or cytokines, in metabolically demanding processes such as autoimmunity, graft rejection, cancer and uncontrolled inflammation could lead to successful strategies in controlling the pathogenesis of these complex disorders.
Collapse
Affiliation(s)
- Chirag H Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
393
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
394
|
Paulson KG, Lahman MC, Chapuis AG, Brownell I. Immunotherapy for skin cancer. Int Immunol 2019; 31:465-475. [PMID: 30753483 PMCID: PMC6626298 DOI: 10.1093/intimm/dxz012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Among all tumor types, skin cancers are profoundly sensitive to immunotherapy. Indeed, the recently reported response rates for anti-PD-1 (anti-programmed-death 1) therapy for cutaneous malignant melanomas (MM), Merkel cell carcinomas, basal cell carcinomas, cutaneous squamous cell carcinomas and Kaposi sarcomas are all above 40%. This unique immunogenicity renders skin cancers as a paradigm for tumor-immune interactions and is driven by high mutational burdens, over-expressed tumor antigens and/or viral antigens. However, despite the clear demonstration of immunologic cure of skin cancer in some patients, most tumors develop either early (primary) or late (adaptive) resistance to immunotherapy. Resistance mechanisms are complex, and include contributions of tumor cell-intrinsic, T cell and microenvironment factors that have been recently further elucidated with the advent of single-cell technologies. This review will focus on the exciting progress with immunotherapy for skin cancers to date, and also our current understanding of the mechanisms of resistance to immunotherapy.
Collapse
Affiliation(s)
- Kelly G Paulson
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Divisions of Medical Oncology and Molecular Medicine, Departments of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Miranda C Lahman
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Divisions of Medical Oncology and Molecular Medicine, Departments of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Aude G Chapuis
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Divisions of Medical Oncology and Molecular Medicine, Departments of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
395
|
Hope HC, Salmond RJ. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur J Immunol 2019; 49:1147-1152. [DOI: 10.1002/eji.201848058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Helen Carrasco Hope
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner BuildingSt James's University Hospital Leeds LS9 7TF UK
| | - Robert J. Salmond
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner BuildingSt James's University Hospital Leeds LS9 7TF UK
| |
Collapse
|
396
|
Abstract
Cancer cells are highly heterogeneous, and their features markedly vary within different areas of the tumor microenvironment. In this issue, Kumar et al. (2019) identified perivascular tumor cells, derived from mouse glioblastoma xenografts, as the fraction that displays the highest mTOR-dependent anabolic metabolism, aggressiveness, and resistance to therapy.
Collapse
Affiliation(s)
- Federico Virga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium; Molecular Biotechnology Center, University of Torino, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Manuel Ehling
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium.
| |
Collapse
|
397
|
Fu Z, Ye J, Dean JW, Bostick JW, Weinberg SE, Xiong L, Oliff KN, Chen ZE, Avram D, Chandel NS, Zhou L. Requirement of Mitochondrial Transcription Factor A in Tissue-Resident Regulatory T Cell Maintenance and Function. Cell Rep 2019; 28:159-171.e4. [PMID: 31269437 PMCID: PMC6679941 DOI: 10.1016/j.celrep.2019.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Regulatory T cells (Tregs) are pivotal for immune suppression. Cellular metabolism is important for Treg homeostasis and function. However, the exact role of mitochondrial respiration in Tregs remains elusive. Mitochondrial transcription factor A (Tfam) is essential for mitochondrial respiration and controls mitochondrial DNA replication, transcription, and packaging. Here, we show that genetic ablation of Tfam in Tregs impairs Treg maintenance in non-lymphoid tissues in the steady state and in tumors. Tfam-deficient Tregs have reduced proliferation and Foxp3 expression upon glucose deprivation in vitro. Tfam deficiency preferentially affects gene activation in Tregs through regulation of DNA methylation, with enhanced methylation in the TSDR of the Foxp3 locus. Deletion of Tfam in Tregs affects Treg homing and stability, resulting in tissue inflammation in colitis, but enhances tumor rejection. Thus, our work reveals a critical role of Tfam-mediated mitochondrial respiration in Tregs to regulate inflammation and anti-tumor immunity.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jian Ye
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - John W Bostick
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Samuel E Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zongming E Chen
- Geisinger Medical Center, Laboratory Medicine, 01-31, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
398
|
Capelôa T, Benyahia Z, Zampieri LX, Blackman MCNM, Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 2019; 98:181-191. [PMID: 31112797 DOI: 10.1016/j.semcdb.2019.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Anthracyclines Doxorubicin, Epirubicin, Daunorubicin and Idarubicin are used to treat a variety of tumor types in the clinics, either alone or, most often, in combination therapies. While their cardiotoxicity is well known, the emergence of chemoresistance is also a major issue accounting for treatment discontinuation. Resistance to anthracyclines is associated to the acquisition of multidrug resistance conferred by overexpression of permeability glycoprotein-1 or other efflux pumps, by altered DNA repair, changes in topoisomerase II activity, cancer stemness and metabolic adaptations. This review further details the metabolic aspects of resistance to anthracyclines, emphasizing the contributions of glycolysis, the pentose phosphate pathway and nucleotide biosynthesis, glutathione, lipid metabolism and autophagy to the chemoresistant phenotype.
Collapse
Affiliation(s)
- Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Zohra Benyahia
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marine C N M Blackman
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
399
|
Bedognetti D, Ceccarelli M, Galluzzi L, Lu R, Palucka K, Samayoa J, Spranger S, Warren S, Wong KK, Ziv E, Chowell D, Coussens LM, De Carvalho DD, DeNardo DG, Galon J, Kaufman HL, Kirchhoff T, Lotze MT, Luke JJ, Minn AJ, Politi K, Shultz LD, Simon R, Thórsson V, Weidhaas JB, Ascierto ML, Ascierto PA, Barnes JM, Barsan V, Bommareddy PK, Bot A, Church SE, Ciliberto G, De Maria A, Draganov D, Ho WS, McGee HM, Monette A, Murphy JF, Nisticò P, Park W, Patel M, Quigley M, Radvanyi L, Raftopoulos H, Rudqvist NP, Snyder A, Sweis RF, Valpione S, Zappasodi R, Butterfield LH, Disis ML, Fox BA, Cesano A, Marincola FM. Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop. J Immunother Cancer 2019; 7:131. [PMID: 31113486 PMCID: PMC6529999 DOI: 10.1186/s40425-019-0602-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor immunology has changed the landscape of cancer treatment. Yet, not all patients benefit as cancer immune responsiveness (CIR) remains a limitation in a considerable proportion of cases. The multifactorial determinants of CIR include the genetic makeup of the patient, the genomic instability central to cancer development, the evolutionary emergence of cancer phenotypes under the influence of immune editing, and external modifiers such as demographics, environment, treatment potency, co-morbidities and cancer-independent alterations including immune homeostasis and polymorphisms in the major and minor histocompatibility molecules, cytokines, and chemokines. Based on the premise that cancer is fundamentally a disorder of the genes arising within a cell biologic process, whose deviations from normality determine the rules of engagement with the host's response, the Society for Immunotherapy of Cancer (SITC) convened a task force of experts from various disciplines including, immunology, oncology, biophysics, structural biology, molecular and cellular biology, genetics, and bioinformatics to address the complexity of CIR from a holistic view. The task force was launched by a workshop held in San Francisco on May 14-15, 2018 aimed at two preeminent goals: 1) to identify the fundamental questions related to CIR and 2) to create an interactive community of experts that could guide scientific and research priorities by forming a logical progression supported by multiple perspectives to uncover mechanisms of CIR. This workshop was a first step toward a second meeting where the focus would be to address the actionability of some of the questions identified by working groups. In this event, five working groups aimed at defining a path to test hypotheses according to their relevance to human cancer and identifying experimental models closest to human biology, which include: 1) Germline-Genetic, 2) Somatic-Genetic and 3) Genomic-Transcriptional contributions to CIR, 4) Determinant(s) of Immunogenic Cell Death that modulate CIR, and 5) Experimental Models that best represent CIR and its conversion to an immune responsive state. This manuscript summarizes the contributions from each group and should be considered as a first milestone in the path toward a more contemporary understanding of CIR. We appreciate that this effort is far from comprehensive and that other relevant aspects related to CIR such as the microbiome, the individual's recombined T cell and B cell receptors, and the metabolic status of cancer and immune cells were not fully included. These and other important factors will be included in future activities of the taskforce. The taskforce will focus on prioritization and specific actionable approach to answer the identified questions and implementing the collaborations in the follow-up workshop, which will be held in Houston on September 4-5, 2019.
Collapse
Affiliation(s)
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | | | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Stefani Spranger
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MT, USA
| | | | - Kwok-Kin Wong
- Perlmutter Cancer Center, New York Langone Health, New York, NY, USA
| | - Elad Ziv
- University of California, San Francisco, San Francisco, CA, USA
| | - Diego Chowell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Daniel D De Carvalho
- Department of Medical Biophysics, Princess Margaret Cancer Centre University Health Network, University of Toronto, Toronto, Canada
| | - David G DeNardo
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Howard L Kaufman
- Massachusetts General Hospital, Boston, MA, USA and Replimune, Inc., Woburn, MA, USA
| | - Tomas Kirchhoff
- Perlmutter Comprehensive Cancer Center, New York University School of Medicine, New York University Langone Health New York, New York, NY, USA
| | - Michael T Lotze
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andy J Minn
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | - Adrian Bot
- Kite, a Gilead Company, Santa Monica, CA, USA
| | | | | | - Andrea De Maria
- Università degli Studi di Genova and Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | | - Winson S Ho
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, UT, USA
| | - Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | - Paola Nisticò
- IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Wungki Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Sara Valpione
- CRUK Manchester Institute and The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, OR, USA
| | | | | |
Collapse
|
400
|
Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S, Gao D, Delaidelli A, Kyle AH, Baker JHE, Gillespie JA, Bashashati A, Minchinton AI, Zhou Y, Shah SP, Dedhar S. Targeting Hypoxia-Induced Carbonic Anhydrase IX Enhances Immune-Checkpoint Blockade Locally and Systemically. Cancer Immunol Res 2019; 7:1064-1078. [PMID: 31088846 DOI: 10.1158/2326-6066.cir-18-0657] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022]
Abstract
Treatment strategies involving immune-checkpoint blockade (ICB) have significantly improved survival for a subset of patients across a broad spectrum of advanced solid cancers. Despite this, considerable room for improving response rates remains. The tumor microenvironment (TME) is a hurdle to immune function, as the altered metabolism-related acidic microenvironment of solid tumors decreases immune activity. Here, we determined that expression of the hypoxia-induced, cell-surface pH regulatory enzyme carbonic anhydrase IX (CAIX) is associated with worse overall survival in a cohort of 449 patients with melanoma. We found that targeting CAIX with the small-molecule SLC-0111 reduced glycolytic metabolism of tumor cells and extracellular acidification, resulting in increased immune cell killing. SLC-0111 treatment in combination with immune-checkpoint inhibitors led to the sensitization of tumors to ICB, which led to an enhanced Th1 response, decreased tumor growth, and reduced metastasis. We identified that increased expression of CA9 is associated with a reduced Th1 response in metastatic melanoma and basal-like breast cancer TCGA cohorts. These data suggest that targeting CAIX in the TME in combination with ICB is a potential therapeutic strategy for enhancing response and survival in patients with hypoxic solid malignancies.
Collapse
Affiliation(s)
- Shawn C Chafe
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Saeed Saberi
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Samantha Burugu
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dongxia Gao
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Alastair H Kyle
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jennifer H E Baker
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jordan A Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ali Bashashati
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew I Minchinton
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohrab P Shah
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|